JP2008103240A - Method of manufacturing battery - Google Patents

Method of manufacturing battery Download PDF

Info

Publication number
JP2008103240A
JP2008103240A JP2006286075A JP2006286075A JP2008103240A JP 2008103240 A JP2008103240 A JP 2008103240A JP 2006286075 A JP2006286075 A JP 2006286075A JP 2006286075 A JP2006286075 A JP 2006286075A JP 2008103240 A JP2008103240 A JP 2008103240A
Authority
JP
Japan
Prior art keywords
battery
opening
exterior body
clip
exterior
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006286075A
Other languages
Japanese (ja)
Inventor
Kazuhiko Yokota
一彦 横田
Takanori Yamashita
孝典 山下
Hirohisa Akita
裕久 秋田
Masataka Okushita
正隆 奥下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2006286075A priority Critical patent/JP2008103240A/en
Publication of JP2008103240A publication Critical patent/JP2008103240A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an efficient manufacturing method of a battery capable of efficiently releasing gas generated by initial charge in a manufacturing process of the battery to the outside of an armoring body, and of minimizing the area of a laminate to be used. <P>SOLUTION: This manufacturing method of a battery comprises: a first process of forming an opening 5c in a part of the armoring body to enclose a battery body 2 therein; a second process of tentatively closing the opening 5c; a third process of executing initial charge of the battery body 2; and a fourth process of sealing the opening 5c. In the manufacturing method, the opening 5c is tentatively closed by catching it by a clip 6 from the outside of the armoring body in the second process. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電池の製造方法に関する。   The present invention relates to a battery manufacturing method.

リチウムイオン電池とは、リチウム二次電池ともいわれ、液状、ゲル状および高分子ポリマー状の電解質を持ち、正極・負極活物質が高分子ポリマーからなるものを含むものである。   The lithium ion battery is also referred to as a lithium secondary battery, and includes a battery having a liquid, gel-like, and polymer-like electrolyte, and a positive electrode / negative electrode active material made of a polymer.

このリチウムイオン電池の外装体には、近年、形状の自由度が高い積層体からなる外装体を用いる傾向にあり、積層体の材質構成は、少なくとも基材層、バリア層、ヒートシール層と前記各層を接着する接着層である。具体的な例としては、積層体の少なくとも片面をプレス成形して電池収納部を形成してそこに電池本体を収納し、周縁の必要部分をヒートシールしてリチウムイオン電池となる。   In recent years, for the exterior body of this lithium ion battery, there is a tendency to use an exterior body made of a laminate having a high degree of freedom in shape, and the material composition of the laminate is at least a base material layer, a barrier layer, a heat seal layer, and the aforementioned It is an adhesive layer for bonding each layer. As a specific example, at least one surface of the laminate is press-molded to form a battery housing portion, the battery body is housed therein, and a necessary portion at the periphery is heat sealed to form a lithium ion battery.

このとき電池本体とは、正極活物質及び正極集電体から成る正極と、負極活物質及び負極集電体から成る負極と、正極及び負極間に充填される電解質とを含むセル(蓄電部)と、セル内の正極及び負極に連結されるとともに先端が外装体の外部に突出する金属端子から構成されており、充電時には正極活物質であるリチウム遷移金属酸化物中のリチウム原子(Li)がリチウムイオン(Li+)となって負極の炭素層間に入り込み(インターカレーション)、放電時にはリチウムイオン(Li+)が炭素層間から離脱(デインターカレーション)して正極に移動し、元のリチウム化合物となることにより充放電反応が進行する。 In this case, the battery body is a cell (power storage unit) including a positive electrode made of a positive electrode active material and a positive electrode current collector, a negative electrode made of a negative electrode active material and a negative electrode current collector, and an electrolyte filled between the positive electrode and the negative electrode. And a metal terminal connected to the positive electrode and the negative electrode in the cell and having a tip protruding outside the exterior body, and during charging, lithium atoms (Li) in the lithium transition metal oxide that is a positive electrode active material Lithium ions (Li + ) enter the carbon layer of the negative electrode (intercalation), and during discharge, lithium ions (Li + ) leave the carbon layer (deintercalation) and move to the positive electrode, and the original lithium The charge / discharge reaction proceeds by becoming a compound.

しかし、この充放電反応において、水素や酸素等のガスが発生するため、外装体内部に電池本体を密封収納したとき、外装体内部のガス圧が上昇し膨張する可能性がある。特に初期充電において、ガスの発生量が多いため、電池本体を外装体に密封収納した後、初期充電を行うと、外装体内部で大量のガスが発生し、場合によってはリチウムイオン電池が破裂する可能性がある。したがって、少なくとも初期充電時に発生する多量のガスを外装体外部へ放出した後、電池本体を密封しなければならない。   However, in this charge / discharge reaction, gas such as hydrogen and oxygen is generated, and therefore, when the battery body is hermetically housed inside the exterior body, the gas pressure inside the exterior body may rise and expand. In particular, since the amount of gas generated is large in the initial charging, when the initial charging is performed after the battery body is hermetically sealed in the exterior body, a large amount of gas is generated inside the exterior body, and in some cases, the lithium ion battery bursts. there is a possibility. Therefore, the battery body must be sealed after releasing a large amount of gas generated at least during initial charging to the outside of the exterior body.

また、初期充電を外装体が開口した状態で行なうと、発生するガスとともに電解質が噴出したり、外装体外部から内部に水蒸気が浸入する可能性がある。このため、外装体内部の密封性をある程度保ちながら初期充電を行う必要がある。   In addition, when the initial charging is performed in a state in which the exterior body is opened, there is a possibility that the electrolyte is ejected together with the generated gas, or water vapor enters the interior from the exterior of the exterior body. For this reason, it is necessary to perform initial charging while maintaining a certain degree of hermetic sealing inside the exterior body.

従来、この問題を解決するために、外装体の一部に電池本体の収納空間とあわせてガスを貯める予備空間を設ける方法が提案されていた(特許文献1参照)。この方法によると、外装体に電池本体を密封収納し、初期充電を行うため、電解質の噴出等の問題はなく、発生するガスも前記予備空間に貯まり、初期充電時、外装体の破裂を防ぐことができた。   Conventionally, in order to solve this problem, a method has been proposed in which a spare space for storing gas is provided in a part of the exterior body together with the storage space of the battery body (see Patent Document 1). According to this method, since the battery main body is hermetically stored in the exterior body and the initial charge is performed, there is no problem such as the ejection of electrolyte, and the generated gas is also stored in the spare space, preventing the exterior body from bursting during the initial charge. I was able to.

しかし、この予備空間は電池製造工程においてのみ必要な空間であり、初期充電後、リチウムイオン電池から切り離して捨てるものであるため、この部分に無駄なコストがかり効率が悪かった。また、この予備空間となる部分が積層体のプレス成形性を低下させるという問題もあった。
特許第3717632
However, this spare space is a space that is necessary only in the battery manufacturing process, and is separated from the lithium ion battery after the initial charging and is discarded. In addition, there is a problem that the portion serving as the preliminary space reduces the press formability of the laminate.
Japanese Patent No. 3717632

そこで、本発明は上記方法を改良し、電池の製造工程における初期充電で発生するガスを効率よく外装体外部に放出するとともに、使用する積層体面積を最小限に抑え、効率的な電池の製造方法を提供することを目的とする。   Therefore, the present invention improves the above-described method, efficiently releases the gas generated by the initial charging in the battery manufacturing process to the outside of the exterior body, minimizes the area of the stacked body to be used, and efficiently manufactures the battery. It aims to provide a method.

上記目的を達成するために、本発明は、外装体の一部に開口部を設けて電池本体を封入する第1工程と、前記開口部を仮閉口する第2工程と、前記電池本体の初期充電を行う第3工程と、前記開口部を封止する第4工程とを備える電池の製造工程において、前記第2工程は、前記開口部を外装体外部からクリップで挟持して仮閉口することを特徴とする電池の製造方法である。   In order to achieve the above object, the present invention provides a first step in which an opening is provided in a part of an exterior body to enclose a battery body, a second step in which the opening is temporarily closed, and an initial stage of the battery body. In a battery manufacturing process comprising a third step of charging and a fourth step of sealing the opening, the second step is to temporarily close the opening by holding the opening with a clip from outside the exterior body. Is a method for producing a battery.

また本発明は、上記電池の製造方法において、前記クリップは弾性体の反発力又は収縮力を利用して前記外装体を挟持することを特徴とする。   According to the present invention, in the battery manufacturing method, the clip sandwiches the exterior body using a repulsive force or contraction force of an elastic body.

また本発明は、上記電池の製造方法において、前記外装体外部を挟持する前記クリップの挟持部に樹脂層を設けたことを特徴とする。   The present invention is also characterized in that, in the battery manufacturing method, a resin layer is provided on a holding portion of the clip that holds the exterior of the exterior body.

本発明の第1の構成によると、外装体の収納空間に一部開口部を設けて電池本体を封入し、その開口部を外装体外部からクリップで挟持して仮閉口することで、外装体内部は一定の密封性が確保され、外装体外部からの水蒸気の浸入を防ぐことができる。また、初期充電においてガスが発生し、外装体内部のガス圧が上昇したとき、クリップで挟持された開口部は完全に封止されているわけではなく、物理的な力で閉口されているため、ガスが開口部から外装体外部へ徐々に放出される。そして、初期充電によるガスの発生が終了した後、開口部を完全に封止することで電池が完成する。   According to the first configuration of the present invention, the exterior body is provided with a partial opening in the housing space of the exterior body to enclose the battery body, and the opening is sandwiched by a clip from outside the exterior body and temporarily closed. A certain level of hermeticity is ensured inside, and entry of water vapor from outside the exterior body can be prevented. Also, when gas is generated in the initial charge and the gas pressure inside the exterior body rises, the opening sandwiched between the clips is not completely sealed, but is closed by physical force The gas is gradually released from the opening to the exterior of the exterior body. And after generation | occurrence | production of the gas by initial charge is complete | finished, a battery is completed by sealing an opening part completely.

したがって、本発明に係る電池の製造方法においては、従来例で示したようなガスを貯める予備空間を外装体に形成する必要がないため、積層体フィルムの使用面積を抑えることができる。また、これによりプレスする積層体フィルムの全体の面積が小さくなり、安定してプレス成形することができる。   Therefore, in the method for manufacturing a battery according to the present invention, it is not necessary to form a spare space for storing gas as shown in the conventional example in the exterior body, so that the use area of the laminate film can be suppressed. Moreover, the area of the whole laminated body film to press becomes small by this, and it can press-mold stably.

本発明の第2の構成によると、上記電池の製造工程で用いるクリップが弾性体の反発力又は収縮力を利用して外装体外部を挟持するものであることにより、外装体内部の密封性が十分確保されるとともに内圧が上昇したとき、この内圧でクリップの押圧に抗して開口部が開く。また、ガスが外部に放出され外装体の内圧が低下した時、再び弾性体の反発力又は収縮力によりクリップの押圧が内圧を上回り、開口部が閉口され密封性が確保される。これにより、ガスの放出がより効率的に行なわれる。   According to the second configuration of the present invention, the clip used in the battery manufacturing process sandwiches the exterior of the exterior body by utilizing the repulsive force or contraction force of the elastic body, so that the sealability inside the exterior body is improved. When the internal pressure is sufficiently secured and the internal pressure rises, the opening opens against the pressing of the clip by the internal pressure. Further, when the gas is released to the outside and the internal pressure of the exterior body decreases, the pressing force of the clip again exceeds the internal pressure by the repulsive force or contraction force of the elastic body, and the opening is closed to ensure the sealing performance. As a result, the gas is released more efficiently.

本発明の第3の構成によると、クリップの係止部分に樹脂層を設けることにより被挟持物である外装体外部を安定的に挟持することができ、開口部の閉口効果も向上する。   According to the third configuration of the present invention, by providing the resin layer in the clip engaging portion, the exterior of the exterior body that is the object to be clamped can be stably held, and the closing effect of the opening is improved.

以下、本方法の実施形態を図面を参照して説明する。図1は電池の製造方法における一般的な製造工程を模式的に示す図である。まず、フィルムカットした積層体5をプレス成形し、電池本体の収納空間5aを確保する(図1(a)参照)。次に、積層体5を半折りにし収納空間5aに収納した電池本体2を閉蓋する(図1(b)参照)。次に折り返した積層体5の2辺をシールし(図1(c))、袋状になった積層体の開口部5cから電解質を注入する(図2(a)参照)。   Hereinafter, embodiments of the present method will be described with reference to the drawings. FIG. 1 is a diagram schematically showing a general manufacturing process in a battery manufacturing method. First, the film-cut laminate 5 is press-molded to secure a storage space 5a for the battery body (see FIG. 1 (a)). Next, the laminated body 5 is folded in half, and the battery body 2 stored in the storage space 5a is closed (see FIG. 1B). Next, two sides of the folded laminate 5 are sealed (FIG. 1C), and an electrolyte is injected from the opening 5c of the bag-like laminate (see FIG. 2A).

次に、開口部5cをクリップ6を用い一定圧力で挟持し、開口部5cを仮閉口した後、初期充電を行う(図2(b)参照)。初期充電は約4分間行い、その後、ガスの発生が収まるまで一定温度下で一定時間静置する。このとき、開口部5cはクリップ6で挟持し物理的に閉口しただけで、密封シールされていないため、積層体内部でガスが発生し、外装体の内圧が上昇したときクリップ6の押圧に抗し開口部からガスが放出される。これにより、外装体内部のガス圧が急激に上昇することなく、初期充電で発生したガスを効率よく排出することができる。   Next, the opening 5c is clamped at a constant pressure using the clip 6, and after the opening 5c is temporarily closed, initial charging is performed (see FIG. 2B). The initial charging is performed for about 4 minutes, and then left to stand at a constant temperature for a certain period of time until gas generation ceases. At this time, since the opening 5c is sandwiched between the clips 6 and physically closed, and is not hermetically sealed, gas is generated inside the laminated body, and when the internal pressure of the exterior body rises, the clip 5 resists pressing. Gas is released from the opening. Thereby, the gas generated by the initial charging can be efficiently discharged without the gas pressure inside the exterior body rising rapidly.

次に、初期充電が終わった後、開口部5cをヒートシールし外装体内部を密封した後、クリップ6で挟持していた部分近傍をカットし(図2(c)参照)、リチウムイオン電池1が完成する。   Next, after the initial charging is completed, the opening 5c is heat sealed to seal the inside of the exterior body, and then the vicinity of the portion sandwiched by the clip 6 is cut (see FIG. 2 (c)), and the lithium ion battery 1 Is completed.

次に各電池製造工程についてより詳細に説明する。外装体の収納空間5aに一部開口部を設けて電池本体を封入する第1工程は、フィルムカットした積層体5をプレス成形するプレス工程、積層体5に電池本体2を収納する収納工程、電池本体2を収納した収納部周縁部5bを一部開口部5cを残しヒートシールするシール工程、電解質を開口部cより注入する電解質注入工程に分けることができる。なお、これらの工程はそれぞれ、図1の(a)〜(c)及び図2(a)に相当する。   Next, each battery manufacturing process will be described in more detail. The first step of providing a part of the opening in the housing space 5a of the exterior body and enclosing the battery main body is a pressing step of press-molding the film-cut laminated body 5, a housing step of housing the battery main body 2 in the laminated body 5, The storage portion peripheral edge portion 5b in which the battery body 2 is stored can be divided into a sealing process in which a part of the opening 5c is left and heat sealed, and an electrolyte injection process in which an electrolyte is injected from the opening c. These steps correspond to (a) to (c) of FIG. 1 and FIG. 2 (a), respectively.

プレス工程は、エンボスタイプの外装体を使用する場合に行なわれる。図3はエンボスタイプのプレス成形に用いるオス型7、メス型8のプレス機の構造を示すものである。図3(a)はプレス前の積層体5の斜視図、図3(b)、(c)はプレス後、トレイ状に成形された積層体5の斜視図である。ここで、積層体は少なくとも金属層、熱接着性樹脂層、ナイロン等の基材層が接着剤等を用いて積層されており、プレス時、電池本体の収納部5aは収納部周縁5bの積層体を引き込みながら形成される。   The pressing step is performed when an embossed type exterior body is used. FIG. 3 shows the structure of a male type 7 and female type 8 press machine used for emboss type press molding. 3A is a perspective view of the laminated body 5 before pressing, and FIGS. 3B and 3C are perspective views of the laminated body 5 formed into a tray shape after pressing. Here, at least a metal layer, a heat-adhesive resin layer, and a base material layer such as nylon are laminated using an adhesive or the like in the laminated body. It is formed while drawing the body.

例えば、図3(b)に示すように収納部5aを積層体5の中央部付近に設けることで、プレス時、収納部周縁5bが均等に引き込まれ、皺等が発生し難い。一方、図3(c)に示すように、収納部5aが積層体5の中央部付近に設けられていない場合、プレス時、収納部周縁5bを均等に引き込めず、皺や歪みが発生する場合がある。   For example, as shown in FIG. 3B, by providing the storage portion 5a in the vicinity of the central portion of the laminate 5, the storage portion peripheral edge 5b is evenly drawn during pressing, so that wrinkles and the like are unlikely to occur. On the other hand, as shown in FIG. 3C, when the storage portion 5a is not provided near the center of the laminate 5, the storage portion peripheral edge 5b cannot be evenly drawn during pressing, and wrinkles and distortion occur. There is a case.

ここで、本発明に係る電池の製造方法においては、従来例で示したような予備空間を設ける必要がないため、余分な部分をカットし必要最小限の積層体5をプレス成形することができるため安定したプレス成形性を得ることができる。なお、図1で示した積層体5は1枚の積層体5を折り返し、電池本体2を収納するタイプの外装体であるが、図3で示した積層体5はプレス成型によりトレイ状に成形した積層体に電池本体2を収納し、上からシート状の別の積層体5を被せるタイプの外装体である。しかし、いずれのタイプの外装体においても、本発明に係る製造工程で使用する積層体5は従来例で示した予備空間を設けた積層体5より使用面積が少なく成形性に優れる。   Here, in the battery manufacturing method according to the present invention, since it is not necessary to provide a spare space as shown in the conventional example, an excess portion can be cut and the minimum required laminate 5 can be press-molded. Therefore, stable press formability can be obtained. The laminated body 5 shown in FIG. 1 is a type of exterior body that folds one laminated body 5 and houses the battery body 2, but the laminated body 5 shown in FIG. 3 is formed into a tray shape by press molding. The battery body 2 is housed in the laminated body and the sheet-like laminated body 5 is covered from above. However, in any type of exterior body, the laminate 5 used in the manufacturing process according to the present invention has a smaller use area and excellent formability than the laminate 5 provided with the spare space shown in the conventional example.

また、本発明に係る電池の製造方法においては、パウチタイプの外装体を用いることも可能である。パウチタイプの外装体は図4に示すように袋状に形成された積層体5に電池本体2を収納するだけで、プレス成形する必要はない。   In the battery manufacturing method according to the present invention, a pouch-type exterior body can be used. As shown in FIG. 4, the pouch-type exterior body simply stores the battery body 2 in the laminated body 5 formed in a bag shape, and does not need to be press-molded.

次に電池本体2の収納工程について説明する。上記いずれのタイプの外装体においても、電池本体2を外装体に収納しシールする際、電池本体2の正極及び負極の各々に接続された金属端子4を外部に突出させるとともに積層体5で金属端子4を挟持した状態で熱接着することにより密封する必要がある。このために、積層体5の内層を金属と良好な接着性を有する熱接着性樹脂、例えば、不飽和カルボン酸でグラフト変性した酸変性オレフィン樹脂を用いて熱接着して密封する、あるいは、前記内層を金属との接着性に劣る一般的なオレフィン系樹脂を用い、金属と良好な接着性を有する上記した酸変性オレフィン樹脂からなる金属端子部密封用接着性フィルムを金属端子4と内層との間に介在させて熱接着して密封する方法が一般的にとられている。   Next, the storing process of the battery body 2 will be described. In any type of exterior body, when the battery body 2 is housed and sealed in the exterior body, the metal terminal 4 connected to each of the positive electrode and the negative electrode of the battery body 2 is projected to the outside and the laminate 5 is made of metal. It is necessary to seal by thermal bonding in a state where the terminal 4 is sandwiched. For this purpose, the inner layer of the laminate 5 is heat-adhered and sealed with a heat-adhesive resin having good adhesion to the metal, for example, an acid-modified olefin resin graft-modified with an unsaturated carboxylic acid, or The inner layer is made of a general olefin resin having poor adhesion to the metal, and the metal terminal portion sealing adhesive film made of the acid-modified olefin resin having good adhesion to the metal is formed between the metal terminal 4 and the inner layer. In general, a method of sealing by thermal bonding with intervening them is generally used.

次に収納部周縁5bをシールするシール工程について説明する。本工程においては、折り返しタイプの外装体を用いた場合、2辺をシールすることにより、1辺に開口部5cを有する外装体が得られ(図1(c)参照)、トレイ状とシート状の積層体フィルムを用いるタイプの外装体を用いた場合、3辺をシールすることで1辺に開口部5cを設けることができる。また、パウチタイプの外装体を用いた場合、電池本体2を収納する開口部5cが一つあるのみであるため、金属端子4近傍をシールし、一部に開口部を設ければよい。したがって、開口部5cは1辺全体に設ける必要はなく、図5に示すように電解質の注入口及びガスの放出口として必要最小限の大きさがあればよい。   Next, a sealing process for sealing the storage portion peripheral edge 5b will be described. In this step, when a folded-type exterior body is used, an exterior body having an opening 5c on one side is obtained by sealing two sides (see FIG. 1C), a tray shape and a sheet shape. When the exterior body of the type using the laminated film is used, the opening 5c can be provided on one side by sealing three sides. Further, when a pouch-type exterior body is used, since there is only one opening 5c for storing the battery body 2, the vicinity of the metal terminal 4 may be sealed and an opening may be provided in part. Therefore, the opening 5c does not have to be provided on the entire side, and it is sufficient that the opening 5c has a minimum size as an electrolyte inlet and a gas outlet as shown in FIG.

次に、電解質注入工程について説明する。リチウムイオン電池1に用いる電解質としてはLiCoO2、LiNiO2、LiMn24、及びこれらの複合体からなるリチウム含有複合酸化物を開口部から注入する。また、リチウムイオン電池以外の電池にも本製造方法を用いることができるため、電解質もその都度調製する必要がある。また、電解質は必ずしも液体である必要はなく、開口部5cからの噴出しを防止するため、ゲル状のものを用いてもよい。 Next, the electrolyte injection process will be described. As an electrolyte used for the lithium ion battery 1, LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , and a lithium-containing composite oxide made of a composite thereof are injected from the opening. Moreover, since this manufacturing method can be used also for batteries other than a lithium ion battery, it is necessary to prepare electrolyte each time. Further, the electrolyte is not necessarily a liquid, and a gel-like one may be used in order to prevent ejection from the opening 5c.

次に開口部5cを仮閉口する第2工程について説明する。なお、この工程は図2(b)で示した工程に相当する。図6は電池本体2を収納した外装体の断面図であり、クリップ6を用いて開口部5cを挟持する方法を具体的に示している。クリップ6はバネ6bの反発力を利用して所定の挟持圧で開口部5cを仮閉口している。電解質を注入した後、開口部5c近傍をクリップ6で挟持して仮閉口することで、外装体内部の密封性を確保し、外装体外部から水蒸気の浸入を防ぐことができる。また、初期充電においてガスが外装体内部に貯まり内圧が上昇すると、内圧により開口部の押圧に抗して開口部5cが開く。このときガスが外部に放出され、外装体内部の内圧は低下する。これにより、バネ6bの反発力により再びクリップの押圧が内圧を上回り開口部5cを挟持して閉口し、外装体内部の密封性が確保される。なお、外装体内部の密封性を高めるため、クリップ6の挟持圧を高くし過ぎると外装体内部のガスが放出されず、内圧が上昇し過ぎ外装体が破裂する可能性があるので適当な押圧を調整する必要がある。   Next, the second step of temporarily closing the opening 5c will be described. This step corresponds to the step shown in FIG. FIG. 6 is a cross-sectional view of the exterior body that houses the battery body 2, and specifically shows a method of holding the opening 5 c using the clip 6. The clip 6 temporarily closes the opening 5c with a predetermined clamping pressure using the repulsive force of the spring 6b. After injecting the electrolyte, by sandwiching the vicinity of the opening 5c with the clip 6 and temporarily closing it, it is possible to secure the sealing performance inside the exterior body and to prevent the entry of water vapor from the outside of the exterior body. Moreover, when gas accumulates in the exterior body and the internal pressure rises in the initial charge, the opening 5c opens against the pressing of the opening due to the internal pressure. At this time, gas is released to the outside, and the internal pressure inside the exterior body decreases. As a result, the pressing force of the clip again exceeds the internal pressure by the repulsive force of the spring 6b, and the opening 5c is pinched and closed, and the sealing performance inside the exterior body is ensured. In addition, in order to improve the sealing performance inside the exterior body, if the clamping pressure of the clip 6 is too high, the gas inside the exterior body will not be released, and the internal pressure may rise too much and the exterior body may burst, so that an appropriate pressure is applied. Need to be adjusted.

なお、図6では弾性体にバネ6bの反発力を利用して外装体外部を挟持しているが、弾性体にはゴム、合成樹脂を含むものである。   In FIG. 6, the outside of the exterior body is sandwiched between the elastic bodies using the repulsive force of the spring 6b, but the elastic bodies include rubber and synthetic resin.

なお、クリップ6の挟持部に樹脂層6aを設け外装体外部を挟持することにより、開口部5cをより安定的に閉口ことができる。また、初期充電の際、漏電する可能性があるため、クリップ6はプラスチック等の絶縁性材料で形成されることが望ましい。また、開口部5c近傍を折り曲げてクリップで挟持して外装体内部の密封性が向上させてもよい。   In addition, the opening part 5c can be closed more stably by providing the resin layer 6a in the clamping part of the clip 6 and clamping the exterior body exterior. Further, since there is a possibility of electric leakage during initial charging, the clip 6 is preferably formed of an insulating material such as plastic. Further, the vicinity of the opening 5c may be bent and sandwiched between clips to improve the sealing performance inside the exterior body.

また、充放電工程は初期充電工程とエージング工程とからなり、初期充電工程で充電を行いガスを発生させた後、エージング工程で所定温度の保温庫に一定時間静置し、ガスの発生が完全に終わるのを待つ。このときのガスの放出過程は上記説明したとおりである。   The charge / discharge process consists of an initial charge process and an aging process. After charging and generating gas in the initial charge process, the gas is completely generated in the aging process by leaving it in a heat-retaining chamber at a predetermined temperature for a certain period of time. Wait for it to finish. The gas release process at this time is as described above.

また、開口部5cを封止する第4工程は図2(c)で示した工程に相当するものである。この工程では、エージング工程後、クリップで開口部5cを仮閉口し外装体内部の密封性を確保した状態で、クリップ6と電池本体2の間の空間をヒートシールし、外装体内部を完全に密封状態する。その後、開口部近傍の余分な部分を切り取り電池が完成する。なお、図7に示すように、開口部5c近傍に余裕シロ5dを設けることにより、クリップを外した後、電解質が外装体外部にこぼれるのを防ぐことができる。   Further, the fourth step of sealing the opening 5c corresponds to the step shown in FIG. In this step, after the aging step, the space between the clip 6 and the battery body 2 is heat-sealed in a state where the opening 5c is temporarily closed with the clip and the sealing inside the exterior body is secured, and the interior of the exterior body is completely removed. Sealed. Thereafter, excess portions near the opening are cut off to complete the battery. As shown in FIG. 7, by providing a margin 5d near the opening 5c, the electrolyte can be prevented from spilling outside the exterior body after the clip is removed.

以上各工程を経て、電池を製造することにより、積層体の使用面積を最小限に留め、効率よく初期充電時に発生するガスを外装体外部に放出することができる。なお、本発明は上述した各実施形態に限定されるものではなく、種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。例えば、開口部5cを複数設け、それに対応するクリップ6を用いる場合などである。また、上記説明では、リチウムイオン電池の製造方法について述べたが、リチウムイオン電池の製造方法に限定されるわけではなく、積層体により電池本体を封入してなる電池全般に本発明は係る。   By manufacturing the battery through the above steps, it is possible to minimize the use area of the laminate and efficiently release the gas generated during the initial charging to the outside of the exterior body. The present invention is not limited to the above-described embodiments, and various modifications are possible. Embodiments obtained by appropriately combining technical means disclosed in different embodiments are also included in the present invention. Included in the technical scope. For example, this is the case where a plurality of openings 5c are provided and corresponding clips 6 are used. In the above description, the method for manufacturing a lithium ion battery has been described. However, the present invention is not limited to the method for manufacturing a lithium ion battery, and the present invention generally relates to a battery in which a battery body is sealed with a laminate.

この発明は、電池の製造方法に関する。   The present invention relates to a battery manufacturing method.

本発明に係る電池の製造方法を模式的に示す平面図であり、(a)はプレス成型工程を示すものであり、(b)は収納工程を示すものであり、(c)はシール工程を示すものである。It is a top view which shows typically the manufacturing method of the battery which concerns on this invention, (a) shows a press molding process, (b) shows an accommodation process, (c) shows a sealing process. It is shown. 本発明に係る電池の製造方法を模式的に示す平面図であり、(a)は電解質注入工程を示すものであり、(b)は開口部を仮閉口した後の初期充電を示す工程であり、(c)は開口部を封止する工程を示すものである。It is a top view which shows typically the manufacturing method of the battery which concerns on this invention, (a) shows an electrolyte injection | pouring process, (b) is a process which shows the initial stage charge after temporarily closing an opening part. (C) shows the process of sealing the opening. 本発明に係る電池の製造方法におけるプレス成形を示す斜視図である。It is a perspective view which shows press molding in the manufacturing method of the battery which concerns on this invention. パウチタイプの外装体を示す斜視図である。It is a perspective view which shows a pouch type exterior body. 本発明に係る電池用外装体に設けられた開口部の配置例を示す斜視図である。It is a perspective view which shows the example of arrangement | positioning of the opening part provided in the exterior body for batteries which concerns on this invention. 本発明に係る開口部の仮閉口状態を示す電池及びクリップの断面図である。It is sectional drawing of the battery and clip which show the temporary closing state of the opening part which concerns on this invention. 本発明に係る開口部の仮閉口状態を示す電池及びクリップの断面図である。It is sectional drawing of the battery and clip which show the temporary closing state of the opening part which concerns on this invention.

符号の説明Explanation of symbols

1 リチウムイオン電池
2 電池本体
4 電極
5 積層体
5a 収納部
5b 収納部周縁
5c 開口部
5d 余裕シロ
6 クリップ
6a 樹脂層
6b バネ
7 オス型
8 メス型
DESCRIPTION OF SYMBOLS 1 Lithium ion battery 2 Battery main body 4 Electrode 5 Laminated body 5a Storage part 5b Storage part periphery 5c Opening part 5d Margin 6 Clip 6a Resin layer 6b Spring 7 Male type 8 Female type

Claims (3)

外装体の一部に開口部を設けて電池本体を封入する第1工程と、
前記開口部を仮閉口する第2工程と、
前記電池本体の初期充電を行う第3工程と、
前記開口部を封止する第4工程とを備える電池の製造工程において、
前記第2工程は、前記開口部を前記外装体の外部からクリップで挟持して仮閉口することを特徴とする電池の製造方法。
A first step of enclosing the battery body by providing an opening in a part of the exterior body;
A second step of temporarily closing the opening;
A third step of performing initial charging of the battery body;
In the battery manufacturing process comprising the fourth step of sealing the opening,
In the second step, the opening is clamped from outside the exterior body with a clip and temporarily closed.
前記クリップは弾性体の反発力又は収縮力を利用して前記外装体を挟持することを特徴とする請求項1に記載の電池の製造方法。   The battery manufacturing method according to claim 1, wherein the clip sandwiches the exterior body using a repulsive force or contraction force of an elastic body. 前記外装体外部を挟持する前記クリップの挟持部に樹脂層を設けたことを特徴とする請求項1又は請求項2に記載の電池の製造方法。   The battery manufacturing method according to claim 1, wherein a resin layer is provided in a holding portion of the clip that holds the exterior of the exterior body.
JP2006286075A 2006-10-20 2006-10-20 Method of manufacturing battery Pending JP2008103240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006286075A JP2008103240A (en) 2006-10-20 2006-10-20 Method of manufacturing battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006286075A JP2008103240A (en) 2006-10-20 2006-10-20 Method of manufacturing battery

Publications (1)

Publication Number Publication Date
JP2008103240A true JP2008103240A (en) 2008-05-01

Family

ID=39437409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006286075A Pending JP2008103240A (en) 2006-10-20 2006-10-20 Method of manufacturing battery

Country Status (1)

Country Link
JP (1) JP2008103240A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010225498A (en) * 2009-03-25 2010-10-07 Panasonic Corp Organic electrolyte battery
JP2016122495A (en) * 2014-12-24 2016-07-07 昭和電工パッケージング株式会社 Battery manufacturing method
JP2017126422A (en) * 2016-01-12 2017-07-20 トヨタ自動車株式会社 Method for manufacturing all-solid battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010225498A (en) * 2009-03-25 2010-10-07 Panasonic Corp Organic electrolyte battery
JP2016122495A (en) * 2014-12-24 2016-07-07 昭和電工パッケージング株式会社 Battery manufacturing method
JP2017126422A (en) * 2016-01-12 2017-07-20 トヨタ自動車株式会社 Method for manufacturing all-solid battery

Similar Documents

Publication Publication Date Title
KR102109926B1 (en) Pouch case for secondary battery, pouch type secondary battery and manufacturing method thereof using the same
JP4571610B2 (en) Pouch-type lithium secondary battery and manufacturing method thereof
JP6694068B2 (en) Pouch exterior material for secondary battery, pouch type secondary battery using the same, and manufacturing method thereof
JP7055305B2 (en) Pouch-type battery case including crack prevention structure and its manufacturing method
EP2393146B1 (en) Rechargeable battery and method of injecting electrolyte thereinto
JP5125053B2 (en) Flat electrochemical cell and assembled battery comprising the same
KR101748362B1 (en) Method for manufacturing pouch secondary battery
CN111937212B (en) Battery cell
JP6637955B2 (en) Manufacturing method of lithium ion secondary battery
KR101730338B1 (en) Manufacturing method of pouch type secondary battery
JP4554148B2 (en) Manufacturing method of secondary battery
KR20200033665A (en) Pouch type secondary battery having a gas discharge tab and Degassing apparaus for the Pouch type secondary battery
KR20140018014A (en) The manufacturing method of pouch type secondary battery
JP2002245975A (en) Square battery
JP2014010916A (en) Secondary battery
JP2015531157A (en) Pouch type case, battery cell, and battery cell manufacturing method
JP2007141774A (en) Manufacturing method of storage element
KR20180116563A (en) Pouch-type Secondary Battery Having Preliminary Cutting Line
JP2008103240A (en) Method of manufacturing battery
KR20170094669A (en) Method and apparatus for manufacturing of prismatic secondary battery
JP2013062199A (en) Sealed battery
US20210013483A1 (en) Battery assembly, battery, lid and case
KR20000075255A (en) Lithium polymer battery and method for manufacturing the same
JP6542754B2 (en) Method of manufacturing secondary battery
CN116472638A (en) Secondary battery and method for manufacturing the same