JP2007141774A - Manufacturing method of storage element - Google Patents

Manufacturing method of storage element Download PDF

Info

Publication number
JP2007141774A
JP2007141774A JP2005337301A JP2005337301A JP2007141774A JP 2007141774 A JP2007141774 A JP 2007141774A JP 2005337301 A JP2005337301 A JP 2005337301A JP 2005337301 A JP2005337301 A JP 2005337301A JP 2007141774 A JP2007141774 A JP 2007141774A
Authority
JP
Japan
Prior art keywords
storage element
manufacturing
battery
temporarily sealed
power storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005337301A
Other languages
Japanese (ja)
Inventor
Akira Yamamoto
山本  彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005337301A priority Critical patent/JP2007141774A/en
Publication of JP2007141774A publication Critical patent/JP2007141774A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a power storage element having excellent characteristics and reliability of storage element by exhausting to the outside the gas generated in a housing container in manufacturing process, without discharging the electrolytic solution to the outside. <P>SOLUTION: The manufacturing method of the power storage element has a degassing process in which the gas in a housing case 110 is exhausted to the outside after applying a prescribed treating process to a temporary sealed battery 102 (temporary sealed storage element). The degassing process comprises an opening process in which the temporary sealed battery 102 is opened in the state that the atmospheric pressure (internal pressure in the chamber 10) around the battery 102 is made the atmospheric pressure wherein the electrolytic liquid is not discharged to the outside from the housing case 110 by the differential pressure with the battery 102 when the battery 102 is opened, and a gas exhaust process in which, after the temporary sealed battery 102 is opened, the gas in the housing case 110 is exhausted to the outside by gradually lowering the atmospheric pressure (internal pressure in the chamber 10) around the battery (storage element). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、蓄電素子の製造方法、特に、製造過程において収容ケース内に発生したガスを、収容ケースの外部に排出するガス抜き工程を備える蓄電素子の製造方法に関する。   The present invention relates to a method for manufacturing a power storage element, and more particularly, to a method for manufacturing a power storage element including a degassing step for discharging gas generated in a storage case during the manufacturing process to the outside of the storage case.

従来より、様々な蓄電素子の製造方法が提案されているが、近年、製造過程において収容ケース内に発生したガスを、収容ケースの外部に排出するガス抜き工程を備える蓄電素子の製造方法が提案されている(例えば、特許文献1,2参照)。
特開2001−283923号公報 特開2003−187855号公報
Conventionally, various methods for manufacturing a power storage element have been proposed. Recently, a method for manufacturing a power storage element including a degassing process for discharging the gas generated in the storage case during the manufacturing process to the outside of the storage case has been proposed. (For example, see Patent Documents 1 and 2).
JP 2001-283923 A JP 2003-187855 A

特許文献1では、初期充電工程の後、及びエージング工程の後に、収容ケースの封口部の全部または一部を開封して、収容ケース内に溜まったガスを外部に排出する。その後、収容ケース内を真空引きして減圧した上で、再び、収容ケースを封口する。これにより、蓄電素子(電池)内に発生したガスを十分に外部に排出することができ、蓄電素子(電池)の特性、信頼性に優れた蓄電素子を製造することができると記載されている。具体的には、実施例において、上記手法により、リチウムイオン二次電池を製造している。   In Patent Document 1, after the initial charging step and after the aging step, all or a part of the sealing portion of the housing case is opened, and the gas accumulated in the housing case is discharged to the outside. Thereafter, the inside of the storage case is evacuated and decompressed, and then the storage case is sealed again. Accordingly, it is described that the gas generated in the electricity storage element (battery) can be sufficiently discharged to the outside, and the electricity storage element having excellent characteristics and reliability of the electricity storage element (battery) can be manufactured. . Specifically, in the examples, a lithium ion secondary battery is manufactured by the above method.

特許文献2では、陰極板と陽極板との間にセパレータを介在させた状態でワインディングして、ゼリーロール状の電極組立体(陰極板と陽極板とセパレータとからなる捲回体)を製造する。その後、この電極組立体(捲回体)を、収容ケース内に収容することなく、初期充電を施すと共に、充電時に発生するガスを放出する。これにより、初期充電と同時にガスを放出することができるので、別途、ガス排出工程を設ける必要がなく、製造工程を簡略化でき、生産性を向上することができると記載されている。   In Patent Document 2, winding is performed with a separator interposed between a cathode plate and an anode plate, and a jelly roll electrode assembly (a wound body including a cathode plate, an anode plate, and a separator) is manufactured. . Thereafter, the electrode assembly (rolled body) is initially charged without being housed in the housing case, and the gas generated during the charging is released. According to this, it is described that gas can be released simultaneously with initial charging, so that it is not necessary to separately provide a gas discharge step, the manufacturing process can be simplified, and productivity can be improved.

ところで、特許文献1の手法では、収容ケース内に溜まったガスを外部に排出するにあたり、収容ケースの開封手法について特に説明がされていないことから、収容ケースの開封を大気圧下で行うようにしていると考えられる。ところが、初期充電及びエージングを行った後の蓄電素子(電池)は、ガスの発生により内圧が大きく上昇しているため、大気圧下で収容ケースを開封すると、ガスと共に電解液が外部に噴出(漏出)してしまうことがあった。このため、収容ケースに付着した電解液を拭き取る手間が生じ、また、封口部に付着した電解液の影響で、封止不良が生じる虞があった。   By the way, in the method of Patent Document 1, there is no particular explanation about the method of opening the storage case when the gas accumulated in the storage case is discharged to the outside. Therefore, the storage case is opened at atmospheric pressure. It is thought that. However, since the internal pressure of the power storage element (battery) after initial charging and aging has greatly increased due to the generation of gas, when the storage case is opened under atmospheric pressure, the electrolyte is ejected to the outside together with the gas ( Leaked). For this reason, the trouble which wipes off the electrolyte solution adhering to a storage case arises, and there existed a possibility that sealing failure might arise under the influence of the electrolyte solution adhering to a sealing part.

また、特許文献2では、詳細に説明されていないが、電極組立体(捲回体)を、収容ケース内に収容することなく初期充電を施すため、大気中の成分の影響などで、蓄電素子(電池)の特性が大きく低下してしまう虞がある。特に、非水電解液を用いる蓄電素子(例えば、リチウムイオン二次電池など)を製造する場合は、大気中の水分により蓄電素子の特性が大きく低下してしまうため、適用することができなかった。   In Patent Document 2, although not described in detail, the electrode assembly (rolled body) is initially charged without being housed in the housing case. There is a possibility that the characteristics of the (battery) are greatly deteriorated. In particular, in the case of manufacturing a power storage element using a non-aqueous electrolyte (for example, a lithium ion secondary battery), the characteristics of the power storage element are greatly deteriorated due to moisture in the atmosphere, and thus cannot be applied. .

本発明は、かかる現状に鑑みてなされたものであって、電解液を外部に放出することなく、製造過程で収容ケース内に発生したガスを外部に排出して、蓄電素子の特性及び信頼性が良好な蓄電素子を製造可能な方法を提供することを目的とする。   The present invention has been made in view of the current situation, and without discharging the electrolyte solution to the outside, the gas generated in the housing case during the manufacturing process is discharged to the outside, and the characteristics and reliability of the storage element An object of the present invention is to provide a method capable of producing a power storage element having a good resistance.

その解決手段は、電極体及び電解液を収容した収容ケースを仮封止して、仮封止蓄電素子を形成する仮封止工程と、上記仮封止蓄電素子に所定の処理工程を施した後、上記仮封止蓄電素子を開封して、上記収容ケース内のガスを外部に排出するガス抜き工程と、を備える蓄電素子の製造方法であって、上記ガス抜き工程は、上記仮封止蓄電素子の周囲の外気圧を、当該仮封止蓄電素子を開封したときに、当該仮封止蓄電素子の内圧との圧力差によって上記収容ケース内から上記電解液が外部に放出されることのない外気圧とした状態で、当該仮封止蓄電素子を開封する開封工程と、上記仮封止蓄電素子を開封した後、当該蓄電素子の周囲の外気圧を徐々に低下させて、上記収容ケース内のガスを外部に排出させるガス排出工程と、を含む蓄電素子の製造方法である。   The solution includes a temporary sealing step of temporarily sealing a housing case containing an electrode body and an electrolytic solution to form a temporary sealed energy storage device, and a predetermined treatment step for the temporary sealed energy storage device. Then, the temporary sealing electricity storage element is opened, and a degassing step of discharging the gas in the housing case to the outside, the method of manufacturing the electricity storage element, wherein the degassing step includes the temporary sealing When the external pressure around the power storage element is opened, the electrolytic solution is released from the inside of the housing case due to a pressure difference from the internal pressure of the temporary sealed power storage element. An opening step of opening the temporarily sealed electricity storage element in a state where there is no external pressure, and after opening the temporarily sealed electricity storage element, gradually reducing the external air pressure around the electricity storage element, and And a gas discharge process for discharging the gas inside to the outside It is a method for producing a child.

本発明の製造方法では、開封工程において、仮封止蓄電素子の周囲の外気圧を、当該仮封止蓄電素子を開封したときに、当該仮封止蓄電素子の内圧との圧力差によって収容ケース内から電解液が外部に放出されることのない外気圧とした状態で、当該仮封止蓄電素子の仮封止を開放する。これにより、仮封止蓄電素子を開封したときに、収容ケース内から電解液が外部に放出されてしまう(具体的には、電解液が噴出したり、漏出する)不具合を防止することができる。   In the manufacturing method of the present invention, in the opening process, the external pressure around the temporarily sealed electricity storage element is determined by the pressure difference from the internal pressure of the temporarily sealed electricity storage element when the temporarily sealed electricity storage element is opened. The temporary sealing of the temporarily sealed power storage element is opened in a state where the external pressure is maintained so that the electrolytic solution is not released from the inside. Thereby, when the temporarily sealed power storage element is opened, it is possible to prevent a problem that the electrolytic solution is discharged from the inside of the housing case (specifically, the electrolytic solution is ejected or leaked). .

さらに、本発明の製造方法では、仮封止蓄電素子を開封した後、ガス排出工程において、当該蓄電素子の周囲の外気圧を徐々に低下させて、収容ケース内のガスを外部に排出させる。このように、蓄電素子の周囲の外気圧を徐々に低下させることで、収容ケース内から電解液が外部に放出されることなく、適切に、収容ケース内のガスを外部に排出することができる。   Further, in the manufacturing method of the present invention, after the temporarily sealed power storage element is opened, in the gas discharge step, the external air pressure around the power storage element is gradually reduced to discharge the gas in the housing case to the outside. In this manner, by gradually reducing the external air pressure around the power storage element, the electrolyte in the storage case can be appropriately discharged to the outside without discharging the electrolyte from the storage case. .

従って、本発明の製造方法によれば、電解液を外部に放出することなく、製造過程で収容ケース内に発生したガスを外部に排出できるので、蓄電素子の特性及び信頼性が良好な蓄電素子を製造することが可能となる。   Therefore, according to the manufacturing method of the present invention, the gas generated in the housing case during the manufacturing process can be discharged to the outside without discharging the electrolyte solution to the outside. Can be manufactured.

なお、仮封止工程の後で、ガス抜き工程の前の所定の処理工程としては、例えば、コンディショニング工程やエージング工程などを挙げることができる。但し、コンディショニング工程の後にガス抜き工程(第1ガス抜き工程とする)を行い、さらに、エージング工程の後にもガス抜き工程(第2ガス抜き工程とする)を行う場合は、第1ガス抜き工程の後、再度、収容ケースの仮封止を行うようにする。   In addition, as a predetermined process process after a temporary sealing process and before a degassing process, a conditioning process, an aging process, etc. can be mentioned, for example. However, when the degassing process (first degassing process) is performed after the conditioning process and the degassing process (second degassing process) is performed after the aging process, the first degassing process is performed. After that, the housing case is temporarily sealed again.

また、コンディショニング工程とは、蓄電素子の初期性能を安定化させるための処理を施す工程のことをいい、具体的には、初期充電や充放電の繰り返しなどの処理を施す工程である。
また、仮封止蓄電素子を開封したときに、仮封止蓄電素子の内圧との圧力差によって収容ケース内から電解液が外部に放出されることのない外気圧とは、具体的には、仮封止蓄電素子の内圧と同程度の外気圧またはそれ以上の外気圧である。
In addition, the conditioning step refers to a step of performing a process for stabilizing the initial performance of the power storage element, and specifically, a step of performing a process such as repeated initial charging and charging / discharging.
Further, when the temporarily sealed electricity storage element is opened, the external pressure at which the electrolytic solution is not released to the outside due to the pressure difference from the internal pressure of the temporarily sealed electricity storage element is specifically, The external pressure is about the same as or higher than the internal pressure of the temporarily sealed power storage element.

なお、仮封止蓄電素子の内圧と、仮封止蓄電素子の周囲の外気圧との関係は、仮封止蓄電素子を開封した瞬間に確認することができる。すなわち、仮封止蓄電素子を開封した瞬間に、収容ケースが膨張した場合は、仮封止蓄電素子の内圧よりも、仮封止蓄電素子の周囲の外気圧のほうが高くなっていたと考えられる。また、仮封止蓄電素子を開封した瞬間に、収容ケースが変形しなかった場合は、仮封止蓄電素子の周囲の外気圧が、仮封止蓄電素子の内圧と同程度になっていたと考えられる。   Note that the relationship between the internal pressure of the temporarily sealed energy storage element and the external pressure around the temporarily sealed energy storage element can be confirmed at the moment when the temporarily sealed energy storage element is opened. That is, when the housing case expands at the moment when the temporarily sealed energy storage element is opened, it is considered that the external pressure around the temporarily sealed energy storage element is higher than the internal pressure of the temporarily sealed energy storage element. Further, when the housing case is not deformed at the moment of opening the temporarily sealed electricity storage element, it is considered that the external pressure around the temporarily sealed electricity storage element is approximately the same as the internal pressure of the temporarily sealed electricity storage element. It is done.

また、蓄電素子には、電池(例えば、リチウムイオン二次電池やニッケル水素二次電池など)及びキャパシタ(例えば、電気二重層キャパシタなど)の双方が含まれる。
また、電極体としては、例えば、蓄電素子として電池を製造する場合には、正極、負極、及びセパレータからなる電極体を挙げることができる。また、蓄電素子としてキャパシタを製造する場合には、第1電極、第2電極、及びセパレータからなる電極体を例示することができる。
また、収容ケースとして、ラミネートフィルム製、金属製、樹脂製など、いずれの材料からなる収容ケースを用いるようにしても良い。
The power storage element includes both a battery (for example, a lithium ion secondary battery and a nickel hydride secondary battery) and a capacitor (for example, an electric double layer capacitor).
Moreover, as an electrode body, when manufacturing a battery as an electrical storage element, the electrode body which consists of a positive electrode, a negative electrode, and a separator can be mentioned, for example. Moreover, when manufacturing a capacitor as an electrical storage element, the electrode body which consists of a 1st electrode, a 2nd electrode, and a separator can be illustrated.
Further, as the storage case, a storage case made of any material such as a laminate film, a metal, or a resin may be used.

さらに、上記の蓄電素子の製造方法であって、前記開封工程において、前記仮封止蓄電素子の周囲の外気圧を、当該仮封止蓄電素子の内圧以上とした状態で、当該仮封止蓄電素子を開封する蓄電素子の製造方法とすると良い。   Furthermore, in the method for manufacturing the electricity storage device, in the opening step, the temporary sealed electricity storage device in a state where the external pressure around the temporarily sealed electricity storage device is equal to or higher than the internal pressure of the temporarily sealed electricity storage device. A method for manufacturing a power storage element in which the element is opened is preferable.

仮封止蓄電素子の周囲の外気圧を、当該仮封止蓄電素子の内圧以上に高めることで、当該仮封止蓄電素子を開封したときに、収容ケース内から電解液が外部に放出される不具合を、確実に防止できる。   By increasing the external air pressure around the temporarily sealed electricity storage element to be equal to or higher than the internal pressure of the temporarily sealed electricity storage element, the electrolyte is discharged from the storage case to the outside when the temporarily sealed electricity storage element is opened. Defects can be reliably prevented.

さらに、上記いずれかに記載の蓄電素子の製造方法であって、前記所定の処理工程として、前記仮封止蓄電素子のコンディショニングを行うコンディショニング工程と、上記仮封止蓄電素子を、所定期間にわたり高温雰囲気下に安置するエージング工程と、を含み、前記ガス抜き工程は、上記コンディショニング工程及び上記エージング工程の少なくともいずれかの工程の後に行う蓄電素子の製造方法とすると良い。   Furthermore, in any of the above-described methods for manufacturing a power storage device, the predetermined treatment step includes a conditioning process for conditioning the temporary sealed power storage device, and the temporary sealed power storage device at a high temperature over a predetermined period. An aging step that is placed in an atmosphere, and the degassing step may be a method for manufacturing a power storage element that is performed after at least one of the conditioning step and the aging step.

蓄電素子の製造過程のうち、特に、コンディショニング工程及びエージング工程において、収容ケース内に多量のガスが発生する。このため、本発明の製造方法のように、コンディショニング工程及びエージング工程の少なくともいずれかの工程の後にガス抜きを行うことにより、効果的に、収容ケース内のガスを排出することができる。   A large amount of gas is generated in the housing case particularly in the conditioning process and the aging process in the manufacturing process of the electric storage element. For this reason, the gas in a storage case can be discharged | emitted effectively by venting after at least any one of a conditioning process and an aging process like the manufacturing method of this invention.

さらに、上記いずれかに記載の蓄電素子の製造方法であって、前記蓄電素子は、リチウムイオン二次電池であるリチウムイオン二次電池の製造方法とすると良い。   Furthermore, in any of the above-described methods for manufacturing a power storage element, the power storage element may be a method for manufacturing a lithium ion secondary battery that is a lithium ion secondary battery.

従来より、リチウムイオン二次電池の製造において、ガス抜きの際、ガスと共に電解液が外部に噴出(漏出)してしまうことが問題となっていた。これに対し、本発明の製造方法によれば、前述のように、電解液を外部に放出することなく、製造過程で収容ケース内に発生したガスを外部に排出できる。これにより、電池特性及び信頼性が良好なリチウムイオン二次電池を製造することが可能となる。   Conventionally, in the production of lithium ion secondary batteries, there has been a problem that the electrolyte solution is ejected (leaked) together with the gas when degassing. On the other hand, according to the manufacturing method of the present invention, as described above, the gas generated in the housing case during the manufacturing process can be discharged to the outside without releasing the electrolyte solution to the outside. This makes it possible to manufacture a lithium ion secondary battery with good battery characteristics and reliability.

次に、本発明の実施例1,2について、図面を参照しつつ説明する。
(実施例1)
図1は、本実施例1にかかる電池100(具体的には、リチウムイオン二次電池)の平面図である。本実施例1の電池100は、図1に示すように、平面視矩形状の収容ケース110と、収容ケース110の内部から外部に延出する正極端子120と、収容ケース110の内部から外部に延出する負極端子130とを備えている。
Next, Embodiments 1 and 2 of the present invention will be described with reference to the drawings.
Example 1
FIG. 1 is a plan view of the battery 100 (specifically, a lithium ion secondary battery) according to the first embodiment. As shown in FIG. 1, the battery 100 according to the first embodiment includes a storage case 110 having a rectangular shape in plan view, a positive electrode terminal 120 extending from the inside of the storage case 110 to the outside, and from the inside of the storage case 110 to the outside. And a negative electrode terminal 130 extending.

さらに、図2に示すように、収容ケース110の内部には、電極体150が収容されている。この電極体150は、断面長円状をなし、帯状の正極155,負極156,セパレータ157を捲回してなる扁平型の捲回体である。このうち、正極155は、図示していないが、その一端部(正極活物質を含む正極合材が塗工されていない未塗工部、図2において左端部)に位置する正極接続部155bにおいて、正極端子120に溶接されている。また、負極156は、その一端部(負極活物質を含む負極合材が塗工されていない未塗工部、図2において右端部)に位置する負極接続部156bにおいて、負極端子130に溶接されている。   Further, as shown in FIG. 2, an electrode body 150 is accommodated inside the accommodation case 110. The electrode body 150 is an oblong cross-section, and is a flat wound body formed by winding a belt-like positive electrode 155, a negative electrode 156, and a separator 157. Among these, the positive electrode 155 is not shown, but in the positive electrode connection portion 155b located at one end thereof (the uncoated portion where the positive electrode mixture containing the positive electrode active material is not applied, the left end portion in FIG. 2). The positive electrode terminal 120 is welded. The negative electrode 156 is welded to the negative electrode terminal 130 at a negative electrode connection portion 156b located at one end thereof (an uncoated portion where the negative electrode mixture containing the negative electrode active material is not applied, the right end portion in FIG. 2). ing.

収容ケース110は、収容ケース110の最も内側に位置する内側樹脂フィルム111、この内側樹脂フィルム111の外側に隣り合って位置する金属フィルム112、及びこの金属フィルム112の外側に隣り合って位置する外側樹脂フィルム113が積層されたラミネートフィルム101で形成されている。この収容ケース110は、図2に示すように、収容部119内に電極体150を配置させたラミネートフィルム101が、折り返し位置110gで折り返され、図1に示すように、略矩形環状の溶着封止部115(収容ケース110の周縁部)が熱溶着により封止されて、平面視矩形状に成形されている。   The storage case 110 includes an inner resin film 111 positioned on the innermost side of the storage case 110, a metal film 112 positioned adjacent to the outer side of the inner resin film 111, and an outer side positioned adjacent to the outer side of the metal film 112. It is formed of a laminate film 101 in which a resin film 113 is laminated. As shown in FIG. 2, the storage case 110 is formed by laminating the laminate film 101 in which the electrode body 150 is disposed in the storage portion 119 at a turn-back position 110g. As shown in FIG. The stop part 115 (peripheral part of the housing case 110) is sealed by heat welding and formed into a rectangular shape in plan view.

次に、本実施例1の電池100の製造方法について説明する。
まず、2種類の金属シートに、それぞれ異なる活物質を含む電極合材(正極合材と負極合材)を塗布して、帯状の正極155及び負極156を製造する。次いで、正極155、負極156、及びセパレータ157を積層し、これを捲回して扁平捲回型の電極体150を形成する。なお、正極155、負極156、及びセパレータ157を積層する際には、電極体150の一端部から、正極155のうち正極合材を塗工していない未塗工部が突出するように、正極155を配置しておく。さらには、負極156のうち負極合材を塗工していない未塗工部が、正極155の未塗工部とは反対側から突出するように、負極156を配置しておく。これにより、図2に示すように、正極接続部155b及び負極接続部156bを有する電極体150が形成される。
Next, a method for manufacturing the battery 100 of the first embodiment will be described.
First, an electrode mixture containing a different active material (a positive electrode mixture and a negative electrode mixture) is applied to two types of metal sheets to produce strip-shaped positive electrodes 155 and negative electrodes 156. Next, a positive electrode 155, a negative electrode 156, and a separator 157 are stacked and wound to form a flat wound electrode body 150. When the positive electrode 155, the negative electrode 156, and the separator 157 are stacked, the positive electrode 155 has an uncoated portion that is not coated with the positive electrode mixture, protruding from one end portion of the electrode body 150. 155 is arranged. Furthermore, the negative electrode 156 is disposed so that an uncoated portion of the negative electrode 156 that is not coated with the negative electrode mixture protrudes from the side opposite to the uncoated portion of the positive electrode 155. Thereby, as shown in FIG. 2, the electrode body 150 having the positive electrode connecting portion 155b and the negative electrode connecting portion 156b is formed.

次に、電極体150の正極接続部155bと正極端子120とを接続する。具体的には、例えば、正極接続部155bと正極端子120とを圧着した状態で溶接(例えば、超音波溶接、スポット溶接)することにより、正極接続部155bと正極端子120とを接続する。同様に、電極体150の負極接続部156bと負極端子130とを接続する。具体的には、例えば、負極接続部156bと負極端子130とを圧着した状態で溶接(例えば、超音波溶接、スポット溶接)することにより、負極接続部156bと負極端子130とを接続する。   Next, the positive electrode connection part 155b of the electrode body 150 and the positive electrode terminal 120 are connected. Specifically, for example, the positive electrode connection portion 155b and the positive electrode terminal 120 are connected by welding (for example, ultrasonic welding, spot welding) in a state where the positive electrode connection portion 155b and the positive electrode terminal 120 are pressure-bonded. Similarly, the negative electrode connection part 156b of the electrode body 150 and the negative electrode terminal 130 are connected. Specifically, for example, the negative electrode connection portion 156b and the negative electrode terminal 130 are connected by welding (for example, ultrasonic welding or spot welding) in a state where the negative electrode connection portion 156b and the negative electrode terminal 130 are pressure-bonded.

これとは別に、ラミネートフィルム101を用意する。具体的には、内側樹脂フィルム111、金属フィルム112、及び外側樹脂フィルム113を積層した後、これを押圧成形して、収容部119を凹設したラミネートフィルム101を得る(図2参照)。次いで、図2に示すように、正極端子120及び負極端子130を溶接した電極体150を、ラミネートフィルム101の収容部119内に配置する。次いで、ラミネートフィルム101を、その折り返し位置110gで折り返し、電極体150を内部に収容する(図3参照)。   Separately, a laminate film 101 is prepared. Specifically, after laminating the inner resin film 111, the metal film 112, and the outer resin film 113, this is press-molded to obtain a laminate film 101 in which the housing portion 119 is recessed (see FIG. 2). Next, as illustrated in FIG. 2, the electrode body 150 in which the positive electrode terminal 120 and the negative electrode terminal 130 are welded is disposed in the accommodating portion 119 of the laminate film 101. Next, the laminate film 101 is folded at the folding position 110g, and the electrode body 150 is accommodated therein (see FIG. 3).

次いで、図3に示すように、溶着封止部115のうち、後に電解液を注入する注入口116を除く部位(図3において、ドットを付した部位)を、その厚み方向に加圧しつつ加熱して、内側樹脂フィルム111同士を熱溶着させる。これにより、正極端子120及び負極端子130を収容ケース110の内部から外部に延出させつつ、内部に電極体150を収容することができる。次いで、注液口116を通じて、収容ケース110内に電解液を注入する。   Next, as shown in FIG. 3, a portion of the welded sealing portion 115 excluding the inlet 116 into which the electrolytic solution is to be injected later (the portion marked with a dot in FIG. 3) is heated while being pressurized in the thickness direction. Then, the inner resin films 111 are thermally welded together. Thereby, the electrode body 150 can be accommodated inside the positive electrode terminal 120 and the negative electrode terminal 130 while extending from the inside of the housing case 110 to the outside. Next, an electrolytic solution is injected into the housing case 110 through the liquid injection port 116.

次に、第1仮封止工程に進み、図4に示すように、ポリプロピレンからなる仮封止部材117を、収容ケース110の突出部118の上側部118bに熱溶着することにより、注液口116を閉塞する。これにより、電極体150及び電解液を収容した収容ケース110を仮封止して、仮封止電池102を形成することができる。
次いで、コンディショニング工程に進み、電池100の初期性能を安定化させるための処理を施した。具体的には、仮封止電池102に初期充電を施し、さらに、充放電を所定回数繰り返し行った。
Next, the process proceeds to the first temporary sealing step, and as shown in FIG. 4, the temporary sealing member 117 made of polypropylene is thermally welded to the upper side portion 118 b of the protruding portion 118 of the housing case 110, thereby injecting the liquid inlet. 116 is closed. Accordingly, the temporarily sealed battery 102 can be formed by temporarily sealing the housing case 110 containing the electrode body 150 and the electrolytic solution.
Next, the process proceeds to a conditioning process, and a process for stabilizing the initial performance of the battery 100 is performed. Specifically, the temporarily sealed battery 102 was initially charged, and charging / discharging was repeated a predetermined number of times.

次に、第1ガス抜き工程に進み、仮封止電池102を開封して、収容ケース110内のガスを外部に排出した。
具体的には、まず、図5に示すように、ガス導入路11とガス排出路12とを有するチャンバ10内に、仮封止電池102を配置する。次いで、ガス排出路12を閉塞した状態で、図示しない加圧ポンプを用い、ガス導入路11を通じてドライガスをチャンバ10内に導入することで、チャンバ10の内圧(すなわち、仮封止電池102の周囲の外気圧)を高めてゆく。そして、チャンバ10の内圧(仮封止電池102の周囲の外気圧)を、仮封止電池102の内圧以上とした状態で、チャンバ10内へのドライガスの導入を停止すると共に、ガス導入路11を閉塞する。
Next, it progressed to the 1st degassing process, the temporary sealing battery 102 was opened, and the gas in the storage case 110 was discharged | emitted outside.
Specifically, first, as shown in FIG. 5, the temporarily sealed battery 102 is disposed in the chamber 10 having the gas introduction path 11 and the gas discharge path 12. Next, in a state where the gas discharge path 12 is closed, a dry gas is introduced into the chamber 10 through the gas introduction path 11 by using a pressure pump (not shown), whereby the internal pressure of the chamber 10 (that is, the temporarily sealed battery 102 Increase ambient ambient pressure). Then, in the state where the internal pressure of the chamber 10 (the external pressure around the temporary sealing battery 102) is equal to or higher than the internal pressure of the temporary sealing battery 102, the introduction of the dry gas into the chamber 10 is stopped, and the gas introduction path 11 is closed.

次いで、開封工程に進み、図6に示すように、チャンバ10の内圧(仮封止電池102の周囲の外気圧)を、仮封止電池102の内圧以上に保持した状態で、仮封止電池102を開封した。具体的には、仮封止部材117を、収容ケース110の突出部118の上側部118bと共に切除した。   Next, the process proceeds to an opening step, and as shown in FIG. 6, the temporarily sealed battery is maintained in a state in which the internal pressure of the chamber 10 (the external pressure around the temporarily sealed battery 102) is kept higher than the internal pressure of the temporarily sealed battery 102. 102 was opened. Specifically, the temporary sealing member 117 was cut out together with the upper portion 118 b of the protruding portion 118 of the housing case 110.

なお、本実施例1の開封工程では、仮封止電池102を開封した瞬間、収容ケース110が僅かに膨張しただけで、収容ケース110内から、ガスの噴出も電解液の放出も生じなかった。これにより、仮封止電池102を開封する際に、チャンバ10の内圧(仮封止電池102の周囲の外気圧)が、仮封止電池102の内圧以上に(詳細には、仮封止電池102の内圧よりも僅かに高く)されていたことを確認できた。   In the opening process of Example 1, at the moment when the temporarily sealed battery 102 was opened, the storage case 110 was slightly expanded, and neither gas ejection nor electrolyte discharge occurred from the storage case 110. . Thereby, when opening the temporary sealing battery 102, the internal pressure of the chamber 10 (the external pressure around the temporary sealing battery 102) is higher than the internal pressure of the temporary sealing battery 102 (specifically, the temporary sealing battery 102). It was confirmed that the pressure was slightly higher than the internal pressure of 102).

このように、本実施例1では、仮封止電池102の周囲の外気圧を、仮封止電池102の内圧以上とした状態(詳細には、仮封止電池102の周囲の外気圧を、仮封止電池102の内圧よりも僅かに高くした状態)で、仮封止電池102を開封している。これにより、仮封止電池102を開封したときに、収容ケース110内から電解液が外部に放出されてしまう不具合を防止できた。   As described above, in Example 1, the external pressure around the temporary sealing battery 102 is set to be equal to or higher than the internal pressure of the temporary sealing battery 102 (specifically, the external atmospheric pressure around the temporary sealing battery 102 is The temporarily sealed battery 102 is opened in a state slightly higher than the internal pressure of the temporarily sealed battery 102. Thereby, when the temporary sealing battery 102 was opened, the malfunction that electrolyte solution was discharged | emitted from the inside of the storage case 110 was able to be prevented.

次いで、ガス排出工程に進み、図7に示すように、ガス排出路12を通じて、チャンバ10内のドライガスを徐々に外部に排出することで、チャンバ10の内圧(すなわち、仮封止電池102の周囲の外気圧)を、大気圧にまで徐々に低下させてゆく。これにより、収容ケース110内から電解液が外部に放出されることなく、適切に、注液口116を通じて、収容ケース110内のガスを外部に排出させることができた。
なお、本実施例1の第1ガス抜き工程(開封工程及びガス排出工程)では、電解液の外部への放出を防止できたので、電解液が収容ケース110の外表面に付着することもなかった。このため、電解液を拭き取る手間を省くことができた。
Next, the process proceeds to a gas discharge step, and as shown in FIG. 7, the dry gas in the chamber 10 is gradually discharged to the outside through the gas discharge path 12, so that the internal pressure of the chamber 10 (that is, the temporary sealing battery 102 The ambient external pressure is gradually reduced to atmospheric pressure. As a result, the gas in the storage case 110 could be appropriately discharged to the outside through the liquid injection port 116 without the electrolyte solution being discharged from the storage case 110 to the outside.
In addition, in the 1st degassing process (opening process and gas discharge process) of Example 1, since discharge | release to the exterior of electrolyte solution was prevented, electrolyte solution does not adhere to the outer surface of the storage case 110. It was. For this reason, the trouble of wiping off the electrolytic solution could be saved.

次に、第2仮封止工程に進み、前述の第1仮封止工程と同じ要領で、ポリプロピレンからなる仮封止部材117を、収容ケース110の突出部118の下側部118cに熱溶着することにより、注液口116を閉塞して、仮封止電池102を形成した(図4参照)。次いで、エージング工程に進み、仮封止電池102を、50℃程度の高温雰囲気に保たれた恒温室内に、所定期間安置した。   Next, the process proceeds to the second temporary sealing step, and the temporary sealing member 117 made of polypropylene is thermally welded to the lower side portion 118c of the protruding portion 118 of the housing case 110 in the same manner as the first temporary sealing step described above. As a result, the liquid injection port 116 was closed to form the temporarily sealed battery 102 (see FIG. 4). Next, proceeding to an aging process, the temporarily sealed battery 102 was placed in a temperature-controlled room maintained at a high temperature atmosphere of about 50 ° C. for a predetermined period.

次に、第2ガス抜き工程に進み、前述の第1ガス抜き工程と同じ要領で、開封工程において仮封止電池102を開封した後、ガス排出工程において収容ケース110内のガスを外部に排出した(図5〜図7参照)。次いで、熱溶着により注液口116を閉塞することで収容ケース110を封止し、その後、所定の処理を施すことで、図1に示す電池100が完成する。
なお、本実施例1の第2ガス抜き工程(開封工程及びガス排出工程)でも、電解液の外部への放出を防止できたので、収容ケース110の外表面や注液口116への電解液の付着を防止できた。このため、電解液を拭き取る手間を省くことができると共に、電解液による注液口116の封止不良も防止することができた。
Next, the process proceeds to the second degassing step, and after the temporary sealing battery 102 is opened in the unsealing step in the same manner as the first degassing step, the gas in the housing case 110 is discharged to the outside in the gas discharging step. (See FIGS. 5 to 7). Next, the container case 110 is sealed by closing the liquid injection port 116 by thermal welding, and then a predetermined process is performed, whereby the battery 100 shown in FIG. 1 is completed.
In the second degassing step (opening step and gas discharge step) of the first embodiment, it was possible to prevent the electrolyte from being discharged to the outside, so that the electrolyte was supplied to the outer surface of the housing case 110 and the liquid inlet 116. Can be prevented. For this reason, the trouble of wiping off the electrolytic solution can be saved, and the sealing failure of the liquid injection port 116 by the electrolytic solution can be prevented.

(実施例2)
次に、実施例2にかかるキャパシタ200、及びその製造方法について説明する。本実施例2のキャパシタ200は、実施例1の電池100と比較して、電極体及び電解液が異なり、その他についてはほぼ同様である。従って、ここでは、実施例1と異なる点を中心に説明し、同様な点については説明を省略または簡略化する。
(Example 2)
Next, the capacitor 200 according to the second embodiment and the manufacturing method thereof will be described. The capacitor 200 according to the second embodiment is different from the battery 100 according to the first embodiment in the electrode body and the electrolytic solution, and is otherwise substantially the same. Therefore, here, the description will focus on the points different from the first embodiment, and the description of the same points will be omitted or simplified.

本実施例2のキャパシタ200(具体的には、電気二重層キャパシタ)は、図8に示すように、実施例1と同様な収容ケース110と、収容ケース110の内部から外部に延出する第1電極端子220及び第2電極端子230とを備えている。   As shown in FIG. 8, the capacitor 200 (specifically, an electric double layer capacitor) of the second embodiment includes a storage case 110 similar to that of the first embodiment, and a first extension extending from the inside of the storage case 110 to the outside. A first electrode terminal 220 and a second electrode terminal 230 are provided.

さらに、図9に示すように、収容ケース110の内部には、電極体250が収容されている。この電極体250は、断面長円状をなし、帯状の第1電極255,第2電極256,セパレータ257を捲回してなる扁平型の捲回体である。このうち、第1電極255は、その一端部(図9において左端部)に位置する第1電極接続部255bにおいて、第1電極端子220に溶接されている。また、第2電極256は、その一端部(図9において右端部)に位置する第2電極接続部256bにおいて、第2電極端子230に溶接されている。   Furthermore, as shown in FIG. 9, an electrode body 250 is accommodated in the accommodation case 110. This electrode body 250 is an oblong cross-section, and is a flat wound body formed by winding a first electrode 255, a second electrode 256, and a separator 257 having a strip shape. Among these, the 1st electrode 255 is welded to the 1st electrode terminal 220 in the 1st electrode connection part 255b located in the one end part (left end part in FIG. 9). Further, the second electrode 256 is welded to the second electrode terminal 230 at the second electrode connection portion 256b located at one end portion thereof (the right end portion in FIG. 9).

このような本実施例2のキャパシタ200は、次のようにして製造する。
まず、実施例1と同じ要領で、帯状の第1電極255,第2電極256,セパレータ257を積層し、これを捲回して扁平捲回型の電極体250を形成する。次いで、実施例1と同じ要領で、電極体250の第1電極接続部255bに第1電極端子220を溶接すると共に、第2電極接続部256bに第2電極端子230を溶接する。
Such a capacitor 200 of the second embodiment is manufactured as follows.
First, in the same manner as in the first embodiment, the strip-shaped first electrode 255, the second electrode 256, and the separator 257 are stacked and wound to form a flat wound electrode body 250. Next, in the same manner as in the first embodiment, the first electrode terminal 220 is welded to the first electrode connection portion 255b of the electrode body 250, and the second electrode terminal 230 is welded to the second electrode connection portion 256b.

次いで、図9に示すように、実施例1と同じ要領で、ラミネートフィルム101の収容部119内に電極体250を収容する。その後、図3に示すように、実施例1と同じ要領で、溶着封止部115のうち、後に電解液を注入する注入口116を除く部位(図3においてハッチングで示す部位)を、その厚み方向に加圧しつつ加熱して、内側樹脂フィルム111同士を熱溶着させる。次いで、注液口116を通じて、収容ケース110内に電解液を注入する。   Next, as shown in FIG. 9, the electrode body 250 is housed in the housing portion 119 of the laminate film 101 in the same manner as in the first embodiment. Thereafter, as shown in FIG. 3, in the same manner as in Example 1, a portion of the welded sealing portion 115 excluding the injection port 116 for injecting an electrolyte later (a portion indicated by hatching in FIG. 3) has its thickness. The inner resin films 111 are heat-welded by heating while pressing in the direction. Next, an electrolytic solution is injected into the housing case 110 through the liquid injection port 116.

次に、仮封止工程に進み、図4に示すように、実施例1と同じ要領で、ポリプロピレンからなる仮封止部材117を、収容ケース110の突出部118に熱溶着することにより、注液口116を閉塞する。これにより、電極体250及び電解液を収容した収容ケース110を仮封止して、仮封止キャパシタ202を形成することができる。
次いで、コンディショニング工程に進み、キャパシタ200の初期性能を安定化させるための処理を施した。具体的には、仮封止キャパシタ202に、充放電を所定回数繰り返し行った。
Next, the process proceeds to the temporary sealing step, and as shown in FIG. 4, the temporary sealing member 117 made of polypropylene is thermally welded to the protruding portion 118 of the housing case 110 in the same manner as in the first embodiment. The liquid port 116 is closed. Accordingly, the temporary sealing capacitor 202 can be formed by temporarily sealing the housing case 110 containing the electrode body 250 and the electrolytic solution.
Next, the process proceeds to a conditioning process, and a process for stabilizing the initial performance of the capacitor 200 is performed. Specifically, the temporary sealing capacitor 202 was repeatedly charged and discharged a predetermined number of times.

次に、ガス抜き工程に進み、実施例1と同じ要領で、開封工程において仮封止キャパシタ202を開封した後、ガス排出工程において収容ケース110内のガスを外部に排出した(図5〜図7参照)。なお、本実施例2の開封工程でも、実施例1と同様に、仮封止キャパシタ202の周囲の外気圧(チャンバ10の内圧)を、仮封止キャパシタ202の内圧以上とした状態で、仮封止キャパシタ202を開封したので、仮封止キャパシタ202を開封したときに、収容ケース110内から電解液が外部に放出されてしまう不具合を防止できた。また、本実施例2のガス排出工程でも、実施例1と同様に、チャンバ10の内圧(すなわち、仮封止電池102の周囲の外気圧)を、大気圧にまで徐々に低下させたので、収容ケース110内から電解液が外部に放出されることなく、適切に、注液口116を通じて、収容ケース110内のガスを外部に排出することができた。   Next, the process proceeds to a degassing process, and after opening the temporary sealing capacitor 202 in the opening process in the same manner as in Example 1, the gas in the housing case 110 is discharged to the outside in the gas discharging process (FIGS. 5 to 5). 7). Even in the opening process of the second embodiment, as in the first embodiment, the temporary atmospheric pressure around the temporary sealing capacitor 202 (the internal pressure of the chamber 10) is set to be equal to or higher than the internal pressure of the temporary sealing capacitor 202. Since the sealed capacitor 202 was opened, it was possible to prevent a problem that the electrolytic solution was discharged from the housing case 110 to the outside when the temporarily sealed capacitor 202 was opened. Further, in the gas discharge process of the second embodiment, as in the first embodiment, the internal pressure of the chamber 10 (that is, the external pressure around the temporary sealing battery 102) was gradually reduced to the atmospheric pressure. The electrolyte in the storage case 110 could be appropriately discharged to the outside through the liquid injection port 116 without the electrolytic solution being discharged from the storage case 110 to the outside.

次いで、熱溶着により注液口116を閉塞することで収容ケース110を封止し、その後、所定の処理を施すことで、図8に示すキャパシタ200が完成する。
なお、本実施例2のキャパシタ200の製造において、エージング工程を行う場合には、実施例1と同様に、エージング工程の後にも、ガス抜き工程(第2ガス抜き工程)を設けるのが好ましい。エージング工程で収容ケース110内に発生したガスを、適切に、外部に排出することができるからである。
Next, the container case 110 is sealed by closing the liquid injection port 116 by thermal welding, and then a predetermined process is performed, whereby the capacitor 200 shown in FIG. 8 is completed.
In the manufacture of the capacitor 200 of the second embodiment, when the aging process is performed, it is preferable to provide a degassing process (second degassing process) after the aging process as in the first embodiment. This is because the gas generated in the housing case 110 in the aging process can be appropriately discharged to the outside.

以上において、本発明を実施例1,2に即して説明したが、本発明は上記実施例に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることはいうまでもない。
例えば、実施例1では、コンディショニング工程の後にガス抜き工程(第1ガス抜き工程)を行い、さらにエージング工程の後にもガス抜き工程(第2ガス抜き工程)を行った。しかしながら、コンディショニング工程の後だけ、あるいはエージング工程の後だけに、ガス抜き工程を行うようにしても良い。
In the above, the present invention has been described with reference to the first and second embodiments. However, the present invention is not limited to the above-described embodiments, and it can be applied as appropriate without departing from the scope of the present invention. Nor.
For example, in Example 1, the degassing process (first degassing process) was performed after the conditioning process, and the degassing process (second degassing process) was performed after the aging process. However, the degassing process may be performed only after the conditioning process or only after the aging process.

また、実施例1の電池100では、電極体として、帯状の正極155、負極156、及びセパレータ157を捲回してなる捲回型の電極体150を用いた。同様に、実施例2のキャパシタ200でも、電極体として、帯状の第1電極255、第2電極256、及びセパレータ257を捲回してなる捲回型の電極体250を用いた。しかしながら、電極体の構造は、捲回型に限らず、板状の正極(第1電極)、負極(第2電極)、及びセパレータを積層した積層型など、いずれの構造であっても良い。   In the battery 100 of Example 1, a wound electrode body 150 formed by winding a strip-like positive electrode 155, a negative electrode 156, and a separator 157 was used as the electrode body. Similarly, in the capacitor 200 of Example 2, the wound electrode body 250 formed by winding the strip-shaped first electrode 255, the second electrode 256, and the separator 257 was used as the electrode body. However, the structure of the electrode body is not limited to the wound type, and may be any structure such as a laminated type in which a plate-like positive electrode (first electrode), a negative electrode (second electrode), and a separator are laminated.

また、実施例1,2では、ラミネートフィルム製の収容ケース110を用いて、蓄電素子(電池、キャパシタ)を製造したが、金属製、樹脂製など、いずれの材料からなる収容ケースを用いても良い。いずれの材料からなる収容ケースを用いても、本発明の製造方法(ガス抜き工程)によれば、電解液を外部に放出することなく、製造過程で収容ケース内に発生したガスを外部に排出することができる。従って、蓄電素子の特性及び信頼性が良好な蓄電素子を製造することができる。   In Examples 1 and 2, a storage element (battery, capacitor) was manufactured using a storage case 110 made of a laminate film. However, a storage case made of any material such as metal or resin may be used. good. Regardless of the storage case made of any material, according to the manufacturing method (gas venting process) of the present invention, the gas generated in the storage case during the manufacturing process is discharged to the outside without releasing the electrolyte. can do. Therefore, a power storage element with favorable characteristics and reliability of the power storage element can be manufactured.

実施例1にかかる電池100の平面図である。1 is a plan view of a battery 100 according to Example 1. FIG. 実施例1にかかるラミネートフィルム101を重ね合わせる前の様子を示す平面図である。It is a top view which shows the mode before laminating | stacking the laminate film 101 concerning Example 1. FIG. ラミネートフィルム101を重ね合わせたときの様子を示す平面図である。It is a top view which shows a mode when the laminate film 101 is piled up. 仮封止電池102及び仮封止キャパシタ202の平面図である。3 is a plan view of a temporary sealing battery 102 and a temporary sealing capacitor 202. FIG. ガス抜き工程を説明する説明図ある。It is explanatory drawing explaining a degassing process. ガス抜き工程(開封工程)を説明する説明図ある。It is explanatory drawing explaining a degassing process (opening process). ガス抜き工程(ガス排出工程)を説明する説明図ある。It is explanatory drawing explaining a degassing process (gas discharge process). 実施例2にかかるキャパシタ200の平面図である。6 is a plan view of a capacitor 200 according to Example 2. FIG. 実施例2にかかるラミネートフィルム101を重ね合わせる前の様子を示す平面図である。It is a top view which shows the mode before laminating | stacking the laminate film 101 concerning Example 2. FIG.

符号の説明Explanation of symbols

100 電池(蓄電素子)
200 キャパシタ(蓄電素子)
102 仮封止電池(仮封止蓄電素子)
202 仮封止キャパシタ(仮封止蓄電素子)
101 ラミネートフィルム
110 収容ケース
150,250 電極体
100 battery (storage element)
200 Capacitor (storage element)
102 Temporary sealing battery (temporary sealing storage element)
202 Temporary sealing capacitor (temporary sealing storage element)
101 Laminated film 110 Housing case 150, 250 Electrode body

Claims (4)

電極体及び電解液を収容した収容ケースを仮封止して、仮封止蓄電素子を形成する仮封止工程と、
上記仮封止蓄電素子に所定の処理工程を施した後、上記仮封止蓄電素子を開封して、上記収容ケース内のガスを外部に排出するガス抜き工程と、
を備える蓄電素子の製造方法であって、
上記ガス抜き工程は、
上記仮封止蓄電素子の周囲の外気圧を、当該仮封止蓄電素子を開封したときに、当該仮封止蓄電素子の内圧との圧力差によって上記収容ケース内から上記電解液が外部に放出されることのない外気圧とした状態で、当該仮封止蓄電素子を開封する開封工程と、
上記仮封止蓄電素子を開封した後、当該蓄電素子の周囲の外気圧を徐々に低下させて、上記収容ケース内のガスを外部に排出させるガス排出工程と、を含む
蓄電素子の製造方法。
Temporary sealing step of temporarily sealing the housing case containing the electrode body and the electrolytic solution to form a temporarily sealed energy storage device;
A degassing step of opening the temporary sealed electricity storage element after the predetermined treatment step is performed on the temporarily sealed electricity storage element and discharging the gas in the housing case to the outside;
A method of manufacturing a storage element comprising:
The degassing step is
When the external pressure around the temporarily sealed electricity storage element is opened, the electrolytic solution is discharged from the inside of the housing case due to a pressure difference from the internal pressure of the temporarily sealed electricity storage element. An unsealing step for unsealing the temporarily sealed power storage element in a state where the external pressure is not applied,
A gas discharge step of, after opening the temporarily sealed power storage element, gradually reducing the external air pressure around the power storage element and discharging the gas in the housing case to the outside.
請求項1に記載の蓄電素子の製造方法であって、
前記開封工程において、
前記仮封止蓄電素子の周囲の外気圧を、当該仮封止蓄電素子の内圧以上とした状態で、当該仮封止蓄電素子を開封する
蓄電素子の製造方法。
It is a manufacturing method of the electrical storage element according to claim 1,
In the opening step,
A method for manufacturing a power storage element, wherein the temporarily sealed power storage element is opened in a state where an external pressure around the temporarily sealed power storage element is equal to or higher than an internal pressure of the temporary sealed power storage element.
請求項1または請求項2に記載の蓄電素子の製造方法であって、
前記所定の処理工程として、
前記仮封止蓄電素子のコンディショニングを行うコンディショニング工程と、
上記仮封止蓄電素子を、所定期間にわたり高温雰囲気下に安置するエージング工程と、を含み、
前記ガス抜き工程は、
上記コンディショニング工程及び上記エージング工程の少なくともいずれかの工程の後に行う
蓄電素子の製造方法。
It is a manufacturing method of the electrical storage element according to claim 1 or 2,
As the predetermined processing step,
A conditioning process for conditioning the temporarily sealed electricity storage element;
An aging step of placing the temporarily sealed electricity storage element in a high temperature atmosphere for a predetermined period,
The degassing step includes
A method for manufacturing a power storage element that is performed after at least one of the conditioning process and the aging process.
請求項1〜請求項3のいずれか一項に記載の蓄電素子の製造方法であって、
前記蓄電素子は、リチウムイオン二次電池である
リチウムイオン二次電池の製造方法。
It is a manufacturing method of the electrical storage element according to any one of claims 1 to 3,
The said electrical storage element is a manufacturing method of the lithium ion secondary battery which is a lithium ion secondary battery.
JP2005337301A 2005-11-22 2005-11-22 Manufacturing method of storage element Pending JP2007141774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005337301A JP2007141774A (en) 2005-11-22 2005-11-22 Manufacturing method of storage element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005337301A JP2007141774A (en) 2005-11-22 2005-11-22 Manufacturing method of storage element

Publications (1)

Publication Number Publication Date
JP2007141774A true JP2007141774A (en) 2007-06-07

Family

ID=38204378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005337301A Pending JP2007141774A (en) 2005-11-22 2005-11-22 Manufacturing method of storage element

Country Status (1)

Country Link
JP (1) JP2007141774A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009048970A (en) * 2007-08-23 2009-03-05 Toyota Motor Corp Method for manufacturing enclosed battery
WO2009096135A1 (en) * 2008-01-31 2009-08-06 Toyota Jidosha Kabushiki Kaisha Sealed type cell manufacturing method
JP2009295595A (en) * 2009-09-17 2009-12-17 Toyota Motor Corp Closed battery manufacturing method
JP2013033051A (en) * 2012-09-06 2013-02-14 Jvc Kenwood Corp Navigation device
WO2015145852A1 (en) * 2014-03-25 2015-10-01 Necエナジーデバイス株式会社 Secondary battery production method
JP2015220199A (en) * 2014-05-21 2015-12-07 日産自動車株式会社 Method of manufacturing film-covered battery
JP2019507958A (en) * 2016-03-09 2019-03-22 ザップゴー リミテッド How to reduce supercapacitor outgassing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000353547A (en) * 1999-06-08 2000-12-19 Fuji Elelctrochem Co Ltd Degassing method for square lithium ion secondary battery
JP2001283923A (en) * 2000-03-30 2001-10-12 Matsushita Electric Ind Co Ltd Manufacturing method of battery
JP2005285615A (en) * 2004-03-30 2005-10-13 Tdk Corp Method and device for producing secondary battery or electric double-layer capacitor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000353547A (en) * 1999-06-08 2000-12-19 Fuji Elelctrochem Co Ltd Degassing method for square lithium ion secondary battery
JP2001283923A (en) * 2000-03-30 2001-10-12 Matsushita Electric Ind Co Ltd Manufacturing method of battery
JP2005285615A (en) * 2004-03-30 2005-10-13 Tdk Corp Method and device for producing secondary battery or electric double-layer capacitor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009048970A (en) * 2007-08-23 2009-03-05 Toyota Motor Corp Method for manufacturing enclosed battery
WO2009096135A1 (en) * 2008-01-31 2009-08-06 Toyota Jidosha Kabushiki Kaisha Sealed type cell manufacturing method
KR101160762B1 (en) 2008-01-31 2012-06-28 도요타지도샤가부시키가이샤 Sealed type cell manufacturing method
US9099754B2 (en) 2008-01-31 2015-08-04 Toyota Jidosha Kabushiki Kaisha Sealed type cell manufacturing method
JP2009295595A (en) * 2009-09-17 2009-12-17 Toyota Motor Corp Closed battery manufacturing method
JP2013033051A (en) * 2012-09-06 2013-02-14 Jvc Kenwood Corp Navigation device
WO2015145852A1 (en) * 2014-03-25 2015-10-01 Necエナジーデバイス株式会社 Secondary battery production method
JPWO2015145852A1 (en) * 2014-03-25 2017-04-13 Necエナジーデバイス株式会社 Manufacturing method of secondary battery
JP2015220199A (en) * 2014-05-21 2015-12-07 日産自動車株式会社 Method of manufacturing film-covered battery
JP2019507958A (en) * 2016-03-09 2019-03-22 ザップゴー リミテッド How to reduce supercapacitor outgassing

Similar Documents

Publication Publication Date Title
KR100560158B1 (en) Lithium secondary battery with high safety and manufacturing method thereof
US20150288021A1 (en) Electrode assembly having step, secondary battery, battery pack and device including electrode assembly, and method of manufacturing electrode assembly
KR101471765B1 (en) Sealing method of pouch-type secondary battery, pouch-type secondary battery, and method for manufacturing the same
JP2000200585A (en) Battery package
CN106169551A (en) Packed battery
JP2007141774A (en) Manufacturing method of storage element
KR20100118394A (en) Pouch-type secondary battery comprising a portion of non-sealing residue
KR20130126365A (en) Manufacturing method of lithium secondary battery
US11050103B2 (en) Pouch cell and method of forming same
WO2019121332A1 (en) Pouch cell and method of manufacturing same
JP2013012428A (en) Secondary battery and secondary battery manufacturing method
KR20190042801A (en) Sealing Block to Prevent Crack of Pouch-Type Secondary Battery, Pouch-Type Battery Case and Sealing Method for Pouch-Type Battery Case Using thereof
JP7209659B2 (en) Battery manufacturing method
CN102047468B (en) Cylindrical battery
KR20120064172A (en) Pouch type lithium secondary battery
JP2010186786A (en) Electrical storage device and electrical storage device module
JP5224336B2 (en) Film exterior electrochemical device
JP6682203B2 (en) Secondary battery manufacturing method
JP2008103240A (en) Method of manufacturing battery
JP2010238861A (en) Laminate-coating storage device
JP2020161378A (en) Power storage device and method for manufacturing power storage device
US20230282951A1 (en) Method for manufacturing secondary battery
JP7343413B2 (en) battery cell
JP3242750U (en) pouch type battery
CN111937212B (en) Battery cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110315