JP2010225498A - Organic electrolyte battery - Google Patents

Organic electrolyte battery Download PDF

Info

Publication number
JP2010225498A
JP2010225498A JP2009073305A JP2009073305A JP2010225498A JP 2010225498 A JP2010225498 A JP 2010225498A JP 2009073305 A JP2009073305 A JP 2009073305A JP 2009073305 A JP2009073305 A JP 2009073305A JP 2010225498 A JP2010225498 A JP 2010225498A
Authority
JP
Japan
Prior art keywords
battery
lithium
organic electrolyte
positive electrode
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009073305A
Other languages
Japanese (ja)
Other versions
JP5407469B2 (en
Inventor
忠義 ▲高▼橋
Tadayoshi Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009073305A priority Critical patent/JP5407469B2/en
Publication of JP2010225498A publication Critical patent/JP2010225498A/en
Application granted granted Critical
Publication of JP5407469B2 publication Critical patent/JP5407469B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic electrolyte battery which uses manganese oxide excellent in reliability under a high-temperature and high-humidity environment as an active material. <P>SOLUTION: The organic electrolyte battery includes: a positive electrode 4; a negative electrode 5 comprising lithium metal, lithium alloy, or a material capable of occluding or releasing lithium; and organic electrolyte. The positive electrode 4 prepared by thermally treating a mixture of manganese oxide being an active material and a conductive agent in the organic solvent containing imidazole and lithium bisperflouro sulfonylimide is used. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、正極にマンガン酸化物を用いた有機電解液電池の保存特性向上技術に関する。   The present invention relates to a technique for improving storage characteristics of an organic electrolyte battery using manganese oxide for a positive electrode.

正極活物質にコバルト酸リチウム(LiCoO)、負極に黒鉛系の炭素材料を組み合わせたリチウムイオン二次電池が実用化され、携帯電話などの小型携帯機器の主電源に用いられている。コバルト酸リチウムはコストに課題があり、それに代わる活物質の候補であるスピネル型のマンガン酸リチウム(LiMn)について現在多くの研究者により実用化に向けての検討が盛んに行われている。 A lithium ion secondary battery in which a positive electrode active material is combined with lithium cobalt oxide (LiCoO 2 ) and a negative electrode is combined with a graphite-based carbon material has been put into practical use and is used as a main power source for small portable devices such as mobile phones. Lithium cobaltate has a problem in cost, and spinel-type lithium manganate (LiMn 2 O 4 ), which is an alternative active material candidate, is currently actively studied for practical use by many researchers. Yes.

しかし、スピネル型のマンガン酸リチウムを正極に用いた二次電池は、電池内部の水分による影響(酸形成)や、高温環境下にさらされることにより著しく電池性能が劣化することがある。劣化要因は正極からのマンガンの溶解による正極容量の低下と、溶解したマンガンの負極表面への析出による負極容量の低下の二つが組み合わさって起こると考えられている。   However, a secondary battery using spinel type lithium manganate as a positive electrode may be significantly deteriorated in battery performance due to the influence of moisture inside the battery (acid formation) and exposure to a high temperature environment. The deterioration factor is considered to be caused by a combination of a decrease in positive electrode capacity due to dissolution of manganese from the positive electrode and a decrease in negative electrode capacity due to precipitation of dissolved manganese on the negative electrode surface.

そこで、マンガンの溶解反応を抑制する方法として、マンガン酸リチウムへの異種金属の添加や、マンガン酸リチウムへのコバルト酸リチウムやニッケル酸リチウムの添加、有機電解液への添加剤による水分除去や、負極表面のコーティングなど様々な取り組みがなされている。スピネル型マンガン酸リチウムからなる正極と、有機電解液にエチレンカーボネートとジエチルカーボネートを含む2種類以上の溶媒に、1−ビニルイミダゾール、メタクリル酸ビニル、酢酸ビニル及びこれらの化合物の誘導体からなる群より選択される重合性有機化合物を含むことで、有機電解液の分解に起因するガスの発生を抑制する手段、および電池の高温保存や保存特性を向上させる提案がなされている(特許文献1参照)。
特開2000−223154号公報
Therefore, as a method of suppressing the dissolution reaction of manganese, addition of different metals to lithium manganate, addition of lithium cobaltate and lithium nickelate to lithium manganate, water removal by additives to the organic electrolyte, Various efforts such as coating of the negative electrode surface have been made. Selected from the group consisting of 1-vinylimidazole, vinyl methacrylate, vinyl acetate and derivatives of these compounds in a positive electrode made of spinel type lithium manganate, two or more solvents containing ethylene carbonate and diethyl carbonate in the organic electrolyte There has been proposed a means for suppressing the generation of gas due to the decomposition of the organic electrolyte and improving the high-temperature storage and storage characteristics of the battery by including the polymerizable organic compound (see Patent Document 1).
JP 2000-223154 A

しかし、電池内部での水分との反応で形成された酸成分によるマンガンの溶解反応を抑制することに対しては十分な対策がなされていないのが現状である。本発明は、電池内部での水分との反応で形成された酸成分によるマンガン溶解反応を抑制することで、保存特性に優れた有機電解液電池を提供することを目的とする。   However, at present, sufficient measures have not been taken to suppress the dissolution reaction of manganese by the acid component formed by the reaction with moisture inside the battery. An object of this invention is to provide the organic electrolyte battery excellent in the storage characteristic by suppressing the manganese dissolution reaction by the acid component formed by reaction with the water | moisture content inside a battery.

上記目的を達成するために本発明は、正極と、リチウム金属、リチウム合金あるいはリチウムの吸蔵・放出が可能な材料からなる負極と、有機電解液、セパレータからなる有機電解液電池において、前記正極として活物質であるマンガン酸化物と導電剤の混合物をイミダゾールとリチウムビスパーフルオロスルホニルイミドを含む有機溶媒中で熱処理したもので構成したことを特徴とするものである。   To achieve the above object, the present invention provides an organic electrolyte battery comprising a positive electrode, a negative electrode made of lithium metal, a lithium alloy or a material capable of occluding and releasing lithium, an organic electrolyte, and a separator. It is characterized by comprising a mixture of an active material manganese oxide and a conductive agent that has been heat-treated in an organic solvent containing imidazole and lithium bisperfluorosulfonylimide.

本発明により、電池内部での水分との反応で形成された酸成分によるマンガンの溶解反応を抑制することができ、長期保存性能が著しく向上した有機電解液電池を得ることができる。   According to the present invention, the dissolution reaction of manganese by the acid component formed by the reaction with moisture inside the battery can be suppressed, and an organic electrolyte battery with significantly improved long-term storage performance can be obtained.

本発明の第一の発明は、正極と、リチウム金属、リチウム合金あるいはリチウムの吸蔵・放出が可能な材料からなる負極と、有機電解液、セパレータからなる有機電解液電池において、上記正極として活物質であるマンガン酸化物と導電剤の混合物をイミダゾールとリチウムビスパーフルオロスルホニルイミドを含む有機溶媒中で熱処理したもので構成したことを特徴とする有機電解液電池である。上記の構成により、電池内部での水分との反応で形成された酸成分によるマンガンの溶解反応を抑制することができ、長期保存性能が著しく向上した有機電解液電池を得ることができる。   The first invention of the present invention is an organic electrolyte battery comprising a positive electrode, a negative electrode made of lithium metal, a lithium alloy or a material capable of occluding and releasing lithium, an organic electrolyte, and a separator. An organic electrolyte battery comprising a mixture of a manganese oxide and a conductive agent that is heat-treated in an organic solvent containing imidazole and lithium bisperfluorosulfonylimide. With the above configuration, the dissolution reaction of manganese due to the acid component formed by the reaction with moisture inside the battery can be suppressed, and an organic electrolyte battery with significantly improved long-term storage performance can be obtained.

本発明の第二の発明は、第一の発明において、有機溶媒として230℃以上の沸点を有するものを用いたことを特徴とする。この構成により、熱処理温度を高く設定することができるので、上記マンガンの溶解反応の抑制効果もより高くなり、長期保存性能がより優れた有機電解液電池を得ることができる。   The second invention of the present invention is characterized in that, in the first invention, an organic solvent having a boiling point of 230 ° C. or higher is used. With this configuration, the heat treatment temperature can be set high, so that the effect of suppressing the dissolution reaction of manganese is further enhanced, and an organic electrolyte battery with better long-term storage performance can be obtained.

正極活物質であるマンガン酸化物と導電剤をイミダゾールとリチウムビスパーフルオロスルホニルイミドを含む有機溶媒中で熱処理することで、マンガンの溶解反応を抑制することができる。しかし、正極活物質のマンガン酸化物のみを同様に熱処理しても効果は得られなかった。詳細な反応機構については不明であるが、以下のように推察している。電池内部での酸成分の形成が主に正極活物質である触媒活性の高いマンガン酸化物、導電剤と有機電解液との3相界面で、水分と有機電解液と溶質などにおいて起こる。前記の熱処理によりマンガン酸化物と導電剤の表面をイミダゾール重合物の被膜でコーティングすることで、有機電解液と直接接することができなくなり、酸形成反応が進行しなかったものと推察される。実際、マンガン酸化物は活性が高く、触媒に使われるのが一般的であり、導電剤であるカーボン種は電極材料としても標準的に使われており、空気電池の空気極の構成としてマンガン酸化物と活性炭との組み合わせがその一例として挙げられる。   The manganese dissolution reaction can be suppressed by heat-treating the manganese oxide, which is the positive electrode active material, and the conductive agent in an organic solvent containing imidazole and lithium bisperfluorosulfonylimide. However, no effect was obtained even if only the manganese oxide of the positive electrode active material was heat-treated in the same manner. Although the detailed reaction mechanism is unknown, it is presumed as follows. The formation of an acid component inside the battery occurs mainly at a three-phase interface between a highly active manganese oxide, a conductive agent and an organic electrolyte, which is a positive electrode active material, in water, an organic electrolyte, and a solute. By coating the surfaces of the manganese oxide and the conductive agent with a film of an imidazole polymer by the heat treatment, it is assumed that the organic electrolyte cannot be in direct contact and the acid formation reaction has not progressed. In fact, manganese oxide has high activity and is generally used as a catalyst. Carbon species as a conductive agent is also used as a standard electrode material. One example is a combination of a product and activated carbon.

熱処理方法としては、正極活物質であるマンガン酸化物と導電剤とを外部にて有機溶媒に浸漬することで予め処理したものを電池に組み込むことや、電池作製後に電池自体を高温に曝すことで電池内部にて正極活物質であるマンガン酸化物と導電剤からなる電極を熱処理することなどが挙げられる。   As a heat treatment method, a manganese oxide that is a positive electrode active material and a conductive agent are immersed in an organic solvent in the outside to incorporate a pretreated material into the battery, or by exposing the battery itself to a high temperature after manufacturing the battery. For example, heat treatment may be performed on an electrode made of manganese oxide as a positive electrode active material and a conductive agent inside the battery.

熱処理温度としては、150℃以上が好ましい。150℃より低くなると、コーティング膜の厚みが薄くなり、厚みのむらも出やすく、熱処理によるコーティングの効果が不十分となる可能性がある。より好ましくは180℃以上で行うことである。また、熱処理の上限温度としては270℃以下にすることが好ましい。   As heat processing temperature, 150 degreeC or more is preferable. When the temperature is lower than 150 ° C., the thickness of the coating film becomes thin and uneven thickness tends to occur, and the effect of coating by heat treatment may be insufficient. More preferably, it is performed at 180 ° C. or higher. Further, the upper limit temperature of the heat treatment is preferably 270 ° C. or lower.

有機溶媒としては、沸点が230℃以上のものを用いることが重要である。低沸点の有機溶媒では蒸気圧が高く、熱処理を行う際の液の蒸発による重量減少が大きくなる。加えて、熱処理温度を高く設定することが難しく、本発明の狙いの熱処理効果も不十分となる可能性があるためである。また、沸点が高い有機溶媒は極性が高いため、イミダゾールとリチウムビスパーフルオロスルホニルイミドの溶解性が良好となる。   It is important to use an organic solvent having a boiling point of 230 ° C. or higher. A low boiling point organic solvent has a high vapor pressure, and the weight loss due to evaporation of the liquid during heat treatment increases. In addition, it is difficult to set the heat treatment temperature high, and the heat treatment effect targeted by the present invention may be insufficient. In addition, since an organic solvent having a high boiling point has high polarity, the solubility of imidazole and lithium bisperfluorosulfonylimide is improved.

熱処理工程の後に、合剤粉末に有機溶媒が残っていても電池特性に悪影響がなく、作業性も簡易となることから、好ましくは電池の有機電解液としても使用可能な有機溶媒種を用いることが最適であり、プロピレンカーボネート、スルホラン、テトラグライムなどが好ましい。   Even if an organic solvent remains in the mixture powder after the heat treatment step, the battery characteristics are not adversely affected and the workability is simplified. Therefore, it is preferable to use an organic solvent species that can also be used as an organic electrolyte for the battery. Are optimal, and propylene carbonate, sulfolane, tetraglyme and the like are preferable.

イミダゾールの有機溶媒中での濃度としては0.5〜5wt%程度が好ましい。0.1wt%未満になると完全にマンガン酸化物と導電剤の表面を覆う被膜の厚みが薄くなり、ピンホールの形成の危険性があるため、0.1wt%以上にすることが好ましい。厚みの
観点から好ましくは0.5wt%以上である。また、濃度が5wt%より多くなっても、効果に差が無いため、5wt%以下で十分である。おそらく、膜の厚み等にほとんど差がないものと思われる。
The concentration of imidazole in the organic solvent is preferably about 0.5 to 5 wt%. If the amount is less than 0.1 wt%, the thickness of the coating covering the surface of the manganese oxide and the conductive agent is completely reduced, and there is a risk of pinhole formation. From the viewpoint of thickness, it is preferably 0.5 wt% or more. Moreover, even if the concentration is higher than 5 wt%, there is no difference in effect, so 5 wt% or less is sufficient. Probably, there seems to be almost no difference in film thickness.

リチウムビスパーフルオロスルホニルイミドの濃度については、有機電解液の溶質として用いる場合と同等レベルの0.7〜1.5mol/Lが好ましい。イミダゾールの量がリチウムビスパーフルオロスルホニルイミドに比べて多くなると、熱処理時の反応性が低下すると思われ、効果は得られなくなる。また、イミダゾール化合物としては官能基がついたものも存在するが、十分な効果は得られない。   About the density | concentration of lithium bisperfluoro sulfonylimide, 0.7-1.5 mol / L of the level equivalent to the case where it uses as a solute of an organic electrolyte solution is preferable. When the amount of imidazole is larger than that of lithium bisperfluorosulfonylimide, the reactivity during the heat treatment seems to decrease, and the effect cannot be obtained. Some imidazole compounds have a functional group, but sufficient effects cannot be obtained.

以下、本発明の好ましい実施の形態について説明する。なお、以下に示す実施の形態は本発明を具体化した一例であって、本発明の技術的範囲を限定するものではない。   Hereinafter, preferred embodiments of the present invention will be described. The following embodiment is an example embodying the present invention, and does not limit the technical scope of the present invention.

図1は本発明の実施の形態による有機電解液電池の一例であるコイン型リチウム二次電池の断面構造図である。発電要素を収容するコイン型の電池容器は、耐食性に優れたステンレス鋼からなる正極缶1と、同様にステンレス鋼の負極缶2、及び正極缶1と負極缶2とを絶縁する機能に加え、物理的に発電要素を液蜜的に電池容器内に密閉するためのガスケット3を有している。正極缶1と負極缶2との間に介在されるガスケット3には、ポリエーテルエーテルケトン(PEEK)樹脂からなるものを使用した。このガスケット3と正極缶1及び負極缶2とガスケット3との間にブチルゴムをトルエンで希釈した溶液を塗布し、トルエンを蒸発させることによりブチルゴム膜からなるシーラント(図示せず)を形成した。   FIG. 1 is a cross-sectional structure diagram of a coin-type lithium secondary battery which is an example of an organic electrolyte battery according to an embodiment of the present invention. In addition to the function of insulating the positive electrode can 1 made of stainless steel having excellent corrosion resistance, the negative electrode can 2 made of stainless steel, and the positive electrode can 1 and the negative electrode can 2 together, A gasket 3 is provided for physically sealing the power generation element in the battery container in a liquid crystal manner. The gasket 3 interposed between the positive electrode can 1 and the negative electrode can 2 was made of a polyether ether ketone (PEEK) resin. A solution obtained by diluting butyl rubber with toluene was applied between the gasket 3 and the positive electrode can 1 and between the negative electrode can 2 and the gasket 3, and the toluene was evaporated to form a sealant (not shown) made of a butyl rubber film.

正極4は、マンガン酸化物を活物質に含む。負極5はリチウムアルミニウム合金である。正極4と負極5との間に配されるセパレータ6には、ポリフェニレンサルファイド(PPS)を使用した。セパレータ6には図示していない有機電解液が充填されている。   The positive electrode 4 contains manganese oxide as an active material. The negative electrode 5 is a lithium aluminum alloy. For the separator 6 disposed between the positive electrode 4 and the negative electrode 5, polyphenylene sulfide (PPS) was used. The separator 6 is filled with an organic electrolyte solution (not shown).

マンガン酸化物としては、二酸化マンガン、リチウム含有マンガン酸化物、スピネル型のマンガン酸リチウムが用いられる。二酸化マンガンは一次電池材料として使用されており、電解二酸化マンガンを350〜440℃程度で熱処理したγ―MnOやβ―MnOについては溶解性が高く、本発明の効果が顕著に得られる。リチウム含有マンガン酸化物としては、リチウム化したラムスデライト型の二酸化マンガンや斜方晶のLi0.44MnOが用いられる。スピネル型のマンガン酸リチウムは二次電池の正極材料に用いられている。マンガン酸リチウムについては、リチウム、マンガン、酸素の3源系のLi1+X Mn2−X(0≦X≦0.33)またはスピネル型のマンガンの一部を異種元素で置換したLi1+X Mn2−X−yAO(AはCr、Ni、Co、Fe、Al、B、0≦X≦0.33、0<y≦0.25)などが挙げられる。 As the manganese oxide, manganese dioxide, lithium-containing manganese oxide, or spinel type lithium manganate is used. Manganese dioxide is used as a primary battery material, and γ-MnO 2 and β-MnO 2 obtained by heat treatment of electrolytic manganese dioxide at about 350 to 440 ° C. have high solubility, and the effects of the present invention are remarkably obtained. As the lithium-containing manganese oxide, lithiated ramsdellite-type manganese dioxide or orthorhombic Li 0.44 MnO 2 is used. Spinel lithium manganate is used as a positive electrode material for secondary batteries. As for lithium manganate, Li 1 + X Mn 2- XO 4 (0 ≦ X ≦ 0.33) of three sources of lithium, manganese, and oxygen or Li 1 + X Mn in which a part of spinel type manganese is substituted with a different element 2-X-y AO 4 (A is Cr, Ni, Co, Fe, Al, B, 0 ≦ X ≦ 0.33, 0 <y ≦ 0.25).

導電剤としては、カーボンブラック、アセチレンブラック、デンカブラック、天然黒鉛、人造黒鉛からなる群より選択される少なくとも一種以上である。導電性の点からはカーボンブラック、アセチレンブラック、デンカブラックなどの比表面積が大きいものが好ましい。しかし、マンガン酸化物と有機電解液と導電剤との3相界面が増えるため、酸形成反応の観点ではより多くの反応が起こりやすくなるが、本発明の熱処理を行うことで、電極としての高い導電性を維持しつつ、酸形成反応を抑制し、優れた正極の性能を実現することができる。また、従来課題である正極を構成する活物質や導電剤による有機電解液の分解反応も抑制することができる。   The conductive agent is at least one selected from the group consisting of carbon black, acetylene black, denka black, natural graphite, and artificial graphite. From the viewpoint of conductivity, those having a large specific surface area such as carbon black, acetylene black and denka black are preferred. However, since the three-phase interface between the manganese oxide, the organic electrolyte, and the conductive agent increases, more reactions are likely to occur from the viewpoint of the acid formation reaction. While maintaining conductivity, the acid formation reaction can be suppressed and excellent positive electrode performance can be realized. Moreover, the decomposition reaction of the organic electrolyte solution by the active material and the conductive agent constituting the positive electrode, which is a conventional problem, can also be suppressed.

マンガン酸化物からなる正極の結着剤としては、ポリテトラフルオロエチレン(PTFE)、4フッ化エチレン、6フッ化プロピレン共重合体(FEP)、ポリフッ化ビニリデン(PVDF)などのフッ素系樹脂が好ましい。   As the binder for the positive electrode made of manganese oxide, fluorine-based resins such as polytetrafluoroethylene (PTFE), tetrafluoroethylene, hexafluoropropylene copolymer (FEP), and polyvinylidene fluoride (PVDF) are preferable. .

熱処理は正極活物質と導電剤との混合物、または正極活物質と導電剤とバインダーからなる合剤粉末、または、合剤粉末を成型したペレット、もしくは集電体のアルミニウムに正極活物質と導電剤とバインダーが塗工された電極に実施すると本発明の効果が得られる。また、実際に、電池形成後に合剤ペレットまたは塗工電極と有機電解液とで熱処理することでも同様の効果が得られる。   The heat treatment is a mixture of the positive electrode active material and the conductive agent, or a mixture powder composed of the positive electrode active material, the conductive agent and the binder, or a pellet formed by molding the mixture powder, or the aluminum of the current collector and the positive electrode active material and the conductive agent. The effect of the present invention can be obtained by applying to an electrode coated with a binder. Moreover, the same effect is acquired also by actually heat-processing with a mixture pellet or a coating electrode, and an organic electrolyte solution after battery formation.

負極材料としては、リチウム、天然黒鉛、人造黒鉛、難黒鉛化性炭素などの炭素系材料、シリコン、アルミニウム、スズ、ゲルマニウムなどのリチウム合金、一酸化ケイ素、一酸化スズ、一酸化コバルトなどを主体とする金属リチウムに対して1V以下で反応する酸化物と、スピネル型のリチウムチタン酸化物、五酸化二オブ、二酸化タングステンなどの金属リチウムに対して1V以上で反応する酸化物、および、負極に正極に用いるスピネル型のリチウムマンガン酸化物を用いることができる。   Negative electrode materials mainly include carbon-based materials such as lithium, natural graphite, artificial graphite and non-graphitizable carbon, lithium alloys such as silicon, aluminum, tin and germanium, silicon monoxide, tin monoxide and cobalt monoxide. An oxide that reacts with metal lithium at 1 V or less, an oxide that reacts with metal lithium such as spinel-type lithium titanium oxide, niobium pentoxide, and tungsten dioxide at 1 V or more, and a negative electrode A spinel type lithium manganese oxide used for the positive electrode can be used.

セパレータ材料としては、ポロプロピレン、ポリエチレンなどのオレフィン系ポリマー、ポリブチレンテレフタレート、ポリフェニレンスルフイド、ポリエーテルエーテルケトンなどのエンジニアリングプラスチック、無機のガラス繊維からなるガラスセパレータなどが使用できる。好ましくは、エンジニアリングプラスチックやガラス繊維からなるセパレータが好ましい。セパレータとしては、不織布や微多孔膜どちらの形態でも使用できる。   Examples of the separator material include olefin polymers such as polypropylene and polyethylene, engineering plastics such as polybutylene terephthalate, polyphenylene sulfide, and polyetheretherketone, and glass separators made of inorganic glass fibers. A separator made of engineering plastic or glass fiber is preferable. As the separator, either a nonwoven fabric or a microporous membrane can be used.

有機電解液としては、前記の沸点が230℃以上の有機溶媒に、低沸点溶媒である1,2ジメトキシエタン、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジグライム、トリグライムやエチレンカーボネートなどから少なくとも一種以上混合した混合溶媒に、溶質として、リチウムビスパーフルオロスルホニルイミドを0.7〜1.5mol/L溶解させたものを用いることができる。また、溶質のリチウムビスパーフルオロスルホニルイミドに4フッ化ホウ酸リチウムや6フッ化リン酸リチウムを10〜20mol%添加して用いてもよい。また、イミダゾールを有機電解液に添加する場合の濃度としては0.5〜5wt%が好ましい。   As the organic electrolytic solution, the organic solvent having a boiling point of 230 ° C. or higher is at least one or more selected from 1,2-dimethoxyethane, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, diglyme, triglyme, ethylene carbonate, and the like, which are low boiling solvents. A solution obtained by dissolving 0.7 to 1.5 mol / L of lithium bisperfluorosulfonylimide can be used as a solute in the mixed solvent. Further, 10 to 20 mol% of lithium tetrafluoroborate or lithium hexafluorophosphate may be added to solute lithium bisperfluorosulfonylimide. Moreover, as a density | concentration when adding imidazole to an organic electrolyte solution, 0.5-5 wt% is preferable.

本発明の有機電解液電池の形状としては、コイン型やボタン型の偏平形電池、円筒型電池、角型電池、アルミラミネート電池などに適応することが可能である。特に、カシメ封口により封止される気密性の低い偏平形電池や円筒型電池に対しては、電池内部への水分侵入が多いため、本発明はより効果的である。   The shape of the organic electrolyte battery of the present invention can be applied to a coin-type or button-type flat battery, a cylindrical battery, a square battery, an aluminum laminate battery, or the like. In particular, the present invention is more effective for a flat battery or a cylindrical battery with low airtightness that is sealed with a caulking seal, because there is much moisture intrusion into the battery.

以上の構成にすることで、保存特性に優れた正極にマンガン酸化物を用いた有機電解液電池を提供することができる。   With the above configuration, an organic electrolyte battery using manganese oxide for the positive electrode having excellent storage characteristics can be provided.

以下、本発明の好ましい実施例について説明する。   Hereinafter, preferred embodiments of the present invention will be described.

(実験1)
図1は、本発明の実施例で用いた厚さ1.4mm、直径4.8mmの二次電池の断面図である。
(Experiment 1)
FIG. 1 is a cross-sectional view of a secondary battery having a thickness of 1.4 mm and a diameter of 4.8 mm used in an example of the present invention.

正極4は、水酸化リチウムと二酸化マンガンを600℃で10時間焼成して得られたスピネル型のマンガン酸リチウムを正極活物質に、導電剤としてカーボンブラック及び結着剤としてフッ素樹脂粉末を85:7:8の重量比で混合したもの7mgを、直径2mm、厚さ0.9mmのペレット状に成型した後、250℃中で12時間乾燥したものである。得られたペレット状の正極材料は、正極缶1の内面にカーボン塗料を塗布することで形成
された正極集電体7に接触するようにしてある。
In the positive electrode 4, spinel type lithium manganate obtained by baking lithium hydroxide and manganese dioxide for 10 hours at 600 ° C. is used as a positive electrode active material, carbon black as a conductive agent, and fluororesin powder as a binder: 85: 7 mg mixed at a weight ratio of 7: 8 was molded into pellets having a diameter of 2 mm and a thickness of 0.9 mm, and then dried at 250 ° C. for 12 hours. The obtained pellet-like positive electrode material is in contact with the positive electrode current collector 7 formed by applying a carbon paint on the inner surface of the positive electrode can 1.

一方、負極5は、アルミニウムシートを直径2.5mm、厚さ0.2mmの円盤状に打ち抜き、負極缶2の内側に圧着し、続いて厚さ0.10mmのリチウム金属のシートをφ2.0mmに打ち抜き、このアルミニウムの表面に圧着してある。電池組み立て時に、有機電解液を注入することによりリチウムとアルミニウムがショートした状態になり、電気化学的にリチウムがアルミニウム金属中に吸蔵される。この反応により得られたリチウムアルミニウム合金を負極5とした。   On the other hand, the negative electrode 5 is formed by punching an aluminum sheet into a disk shape having a diameter of 2.5 mm and a thickness of 0.2 mm, pressing the aluminum sheet inside the negative electrode can 2, and subsequently a lithium metal sheet having a thickness of 0.10 mm is φ2.0 mm. This is punched out and crimped to the surface of this aluminum. When the battery is assembled, by injecting the organic electrolyte, lithium and aluminum are short-circuited, and lithium is occluded electrochemically in the aluminum metal. The lithium aluminum alloy obtained by this reaction was used as the negative electrode 5.

また、正極4と負極5との間に配置されるセパレータ6には、ポリフェニレンサルファイド(PPS)を使用した。スルホラン(沸点286℃):1,2ジメトキシエタン(沸点83℃)を90:10の体積比で混合した溶媒に溶質としてリチウムビスパーフルオロスルホニルイミドを1.2mol/L、イミダゾールを1wt%溶解させた有機電解液を、正極缶1、負極缶2とガスケット3からなる電池容器内に体積で2.5μlが充填されている。   Further, polyphenylene sulfide (PPS) was used for the separator 6 disposed between the positive electrode 4 and the negative electrode 5. Sulfolane (boiling point 286 ° C.): 1,2 dimethoxyethane (boiling point 83 ° C.) mixed at a volume ratio of 90:10 as a solute, 1.2 mol / L lithium bisperfluorosulfonylimide and 1 wt% imidazole were dissolved. The organic electrolyte is filled in a battery container composed of the positive electrode can 1, the negative electrode can 2, and the gasket 3 in a volume of 2.5 μl.

このようにして得られた有機電解液電池を、本実施例1に係る電池Aとした。電池自身を高温下に置くことで、電池内部で正極活物質であるマンガン酸化物と導電剤の混合物をイミダゾールとリチウムビスパーフルオロスルホニルイミドを含む有機溶媒中で熱処理を実施した。   The organic electrolyte battery thus obtained was designated as battery A according to Example 1. By placing the battery itself at a high temperature, the mixture of manganese oxide, which is a positive electrode active material, and a conductive agent was heat-treated inside the battery in an organic solvent containing imidazole and lithium bisperfluorosulfonylimide.

電池Aについて、リフロー時のピーク温度を変えて、熱風式リフロー炉中を通過させた。リフロー時のピーク温度は240℃、220℃、200℃、180℃、150℃、140℃である。試験に用いたリフロー炉の内部の温度プロファイルは余熱行程として140℃の環境下に2分間曝され、引き続き加熱行程として140℃、各ピーク温度、140℃を30秒間で通過した後、室温に至るまで自然冷却される。このリフロー工程を2回通過させた。各リフローピーク温度通過後の電池はそれぞれ電池A、A1、A2、A3、A4、A5とする。その後、4.0〜3.0Vの範囲で5μAの定電流で充放電を行い、初期放電容量を調べた。電池A〜A5を5μAの定電流で4.0Vまで充電した後、85℃の乾燥雰囲気と60℃90%多湿環境下での保存試験を実施した。保存期間が30日後に、常温常湿下に取り出して、4.0〜3.0Vの範囲で、5μAの定電流で放電、充電、放電を行い、充電回復容量を測定した。容量は240℃のピーク温度を通過させた電池Aの初期放電容量を100として算出を行った。(表1)に初期放電容量と85℃保存と60℃90%保存試験後の充電回復容量の結果を示す。   About the battery A, the peak temperature at the time of reflow was changed, and it was made to pass through the hot air type reflow furnace. The peak temperatures during reflow are 240 ° C, 220 ° C, 200 ° C, 180 ° C, 150 ° C and 140 ° C. The temperature profile inside the reflow furnace used for the test was exposed to an environment of 140 ° C. for 2 minutes as a preheating process, and subsequently passed through 140 ° C., each peak temperature, and 140 ° C. for 30 seconds as a heating process, and then reached room temperature. Until naturally cooled. This reflow process was passed twice. The batteries after passing through each reflow peak temperature are designated as batteries A, A1, A2, A3, A4, and A5, respectively. Thereafter, charging and discharging were performed at a constant current of 5 μA in the range of 4.0 to 3.0 V, and the initial discharge capacity was examined. After charging the batteries A to A5 to 4.0 V at a constant current of 5 μA, a storage test was performed in a dry atmosphere at 85 ° C. and a high humidity environment at 60 ° C. and 90%. After a storage period of 30 days, the battery was taken out at room temperature and normal humidity, discharged, charged and discharged at a constant current of 5 μA in the range of 4.0 to 3.0 V, and the charge recovery capacity was measured. The capacity was calculated based on 100 as the initial discharge capacity of battery A that passed a peak temperature of 240 ° C. Table 1 shows the results of the initial discharge capacity, the charge recovery capacity after the 85 ° C. storage test and the 60 ° C. 90% storage test.

Figure 2010225498
Figure 2010225498

リフローピーク温度が140℃になると多湿保存後の充電回復容量が若干低下した。150℃以上では、充電回復容量がより安定な値を示した。   When the reflow peak temperature reached 140 ° C., the charge recovery capacity after humid storage was slightly reduced. Above 150 ° C., the charge recovery capacity showed a more stable value.

(実験2)
電池Aの有機電解液の混合溶媒に代えて、テトラグライム(沸点275℃)と1,2ジメトキシエタン(沸点83℃)の体積比率が90:10を用いた以外は同構成である電池Bを作製した。
(Experiment 2)
Instead of the mixed solvent of the organic electrolyte solution of battery A, a battery B having the same configuration except that the volume ratio of tetraglyme (boiling point 275 ° C.) and 1,2 dimethoxyethane (boiling point 83 ° C.) was 90:10 was used. Produced.

電池Aの有機電解液の混合溶媒に代えて、プロピレンカーボネート(沸点242℃)と1,2ジメトキシエタン(沸点83℃)の体積比率が90:10を用いた以外は同構成である電池Cを作製した。   A battery C having the same configuration except that the volume ratio of propylene carbonate (boiling point 242 ° C.) and 1,2 dimethoxyethane (boiling point 83 ° C.) was 90:10 instead of the mixed solvent of the organic electrolyte solution of battery A Produced.

電池Aの有機電解液の混合溶媒に代えて、ブチレンカーボネート(沸点240℃)と1,2ジメトキシエタン(沸点83℃)の体積比率が90:10を用いた以外は同構成である電池Dを作製した。   Instead of the mixed solvent of the organic electrolyte solution of battery A, a battery D having the same configuration except that the volume ratio of butylene carbonate (boiling point 240 ° C.) and 1,2 dimethoxyethane (boiling point 83 ° C.) was 90:10 was used. Produced.

電池Aの有機電解液の混合溶媒に代えて、γ―ブチロラクトン(沸点206℃)と1,2ジメトキシエタン(沸点83℃)の体積比率が90:10を用いた以外は同構成である電池Eを作製した。   Battery E having the same structure except that the volume ratio of γ-butyrolactone (boiling point 206 ° C.) and 1,2 dimethoxyethane (boiling point 83 ° C.) is 90:10 instead of the mixed solvent of the organic electrolyte solution of battery A Was made.

実施例1と同様に、電池B〜Eについてピーク温度が240℃のリフロー炉を2回通過させた。その後、初期放電容量の測定及び85℃乾燥雰囲気と60℃90%多湿環境下での保存試験を実施した。(表2)に初期放電容量と85℃保存と60℃90%保存試験後の充電回復容量の結果を示す。   Similarly to Example 1, the batteries B to E were passed twice through a reflow furnace having a peak temperature of 240 ° C. Thereafter, the initial discharge capacity was measured and a storage test was performed in a 85 ° C. dry atmosphere and a 60 ° C. and 90% humid environment. Table 2 shows the results of the initial discharge capacity, the charge recovery capacity after the 85 ° C. storage test and the 60 ° C. 90% storage test.

電池Eでは、乾燥保存および多湿保存後の劣化が電池A〜Dに比べて若干大きくなった。電池A、B、C、Dでは充電回復容量値がより安定な値を示した。   In battery E, the deterioration after dry storage and humid storage was slightly larger than batteries A to D. In the batteries A, B, C, and D, the charge recovery capacity value showed a more stable value.

Figure 2010225498
Figure 2010225498

(実験3)
電池Aのスルホラン(沸点286℃)と1,2ジメトキシエタン(沸点83℃)の体積比率を90:10から70:30に変更した以外は同構成である電池Fを作製した。
(Experiment 3)
A battery F having the same structure was produced except that the volume ratio of sulfolane (boiling point 286 ° C.) and 1,2 dimethoxyethane (boiling point 83 ° C.) of battery A was changed from 90:10 to 70:30.

電池Aのスルホラン(沸点286℃)と1,2ジメトキシエタン(沸点83℃)の体積比率を90:10から50:50に変更した以外は同構成である電池Gを作製した。   A battery G having the same configuration was prepared except that the volume ratio of sulfolane (boiling point 286 ° C.) and 1,2 dimethoxyethane (boiling point 83 ° C.) of battery A was changed from 90:10 to 50:50.

電池Aのスルホラン(沸点286℃)と1,2ジメトキシエタン(沸点83℃)の体積比率を90:10から30:70に変更した以外は同構成である電池Hを作製した。   A battery H having the same configuration was produced except that the volume ratio of sulfolane (boiling point 286 ° C.) and 1,2 dimethoxyethane (boiling point 83 ° C.) of battery A was changed from 90:10 to 30:70.

電池Aのスルホラン(沸点286℃)と1,2ジメトキシエタン(沸点83℃)の体積比率を90:10から10:90に変更した以外は同構成である電池Iを作製した。   Battery I having the same configuration was produced except that the volume ratio of sulfolane (boiling point 286 ° C.) and 1,2 dimethoxyethane (boiling point 83 ° C.) of battery A was changed from 90:10 to 10:90.

実施例1と同様に、電池A,F〜Iについてピーク温度が240℃のリフロー炉を2回通過させた。その後、初期放電容量の測定及び85℃乾燥雰囲気と60℃90%多湿環境下での保存試験を実施した。(表2)に初期放電容量と85℃保存と60℃90%保存試験後の充電回復容量の結果を示す。   Similar to Example 1, the batteries A and F to I were passed through a reflow furnace having a peak temperature of 240 ° C. twice. Thereafter, the initial discharge capacity was measured and a storage test was performed in a 85 ° C. dry atmosphere and a 60 ° C. and 90% humid environment. Table 2 shows the results of the initial discharge capacity, the charge recovery capacity after the 85 ° C. storage test and the 60 ° C. 90% storage test.

電池H、Iでは、乾燥保存および多湿保存後の劣化が電池A〜Dに比べて若干大きくなった。電池A、F、Gでは充電回復容量値がより安定な値を示した。   In batteries H and I, the deterioration after dry storage and humid storage was slightly larger than batteries A to D. In the batteries A, F, and G, the charge recovery capacity value showed a more stable value.

Figure 2010225498
Figure 2010225498

(実験4)
電池Aの有機電解液のイミダゾール添加量を0.1wt%とした以外は同構成である電池Jを作製した。
(Experiment 4)
A battery J having the same configuration was prepared except that the amount of imidazole added to the organic electrolyte of battery A was 0.1 wt%.

電池Aの有機電解液のイミダゾール添加量を0.5wt%とした以外は同構成である電池Kを作製した。   A battery K having the same structure was prepared except that the amount of imidazole added to the organic electrolyte of battery A was 0.5 wt%.

電池Aの有機電解液のイミダゾール添加量を3wt%とした以外は同構成である電池Lを作製した。   A battery L having the same configuration was prepared except that the amount of imidazole added to the organic electrolyte of battery A was 3 wt%.

電池Aの有機電解液のイミダゾール添加量を5wt%とした以外は同構成である電池Mを作製した。   A battery M having the same configuration was prepared except that the amount of imidazole added to the organic electrolyte of battery A was 5 wt%.

電池Aの有機電解液のイミダゾール添加量を10wt%とした以外は同構成である電池Nを作製した。   A battery N having the same configuration was prepared except that the amount of imidazole added to the organic electrolyte of battery A was 10 wt%.

電池Aの有機電解液のイミダゾールを添加しなかった以外は同構成である比較電池1を作製した。   Comparative battery 1 having the same configuration was prepared except that imidazole of the organic electrolyte solution of battery A was not added.

電池Aの有機電解液のイミダゾールをジメチルイミダゾールとした以外は同構成である比較電池2を作製した。   Comparative battery 2 having the same configuration except that dimethylimidazole was used as the organic electrolyte of battery A was produced.

電池Aの有機電解液のイミダゾールをエチルイミダゾールとした以外は同構成である比較電池3を作製した。   A comparative battery 3 having the same configuration except that imidazole in the organic electrolyte solution of battery A was changed to ethyl imidazole was produced.

実施例1と同様に、ピーク温度が240℃のリフロー炉を2回通過させた。その後、初期放電容量の測定及び85℃保存と60℃90%多湿環境下での保存試験を実施した。   In the same manner as in Example 1, a reflow furnace having a peak temperature of 240 ° C. was passed twice. Thereafter, the initial discharge capacity was measured and stored at 85 ° C. and at 60 ° C. in a 90% humid environment.

(表4)に初期放電容量と85℃保存と60℃90%保存試験後の充電回復容量の結果を示す。   Table 4 shows the results of the initial discharge capacity, the charge recovery capacity after the 85 ° C. storage test and the 60 ° C. 90% storage test.

Figure 2010225498
Figure 2010225498

比較電池1〜3では、乾燥保存および多湿保存後の充電回復容量が著しく低下した。0.1wt%以上で充電回復容量がより安定な値を示した。特に0.5〜5wt%で非常に高い充電回復容量が得られた。また、イミダゾールに置換基を有するものについてはその効果は得られなかった。   In comparative batteries 1 to 3, the charge recovery capacity after dry storage and humid storage was significantly reduced. The charge recovery capacity was more stable at 0.1 wt% or more. In particular, a very high charge recovery capacity was obtained at 0.5 to 5 wt%. Moreover, the effect was not acquired about what has a substituent in imidazole.

(実験5)
電池Aの有機電解液の溶質であるリチウムビスパーフルオロスルホニルイミドを4フッ化ホウ酸リチウムに変更した以外は同構成である比較電池4を作製した。
(Experiment 5)
A comparative battery 4 having the same structure was prepared except that lithium bisperfluorosulfonylimide, which is the solute of the organic electrolyte solution of battery A, was changed to lithium tetrafluoroborate.

電池Aの有機電解液の溶質であるリチウムビスパーフルオロスルホニルイミドを6フッ化リン酸リチウムに変更した以外は同構成である比較電池5を作製した。   A comparative battery 5 having the same configuration was prepared except that lithium bisperfluorosulfonylimide, which is the solute of the organic electrolyte solution of battery A, was changed to lithium hexafluorophosphate.

電池Aの有機電解液の溶質であるリチウムビスパーフルオロスルホニルイミドをトリフルオロメタンスルホン酸リチウムに変更した以外は同構成である比較電池6を作製した。実施例1と同様に、ピーク温度が240℃のリフロー炉を2回通過させた。その後、初期放電容量の測定及び85℃保存と60℃90%多湿環境下での保存試験を実施した。 (表5)に初期放電容量と85℃保存と60℃90%保存試験後の充電回復容量の結果を示す。   A comparative battery 6 having the same configuration was prepared except that lithium bisperfluorosulfonylimide, which is the solute of the organic electrolyte solution of battery A, was changed to lithium trifluoromethanesulfonate. In the same manner as in Example 1, a reflow furnace having a peak temperature of 240 ° C. was passed twice. Thereafter, the initial discharge capacity was measured and stored at 85 ° C. and at 60 ° C. in a 90% humid environment. (Table 5) shows the results of the initial discharge capacity, the charge recovery capacity after the 85 ° C. storage test and the 60 ° C. 90% storage test.

Figure 2010225498
Figure 2010225498

比較電池4〜6では、乾燥保存および多湿保存後の充電回復容量が著しく低下した。   In comparative batteries 4 to 6, the charge recovery capacity after dry storage and humid storage was significantly reduced.

(実験6)
図1と同構成である厚さ5mm、直径24mmのコイン型一次電池を作製した。コイン型の電池容器は、耐食性に優れたステンレス鋼からなる正極缶1と、同様にステンレス鋼の負極缶2は実施例1と同様のものを用いた。ガスケット3には、ポリフェニレンサルファイド(PPS)樹脂からなるものを使用した。実施例1と同様にガスケット3と正極缶1及び負極缶2とガスケット3との間にブチルゴムをトルエンで希釈した溶液を塗布し、トルエンを蒸発させることによりブチルゴム膜からなるシーラント(図示せず)を形成した。
(Experiment 6)
A coin-type primary battery having the same configuration as FIG. 1 and a thickness of 5 mm and a diameter of 24 mm was produced. As the coin-type battery container, a positive electrode can 1 made of stainless steel having excellent corrosion resistance and a stainless steel negative electrode can 2 similar to those in Example 1 were used. The gasket 3 was made of polyphenylene sulfide (PPS) resin. In the same manner as in Example 1, a solution obtained by diluting butyl rubber with toluene was applied between the gasket 3 and the positive electrode can 1 and between the negative electrode can 2 and the gasket 3, and the sealant (not shown) made of a butyl rubber film was evaporated by evaporating the toluene. Formed.

正極4は、350℃で熱処理された電解二酸化マンガン(EMD)を活物質に、導電剤としてカーボンブラック及び結着剤としてフッ素樹脂粉末を90:5:5の質量比率で混合したもの2500mgを直径18mm、厚さ3mmのペレット状に成型した後、50℃中で12時間乾燥したものである。この正極ペレットを、プロピレンカーボネートとメチルジグライムを体積比で50:50の比で混合した有機溶媒に1.0mol/Lのリチウムビスパーフルオロスルホニルイミドと1wt%のイミダゾールを溶解させた有機溶液を150℃に加熱し、当該過熱溶液中に正極を5分間浸漬して熱処理を行った。   The positive electrode 4 has a diameter of 2500 mg obtained by mixing electrolytic manganese dioxide (EMD) heat-treated at 350 ° C. with an active material, carbon black as a conductive agent, and fluororesin powder as a binder in a mass ratio of 90: 5: 5. This was formed into a pellet of 18 mm and 3 mm in thickness, and then dried at 50 ° C. for 12 hours. An organic solution in which 1.0 mol / L lithium bisperfluorosulfonylimide and 1 wt% imidazole were dissolved in an organic solvent in which propylene carbonate and methyl diglyme were mixed at a volume ratio of 50:50 was obtained. Heating was performed at 150 ° C., and heat treatment was performed by immersing the positive electrode in the superheated solution for 5 minutes.

得られたペレット状の正極材料は、正極缶1の内面にカーボン塗料を塗布することで形成された正極集電体7に接触するようにしてある。一方、負極5は、直径20mm、厚さ1.2mmの金属リチウムを用い、負極缶2に圧着した。また、正極4と負極5との間に配されるセパレータ6には、ポリフェニレンサルファイド(PPS)樹脂からなるものを使用した。熱処理に使用したものと同組成の有機電解液を500μl用いた。このようにして得られた有機電解液電池を本実施例4に係る電池Kとした。   The obtained pellet-like positive electrode material is in contact with the positive electrode current collector 7 formed by applying a carbon paint on the inner surface of the positive electrode can 1. On the other hand, the negative electrode 5 was pressure-bonded to the negative electrode can 2 using metallic lithium having a diameter of 20 mm and a thickness of 1.2 mm. The separator 6 disposed between the positive electrode 4 and the negative electrode 5 was made of polyphenylene sulfide (PPS) resin. 500 μl of an organic electrolyte having the same composition as that used for the heat treatment was used. The organic electrolyte battery thus obtained was designated as a battery K according to Example 4.

電池Kの正極を熱処理しなかった以外は電池Kと同じ構成の比較電池7を作製した。
電池Kと比較電池7について、正極の二酸化マンガンの理論容量に対して10%容量分を5mAの定電流で放電した後に、高温保存、高温多湿保存、低温放電などを行った。高温保存試験として100℃で240時間貯蔵した後、−40℃の環境下で3mAの電流値で放電させ、放電開始から1秒後の開回路電圧(CCV)を測定した。
A comparative battery 7 having the same configuration as that of the battery K was produced except that the positive electrode of the battery K was not heat-treated.
For battery K and comparative battery 7, 10% capacity was discharged at a constant current of 5 mA with respect to the theoretical capacity of positive electrode manganese dioxide, followed by high-temperature storage, high-temperature and high-humidity storage, and low-temperature discharge. After storing at 100 ° C. for 240 hours as a high temperature storage test, the battery was discharged at a current value of 3 mA in an environment of −40 ° C., and the open circuit voltage (CCV) 1 second after the start of discharge was measured.

高温多湿保存試験として85℃90%で240時間貯蔵した後に、−40℃の環境下で3mAの電流値で放電させ、放電開始から1秒後の開回路電圧(CCV)を測定した。   After storing for 240 hours at 85 ° C. and 90% as a high-temperature and high-humidity storage test, the battery was discharged at a current value of 3 mA in an environment of −40 ° C., and the open circuit voltage (CCV) 1 second after the start of discharge was measured.

上記保存試験を行う前に同様のCCV測定を行った。その結果を(表6)に示す。   The same CCV measurement was performed before the storage test. The results are shown in (Table 6).

Figure 2010225498
Figure 2010225498

本発明の電池Kについては、高温保存後及び多湿保存後でもCCVの極端な低下がなく、優れた低温放電特性を維持することができた。熱処理をしていない比較電池4では高温保存及び多湿保存後のCCVの著しい低下が見られた。   Regarding the battery K of the present invention, there was no extreme decrease in CCV even after high-temperature storage and high-humidity storage, and excellent low-temperature discharge characteristics could be maintained. In Comparative Battery 4 that was not heat-treated, a significant decrease in CCV after high-temperature storage and high-humidity storage was observed.

実施例に示した以外の本発明に記載の電池構成についても同様の効果が得られる。   Similar effects can be obtained with battery configurations described in the present invention other than those shown in the examples.

本発明は、正極にマンガン酸化物を用いた場合でも、優れた保存性能の有機電解液電池を提供することができ、産業上極めて有用である。   The present invention can provide an organic electrolyte battery having excellent storage performance even when manganese oxide is used for the positive electrode, and is extremely useful industrially.

本発明の一実施の形態における有機電解液電池の断面図Sectional drawing of the organic electrolyte battery in one embodiment of this invention

1 正極缶
2 負極缶
3 ガスケット
4 正極
5 負極
6 セパレータ
7 正極集電体
DESCRIPTION OF SYMBOLS 1 Positive electrode can 2 Negative electrode can 3 Gasket 4 Positive electrode 5 Negative electrode 6 Separator 7 Positive electrode collector

Claims (2)

正極と、リチウム金属、リチウム合金あるいはリチウムの吸蔵・放出が可能な材料からなる負極と、有機電解液、セパレータからなる有機電解液電池において、前記正極として活物質であるマンガン酸化物と導電剤の混合物をイミダゾールとリチウムビスパーフルオロスルホニルイミドを含む有機溶媒中で熱処理したもので構成したことを特徴とする有機電解液電池。 In an organic electrolyte battery comprising a positive electrode, a lithium metal, a lithium alloy or a material capable of occluding and releasing lithium, an organic electrolyte, and a separator, a manganese oxide and a conductive agent as an active material are used as the positive electrode. An organic electrolyte battery characterized by comprising a mixture heat-treated in an organic solvent containing imidazole and lithium bisperfluorosulfonylimide. 前記有機溶媒として230℃以上の沸点を有するものを用いたことを特徴とする請求項1記載の有機電解液電池。 2. The organic electrolyte battery according to claim 1, wherein the organic solvent has a boiling point of 230 [deg.] C. or higher.
JP2009073305A 2009-03-25 2009-03-25 Organic electrolyte battery Expired - Fee Related JP5407469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009073305A JP5407469B2 (en) 2009-03-25 2009-03-25 Organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009073305A JP5407469B2 (en) 2009-03-25 2009-03-25 Organic electrolyte battery

Publications (2)

Publication Number Publication Date
JP2010225498A true JP2010225498A (en) 2010-10-07
JP5407469B2 JP5407469B2 (en) 2014-02-05

Family

ID=43042462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009073305A Expired - Fee Related JP5407469B2 (en) 2009-03-25 2009-03-25 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JP5407469B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012174350A (en) * 2011-02-17 2012-09-10 Toshiba Corp Electrode for battery and manufacturing method therefor, nonaqueous electrolyte battery, battery pack, and active material
WO2014112420A1 (en) 2013-01-17 2014-07-24 ソニー株式会社 Active material for secondary batteries, electrode for secondary batteries, secondary battery, battery pack, electric vehicle, electrical energy storage system, electric tool, and electronic device
WO2015136199A1 (en) * 2014-03-14 2015-09-17 Arkema France Long-life lithium-ion batteries
EP2755273A3 (en) * 2013-01-11 2015-12-02 Politechnika Warszawska Mixtures of organic solvents, particularly for galvanic cells, and electrolytes for galvanic cells comprising said mixtures
WO2016204278A1 (en) * 2015-06-19 2016-12-22 株式会社日本触媒 Nonaqueous electrolytic solution and nonaqueous electrolytic solution secondary battery using same
JP2017091657A (en) * 2015-11-04 2017-05-25 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP2017107830A (en) * 2015-06-19 2017-06-15 株式会社日本触媒 Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery using the same
JP2017212102A (en) * 2016-05-25 2017-11-30 株式会社日本触媒 Nonaqueous electrolyte secondary battery
JP2019169460A (en) * 2018-03-23 2019-10-03 トヨタ自動車株式会社 Lithium-ion secondary battery
KR20200144581A (en) * 2011-04-11 2020-12-29 미쯔비시 케미컬 주식회사 Method for producing lithium fluorosulfonate, lithium fluorosulfonate, nonaqueous electrolyte solution, and nonaqueous electrolyte secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002050359A (en) * 2000-08-07 2002-02-15 Mitsubishi Chemicals Corp Manufacturing method of lithium secondary battery positive electrode material and lithium secondary battery positive electrode material
JP2002216843A (en) * 2001-01-23 2002-08-02 Matsushita Electric Ind Co Ltd Manufacturing method of lithium polymer cell
JP2006012587A (en) * 2004-06-25 2006-01-12 Matsushita Electric Ind Co Ltd Flat organic electrolyte battery
JP2008103240A (en) * 2006-10-20 2008-05-01 Dainippon Printing Co Ltd Method of manufacturing battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002050359A (en) * 2000-08-07 2002-02-15 Mitsubishi Chemicals Corp Manufacturing method of lithium secondary battery positive electrode material and lithium secondary battery positive electrode material
JP2002216843A (en) * 2001-01-23 2002-08-02 Matsushita Electric Ind Co Ltd Manufacturing method of lithium polymer cell
JP2006012587A (en) * 2004-06-25 2006-01-12 Matsushita Electric Ind Co Ltd Flat organic electrolyte battery
JP2008103240A (en) * 2006-10-20 2008-05-01 Dainippon Printing Co Ltd Method of manufacturing battery

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9698411B2 (en) 2011-02-17 2017-07-04 Kabushiki Kaisha Toshiba Electrode for battery and production method thereof, nonaqueous electrolyte battery, battery pack, and active material
JP2012174350A (en) * 2011-02-17 2012-09-10 Toshiba Corp Electrode for battery and manufacturing method therefor, nonaqueous electrolyte battery, battery pack, and active material
KR102316004B1 (en) * 2011-04-11 2021-10-21 미쯔비시 케미컬 주식회사 Method for producing lithium fluorosulfonate, lithium fluorosulfonate, nonaqueous electrolyte solution, and nonaqueous electrolyte secondary battery
KR20200144581A (en) * 2011-04-11 2020-12-29 미쯔비시 케미컬 주식회사 Method for producing lithium fluorosulfonate, lithium fluorosulfonate, nonaqueous electrolyte solution, and nonaqueous electrolyte secondary battery
US11387484B2 (en) 2011-04-11 2022-07-12 Mitsubishi Chemical Corporation Method for producing lithium fluorosulfonate, lithium fluorosulfonate, nonaqueous electrolytic solution, and nonaqueous electrolytic solution secondary battery
KR102388003B1 (en) * 2011-04-11 2022-04-18 미쯔비시 케미컬 주식회사 Method for producing lithium fluorosulfonate, lithium fluorosulfonate, nonaqueous electrolyte solution, and nonaqueous electrolyte secondary battery
KR20210129241A (en) * 2011-04-11 2021-10-27 미쯔비시 케미컬 주식회사 Method for producing lithium fluorosulfonate, lithium fluorosulfonate, nonaqueous electrolyte solution, and nonaqueous electrolyte secondary battery
EP2755273A3 (en) * 2013-01-11 2015-12-02 Politechnika Warszawska Mixtures of organic solvents, particularly for galvanic cells, and electrolytes for galvanic cells comprising said mixtures
KR20150106883A (en) 2013-01-17 2015-09-22 소니 주식회사 Active material for secondary batteries, electrode for secondary batteries, secondary battery, battery pack, electric vehicle, electrical energy storage system, electric tool, and electronic device
US9899670B2 (en) 2013-01-17 2018-02-20 Murata Manufacturing Co., Ltd. Secondary battery-use active material, secondary battery-use electrode, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
WO2014112420A1 (en) 2013-01-17 2014-07-24 ソニー株式会社 Active material for secondary batteries, electrode for secondary batteries, secondary battery, battery pack, electric vehicle, electrical energy storage system, electric tool, and electronic device
CN106133979A (en) * 2014-03-14 2016-11-16 阿科玛法国公司 Extended-life lithium ion battery
FR3018634A1 (en) * 2014-03-14 2015-09-18 Arkema France LITHIUM-ION LONG-LIFE BATTERIES
WO2015136199A1 (en) * 2014-03-14 2015-09-17 Arkema France Long-life lithium-ion batteries
WO2016204278A1 (en) * 2015-06-19 2016-12-22 株式会社日本触媒 Nonaqueous electrolytic solution and nonaqueous electrolytic solution secondary battery using same
JP2017107830A (en) * 2015-06-19 2017-06-15 株式会社日本触媒 Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery using the same
JP2017091657A (en) * 2015-11-04 2017-05-25 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP2017212102A (en) * 2016-05-25 2017-11-30 株式会社日本触媒 Nonaqueous electrolyte secondary battery
JP2019169460A (en) * 2018-03-23 2019-10-03 トヨタ自動車株式会社 Lithium-ion secondary battery
JP7035928B2 (en) 2018-03-23 2022-03-15 トヨタ自動車株式会社 Lithium ion secondary battery

Also Published As

Publication number Publication date
JP5407469B2 (en) 2014-02-05

Similar Documents

Publication Publication Date Title
JP5407469B2 (en) Organic electrolyte battery
JP4637592B2 (en) Cathode active material for lithium secondary battery and lithium secondary battery using the same
JP5050452B2 (en) Nonaqueous electrolyte secondary battery
JP2009211822A (en) Nonaqueous electrolyte secondary battery
JP6176537B2 (en) Non-aqueous electrolyte battery and manufacturing method thereof
US10522817B2 (en) Cathode material, non-aqueous electrolyte secondary battery cathode, and non-aqueous electrolyte secondary battery
JP2011060655A (en) Lithium battery
WO2007034798A1 (en) Flat organic electrolyte secondary battery
JP2006228439A (en) Nonaqueous electrolyte battery and manufacturing method of same
JP2010250969A (en) Lithium battery
JPWO2015064052A1 (en) Lithium battery
JP2007149378A (en) Nonaqueous electrolyte secondary battery
JP2005293960A (en) Anode for lithium ion secondary battery, and lithium ion secondary battery
JP6477153B2 (en) Positive electrode material, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP4967464B2 (en) Non-aqueous electrolyte secondary battery
JP5407347B2 (en) Lithium primary battery
WO2014073217A1 (en) Method for manufacturing nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP2011071003A (en) Flat type nonaqueous electrolyte secondary battery
JP2003151559A (en) Organic electrolyte battery
JP2016192314A (en) Positive electrode material, nonaqueous electrolyte secondary battery positive electrode and nonaqueous electrolyte secondary battery
JP2015170560A (en) Positive electrode active material, and nonaqueous electrolyte secondary battery
JP7015102B2 (en) Positive electrode material, positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6394978B2 (en) Positive electrode material, positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2004127545A (en) Lithium battery
JP4924860B2 (en) Method for producing non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111219

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20120112

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130905

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131021

LAPS Cancellation because of no payment of annual fees