JP4880879B2 - Non-aqueous electrolyte secondary battery inspection method and non-aqueous electrolyte secondary battery manufacturing method - Google Patents

Non-aqueous electrolyte secondary battery inspection method and non-aqueous electrolyte secondary battery manufacturing method Download PDF

Info

Publication number
JP4880879B2
JP4880879B2 JP2004064087A JP2004064087A JP4880879B2 JP 4880879 B2 JP4880879 B2 JP 4880879B2 JP 2004064087 A JP2004064087 A JP 2004064087A JP 2004064087 A JP2004064087 A JP 2004064087A JP 4880879 B2 JP4880879 B2 JP 4880879B2
Authority
JP
Japan
Prior art keywords
positive electrode
exterior member
terminal
secondary battery
metal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004064087A
Other languages
Japanese (ja)
Other versions
JP2005251685A (en
Inventor
謙二 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004064087A priority Critical patent/JP4880879B2/en
Publication of JP2005251685A publication Critical patent/JP2005251685A/en
Application granted granted Critical
Publication of JP4880879B2 publication Critical patent/JP4880879B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、非水電解質二次電池および非水電解質二次電池の検査方法に関するものである。   The present invention relates to a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery inspection method.

近年、移動体通信機、ノートブック型パソコン、パームトップ型パソコン、一体型ビデオカメラ、ポータブルCD(MD)プレーヤー、コードレス電話等の電子機器の小形化、軽量化を図る上で、これらの電子機器の電源として、特に小型で大容量の電池が求められている。   In recent years, electronic devices such as mobile communication devices, notebook computers, palmtop computers, integrated video cameras, portable CD (MD) players, cordless telephones, etc. have been reduced in size and weight. As a power source, a battery having a small size and a large capacity is particularly demanded.

これら電子機器の電源として普及している電池としては、アルカリマンガン電池のような一次電池や、ニッケルカドミウム電池、鉛蓄電池等の二次電池が挙げられる。その中でも、正極にリチウム複合酸化物を用い、かつ負極にリチウムイオンを吸蔵・放出できる炭素質材料のような活物質を用いた非水電解質二次電池は小型軽量で単電池電圧が高く、高エネルギー密度を得られることが知られている。   Examples of batteries that are widely used as power sources for these electronic devices include primary batteries such as alkaline manganese batteries, and secondary batteries such as nickel cadmium batteries and lead storage batteries. Among them, non-aqueous electrolyte secondary batteries using a lithium composite oxide for the positive electrode and an active material such as a carbonaceous material capable of occluding and releasing lithium ions for the negative electrode are small and light, have a high single cell voltage, It is known that energy density can be obtained.

近年、正極と負極を有する電極群を収納するための外装部材として、水蒸気などに対してバリア作用を示すアルミニウム等からなる金属層の両面にポリエチレンのような熱融着性樹脂層およびポリエチレンテレフタレートのような合成樹脂層を貼り合わせたラミネートフィルムを袋状あるいはカップ状等に成型したものが用いられ、これにより非水電解質二次電池の更なる軽量化と小型化が可能となった。   In recent years, as an exterior member for housing an electrode group having a positive electrode and a negative electrode, a heat-fusible resin layer such as polyethylene and polyethylene terephthalate are formed on both surfaces of a metal layer made of aluminum or the like that exhibits a barrier action against water vapor and the like. A laminate film formed by laminating such a synthetic resin layer is molded into a bag shape or a cup shape, and this makes it possible to further reduce the weight and size of the nonaqueous electrolyte secondary battery.

しかしながら、このような構成を有する二次電池は負極に接続された負極端子と外装部材のラミネートフィルムを構成する金属層とが電気的に接触し、かつラミネートフィルム内面の樹脂層にピンホール等が存在した場合には、前記金属層と接触する電解質、前記金属層および負極からなる電池が形成される。ここで、金属層のアルミニウムまたはアルミニウム合金は負極に比べて電位が高いため、電解質中のリチウムイオンが金属層のアルミニウムまたはアルミニウム合金と反応してリチウム−アルミニウム合金を生成する。金属層に生成されたリチウム−アルミニウム合金は、体積膨張が大きく、水分との反応性も高いため、金属層が時間と共に崩壊してその本来の目的である水分などに対するバリア性が低下する虞がある。金属層のバリア性が失われると、その個所から電池内に水分が浸入し、電解質と反応し、その分解ガスが発生する。分解ガスの発生は、電池の膨れや性能低下を招く。   However, in the secondary battery having such a configuration, the negative electrode terminal connected to the negative electrode and the metal layer constituting the laminate film of the exterior member are in electrical contact, and the resin layer on the inner surface of the laminate film has a pinhole or the like. When present, a battery comprising an electrolyte in contact with the metal layer, the metal layer, and a negative electrode is formed. Here, since aluminum or aluminum alloy in the metal layer has a higher potential than the negative electrode, lithium ions in the electrolyte react with aluminum or aluminum alloy in the metal layer to generate a lithium-aluminum alloy. Since the lithium-aluminum alloy produced in the metal layer has a large volume expansion and high reactivity with moisture, there is a risk that the metal layer will collapse with time and the barrier property against moisture, which is its original purpose, may be reduced. is there. When the barrier property of the metal layer is lost, moisture enters the battery from the location, reacts with the electrolyte, and decomposed gas is generated. Generation of cracked gas leads to battery swelling and performance degradation.

このような問題を解消するために、外装部材のラミネートフィルムのアルミニウムまたはアルミニウム合金からなる金属層と正極端子を予め電気的に接続することが検討されている。例えば、特許文献1には正極端子をラミネートフィルムで熱融着する際に凸部を持つシール金型を使用して、ラミネートフィルムの金属層と正極端子を接続させる方法が記載されている。   In order to solve such problems, it has been studied to electrically connect in advance a metal layer made of aluminum or an aluminum alloy of a laminate film of an exterior member and a positive electrode terminal. For example, Patent Document 1 describes a method of connecting a metal layer of a laminate film and a positive electrode terminal using a sealing mold having a convex portion when the positive electrode terminal is heat-sealed with a laminate film.

しかしながら、この特許文献1の発明では使用中に負極端子とラミネートフィルムの金属層が接触した場合、この金属層を介した正極、負極が外部短絡状態になる。このため、電池の発熱を生じ、場合によっては発火を生じることもあるため、非常に危険である。   However, in the invention of Patent Document 1, when the negative electrode terminal and the metal layer of the laminate film are in contact with each other during use, the positive electrode and the negative electrode through this metal layer are in an external short circuit state. For this reason, heat is generated from the battery, and in some cases, ignition may occur, which is very dangerous.

また、製造工程中の検査で不良品を排除することが検討されている。例えば、特許文献2には製造工程中においてラミネートフィルムの金属層と正極端子の絶縁検査を行うことが記載されている。
しかしながら、この特許文献2の発明では製造工程の途中で検査を実施しているために、その後の工程で不具合が発生した場合には検知することができない。また、ラミネートフィルム内面の合成樹脂層にピンホール等があった場合には、製造直後には絶縁抵抗は高いが、時間と共に電解質が樹脂層に浸透して絶縁抵抗が低下し、かつリチウム−アルミニウム合金を生成するため、不良品を適確に検出することができない。
特開2002−260603 特開2002−324572
In addition, it has been studied to eliminate defective products by inspection during the manufacturing process. For example, Patent Document 2 describes performing an insulation test between a metal layer of a laminate film and a positive electrode terminal during the manufacturing process.
However, in the invention of Patent Document 2, since the inspection is performed in the middle of the manufacturing process, it cannot be detected when a defect occurs in the subsequent process. In addition, when there is a pinhole or the like in the synthetic resin layer on the inner surface of the laminate film, the insulation resistance is high immediately after manufacture, but the electrolyte penetrates into the resin layer with time and the insulation resistance decreases, and lithium-aluminum Since an alloy is produced, defective products cannot be accurately detected.
JP-A-2002-260603 JP2002-324572

本発明は、外装部材による内部の電極群および非水電解質が十分に保護され、かつ使用中に負極端子が外装部材の金属層に接触した場合において外部短絡を発生しない高信頼性の非水電解質二次電池を適切に判別し得る非水電解質二次電池の検査方法を提供する。   The present invention provides a highly reliable nonaqueous electrolyte in which an internal electrode group and a nonaqueous electrolyte by an exterior member are sufficiently protected and an external short circuit does not occur when a negative electrode terminal contacts a metal layer of the exterior member during use. Provided is a nonaqueous electrolyte secondary battery inspection method capable of appropriately discriminating a secondary battery.

本発明は、前記検査方法を用いることにより不良品を適確に排除して高性能、高信頼性の非水電解質二次電池を選別し得る非水電解質二次電池の製造方法を提供する。   The present invention provides a method for manufacturing a non-aqueous electrolyte secondary battery that can select defective high-performance and high-reliability non-aqueous electrolyte secondary batteries by using the above inspection method.

本発明によると、少なくとも熱融着性樹脂層とアルミニウムまたはアルミニウム合金からなる金属層と合成樹脂層とをこの順序で積層したラミネートフィルムを袋状にし、開口周縁の熱融着性樹脂層同士を熱シールして熱シール部を形成した外装部材と、この外装部材内に収納された正極、負極およびセパレータを有する電極群および非水電解質と、前記外装部材から外部に導出され、前記正極に接続された正極端子および負極に接続された負極端子とを備え、前記正極および正極端子が金属リチウムに対して3.90V〜4.05Vの電位を持ち、かつ電圧が3.75V〜3.90Vの非水電解質二次電池を検査するにあたり、
前記正極端子と前記外装部材の熱シール部に位置する金属層との間の電圧を入力インピーダンスが1Gオーム以上の電圧計で測定し、0.2V〜3.1Vの電圧範囲内のものを良品と判定を行うことを特徴とする非水電解質二次電池の検査方法が提供される。
According to the present invention, a laminate film in which at least a heat-fusible resin layer, a metal layer made of aluminum or an aluminum alloy, and a synthetic resin layer are laminated in this order is formed into a bag shape, and the heat-fusible resin layers at the periphery of the opening are bonded together. An exterior member that is heat-sealed to form a heat-sealed portion, an electrode group having a positive electrode, a negative electrode, and a separator and a nonaqueous electrolyte that are housed in the exterior member, and are led out from the exterior member and connected to the positive electrode A positive electrode terminal and a negative electrode terminal connected to the negative electrode, wherein the positive electrode and the positive electrode terminal have a potential of 3.90 V to 4.05 V with respect to metallic lithium, and the voltage is 3.75 V to 3.90 V In inspecting non-aqueous electrolyte secondary batteries,
The voltage between the positive electrode terminal and the metal layer located at the heat seal portion of the exterior member is measured with a voltmeter having an input impedance of 1 G ohm or more , and the one in the voltage range of 0.2V to 3.1V is good. A method for inspecting a non-aqueous electrolyte secondary battery is provided.

また本発明によると、少なくとも熱融着性樹脂層とアルミニウムまたはアルミニウム合金からなる金属層と合成樹脂層とをこの順序で積層したラミネートフィルムを袋状にし、開口周縁の熱融着性樹脂層同士を熱シールして熱シール部を形成した外装部材と、この外装部材内に収納された正極、負極およびセパレータを有する電極群および非水電解質と、前記外装部材から外部に導出され、前記正極に接続された正極端子および負極に接続された負極端子とを備え、前記正極および正極端子が金属リチウムに対して3.90V〜4.05Vの電位を持ち、かつ電圧が3.75V〜3.90Vの非水電解質二次電池を製造するにあたり、
組み立て後に前記正極端子と前記外装部材の熱シール部に位置する金属層との間の電圧を入力インピーダンスが1Gオーム以上の電圧計で測定し、その電圧が0.2V〜3.1Vであるものを良品として選別することを特徴とする非水電解質二次電池の製造方法が提供される。
Further, according to the present invention, a laminate film in which at least a heat-fusible resin layer, a metal layer made of aluminum or an aluminum alloy, and a synthetic resin layer are laminated in this order is formed into a bag shape, An exterior member in which a heat-sealed portion is formed by heat-sealing, an electrode group having a positive electrode, a negative electrode, and a separator and a non-aqueous electrolyte housed in the exterior member, and led out from the exterior member to the positive electrode A positive electrode terminal connected to the negative electrode terminal and a negative electrode terminal connected to the negative electrode, the positive electrode terminal and the positive electrode terminal have a potential of 3.90 V to 4.05 V with respect to metallic lithium, and a voltage of 3.75 V to 3.90 V In manufacturing non-aqueous electrolyte secondary batteries,
The voltage between the positive electrode terminal after assembly and the metal layer located at the heat seal portion of the exterior member is measured with a voltmeter having an input impedance of 1 G ohm or more, and the voltage is 0.2V to 3.1V A method for producing a non-aqueous electrolyte secondary battery is provided, wherein the non-aqueous electrolyte secondary battery is selected as a non-defective product.

本発明によれば、外装部材による内部保護効果が高く、かつ使用中に負極端子が外装部材の金属層に接触した場合での外部短絡を発生しない高信頼性の非水電解質二次電池を良品として適切に判別することができる。
また、本発明によれば前記検査方法を用いることにより高性能、高信頼性の非水電解質二次電池を適確に選別し得る非水電解質二次電池の製造方法を提供することできる。
According to the present invention, a highly reliable nonaqueous electrolyte secondary battery that has a high internal protection effect by the exterior member and does not cause an external short circuit when the negative electrode terminal contacts the metal layer of the exterior member during use is a non-defective product. Can be properly determined.
In addition, according to the present invention, it is possible to provide a method for producing a non-aqueous electrolyte secondary battery capable of accurately selecting a high-performance, high-reliability non-aqueous electrolyte secondary battery by using the inspection method.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の検査対象である非水電解質二次電池は、少なくとも熱融着性樹脂層とアルミニウムまたはアルミニウム合金からなる金属層と合成樹脂層とをこの順序で積層したラミネートフィルムを袋状にし、開口周縁の熱融着性樹脂層同士を熱シールして熱シール部を形成した外装部材と、この外装部材内に収納された正極、負極およびセパレータを有する電極群および非水電解質と、前記外装部材から外部に導出され、前記正極に接続された正極端子および負極に接続された負極端子とを備え、電圧が3.75V〜3.90Vである。このような非水電解質二次電池の正極端子と外装部材の熱シール部に位置する金属層との間の電圧を入力インピーダンスが1Gオーム以上の電圧計で測定し、0.2V〜3.1Vの電圧範囲を判定指標として良否を判定し、検査する。   A non-aqueous electrolyte secondary battery to be inspected according to the present invention has a bag-like laminate film in which at least a heat-fusible resin layer, a metal layer made of aluminum or an aluminum alloy, and a synthetic resin layer are laminated in this order. An exterior member in which the heat-sealing resin layers on the periphery are heat-sealed to form a heat-sealed portion, an electrode group having a positive electrode, a negative electrode, and a separator and a non-aqueous electrolyte housed in the exterior member, and the exterior member And a negative electrode terminal connected to the negative electrode and having a voltage of 3.75V to 3.90V. The voltage between the positive electrode terminal of such a non-aqueous electrolyte secondary battery and the metal layer located at the heat seal portion of the exterior member is measured with a voltmeter having an input impedance of 1 G ohm or more, and 0.2V to 3.1V. The quality range is determined as a determination index, and the quality is determined and inspected.

前記正極端子と前記外装部材の前記金属層との間の電圧測定は、例えば一対の測定用端子のうち、一方の測定用端子先端を前記正極端子に接触させ、他方の測定端子先端を前記外装部材のシール部に位置する合成樹脂層を貫通して前記金属層に接触させることにより実施し得る。
前記一対の測定用端子で前記正極端子と前記外装部材の前記金属層との間の電圧を測定する前に、補助測定用端子の先端を前記外装部材のシール部に位置する合成樹脂層を貫通して前記金属層に突き刺し、前記他方の測定用端子および補助測定用端子間の電圧を測定して前記他方の測定用端子と前記金属層との導通確認を行うことが好ましい。
前記他方の測定用端子および前記補助測定用端子は、前記正極端子および負極端子が導出される側面と隣接する2つの側面に当接されるように折り込まれた前記外装部材のシール部の合成樹脂層を貫通して前記金属層にそれぞれ突き刺すことが好ましい。
前記電圧測定時に電圧計の入力インピーダンスを1Gオーム未満にすると、正確な電圧測定が困難になる。より好ましい電圧計の入力インピーダンスは、1〜10Gオームである。
前記二次電池の良否判定指標である電圧範囲を0.2〜3.1Vに規定した理由を説明する。
The voltage measurement between the positive electrode terminal and the metal layer of the exterior member is performed by, for example, bringing one measurement terminal tip of the pair of measurement terminals into contact with the positive electrode terminal and the other measurement terminal tip being the exterior. It can be carried out by penetrating a synthetic resin layer located at the seal portion of the member and contacting the metal layer.
Before measuring the voltage between the positive electrode terminal and the metal layer of the exterior member with the pair of measurement terminals, the tip of the auxiliary measurement terminal penetrates the synthetic resin layer positioned at the seal portion of the exterior member It is preferable that the metal layer is pierced and the voltage between the other measurement terminal and the auxiliary measurement terminal is measured to confirm conduction between the other measurement terminal and the metal layer.
The other measurement terminal and the auxiliary measurement terminal are synthetic resin of the seal portion of the exterior member folded so as to be in contact with two side surfaces adjacent to the side surface from which the positive electrode terminal and the negative electrode terminal are derived. It is preferable to penetrate each of the metal layers through the layers.
If the input impedance of the voltmeter is less than 1 G ohm during the voltage measurement, accurate voltage measurement becomes difficult. A more preferable input impedance of the voltmeter is 1 to 10 Gohm.
The reason why the voltage range, which is a quality determination index of the secondary battery, is defined as 0.2 to 3.1 V will be described.

リチウム−アルミニウム合金は、前述したように負極に接続された負極端子と外装部材のラミネートフィルムを構成する金属層とが電気的に接触し、電解質が介在されることによって生成される。このリチウム−アルミニウム合金の生成は、負極端子と外装部材を構成するラミネートフィルムの金属層とが電気的に接触し、リチウム金属の電位に対して0.8V付近で起こる。このため、リチウム−アルミニウム合金の生成を防止するには外装部材を構成するラミネートフィルムのアルミニウムまたはアルミニウム合金の金属層の電位を金属リチウムに対して0.8V以上にすることが必要である。本発明の非水電解質二次電池の電圧を3.75V〜3.90Vに規定した場合、正極および正極端子は金属リチウムに対して3.90V〜4.05Vの電位を持つことになる。リチウム−アルミニウム合金の生成を防止する観点から、前記金属層の電位をリチウム金属の電位に対して0.8V以上にするためには正極端子と金属層の間の電圧が3.1V以下にすることが必要である。このような非水電解質二次電池は前述したリチウム−アルミニウム合金が生成せず、外装部材による内部の電極群および非水電解質が十分に保護され、高い信頼性を有する。一方、正極端子と外装部材を構成するラミネートフィルムのアルミニウムまたはアルミニウム合金の金属層との間の電圧が0.2V未満の場合には、正極端子と金属層とが電気的に接触している可能性があり、使用中に負極端子が外装部材の金属層に接触した場合、外部短絡を生じ、発熱、発火などの可能性がある。より好ましい良否判定指標である電圧範囲は、0.5V〜2.8Vである。   As described above, the lithium-aluminum alloy is produced when the negative electrode terminal connected to the negative electrode and the metal layer constituting the laminate film of the exterior member are in electrical contact with each other and an electrolyte is interposed therebetween. The formation of this lithium-aluminum alloy occurs in the vicinity of 0.8 V with respect to the potential of the lithium metal because the negative electrode terminal and the metal layer of the laminate film constituting the exterior member are in electrical contact. For this reason, in order to prevent the formation of a lithium-aluminum alloy, the potential of the aluminum layer of the laminate film constituting the exterior member or the metal layer of the aluminum alloy needs to be 0.8 V or more with respect to the metal lithium. When the voltage of the nonaqueous electrolyte secondary battery of the present invention is specified to be 3.75 V to 3.90 V, the positive electrode and the positive electrode terminal have a potential of 3.90 V to 4.05 V with respect to metallic lithium. In order to prevent the formation of a lithium-aluminum alloy, the voltage between the positive electrode terminal and the metal layer should be 3.1 V or less in order to make the potential of the metal layer 0.8 V or more with respect to the potential of the lithium metal. It is necessary. Such a non-aqueous electrolyte secondary battery does not produce the above-described lithium-aluminum alloy, and the internal electrode group and the non-aqueous electrolyte by the exterior member are sufficiently protected and has high reliability. On the other hand, when the voltage between the positive electrode terminal and the aluminum layer of the laminate film constituting the exterior member is less than 0.2 V, the positive electrode terminal and the metal layer may be in electrical contact. If the negative electrode terminal comes into contact with the metal layer of the exterior member during use, an external short circuit may occur, which may cause heat generation or ignition. The voltage range which is a more preferable quality determination index is 0.5V to 2.8V.

前記非水電解質二次電池を構成する正極、負極、セパレータ、非水電解液、外装部材に用いられるラミネートフィルムを説明する。   The positive electrode, the negative electrode, the separator, the non-aqueous electrolyte, and the laminate film used for the exterior member constituting the non-aqueous electrolyte secondary battery will be described.

1)正極
この正極は、集電体と、集電体の片面もしくは両面に担持される正極層とを含む。
1) Positive electrode The positive electrode includes a current collector and a positive electrode layer supported on one or both surfaces of the current collector.

前記正極層は、正極活物質、結着剤および導電剤を含む。   The positive electrode layer includes a positive electrode active material, a binder, and a conductive agent.

前記正極活物質としては、種々の酸化物、例えば二酸化マンガン、リチウムマンガン複合酸化物、リチウム含有ニッケル酸化物、リチウム含有コバルト酸化物、リチウム含有ニッケルコバルト酸化物、リチウム含有鉄酸化物、リチウムを含むバナジウム酸化物や、二硫化チタン、二硫化モリブデンなどのカルコゲン化合物などを挙げることができる。中でも、リチウム含有コバルト酸化物(例えばLiCoO2 )、リチウム含有ニッケルコバルト酸化物(例えばLiNi0.8 Co0.2 2 )、リチウムマンガン複合酸化物(例えばLiMn2 4 、LiMnO2 )は、高電圧の二次電池が得られるために好ましい。なお、正極活物質としては、1種類の酸化物を単独で使用しても、あるいは2種類以上の酸化物を混合して使用してもよい。 Examples of the positive electrode active material include various oxides such as manganese dioxide, lithium manganese composite oxide, lithium-containing nickel oxide, lithium-containing cobalt oxide, lithium-containing nickel cobalt oxide, lithium-containing iron oxide, and lithium. Examples thereof include vanadium oxide and chalcogen compounds such as titanium disulfide and molybdenum disulfide. Among them, lithium-containing cobalt oxide (for example, LiCoO 2 ), lithium-containing nickel cobalt oxide (for example, LiNi 0.8 Co 0.2 O 2 ), and lithium manganese composite oxide (for example, LiMn 2 O 4 , LiMnO 2 ) It is preferable because a secondary battery is obtained. As the positive electrode active material, one kind of oxide may be used alone, or two or more kinds of oxides may be mixed and used.

前記導電剤としては、例えばアセチレンブラック、カーボンブラック、黒鉛等を挙げることができる。   Examples of the conductive agent include acetylene black, carbon black, and graphite.

前記結着剤としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、ポリエーテルサルフォン、エチレン−プロピレン−ジエン共重合体(EPDM)、スチレン−ブタジエンゴム(SBR)等を用いることができる。   Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), polyether sulfone, ethylene-propylene-diene copolymer (EPDM), and styrene-butadiene rubber (SBR). Can be used.

前記正極活物質、導電剤および結着剤の配合割合は、正極活物質80〜95重量%、導電剤3〜20重量%、結着剤2〜7重量%の範囲にすることが好ましい。   The mixing ratio of the positive electrode active material, the conductive agent and the binder is preferably in the range of 80 to 95% by weight of the positive electrode active material, 3 to 20% by weight of the conductive agent, and 2 to 7% by weight of the binder.

前記集電体としては、多孔質構造の導電性基板または無孔の導電性基板を用いることができる。これら導電性基板は、例えばアルミニウム、ステンレスから形成される。   As the current collector, a conductive substrate having a porous structure or a non-porous conductive substrate can be used. These conductive substrates are made of, for example, aluminum or stainless steel.

前記正極は、例えば、正極活物質に導電剤および結着剤を適当な溶媒に懸濁し、この懸濁物を集電体に塗布、乾燥して正極層を形成することにより作製される。   The positive electrode is produced, for example, by suspending a conductive agent and a binder in a positive electrode active material in a suitable solvent, and applying the suspension to a current collector and drying to form a positive electrode layer.

2)負極
この負極は、集電体と、集電体の片面もしくは両面に担持される負極層とを含む。
2) Negative electrode The negative electrode includes a current collector and a negative electrode layer carried on one or both sides of the current collector.

前記負極層は、リチウムイオンを吸蔵・放出する活物質および結着剤を含む。   The negative electrode layer includes an active material that absorbs and releases lithium ions and a binder.

前記活物質としては、例えば黒鉛、コークス、炭素繊維、球状炭素、熱分解気相炭素質物、樹脂焼成体などの黒鉛質材料もしくは炭素質材料;熱硬化性樹脂、等方性ピッチ、メソフェーズピッチ系炭素、メソフェーズピッチ系炭素繊維、メソフェーズ小球体など(特に、メソフェーズピッチ系炭素繊維が容量や充放電サイクル特性が高くなり好ましい)に500〜3000℃で熱処理を施すことにより得られる黒鉛質材料または炭素質材料;二硫化チタン、二硫化モリブデン、セレン化ニオブ等のカルコゲン化合物;アルミニウム、アルミニウム合金、マグネシウム合金、リチウム、リチウム合金等の軽金属;等を挙げることができる。中でも、(002)面の面間隔d002が0.34nm以下、より好ましくは0.337nm以下である黒鉛結晶を有する黒鉛質材料を用いることが望ましい。このような黒鉛質材料を活物質として含む負極を備えた非水電解質二次電池は、電池容量および大電流放電特性を大幅に向上することができる。 Examples of the active material include graphite materials, carbonaceous materials such as graphite, coke, carbon fiber, spherical carbon, pyrolytic vapor phase carbonaceous material, and resin fired body; thermosetting resin, isotropic pitch, mesophase pitch system Graphite material or carbon obtained by heat-treating carbon, mesophase pitch-based carbon fiber, mesophase microsphere, etc. (especially mesophase pitch-based carbon fiber is preferable because of its high capacity and charge / discharge cycle characteristics) at 500 to 3000 ° C. Materials such as: chalcogen compounds such as titanium disulfide, molybdenum disulfide and niobium selenide; light metals such as aluminum, aluminum alloy, magnesium alloy, lithium and lithium alloy; Among them, it is desirable to use a graphite material having a graphite crystal having a (002) plane spacing d002 of 0.34 nm or less, more preferably 0.337 nm or less. A nonaqueous electrolyte secondary battery including a negative electrode containing such a graphite material as an active material can greatly improve battery capacity and large current discharge characteristics.

前記結着剤としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、エチレン−プロピレン−ジエン共重合体(EPDM)、スチレン−ブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)等を用いることができる。   Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), ethylene-propylene-diene copolymer (EPDM), styrene-butadiene rubber (SBR), carboxymethyl cellulose (CMC), and the like. Can be used.

前記活物質および前記結着剤の配合割合は、活物質90〜98重量%、結着剤2〜20重量%の範囲であることが好ましい。   The mixing ratio of the active material and the binder is preferably in the range of 90 to 98% by weight of the active material and 2 to 20% by weight of the binder.

前記集電体としては、多孔質構造の導電性基板または無孔の導電性基板を用いることができる。これら導電性基板は、例えば銅、ステンレス、またはニッケルから形成される。   As the current collector, a conductive substrate having a porous structure or a non-porous conductive substrate can be used. These conductive substrates are made of, for example, copper, stainless steel, or nickel.

前記負極は、例えば活物質と結着剤とを溶媒の存在下で混練し、得られた懸濁物を集電体に塗布し、乾燥した後、所望の圧力で1回プレスもしくは2〜5回多段階プレスすることにより作製される。   The negative electrode is prepared by, for example, kneading an active material and a binder in the presence of a solvent, applying the obtained suspension to a current collector, drying, and then pressing once at a desired pressure or 2 to 5 It is produced by pressing multiple times.

3)セパレータ
このセパレータとしては、微多孔性の膜、織布、不織布、これらのうち同一材または異種材の積層物等を用いることができる。中でも、微多孔性の膜は、過充電等による発熱で電極群の温度が異常に上昇すると、セパレータを構成する樹脂が塑性変形し微細な孔が塞がる、いわゆるシャットダウン現象を生じ、リチウムイオンの流れが遮断され、それ以上の発熱を防止し、過充電状態を安全に終了させることができるので好ましい。セパレータを形成する材料としては、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合ポリマー、エチレン−ブテン共重合ポリマー等を挙げることができる。セパレータの形成材料としては、前述した種類の中から選ばれる1種類または2種類以上を用いることができる。
3) Separator As this separator, a microporous film, a woven fabric, a non-woven fabric, a laminate of the same material or different materials among these can be used. In particular, the microporous membrane causes a so-called shutdown phenomenon in which the resin constituting the separator plastically deforms and closes the fine pores when the temperature of the electrode group rises abnormally due to heat generated by overcharging, etc., and the flow of lithium ions Is prevented, and further overheating is prevented, and the overcharge state can be safely terminated, which is preferable. Examples of the material for forming the separator include polyethylene, polypropylene, ethylene-propylene copolymer, and ethylene-butene copolymer. As a material for forming the separator, one type or two or more types selected from the types described above can be used.

前記正極、負極、セパレータを組合せて扁平状の電極群を形成する。この電極群は、例えば、(i)正極および負極をその間にセパレータを介在させて偏平形状に捲回するか、(ii)正極および負極をその間にセパレータを介在させて渦巻き状に捲回した後、径方向に圧縮するか、(iii)正極及び負極をその間にセパレータを介在させて1回以上折り曲げるか、または(iv)正極と負極とをその間にセパレータを介在させながら積層するか、いずれかの方法により作製される。   A flat electrode group is formed by combining the positive electrode, the negative electrode, and the separator. For example, (i) the positive electrode and the negative electrode are wound in a flat shape with a separator interposed therebetween, or (ii) the positive electrode and the negative electrode are wound in a spiral shape with a separator interposed therebetween. Either compressing in the radial direction, (iii) bending the positive electrode and the negative electrode one or more times with a separator interposed therebetween, or (iv) laminating the positive electrode and the negative electrode with a separator interposed therebetween, It is produced by the method.

前記電極群には、プレスを施さなくてもよいが、正極、負極およびセパレータの一体化、密着強度を高めるためにプレスを施すことが好ましい。また、プレス時に加熱を施すことも可能である。   The electrode group need not be pressed, but is preferably pressed to increase the integration and adhesion strength of the positive electrode, the negative electrode and the separator. It is also possible to heat at the time of pressing.

前記電極群には、正極、負極およびセパレータの密着強度を高めるために、接着性高分子を含有させることができる。前記接着性を有する高分子は、非水電解液を保持した状態で高い接着性を維持できるものであることが望ましい。さらに、かかる高分子は、リチウムイオン伝導性が高いとなお好ましい。具体的には、ポリアクリロニトリル(PAN)、ポリアクリレート(PMMA)、ポリフッ化ビニリデン(PVdF)、ポリ塩化ビニル(PVC)、またはポリエチレンオキサイド(PEO)等を挙げることができる。   The electrode group can contain an adhesive polymer in order to increase the adhesion strength of the positive electrode, the negative electrode, and the separator. It is desirable that the polymer having adhesiveness is one that can maintain high adhesiveness while holding a nonaqueous electrolytic solution. Furthermore, it is more preferable that such a polymer has high lithium ion conductivity. Specific examples include polyacrylonitrile (PAN), polyacrylate (PMMA), polyvinylidene fluoride (PVdF), polyvinyl chloride (PVC), and polyethylene oxide (PEO).

4)非水電解質
この非水電解質は、非水溶媒と、この非水溶媒に溶解される電解質(例えば、リチウム塩)とを含む。この非水電解質の形態は、液体状(非水電解液)やゲル状にすることができる。
4) Nonaqueous electrolyte The nonaqueous electrolyte includes a nonaqueous solvent and an electrolyte (for example, a lithium salt) dissolved in the nonaqueous solvent. The form of the non-aqueous electrolyte can be liquid (non-aqueous electrolyte) or gel.

前記非水溶媒としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、γ−ブチロラクトン(γ−BL)、スルホラン、アセトニトリル、1,2−ジメトキシエタン、1,3−ジメトキシプロパン、ジメチルエーテル、テトラヒドロフラン(THF)、2−メチルテトラヒドロフラン等を挙げることができる。前記非水溶媒は、単独で使用しても、2種以上混合して使用してもよい。   Examples of the non-aqueous solvent include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), γ-butyrolactone (γ- BL), sulfolane, acetonitrile, 1,2-dimethoxyethane, 1,3-dimethoxypropane, dimethyl ether, tetrahydrofuran (THF), 2-methyltetrahydrofuran and the like. The non-aqueous solvent may be used alone or in combination of two or more.

前記非水電解質としては、例えば、過塩素酸リチウム(LiClO4)、六フッ過リン酸リチウム(LiPF6)、ホウフッ化リチウム(LiBF4)、六フッ化砒素リチウム(LiAsF6)、トリフルオロメタンスルホン酸リチウム(LiCF3SO3)等のリチウム塩を挙げることができる。前記電解質は単独で使用しても、2種以上混合して使用してもよい。前記電解質の前記非水溶媒に対する溶解量は、0.2モル/l〜2モル/lとすることが望ましい。 Examples of the non-aqueous electrolyte include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium borofluoride (LiBF 4 ), lithium hexafluoroarsenide (LiAsF 6 ), and trifluoromethanesulfone. Examples thereof include lithium salts such as lithium acid lithium (LiCF 3 SO 3 ). The electrolytes may be used alone or in combination of two or more. The amount of the electrolyte dissolved in the non-aqueous solvent is preferably 0.2 mol / l to 2 mol / l.

前記非水溶媒中には、塩化トルエン(CT)及びオルトフッ化トルエン(o−FT)よりなる群から選択される少なくとも1種類のハロゲン化トルエンを含有させることを許容する。ハロゲン化トルエンは、前記セパレータのシャットダウンをより確実に進めるために添加する。   The non-aqueous solvent is allowed to contain at least one kind of halogenated toluene selected from the group consisting of toluene chloride (CT) and orthofluorinated toluene (o-FT). Halogenated toluene is added in order to more reliably proceed with the shutdown of the separator.

前記非水溶媒には、セパレータとの濡れ性を良くするために、トリオクチルフォスフェート(TOP)のような界面活性剤を含有させることができる。界面活性剤の添加量は、3%以下が好ましく、さらには0.1〜1%の範囲内にすることが好ましい。   The non-aqueous solvent may contain a surfactant such as trioctyl phosphate (TOP) in order to improve the wettability with the separator. The addition amount of the surfactant is preferably 3% or less, and more preferably in the range of 0.1 to 1%.

非水溶媒中には、副成分として以下のような溶媒を含有させることができる。   In the non-aqueous solvent, the following solvents can be contained as subcomponents.

副成分としては、例えば、ビニレンカーボネート、ビニルエチレンカーボネート、フェニルエチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、γ−バレロラクトン、プロピオン酸メチル、プロピオン酸エチル、2―メチルフラン、フラン、チオフェン、カテコールカーボネート、エチレンサルファイト、12−クラウン−4、テトラエチレングリコールジメチルエーテル等を挙げることができる。   As an auxiliary component, for example, vinylene carbonate, vinyl ethylene carbonate, phenyl ethylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, γ-valerolactone, methyl propionate, ethyl propionate, 2-methylfuran, furan, thiophene, Examples thereof include catechol carbonate, ethylene sulfite, 12-crown-4, and tetraethylene glycol dimethyl ether.

前記非水電解液の量は、電池単位容量100mAh当たり0.2〜0.6gにすることが好ましい。非水電解液量のより好ましい範囲は、0.25〜0.55g/100mAhである。   The amount of the non-aqueous electrolyte is preferably 0.2 to 0.6 g per 100 mAh of battery unit capacity. A more preferable range of the amount of the nonaqueous electrolytic solution is 0.25 to 0.55 g / 100 mAh.

5)ラミネートフィルム
このラミネートフィルムとしては、電極群と接する側にポリエチレン、ポリプロピレンなどの熱融着性樹脂層を有し、その外側にアルミニウムまたはその合金からなる金属層(金属箔)、ポリエチレン、ポリエテレンテレフタレートなどの合成樹脂層を順次ラミネートしたフィルムを用いることができる。
5) Laminate film This laminate film has a heat-fusible resin layer such as polyethylene or polypropylene on the side in contact with the electrode group, and a metal layer (metal foil) made of aluminum or an alloy thereof, polyethylene, polyester, A film in which synthetic resin layers such as terephthalate are sequentially laminated can be used.

前記ラミネートフィルムにおいて、各層の間に接着剤層やガスバリアー層などをさらに設けることを許容する。
前述した非水電解質二次電池(薄型リチウムイオン二次電池)の一例を図1、図2を参照して具体的に説明する。図1は、この薄型リチウムイオン二次電池を示す斜視図、図2は図1のII−II線に沿う断面図である。
In the laminated film, it is allowed to further provide an adhesive layer or a gas barrier layer between the layers.
An example of the non-aqueous electrolyte secondary battery (thin lithium ion secondary battery) will be specifically described with reference to FIGS. FIG. 1 is a perspective view showing the thin lithium ion secondary battery, and FIG. 2 is a sectional view taken along line II-II in FIG.

電極群1は、図1、図2に示すように正極2とセパレータ3と負極4とセパレータ3とを渦巻状に捲回し、さらに成形した扁平で矩形状をなす。前記正極2は、例えば活物質および結着剤を含む正極活物質層を集電体の両面に担持した構造を有する。前記負極4は、例えばリチウムイオンを吸蔵・放出する炭素質物質および結着剤を含む負極活物質層を集電体の両面に担持した構造を有する。前記正負極2,4に接続された正、負極の端子5,6は、それぞれ前記電極群1の同一側面から外部に延出されている。   As shown in FIGS. 1 and 2, the electrode group 1 has a flat, rectangular shape in which the positive electrode 2, the separator 3, the negative electrode 4, and the separator 3 are wound in a spiral shape, and are further shaped. The positive electrode 2 has a structure in which, for example, a positive electrode active material layer containing an active material and a binder is supported on both sides of a current collector. The negative electrode 4 has a structure in which, for example, a negative electrode active material layer containing a carbonaceous material that occludes / releases lithium ions and a binder is supported on both sides of the current collector. Positive and negative terminals 5 and 6 connected to the positive and negative electrodes 2 and 4 are extended from the same side surface of the electrode group 1 to the outside.

前記電極群1は、図1に示すように例えば2つ折りのカップ型外装フィルム7のカップ8内に収納して包み込まれている。この外装フィルム7は、図2に示すように内面側に位置する熱融着樹脂フィルム9、アルミニウムまたはアルミニウム合金の金属層10および合成樹脂フィルム11をこの順序で積層したラミネート構造を有する。前記外装フィルム7における前記折り曲げ部を除く3つの側部は、前記熱融着樹脂フィルム9同士を熱シールしたシール部12a,12b,12cが形成され、これらのシール部12a,12b,12cにより前記電極群1を封口している。前記電極群1の正負極2,4に接続された正、負極の端子5,6は、前記折り曲げ部と反対側のシール部12bを通して外部に延出されている。前記電極群1内部および前記シール部12a,12b,12cで封口された前記外装フィルム11内には、非水電解液が含浸・収容されている。なお、外部端子5,6が延出されたシール部12bに隣接する2つのシール部12a,12cは、前記カップ8の側面に当接するように折り曲げられている。
以上説明した本発明に係る検査方法によれば、正極端子と外装部材の熱シール部に位置する金属層との間の電圧を入力インピーダンスが1Gオーム以上の電圧計で測定する際、前述した理由から0.2V〜3.1Vの電圧範囲を判定指標とし、この範囲にあるものを良品、範囲外のものを不良品として適切に判定することができる。良品として判定された非水電解質二次電池は、外装部材を構成するラミネートフィルムのアルミニウムまたはアルミニウム合金からなる金属層にリチウム−アルミニウム合金が生成せず、外装部材による内部の電極群および非水電解質が十分に保護され、かつ使用中に負極端子が外装部材の金属層に接触した場合において外部短絡を発生しない高い信頼性を有する。
また、外装部材を構成するラミネートフィルムのアルミニウムまたはアルミニウム合金からなる金属層に測定用端子を接触する際、その外装部材のシール部が位置する合成樹脂層を貫通して金属層に接触することによって、検査後における非水電解質二次電池の非水電解質等のシール性が損なわれず、高い信頼性を維持できる。
さらに、前記一対の測定用端子で前記正極端子と前記外装部材の前記金属層との間の電圧を測定する前に、補助測定用端子の先端を前記外装部材のシール部に位置する合成樹脂層を貫通して前記金属層に突き刺し、前記他方の測定用端子および補助測定用端子間の抵抗を測定して前記他方の測定用端子と前記金属層との導通確認を行うことによって、他方の測定用端子が前記外装部材の金属層に確実に接触していることを確認でき、検査の信頼性を向上できる。
さらに、前記他方の測定用端子および前記補助測定用端子を前記正極端子および負極端子が導出される側面と隣接する2つの側面に当接されるように折り込まれた前記外装部材のシール部の合成樹脂層を貫通して前記金属層にそれぞれ突き刺すことによって、正極端子および負極端子が延出されるシール部が狭い場合、このシール部に比べて広い面積の前記シール部を利用できるために外装部材のシール性を損なうことなく検査を実施することが可能になる。
As shown in FIG. 1, the electrode group 1 is housed and wrapped in a cup 8 of, for example, a folded cup-type exterior film 7. As shown in FIG. 2, the exterior film 7 has a laminate structure in which a heat-sealing resin film 9 located on the inner surface side, an aluminum or aluminum alloy metal layer 10 and a synthetic resin film 11 are laminated in this order. Three side portions of the exterior film 7 excluding the bent portion are formed with seal portions 12a, 12b, 12c in which the heat-sealing resin films 9 are heat-sealed, and the seal portions 12a, 12b, 12c The electrode group 1 is sealed. Positive and negative terminals 5 and 6 connected to the positive and negative electrodes 2 and 4 of the electrode group 1 are extended to the outside through a seal portion 12b on the opposite side to the bent portion. A non-aqueous electrolyte is impregnated and contained in the electrode group 1 and the exterior film 11 sealed by the seal portions 12a, 12b, and 12c. The two seal portions 12 a and 12 c adjacent to the seal portion 12 b from which the external terminals 5 and 6 are extended are bent so as to contact the side surface of the cup 8.
According to the inspection method according to the present invention described above, when the voltage between the positive electrode terminal and the metal layer located on the heat seal portion of the exterior member is measured with a voltmeter having an input impedance of 1 G ohm or more, the above-described reason The voltage range of 0.2V to 3.1V can be determined as a determination index, and those within this range can be appropriately determined as good products and those outside the range as defective products. The non-aqueous electrolyte secondary battery determined as a non-defective product has no lithium-aluminum alloy formed on the metal layer made of aluminum or aluminum alloy of the laminate film constituting the exterior member, and the internal electrode group and the non-aqueous electrolyte are formed by the exterior member. Is sufficiently protected, and has high reliability that does not cause an external short circuit when the negative electrode terminal contacts the metal layer of the exterior member during use.
Further, when the measuring terminal is brought into contact with the metal layer made of aluminum or aluminum alloy of the laminate film constituting the exterior member, by passing through the synthetic resin layer where the seal portion of the exterior member is located and contacting the metal layer The sealing performance of the non-aqueous electrolyte secondary battery after inspection is not impaired, and high reliability can be maintained.
Furthermore, before measuring the voltage between the positive electrode terminal and the metal layer of the exterior member with the pair of measurement terminals, the synthetic resin layer in which the tip of the auxiliary measurement terminal is positioned at the seal portion of the exterior member The other measurement terminal and the auxiliary measurement terminal are measured to measure the resistance between the other measurement terminal and the metal layer, thereby confirming the continuity between the other measurement terminal and the auxiliary measurement terminal. It can be confirmed that the service terminal is in reliable contact with the metal layer of the exterior member, and the reliability of the inspection can be improved.
Further, the sealing part of the exterior member is folded so that the other measurement terminal and the auxiliary measurement terminal are brought into contact with two side surfaces adjacent to the side surface from which the positive electrode terminal and the negative electrode terminal are led out. When the seal part through which the positive electrode terminal and the negative electrode terminal extend is narrow by penetrating the metal layer through the resin layer, the seal part having a larger area than the seal part can be used. Inspection can be performed without impairing the sealing performance.

本発明に係る非水電解質二次電池の製造方法は、組み立て後の電圧が3.75V〜3.90Vの非水電解質二次電池を前述した方法で検査する、すなわち前記正極端子と前記外装部材の熱シール部に位置する金属層との間の電圧を入力インピーダンスが1Gオーム以上の電圧計で測定し、その測定値が0.2V〜3.1Vの電圧範囲内かまたはその電圧範囲から外れるかを検査し、その電圧範囲内にあるものを良品として選別する。   The method for manufacturing a non-aqueous electrolyte secondary battery according to the present invention is to inspect a non-aqueous electrolyte secondary battery having a voltage after assembly of 3.75V to 3.90V by the above-described method, that is, the positive electrode terminal and the exterior member. Measure the voltage between the metal layer located in the heat seal part with a voltmeter with an input impedance of 1G ohm or more, and the measured value is within the voltage range of 0.2V to 3.1V or out of the voltage range And inspecting those items that are within that voltage range.

このような方法によれば、高性能、高信頼性の非水電解質二次電池を適確かつ再現性よく選別することができ、かつ前記検査方法で述べたように選別後の二次電池のシール性が損なわれることなく高い信頼性を維持できる。   According to such a method, a high-performance, high-reliability non-aqueous electrolyte secondary battery can be selected accurately and reproducibly, and as described in the inspection method, High reliability can be maintained without impairing the sealing performance.

[実施例]
以下、本発明の実施例を図面を参照して詳細に説明する。
[Example]
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(実施例1)
<正極の作製>
まず、リチウムコバルト酸化物(LixCoO2;但し、Xは0<X≦1である)粉末90重量%に、アセチレンブラック5重量%と、ポリフッ化ビニリデン(PVdF)5重量%のジメチルフォルムアミド(DMF)溶液とを加えて混合し、スラリーを調製した。前記スラリーを厚さが15μmのアルミニウム箔からなる集電体の両面に塗布した後、乾燥し、プレスすることにより、正極層が集電体の両面に担持された構造の正極を作製した。なお、正極層の厚さは、片面当り60μmであった。
Example 1
<Preparation of positive electrode>
First, 90% by weight of lithium cobalt oxide (Li x CoO 2 ; X is 0 <X ≦ 1) powder, 5% by weight of acetylene black, and 5% by weight of polyvinylidene fluoride (PVdF) dimethylformamide (DMF) solution was added and mixed to prepare a slurry. The slurry was applied to both sides of a current collector made of an aluminum foil having a thickness of 15 μm, then dried and pressed to produce a positive electrode having a structure in which the positive electrode layer was supported on both sides of the current collector. The thickness of the positive electrode layer was 60 μm per side.

<負極の作製>
炭素質材料として3000℃で熱処理したメソフェーズピッチ系炭素繊維(粉末X線回折により求められる(002)面の面間隔(d002 )が0.336nm)の粉末を95重量%と、ポリフッ化ビニリデン(PVdF)5重量%のジメチルフォルムアミド(DMF)溶液とを混合し、スラリーを調製した。前記スラリーを厚さが12μmの銅箔からなる集電体の両面に塗布し、乾燥し、プレスすることにより、負極層が集電体に担持された構造の負極を作製した。なお、負極層の厚さは、片面当り55μmであった。
<Production of negative electrode>
As a carbonaceous material, 95% by weight of powder of mesophase pitch-based carbon fiber (having a (002) plane interval (d 002 ) of 0.336 nm determined by powder X-ray diffraction) heat-treated at 3000 ° C. and polyvinylidene fluoride ( (PVdF) 5% by weight dimethylformamide (DMF) solution was mixed to prepare a slurry. The slurry was applied to both surfaces of a current collector made of a copper foil having a thickness of 12 μm, dried, and pressed to prepare a negative electrode having a structure in which the negative electrode layer was supported on the current collector. The thickness of the negative electrode layer was 55 μm per side.

なお、炭素質物の(002)面の面間隔d002は、粉末X線回折スペクトルから半値幅中点法によりそれぞれ求めた。この際、ローレンツ散乱等の散乱補正は、行わなかった。 The surface spacing d 002 of (002) plane of the carbonaceous material were respectively determined by the powder X-ray diffraction spectrum half width midpoint method. At this time, scattering correction such as Lorentz scattering was not performed.

<セパレータ>
厚さが25μm、多孔度45%の微多孔性ポリエチレン膜からなるセパレータを用意した。
<Separator>
A separator made of a microporous polyethylene film having a thickness of 25 μm and a porosity of 45% was prepared.

<電極群の作製>
前記正極の集電体に帯状アルミニウム箔(厚さ100μm)からなる正極端子を超音波溶接し、前記負極の集電体に帯状ニッケル箔(厚さ100μm)からなる負極端子を超音波溶接した後、前記正極および前記負極をその間に前記セパレータを介して渦巻き状に捲回し、電極群を作製した。この電極群を加熱しながらプレス機で加圧することにより、偏平状に成形した。
<Production of electrode group>
After the positive electrode terminal made of a strip-shaped aluminum foil (thickness: 100 μm) is ultrasonically welded to the positive electrode current collector, and the negative electrode terminal made of a band-shaped nickel foil (thickness: 100 μm) is ultrasonically welded to the negative electrode current collector The positive electrode and the negative electrode were spirally wound through the separator between them to prepare an electrode group. The electrode group was formed into a flat shape by applying pressure with a press while heating.

<非水電解液の調製>
エチレンカーボネート(EC)、γ−ブチロラクトン(GBL)およびオルト塩化トルエンを重量比率(EC:GBL:o−CT)が35:60:5になるように混合して非水溶媒を調製した。得られた非水溶媒に四フッ化ホウ酸リチウム(LiBF4 )をその濃度が1.5モル/Lになるように溶解させて、非水電解液を調製した。
<Preparation of non-aqueous electrolyte>
A nonaqueous solvent was prepared by mixing ethylene carbonate (EC), γ-butyrolactone (GBL), and orthochlorotoluene so that the weight ratio (EC: GBL: o-CT) was 35: 60: 5. Lithium tetrafluoroborate (LiBF 4 ) was dissolved in the obtained non-aqueous solvent so that its concentration was 1.5 mol / L to prepare a non-aqueous electrolyte.

<電池の組み立て>
アルミニウム箔の両面にポリエチレンフィルムを積層した厚さ100μmのラミネートフィルムにプレス機により矩形のカップを成形し、カップの短辺側成形端で平坦なフィルム部を90゜折り曲げて外装用フィルム素材とした。この外装用フィルム素材のカップ内に前記扁平状の電極群をその正負極の端子が折り曲げ部と反対側の端部から外部に突き出すように収納した後、平坦なフィルム部をカップを有するフィルム部に重ね合わせ、折り曲げ部を除く3つの周辺を熱シールして電極群を収納した外装フィルムとした。この時、熱シールの一部を脱気および電解液の注入のための未シールとした。つづいて、この外装フィルムをグローブボックス内で80℃で真空乾燥を12時間施すことにより電極群およびラミネートフィルムに含まれる水分を除去した。この後、外装フィルム内の電極群に前記非水電解液を電池容量1Ah当たりの量が4.8gとなるように注入し、未シール部を熱シールして封止することによって前述した図1、図2に示す構造を有し、厚さが3.6mm、幅が35mm、高さが62mmで、公称容量が0.65Ahの非水電解質二次電池を組み立てた。
<Battery assembly>
A rectangular cup was formed with a press on a 100 μm thick laminate film in which polyethylene films were laminated on both sides of an aluminum foil, and the flat film portion was bent 90 ° at the short side of the cup to obtain an exterior film material. . After storing the flat electrode group in the cup of the exterior film material so that the positive and negative terminals protrude from the end opposite to the bent portion to the outside, the flat film portion is a film portion having a cup. And an outer film containing the electrode group was obtained by heat-sealing the three perimeters except for the bent portion. At this time, a part of the heat seal was left unsealed for degassing and electrolyte injection. Subsequently, the exterior film was vacuum-dried at 80 ° C. for 12 hours in a glove box to remove moisture contained in the electrode group and the laminate film. Thereafter, the non-aqueous electrolyte is injected into the electrode group in the exterior film so that the amount per battery capacity 1Ah is 4.8 g, and the unsealed portion is heat-sealed and sealed, as described above. A non-aqueous electrolyte secondary battery having the structure shown in FIG. 2, having a thickness of 3.6 mm, a width of 35 mm, a height of 62 mm, and a nominal capacity of 0.65 Ah was assembled.

得られた非水電解質二次電池に対し、初充放電工程として以下の処置を施した。まず、室温で0.2Cで4.2Vまで定電流・定電圧充電を12時間行った。その後、室温で7日間エージング後、1.0Cで3.0Vまで放電した後、1.0Cで30分充電して、電池電圧が3.75かVら3.90Vの非水電解質二次電池を1000個製造した。ここで、1Cとは公称容量(Ah)を1時間で放電するために必要な電流値である。よって、0.2Cは、公称容量(Ah)を5時間で放電するために必要な電流値である。   The following treatment was applied to the obtained non-aqueous electrolyte secondary battery as an initial charge / discharge step. First, constant current / constant voltage charging was performed for 12 hours at room temperature to 4.2 V at 0.2C. Thereafter, after aging at room temperature for 7 days, the battery was discharged at 1.0 C to 3.0 V, charged at 1.0 C for 30 minutes, and the non-aqueous electrolyte secondary battery having a battery voltage of 3.75 V to 3.90 V 1000 pieces were manufactured. Here, 1C is a current value necessary for discharging the nominal capacity (Ah) in one hour. Therefore, 0.2 C is a current value necessary for discharging the nominal capacity (Ah) in 5 hours.

次いで、非水電解質二次電池を図3、4に示す方法で、正極端子と外装フィルムを構成するラミネートフィルムのアルミニウム箔との間の電圧を測定した。   Subsequently, the voltage between the positive electrode terminal and the aluminum foil of the laminate film constituting the exterior film of the nonaqueous electrolyte secondary battery was measured by the method shown in FIGS.

まず、非水電解質二次電池の正負極の端子5,6が導出されている外装フィルム7の面と同一面の熱シール部12bに下端が鏃を有する一方の測定用端子21および補助測定用端子22を図3および図4に示すように外装フィルム7を構成するラミネートフィルムのポリエチレンフィルム11を貫通してアルミニウムからなる金属層10にそれぞれ接触させた。これらの測定用端子21、22間の抵抗を抵抗計で測定し、測定用端子21がラミネートフィルムのアルミニウムからなる金属層10を通して補助測定用端子22に導通していること、つまり測定用端子21が前記金属層10に接触していることを確認した。つづいて、図3に示すように前記測定用端子21と対をなす下端に円板部を有する他方の測定端子23を正極端子5に接触させ、この他方の測定端子23と一方の測定端子21の間の電圧を内部インピーダンスが1Gオームの電圧計で測定した。   First, one measurement terminal 21 having a lower end with a flange on the heat seal portion 12b on the same surface as the surface of the exterior film 7 from which the positive and negative terminals 5 and 6 of the nonaqueous electrolyte secondary battery are led out and auxiliary measurement As shown in FIGS. 3 and 4, the terminals 22 penetrated through the polyethylene film 11 of the laminate film constituting the exterior film 7 and were brought into contact with the metal layer 10 made of aluminum. The resistance between the measurement terminals 21 and 22 is measured with an ohmmeter, and the measurement terminal 21 is electrically connected to the auxiliary measurement terminal 22 through the metal layer 10 made of aluminum of the laminate film, that is, the measurement terminal 21. Was in contact with the metal layer 10. Next, as shown in FIG. 3, the other measurement terminal 23 having a disk portion at the lower end that forms a pair with the measurement terminal 21 is brought into contact with the positive electrode terminal 5, and the other measurement terminal 23 and one measurement terminal 21 are brought into contact with each other. Was measured with a voltmeter having an internal impedance of 1 G ohm.

このような検査方法を製造した1000個の二次電池に対して実施したところ、1000個中990個の二次電池が0.2V〜3.1Vの電圧範囲内にあり、良品として選別し、前記電圧範囲を外れる10個の電池を不良品として排除した。   When the inspection method was performed on 1000 secondary batteries manufactured, 990 out of 1000 secondary batteries were in a voltage range of 0.2 V to 3.1 V, and were selected as non-defective products. Ten batteries out of the voltage range were excluded as defective products.

良品として判定した990個の二次電池を室温で3ヶ月間保管後に、電圧、内部インピーダンス、外観検査を行ったが、全数、異常は認められなかった。   After 990 secondary batteries determined as non-defective products were stored at room temperature for 3 months, voltage, internal impedance, and appearance were examined, but no abnormality was found.

(実施例2)
実施例1と同様な方法で製造した1000個の非水電解質二次電池について、図5に示すように一方の測定用端子21および補助測定用端子22を外装フィルム7の垂直に立ち上げられた2つの熱シール部12a,12cのポリエチレンフィルム11を貫通してアルミニウムからなる金属層10にそれぞれ接触させた。これらの測定用端子21、22間の抵抗を抵抗計で測定し、測定用端子21がアルミニウムからなる金属層10を通して補助測定用端子22に導通していること、つまり測定用端子21が前記金属層10に接触していることを確認した。つづいて、前記測定用端子21と対をなす下端に円板部を有する他方の測定端子23を正極端子5に接触させ、この他方の測定端子23と一方の測定端子21の間の電圧を内部インピーダンスが1Gオームの電圧計で測定した。この測定により1000個中989個の二次電池が0.2V〜3.1Vの電圧範囲内にあり、良品として選別し、前記電圧範囲を外れる11個の電池を不良品として排除した。
(Example 2)
About 1000 non-aqueous electrolyte secondary batteries manufactured by the same method as in Example 1, as shown in FIG. 5, one measurement terminal 21 and auxiliary measurement terminal 22 were raised vertically to the outer film 7. The polyethylene film 11 of the two heat seal parts 12a and 12c was penetrated and contacted with the metal layer 10 made of aluminum. The resistance between the measurement terminals 21 and 22 is measured with an ohmmeter, and the measurement terminal 21 is electrically connected to the auxiliary measurement terminal 22 through the metal layer 10 made of aluminum, that is, the measurement terminal 21 is the metal. The contact with the layer 10 was confirmed. Subsequently, the other measurement terminal 23 having a disk portion at the lower end which is paired with the measurement terminal 21 is brought into contact with the positive electrode terminal 5, and the voltage between the other measurement terminal 23 and one measurement terminal 21 is internally changed. Measured with a voltmeter having an impedance of 1 Gohm. According to this measurement, 989 out of 1000 secondary batteries were within the voltage range of 0.2V to 3.1V, and were selected as non-defective products, and 11 batteries out of the voltage range were excluded as defective products.

良品として判定した989個の二次電池を室温で3ヶ月間保管後に、電圧、内部インピーダンス、外観検査を行ったが、全数、異常は認められなかった。   989 secondary batteries judged as good were stored at room temperature for 3 months, and then the voltage, internal impedance, and appearance were examined.

(比較例1)
実施例1と同様な方法で製造した1000個の非水電解質二次電池について、正極端子と外装フィルムを構成するラミネートフィルムのアルミニウムからなる金属層の間の電圧検査を実施せずに、室温で3ヶ月間保管後に、電圧、内部インピーダンス、外観検査を行った。その結果、1000個中、9個の電池で電圧低下、内部インピーダンス上昇、膨れが認められた。
(Comparative Example 1)
For 1000 non-aqueous electrolyte secondary batteries manufactured by the same method as in Example 1, the voltage test between the positive electrode terminal and the metal layer made of aluminum of the laminate film constituting the exterior film was not performed at room temperature. After storage for 3 months, voltage, internal impedance, and appearance inspection were performed. As a result, voltage drop, internal impedance increase, and swelling were observed in 9 out of 1000 batteries.

以上の実施例1、2および比較例1の結果から明らかなように、本発明の検査方法を用いることにより、使用時に膨れなどの不具合を発生しない長期にわたり高い信頼性を有する非水電解質二次電池を良品として適切に選別することができる。
なお、本発明は前述した実施例に限定されず、他の種類の正極・負極・セパレータ・電解質の組合せにおいても同様に適用可能である。
As is clear from the results of Examples 1 and 2 and Comparative Example 1 above, the non-aqueous electrolyte secondary having high reliability over a long period of time that does not cause problems such as swelling during use by using the inspection method of the present invention. Batteries can be appropriately selected as non-defective products.
In addition, this invention is not limited to the Example mentioned above, It can apply similarly in the combination of another kind of positive electrode, negative electrode, separator, and electrolyte.

本発明に係わる非水電解質二次電池の一例である薄型リチウムイオン二次電池を示す斜視図。The perspective view which shows the thin lithium ion secondary battery which is an example of the nonaqueous electrolyte secondary battery concerning this invention. 図1の薄型リチウムイオン二次電池のII−II線に沿う断面図。Sectional drawing which follows the II-II line | wire of the thin lithium ion secondary battery of FIG. 本実施例1における図1の薄型リチウムイオン二次電池の検査方法を示す斜視図。FIG. 3 is a perspective view showing an inspection method for the thin lithium ion secondary battery of FIG. 図3の検査時における測定用端子とラミネートフィルムのアルミニウムの接触状態を示す断面図。Sectional drawing which shows the contact state of the measurement terminal and the aluminum of a laminate film at the time of the test | inspection of FIG. 本実施例2における図1の薄型リチウムイオン二次電池の検査方法を示す斜視図。FIG. 6 is a perspective view showing an inspection method of the thin lithium ion secondary battery of FIG.

符号の説明Explanation of symbols

1…電極群、2…正極、3…セパレータ、4…負極、5…正極端子、6…負極端子、7…外装フィルム、9…熱融着樹脂フィルム、10…金属層、11…合成樹脂フィルム、12a,12b,12c…熱シール部、21,23…測定用端子、22…補助測定用端子。   DESCRIPTION OF SYMBOLS 1 ... Electrode group, 2 ... Positive electrode, 3 ... Separator, 4 ... Negative electrode, 5 ... Positive electrode terminal, 6 ... Negative electrode terminal, 7 ... Exterior film, 9 ... Heat-fusion resin film, 10 ... Metal layer, 11 ... Synthetic resin film , 12a, 12b, 12c ... heat seal portions, 21, 23 ... measuring terminals, 22 ... auxiliary measuring terminals.

Claims (5)

少なくとも熱融着性樹脂層とアルミニウムまたはアルミニウム合金からなる金属層と合
成樹脂層とをこの順序で積層したラミネートフィルムを袋状にし、開口周縁の熱融着性樹
脂層同士を熱シールして熱シール部を形成した外装部材と、この外装部材内に収納された
正極、負極およびセパレータを有する電極群および非水電解質と、前記外装部材から外部
に導出され、前記正極に接続された正極端子および負極に接続された負極端子とを備え、
前記正極および正極端子が金属リチウムに対して3.90V〜4.05Vの電位を持ち、
かつ電圧が3.75V〜3.90Vの非水電解質二次電池を検査するにあたり、
組立て後の前記非水電解質2次電池に対して前記正極端子と前記外装部材の熱シール部
に位置する金属層との間の電圧を入力インピーダンスが1Gオーム以上の電圧計で測定し
、0.2V〜3.1Vの電圧範囲内のものを良品と判定を行うことを特徴とする非水電解
質二次電池の検査方法。
At least heat-sealable resin layer, metal layer made of aluminum or aluminum alloy, and synthetic resin layer are laminated in this order to form a bag, heat-sealing the heat-sealable resin layers at the periphery of the opening An exterior member in which a seal portion is formed; a positive electrode housed in the exterior member; an electrode group having a negative electrode and a separator; and a nonaqueous electrolyte; a positive electrode terminal that is led out from the exterior member and connected to the positive electrode; A negative terminal connected to the negative electrode,
The positive electrode and the positive electrode terminal have a potential of 3.90 V to 4.05 V with respect to metallic lithium,
And Upon the voltage to inspect the non-aqueous electrolyte secondary battery of 3.75V~3.90V,
Measuring the voltage between the positive electrode terminal and the metal layer located at the heat seal portion of the exterior member with respect to the assembled non-aqueous electrolyte secondary battery with a voltmeter having an input impedance of 1 G ohm or more; A method for inspecting a non-aqueous electrolyte secondary battery, wherein a battery in a voltage range of 2 V to 3.1 V is determined as a non- defective product .
前記正極端子と前記外装部材の前記金属層との間の電圧を測定する際、一対の測定用端
子のうち、一方の測定用端子先端を前記正極端子に接触させ、他方の測定端子先端を前記
外装部材のシール部に位置する合成樹脂層を貫通して前記金属層に接触させることを特徴
とする請求項1記載の非水電解質二次電池の検査方法。
When measuring the voltage between the positive electrode terminal and the metal layer of the exterior member, one measurement terminal tip of the pair of measurement terminals is brought into contact with the positive electrode terminal, and the other measurement terminal tip is connected to the positive electrode terminal. The method for inspecting a non-aqueous electrolyte secondary battery according to claim 1, wherein the synthetic resin layer positioned at the seal portion of the exterior member is penetrated and brought into contact with the metal layer.
前記一対の測定用端子で前記正極端子と前記外装部材の前記金属層との間の電圧を測定
する前に、補助測定用端子の先端を前記外装部材のシール部に位置する合成樹脂層を貫通
して前記金属層に突き刺し、前記他方の測定用端子および補助測定用端子間の抵抗を測定
して前記他方の測定用端子と前記金属層との導通確認を行うことを特徴とする請求項2記
載の非水電解質二次電池の検査方法。
Before measuring the voltage between the positive electrode terminal and the metal layer of the exterior member with the pair of measurement terminals, the tip of the auxiliary measurement terminal penetrates the synthetic resin layer positioned at the seal portion of the exterior member The metal layer is pierced, and the resistance between the other measurement terminal and the auxiliary measurement terminal is measured to confirm conduction between the other measurement terminal and the metal layer. The inspection method of the nonaqueous electrolyte secondary battery as described.
前記外装部材のシール部は、前記正極端子および負極端子が導出される側面と隣接する
2つの側面に当接されるように折り込まれ、前記他方の測定用端子および前記補助測定用
端子はそれらシール部の合成樹脂層を貫通して金属層にそれぞれ突き刺されることを特徴
とする請求項3記載の非水電解質二次電池の検査方法。
The seal portion of the exterior member is folded so as to be in contact with two side surfaces adjacent to the side surface from which the positive electrode terminal and the negative electrode terminal are led out, and the other measurement terminal and the auxiliary measurement terminal are sealed. 4. The method for inspecting a non-aqueous electrolyte secondary battery according to claim 3, wherein the metal resin layer is pierced through each of the synthetic resin layers.
少なくとも熱融着性樹脂層とアルミニウムまたはアルミニウム合金からなる金属層と合
成樹脂層とをこの順序で積層したラミネートフィルムを袋状にし、開口周縁の熱融着性樹
脂層同士を熱シールして熱シール部を形成した外装部材と、この外装部材内に収納された
正極、負極およびセパレータを有する電極群および非水電解質と、前記外装部材から外部
に導出され、前記正極に接続された正極端子および負極に接続された負極端子とを備え、
前記正極および正極端子が金属リチウムに対して3.90V〜4.05Vの電位を持ち、
かつ電圧が3.75V〜3.90Vの非水電解質二次電池を製造するにあたり、
組み立て後に前記正極端子と前記外装部材の熱シール部に位置する金属層との間の電圧
を入力インピーダンスが1Gオーム以上の電圧計で測定し、その電圧が0.2V〜3.1
Vであるものを良品として選別することを特徴とする非水電解質二次電池の製造方法。
At least heat-sealable resin layer, metal layer made of aluminum or aluminum alloy, and synthetic resin layer are laminated in this order to form a bag, heat-sealing the heat-sealable resin layers at the periphery of the opening An exterior member in which a seal portion is formed; a positive electrode housed in the exterior member; an electrode group having a negative electrode and a separator; and a non-aqueous electrolyte; a positive electrode terminal led out from the exterior member and connected to the positive electrode; A negative terminal connected to the negative electrode,
The positive electrode and the positive electrode terminal have a potential of 3.90 V to 4.05 V with respect to metallic lithium,
In manufacturing a nonaqueous electrolyte secondary battery having a voltage of 3.75V to 3.90V,
After assembly, the voltage between the positive electrode terminal and the metal layer located at the heat seal portion of the exterior member is measured with a voltmeter having an input impedance of 1 G ohm or more, and the voltage is 0.2V to 3.1.
A method for producing a non-aqueous electrolyte secondary battery, wherein V is selected as a non-defective product.
JP2004064087A 2004-03-08 2004-03-08 Non-aqueous electrolyte secondary battery inspection method and non-aqueous electrolyte secondary battery manufacturing method Expired - Fee Related JP4880879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004064087A JP4880879B2 (en) 2004-03-08 2004-03-08 Non-aqueous electrolyte secondary battery inspection method and non-aqueous electrolyte secondary battery manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004064087A JP4880879B2 (en) 2004-03-08 2004-03-08 Non-aqueous electrolyte secondary battery inspection method and non-aqueous electrolyte secondary battery manufacturing method

Publications (2)

Publication Number Publication Date
JP2005251685A JP2005251685A (en) 2005-09-15
JP4880879B2 true JP4880879B2 (en) 2012-02-22

Family

ID=35031937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004064087A Expired - Fee Related JP4880879B2 (en) 2004-03-08 2004-03-08 Non-aqueous electrolyte secondary battery inspection method and non-aqueous electrolyte secondary battery manufacturing method

Country Status (1)

Country Link
JP (1) JP4880879B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101180830B1 (en) * 2008-10-13 2012-09-07 주식회사 엘지화학 Apparatus and method for checking insulation of cell module assembly and probe for it
WO2011040446A1 (en) * 2009-09-30 2011-04-07 大日本印刷株式会社 Insulation failure inspecting apparatus, insulation failure inspecting method using same, and method for manufacturing electrochemical cell
JP5583480B2 (en) * 2010-05-28 2014-09-03 三洋電機株式会社 Inspection method for lithium ion secondary battery
US9136509B2 (en) * 2011-05-27 2015-09-15 Apple Inc. Battery cell with an integrated pouch metal foil terminal
JP5945405B2 (en) 2011-12-05 2016-07-05 オートモーティブエナジーサプライ株式会社 Method for producing lithium ion secondary battery
JP6088145B2 (en) * 2012-02-13 2017-03-01 オートモーティブエナジーサプライ株式会社 Battery manufacturing method and conductivity inspection apparatus
CN104393206B (en) * 2014-12-02 2016-07-13 四川捷能新能源科技有限公司 The method of the connection sealing of the aluminum plastic film edge sealing of detection lithium ion battery
US11796604B2 (en) 2020-07-14 2023-10-24 Hioki E.E. Corporation Measuring apparatus and testing apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0630258B2 (en) * 1985-03-18 1994-04-20 日立マクセル株式会社 Organic electrolyte battery
JPH09245832A (en) * 1996-03-07 1997-09-19 Fuji Elelctrochem Co Ltd Non-aqueous electrolytic liquid
JPH10291994A (en) * 1997-04-21 1998-11-04 Central Glass Co Ltd Stabilized lithium fluoride complex composition
JP3137061B2 (en) * 1997-04-22 2001-02-19 住友電気工業株式会社 Non-aqueous electrolyte battery
JP3632062B2 (en) * 1997-08-13 2005-03-23 株式会社リコー Thin polymer battery
JP2000036322A (en) * 1998-07-16 2000-02-02 Japan Storage Battery Co Ltd Non-aqueous electrolyte secondary battery
JP4910239B2 (en) * 2000-12-25 2012-04-04 三菱化学株式会社 Non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2005251685A (en) 2005-09-15

Similar Documents

Publication Publication Date Title
JP4468170B2 (en) Nonaqueous electrolyte secondary battery
JP4608735B2 (en) Non-aqueous electrolyte secondary battery charging method
US9859536B2 (en) Nonaqueous electrolyte battery including a sealed case, battery pack and storage battery apparatus
JP2010020974A (en) Flat rechargeable battery and method of manufacturing the same
KR101833540B1 (en) Battery Cell Having Means For Venting The Gas
JP2000149997A (en) Nonaqueous electrolyte secondary battery and its manufacture
JP2011048990A (en) Nonaqueous electrolyte battery
JP3631407B2 (en) Nonaqueous electrolyte secondary battery
JP4551539B2 (en) Nonaqueous electrolyte secondary battery
JP4880879B2 (en) Non-aqueous electrolyte secondary battery inspection method and non-aqueous electrolyte secondary battery manufacturing method
WO2013145110A1 (en) Electrode for non-aqueous electrolyte rechargeable battery, non-aqueous electrolyte rechargeable battery, and battery pack
JP4142921B2 (en) Lithium ion secondary battery
JP4802217B2 (en) Nonaqueous electrolyte secondary battery
JP2000173657A (en) Solid electrolyte battery
JP5296971B2 (en) Method for producing negative electrode for secondary battery
JP2002216843A (en) Manufacturing method of lithium polymer cell
US20150079448A1 (en) Nonaqueous electrolyte battery
JP4177621B2 (en) Nonaqueous electrolyte secondary battery
JP2003243038A (en) Positive electrode plate and lithium secondary battery using it
KR20160088647A (en) Pouch-Type Battery Cell Having Residue Sealing Portion
JP4707323B2 (en) Nonaqueous electrolyte secondary battery
JP4798950B2 (en) Nonaqueous electrolyte secondary battery
WO2003067688A1 (en) Nonaqueous electrolyte secondary cell
JP4660105B2 (en) Nonaqueous electrolyte secondary battery
JP2017130320A (en) Secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111202

R151 Written notification of patent or utility model registration

Ref document number: 4880879

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees