JP2016122495A - Battery manufacturing method - Google Patents

Battery manufacturing method Download PDF

Info

Publication number
JP2016122495A
JP2016122495A JP2014260152A JP2014260152A JP2016122495A JP 2016122495 A JP2016122495 A JP 2016122495A JP 2014260152 A JP2014260152 A JP 2014260152A JP 2014260152 A JP2014260152 A JP 2014260152A JP 2016122495 A JP2016122495 A JP 2016122495A
Authority
JP
Japan
Prior art keywords
heat
seal
battery
sealing
temporary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014260152A
Other languages
Japanese (ja)
Other versions
JP6479458B2 (en
Inventor
畑 浩
Hiroshi Hata
浩 畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Packaging Corp
Original Assignee
Showa Denko Packaging Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko Packaging Co Ltd filed Critical Showa Denko Packaging Co Ltd
Priority to JP2014260152A priority Critical patent/JP6479458B2/en
Priority to TW104131110A priority patent/TWI686976B/en
Priority to KR1020150155028A priority patent/KR20160078228A/en
Priority to CN201510857785.9A priority patent/CN105742526B/en
Publication of JP2016122495A publication Critical patent/JP2016122495A/en
Application granted granted Critical
Publication of JP6479458B2 publication Critical patent/JP6479458B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a battery manufacturing method that can secure sufficient seal strength even when electrolytic solution adheres to a heat seal planned site in a heat seal operation of an exterior packaging material after electrolytic solution is injected.SOLUTION: A manufacturing method comprises: a step of preparing a temporary seal member 30 in which a battery main body portion 23 is disposed in a bag body having a substantially rectangular shape in plan view, three sides out of four sides in the neighborhood of the surrounding of the battery main body portion in the bag body being blocked, and one residual side portion 34 being subjected to heat seal joints 25, 26 while a non-seal opening portion 24 is left at a part in the length direction of the one side portion 34; an injection step of disposing the temporary seal member while the temporary seal member is erected with the non-sealing opening portion 24 being opened upwards, disposing the tip of an electrolytic solution injecting nozzle 40 just above the non-seal opening portion 24 or inserting the electrolytic liquid solution injecting nozzle 40 into the non-seal opening portion 24 and injecting electrolytic solution into the battery main body portion 23; and a sealing step of heat-sealing the non-seal opening portion 24 of the temporary seal member 30 after the injection step.SELECTED DRAWING: Figure 1

Description

本発明は、外装材でラミネートしたラミネートリチウムイオン2次電池等のラミネート型2次電池の製造方法に関する。   The present invention relates to a method for producing a laminated secondary battery such as a laminated lithium ion secondary battery laminated with an exterior material.

近年、スマートフォン、タブレット端末等のモバイル電気機器の薄型化、軽量化に伴い、これらに搭載されるリチウムイオン二次電池、リチウムポリマー二次電池、リチウムイオンキャパシタ、電気2重層コンデンサ等の蓄電デバイスの外装材としては、従来の金属缶に代えて、耐熱性樹脂層/接着剤層/金属箔層/接着剤層/熱可塑性樹脂層(内側層)からなる積層体が用いられている。   In recent years, as mobile electrical devices such as smartphones and tablet terminals have become thinner and lighter, power storage devices such as lithium-ion secondary batteries, lithium-polymer secondary batteries, lithium-ion capacitors, and electric double-layer capacitors that are installed in these devices have been reduced. As the exterior material, a laminate composed of a heat-resistant resin layer / adhesive layer / metal foil layer / adhesive layer / thermoplastic resin layer (inner layer) is used instead of a conventional metal can.

例えば、外装材がその内側層を内側にして2つ折りされて形成された外装材前面部121と外装材背面部との間に電池本体部123が配置され、折り曲げ辺部131、対向辺シール部135及び下側シール部136で三方が封止されてなる仮シール部材130を作成し(図6(A)参照)、該仮シール部材130の上端開口部より電解液注入用ノズル140を挿入して、該電解液注入用ノズル140を用いて電池本体部123に電解液を注入し(図6(B)参照)、次いでガス室141の上端開口部をヒートシールしてガス室上端シール部137を形成し(図6(C)参照)、しかる後、化成処理を行う(図7(A)参照)。前記ガス室141は、化成処理時にガスが発生するため、ガスを貯めるスペースを確保するためのものである。化成処理後、ガス室141より脱気しながら、仮シール部材130の第2隣接辺部134を最終ヒートシールして第2隣接辺シール部127を形成して封止を完了し(図7(B)参照)、最後にガス室141に相当する部分(略上半部)をトリミング加工により除去することによって、ラミネート電池110を製造することができる(図7(C)参照)。   For example, the battery body 123 is disposed between an exterior material front surface portion 121 and an exterior material rear surface portion formed by folding the exterior material into two with the inner layer inside, and the bent side portion 131 and the opposed side seal portion 135 and a lower seal portion 136 are formed to seal the temporary seal member 130 (see FIG. 6A), and the electrolyte injection nozzle 140 is inserted from the upper end opening of the temporary seal member 130. Then, the electrolytic solution is injected into the battery body 123 using the electrolytic solution injection nozzle 140 (see FIG. 6B), and then the upper end opening of the gas chamber 141 is heat-sealed to heat the upper end seal portion 137 of the gas chamber. (See FIG. 6C), and thereafter, a chemical conversion treatment is performed (see FIG. 7A). The gas chamber 141 is for securing a space for storing gas because gas is generated during the chemical conversion treatment. After the chemical conversion treatment, while degassing from the gas chamber 141, the second adjacent side portion 134 of the temporary seal member 130 is finally heat sealed to form the second adjacent side seal portion 127 to complete the sealing (FIG. 7 ( B)), and finally, a portion (substantially upper half) corresponding to the gas chamber 141 is removed by trimming, whereby the laminated battery 110 can be manufactured (see FIG. 7C).

また、次のようなヒートシール方法が知られている。即ち、リチウム電池本体を収納し、一部に開口部を有する、少なくとも基材層、アルミニウム箔、化成処理層、熱接着性樹脂からなる内層が順に積層されたフレキシブル外装材により形成されたリチウム電池外装体の前記開口部を熱封緘する方法であって、前記開口部の熱封緘部となる箇所を、内層を形成する熱接着性樹脂の融点未満の温度で加熱乾燥する第1工程と、前記開口部の熱封緘部となる箇所を熱接着手段により熱接着して熱封緘する第2工程とからなる、リチウム電池外装体の熱封緘方法が公知である(特許文献1参照)。   Moreover, the following heat sealing methods are known. That is, a lithium battery formed by a flexible exterior material that houses a lithium battery main body and has an opening in a part thereof, in which at least a base material layer, an aluminum foil, a chemical conversion treatment layer, and an inner layer made of a heat-adhesive resin are sequentially laminated. A method of heat sealing the opening of the exterior body, the first step of heating and drying a portion to be a heat sealing portion of the opening at a temperature lower than the melting point of the thermoadhesive resin forming the inner layer, A heat sealing method for a lithium battery exterior body is known which includes a second step of heat-sealing a portion to be a heat-sealing portion of an opening by heat-bonding by a heat-bonding means (see Patent Document 1).

特開2006−261033号公報JP 2006-261103 A

しかるに、前者の図6、7で示したシール方法によれば、電解液の注入操作により、仮シール部材130の最終ヒートシール予定部(第2隣接辺部)134の内面には電解液が付着しており、従ってこのような電解液夾雑物を介在させてヒートシールされることになるので、十分なシール強度を確保することができず、ヒートシール箇所においてデラミネーションが発生することが懸念される。   However, according to the former sealing method shown in FIGS. 6 and 7, the electrolytic solution adheres to the inner surface of the final heat seal scheduled portion (second adjacent side portion) 134 of the temporary seal member 130 by the injection operation of the electrolytic solution. Therefore, heat sealing is performed by interposing such electrolyte contaminants, so that sufficient sealing strength cannot be ensured, and there is a concern that delamination may occur at the heat sealing location. The

また、後者のシール方法では、最終ヒートシール予定部の全領域に電解液が付着するので、加熱乾燥させるのに時間を要し、生産性に劣るという問題があった。特に、内層を形成する熱接着性樹脂の融点未満の温度で付着電解液の加熱乾燥を行うので、加熱乾燥させるのに相当な時間を要する。   Further, in the latter sealing method, since the electrolytic solution adheres to the entire area of the final heat seal planned portion, there is a problem that it takes time to heat and dry and the productivity is inferior. In particular, since the attached electrolytic solution is heated and dried at a temperature lower than the melting point of the thermoadhesive resin forming the inner layer, it takes a considerable time to heat and dry.

本発明は、かかる技術的背景に鑑みてなされたものであって、電解液注入後の外装材のヒートシールの際にヒートシール予定部位に電解液が付着していても、十分なシール強度を確保できてヒートシール箇所のデラミネーションの発生を防止できると共に、生産性にも優れた、電池の製造方法を提供することを目的とする。   The present invention has been made in view of such a technical background, and has sufficient sealing strength even when an electrolyte is attached to a heat-seal planned site during heat sealing of an exterior material after injection of the electrolyte. An object of the present invention is to provide a method for producing a battery that can be ensured and can prevent the occurrence of delamination at a heat-sealed portion and is excellent in productivity.

前記目的を達成するために、本発明は以下の手段を提供する。   In order to achieve the above object, the present invention provides the following means.

[1]外側層としての耐熱性樹脂層と、内側層としての熱可塑性樹脂層と、これら両層間に配設された金属箔層とを含む外装材で形成された平面視略矩形状の袋体の内部に電池本体部が配置され、前記袋体における前記電池本体部の周囲近傍の4辺のうち3辺が封止されると共に残る1辺部はその長さ方向の一部に未シール開口部を残してヒートシール接合されてなる仮シール部材を準備する工程と、
前記仮シール部材を前記未シール開口部を上方に向けて開口させて立てた状態に配置し、電解液注入用ノズルの先端を前記未シール開口部の直上位置に配置して又は前記未シール開口部に挿通せしめて前記電池本体部に電解液を注入する注入工程と、
前記注入工程の後に、前記仮シール部材における未シール開口部をヒートシール接合する封入工程と、を含むことを特徴とする電池の製造方法。
[1] A bag having a substantially rectangular shape in a plan view formed of an exterior material including a heat-resistant resin layer as an outer layer, a thermoplastic resin layer as an inner layer, and a metal foil layer disposed between the two layers. A battery main body is disposed inside the body, and three of the four sides of the bag body in the vicinity of the periphery of the battery main body are sealed, and the remaining one side is not sealed in a part of its length direction. Preparing a temporary seal member that is heat-sealed and leaving an opening; and
The temporary seal member is disposed in a standing state with the unsealed opening opened upward, and the tip of the electrolyte injection nozzle is disposed at a position immediately above the unsealed opening or the unsealed opening An injection step of injecting an electrolyte solution into the battery main body by inserting it into the part,
A method for producing a battery, comprising: an encapsulating step of heat-sealing an unsealed opening in the temporary seal member after the injecting step.

[2]前記仮シール部材は、前記残る1辺部においてその長さ方向の一部に未シール開口部を残してその長さ方向の両端側がヒートシール接合されてなるものである前項1に記載の電池の製造方法。   [2] The temporary seal member according to the preceding item 1, wherein the remaining one side portion is formed by heat sealing joining at both ends in the length direction while leaving an unsealed opening in a part of the length direction. Battery manufacturing method.

[3]前記封入工程において、内側の接触面が、ヒートシールバーの長さ方向又は/及び幅方向の中央部が突出する湾曲形状に構成されている一対のヒートシールバーを用いて前記ヒートシール接合を行う前項1または2に記載の電池の製造方法。   [3] In the enclosing step, the heat sealing is performed using a pair of heat sealing bars in which an inner contact surface is formed in a curved shape in which a center part in the length direction and / or width direction of the heat sealing bar protrudes. 3. The method for producing a battery according to 1 or 2 above, wherein bonding is performed.

[4]前記封入工程において、内側の接触面に多孔シートが配置された一対のヒートシールバーを用いて前記ヒートシール接合を行う前項1〜3のいずれか1項に記載の電池の製造方法。   [4] The method for manufacturing a battery according to any one of items 1 to 3, wherein, in the enclosing step, the heat seal bonding is performed using a pair of heat seal bars in which a porous sheet is disposed on an inner contact surface.

[5]前記仮シール部材における封止されている3辺のうち1辺は、前記外装材が、前記内側層を内側にして2つ折りされて形成された折り曲げ部により封止されたものである前項1〜4のいずれか1項に記載の電池の製造方法。   [5] Of the three sides sealed in the temporary seal member, one side is sealed by a bent portion formed by folding the exterior material into two with the inner layer as the inner side. 5. The method for producing a battery according to any one of items 1 to 4.

[1]の発明では、電解液を注入する注入工程の前の段階で、残る1辺部においてその長さ方向の一部に未シール開口部を残して長さ方向の残部がヒートシール接合されているので、電解液注入のための注入口(未シール開口部)が小さいものとなり、これにより、電解液注入後のシール予定部(未シール開口部)における残留付着電解液の量を低減できるので、ヒートシール時に残留付着電解液が蒸発しやすいものとなり(残留付着電解液の量が少ないことによりヒートシール時の熱で残留付着電解液を速やかに揮散させることができ)、もって良好なヒートシール接合を実現できて(十分なシール強度を確保できて)、シール部のデラミネーションの発生を防止できる。   In the invention of [1], in the stage before the injection step of injecting the electrolytic solution, the remaining one side portion is heat-sealed with the remaining portion in the length direction leaving an unsealed opening in a part of the length direction. As a result, the injection port (unsealed opening) for injecting the electrolyte is small, and this reduces the amount of residual adhered electrolyte in the planned sealing portion (unsealed opening) after the injection of the electrolyte. Therefore, the residual adhered electrolyte is likely to evaporate during heat sealing (the residual adhered electrolyte can be quickly volatilized by the heat during heat sealing due to the small amount of the residual adhered electrolyte), and the heat is good. Seal bonding can be realized (a sufficient seal strength can be secured), and delamination of the seal portion can be prevented.

このようにシール部の品質、信頼性を向上できるので、生産性向上(歩留まり改善、検査頻度低減等)、電池品質向上(電池の長寿命化、信頼性向上等)に資する。   Thus, since the quality and reliability of the seal portion can be improved, it contributes to productivity improvement (yield improvement, inspection frequency reduction, etc.) and battery quality improvement (battery life extension, reliability improvement, etc.).

また、電解液注入のための注入口(未シール開口部)が小さいものとなるので、電解液注液時の電解液飛散及び脱気シール時の電解液飛散を抑制することができ、これにより、シール予定部(未シール開口部)での電解液付着を最小限に抑えることができる。その結果、電解液注液量の管理を精度高く行うことができるし、また電解液夾雑部位も特定できるので、品質管理を行い易いという利点がある。   In addition, since the injection port (unsealed opening) for injecting the electrolyte becomes small, it is possible to suppress the electrolyte scattering during the electrolyte injection and the electrolyte scattering during the degassing seal. Further, it is possible to minimize the adhesion of the electrolytic solution at the planned sealing portion (unsealed opening). As a result, the amount of electrolyte solution injection can be managed with high accuracy, and an electrolyte solution contaminated part can be specified, which has the advantage of easy quality control.

更に、未シール開口部に相当するヒートシール部位は、上記のとおり残留付着電解液の量が少ないという効果が得られる一方、少しは電解液夾雑の影響がある分、電解液夾雑のない他の(残りの)ヒートシール部よりもシール強度が少し低くなる関係にあるので、仮に、電池が過熱状態になって内部発生ガスにより内圧が上昇するようなことがあったとしても、前記「未シール開口部に相当するヒートシール部位」が安全確保のための「ガスリーク部」になるので、ガスリーク部の位置を明確に設定できるという利点がある。   Furthermore, the heat seal portion corresponding to the unsealed opening can obtain the effect that the amount of the residual adhered electrolyte solution is small as described above, while the effect of the electrolyte solution contamination is small, and there is no other electrolyte solution contamination. Since the seal strength is slightly lower than that of the (remaining) heat seal portion, even if the battery is overheated and the internal pressure increases due to the internally generated gas, Since the “heat seal portion corresponding to the opening” becomes a “gas leak portion” for ensuring safety, there is an advantage that the position of the gas leak portion can be clearly set.

[2]の発明では、仮シール部材は、残る1辺部においてその長さ方向の端部ではない中間部領域に未シール開口部が設けられているので、電解液注入用ノズルの未シール開口部への挿入作業等をスムーズに行うことができる。   In the invention of [2], since the temporary sealing member is provided with an unsealed opening in an intermediate region that is not an end in the length direction in the remaining one side, the unsealed opening of the electrolyte injection nozzle It is possible to smoothly perform the insertion operation into the part.

[3]及び[4]の発明では、ヒートシール予定の未シール開口部に電解液が付着していても該電解液を周辺側に逃がしつつヒートシール接合を行うことができるので、高いシール強度を確保できるより良好なヒートシール接合を実現できて、シール部のデラミネーションの発生を十分に防止できる。   In the inventions of [3] and [4], even if the electrolyte solution adheres to the unsealed opening that is to be heat sealed, heat seal bonding can be performed while escaping the electrolyte solution to the peripheral side. It is possible to realize better heat seal bonding that can secure the above and sufficiently prevent the occurrence of delamination in the seal portion.

[5]の発明では、仮シール部材を準備する工程において、封止されている3辺のうち1辺は、シール接合ではなく、2つ折りの折り曲げ部により封止された構成であるから、生産性をさらに向上させることができる。   In the invention of [5], in the step of preparing the temporary seal member, one of the three sides that are sealed is not a seal joint, but is a structure that is sealed by a double-folded bent portion. The property can be further improved.

本発明の製造方法の前半の工程を説明する正面図であって、(A)は第2隣接辺部において未シール開口部を残してその両側部分でヒートシールした状態、(B)は未シール開口部に電解液注入用ノズルを挿入して電解液を注入している状態、(C)はガス室の上端の開口部をヒートシールして密封袋とした状態をそれぞれ示す。It is a front view explaining the process of the first half of the manufacturing method of this invention, Comprising: (A) is the state which heat-sealed in the both sides part, leaving an unseal | opened opening part in a 2nd adjacent edge part, (B) is unseal | sealed. A state in which an electrolytic solution injection nozzle is inserted into the opening to inject the electrolytic solution, and (C) shows a state in which the opening at the upper end of the gas chamber is heat sealed to form a sealed bag. 本発明の製造方法の後半の工程を説明する正面図であって、(A)は化成処理により電解液を電極材に浸透させている状態、(B)は未シール開口部をヒートシール接合して封止を完了した状態、(C)はトリミング加工によりガス室部を除去してラミネート電池を得た状態をそれぞれ示す。It is a front view explaining the latter half process of the manufacturing method of this invention, (A) is the state which is making the electrolyte solution osmose | permeate to an electrode material by chemical conversion treatment, (B) is heat seal joining an unsealed opening part. (C) shows a state in which a laminated battery is obtained by removing the gas chamber portion by trimming. 未シール開口部を一対のヒートシールバーでヒートシールする状態を示す断面図である。It is sectional drawing which shows the state which heat seals an unsealed opening part with a pair of heat seal bar. 未シール開口部を一対のヒートシールバーでヒートシールする状態の他の例を示す断面図である。It is sectional drawing which shows the other example of the state which heat seals an unsealed opening part with a pair of heat seal bar. 本発明の製造方法で使用する外装材の一例を示す断面図である。It is sectional drawing which shows an example of the exterior material used with the manufacturing method of this invention. 従来の製造方法の前半の工程を説明する正面図であって、(A)はガス室の上端の開口部を残して他の辺をヒートシールした状態、(B)は電解液注入用ノズルを用いて電解液を注入している状態、(C)はガス室の上端の開口部をヒートシールして密封袋とした状態をそれぞれ示す。It is a front view explaining the process of the first half of the conventional manufacturing method, (A) is the state which left the opening part of the upper end of a gas chamber, and the other side was heat-sealed, (B) is the nozzle for electrolyte injection. (C) shows the state which heat-sealed the opening part of the upper end of a gas chamber, and was set as the sealing bag, respectively. 従来の製造方法の後半の工程を説明する正面図であって、(A)は化成処理により電解液を電極材に浸透させている状態、(B)は最終ヒートシールを行って封止を完了した状態、(C)はトリミング加工によりガス室部を除去してラミネート電池を形成した状態をそれぞれ示す。It is a front view explaining the latter half process of the conventional manufacturing method, (A) is a state in which the electrolytic solution is infiltrated into the electrode material by chemical conversion treatment, (B) completes sealing by performing final heat sealing (C) shows a state in which the gas chamber is removed by trimming to form a laminated battery.

本発明に係る電池の製造方法について図面を参照しつつ説明する。本発明の製造方法で使用する外装材1としては、外側層としての耐熱性樹脂層2と、内側層としての熱可塑性樹脂層3と、これら両層間に配設された金属箔層4とを含む外装材を用いる(図5参照)。例えば、金属箔層4の一方の面に第1接着剤層5を介して耐熱性樹脂層(外側層)2が積層一体化され、前記金属箔層4の他方の面に第2接着剤層6を介して熱可塑性樹脂層(内側層)3が積層一体化されてなる外装材1を用いる(図5参照)。   A battery manufacturing method according to the present invention will be described with reference to the drawings. As the exterior material 1 used in the manufacturing method of the present invention, a heat-resistant resin layer 2 as an outer layer, a thermoplastic resin layer 3 as an inner layer, and a metal foil layer 4 disposed between these two layers are used. Use the exterior packaging material (see FIG. 5). For example, the heat-resistant resin layer (outer layer) 2 is laminated and integrated on one surface of the metal foil layer 4 via the first adhesive layer 5, and the second adhesive layer is formed on the other surface of the metal foil layer 4. An exterior material 1 in which a thermoplastic resin layer (inner layer) 3 is laminated and integrated through 6 is used (see FIG. 5).

上記構成の外装材1で形成された平面視略矩形状の袋体の内部に電池本体部23が配置され、前記袋体における前記電池本体部23の周囲近傍の4辺のうち3辺31、32、33が封止されると共に残る1辺部34はその長さ方向の一部に未シール開口部24を残してヒートシール接合されてなる仮シール部材30を作成する(図1(A)参照)。   A battery main body portion 23 is disposed inside a bag body having a substantially rectangular shape in plan view formed of the exterior material 1 having the above configuration, and three sides 31 of four sides in the vicinity of the battery main body portion 23 in the bag body, The temporary side seal member 30 formed by heat-sealing the one side portion 34 that is left while the portions 32 and 33 are sealed, leaving an unsealed opening 24 in a part of the length direction (FIG. 1A). reference).

前記仮シール部材30では、平面視略矩形状の上記外装材1が長さ方向の中間位置で内側層3を内側にして2つ折りされて形成された略矩形状の外装材前面部21と略矩形状の外装材背面部22との間に平面視略矩形状の電池本体部23が配置されている。図1において、31が折り曲げ辺(折り曲げ部)である。前記電池本体部23は、外装材前面部21と外装材背面部22の間の空間の略下半部に配置されている(図1(A)参照)。前記2つ折りの折り曲げ辺31に対向する対向辺部32において外装材前面部21と外装材背面部22とがヒートシール等により接合されて対向辺シール部35が形成されている。   In the temporary seal member 30, the substantially rectangular exterior material front surface portion 21 formed by folding the exterior material 1 having a substantially rectangular shape in plan view in an intermediate position in the length direction with the inner layer 3 inside is folded. A battery body portion 23 having a substantially rectangular shape in a plan view is arranged between the rectangular exterior material rear surface portion 22 and the rectangular exterior material rear surface portion 22. In FIG. 1, reference numeral 31 denotes a bent side (folded portion). The battery main body 23 is disposed in a substantially lower half of the space between the exterior material front surface portion 21 and the exterior material rear surface portion 22 (see FIG. 1A). The facing side seal portion 35 is formed by joining the exterior material front surface portion 21 and the exterior material back surface portion 22 by heat sealing or the like at the facing side portion 32 that faces the folded side 31 that is folded in half.

前記電池本体部23の1辺(対向辺部)32から外方に向けて正極タブリード11および負極タブリード12が延ばされている(図1(A)参照)。しかして、本実施形態では、前記対向辺部32において、外装材前面部21と外装材背面部22とが、正極タブリード11および負極タブリード12を挟み込んでヒートシール等により接合されて対向辺シール部35が形成されている(図1(A)参照)。正極タブリード11の先端部は外部に導出され、負極タブリード12の先端部は外部に導出されている。前記電池本体部23は、構成要素として、正極材、負極材および電解液を含むが、この段階では、電解液は未だ注入されていない。正極材に正極タブリード11が接続され、負極材に負極タブリード12が接続されている。   The positive electrode tab lead 11 and the negative electrode tab lead 12 are extended outward from one side (opposite side portion) 32 of the battery body 23 (see FIG. 1A). Thus, in the present embodiment, in the facing side portion 32, the exterior material front surface portion 21 and the exterior material rear surface portion 22 are joined by heat sealing or the like with the positive electrode tab lead 11 and the negative electrode tab lead 12 sandwiched therebetween. 35 is formed (see FIG. 1A). The tip of the positive electrode tab lead 11 is led out to the outside, and the tip of the negative electrode tab lead 12 is led out to the outside. The battery body 23 includes, as constituent elements, a positive electrode material, a negative electrode material, and an electrolytic solution, but at this stage, the electrolytic solution has not yet been injected. A positive electrode tab lead 11 is connected to the positive electrode material, and a negative electrode tab lead 12 is connected to the negative electrode material.

前記袋体における電池本体部23の周囲近傍の4辺31、32、33、34のうち、折り曲げ辺31に隣り合う一方の第1隣接辺部33において外装材前面部21と外装材背面部22とがヒートシール等により接合されて第1隣接辺シール部36が形成されている(図1(A)参照)。また、前記袋体における電池本体部23の周囲近傍の4辺31、32、33、34のうち、折り曲げ辺31に隣り合う他方の第2隣接辺部34においてその長さ方向の一部に未シール開口部24を残してヒートシール等により接合されて、前記未シール開口部24を挟んで長さ方向の一端側の部分シール部(第1部分シール部)25および長さ方向の他端側の部分シール部(第2部分シール部)26が形成されている(図1(A)参照)。図1において、前記仮シール部材30における第1、2部分シール部25、26より上の内部空間41は、「ガス室」と呼称する。   Of the four sides 31, 32, 33, 34 in the vicinity of the battery main body 23 in the bag body, the exterior material front surface portion 21 and the exterior material back surface portion 22 in the first adjacent side portion 33 adjacent to the bent side 31. Are joined by heat sealing or the like to form a first adjacent side sealing portion 36 (see FIG. 1A). Of the four sides 31, 32, 33, 34 near the periphery of the battery body 23 in the bag body, the other second adjacent side 34 adjacent to the bent side 31 is not partly in the length direction. Joined by heat sealing or the like, leaving the seal opening 24, the partial seal portion (first partial seal portion) 25 on one end side in the length direction and the other end side in the length direction across the unsealed opening portion 24 The partial seal portion (second partial seal portion) 26 is formed (see FIG. 1A). In FIG. 1, the internal space 41 above the first and second partial seal portions 25 and 26 in the temporary seal member 30 is referred to as a “gas chamber”.

次に、図1(B)に示すように、前記仮シール部材30を、第2隣接辺部34を第1隣接辺部33より上方側に配置して立てた状態に配置し、即ち前記仮シール部材30を未シール開口部24を第1隣接辺シール部36より上方側に配置して立てた状態に配置し、電解液注入用ノズル40の先端を、未シール開口部24の直上位置に配置して、又は、図1(B)に示すように未シール開口部24に挿通せしめて、電池本体部23に電解液を注入する(注入工程)。   Next, as shown in FIG. 1 (B), the temporary seal member 30 is arranged in a state where the second adjacent side portion 34 is arranged above the first adjacent side portion 33, that is, the temporary seal member 30 is placed. The seal member 30 is disposed in a state where the unsealed opening 24 is disposed above the first adjacent side seal portion 36 and the tip of the electrolyte injection nozzle 40 is positioned immediately above the unsealed opening 24. As shown in FIG. 1B, the electrolytic solution is injected into the battery main body portion 23 by being inserted into the unsealed opening 24 (injection step).

前記電解液としては、特に限定されるものではないが、例えば、エチレンカーボネートとジエチレンカーボネートを1:1の容量比で混合した混合溶媒に対して六フッ化リンリチウム塩を1モル/Lの濃度となるように溶解せしめた溶液(電解液)などが挙げられる。   Although it does not specifically limit as said electrolyte solution, For example, the density | concentration of 1 mol / L of lithium hexafluorophosphate is with respect to the mixed solvent which mixed ethylene carbonate and diethylene carbonate by the volume ratio of 1: 1. And a solution (electrolytic solution) dissolved so as to be.

次いで、前記仮シール部材30におけるガス室41の上端の開口部をヒートシールしてガス室上端シール部37を形成して密封袋を作成する(図1(C)参照)。   Next, the opening at the upper end of the gas chamber 41 in the temporary seal member 30 is heat-sealed to form the gas chamber upper end seal portion 37 to create a sealed bag (see FIG. 1C).

前記注入工程および前記密封袋作成工程は、得られるラミネート電池内に水分の残存を極力少なくしてラミネート電池の寿命を長くするために、ドライルーム内で行うのが好ましい。前記ドライルーム内の条件としては、例えば、露点「−40℃」〜「−60℃」の範囲などが挙げられる。   The injecting step and the sealed bag making step are preferably performed in a dry room in order to extend the life of the laminated battery by minimizing moisture remaining in the obtained laminated battery. Examples of the conditions in the dry room include a dew point in the range of “−40 ° C.” to “−60 ° C.”.

次に、前記密封袋(仮シール部材)30を化成処理容器50に入れて化成処理を行って電解液を電極材(正極材および負極材)に浸透させる(化成処理工程)(図2(A)参照)。前記化成処理としては、例えば次のような処理が挙げられる。まず、室温で放置した後に、40℃〜60℃の雰囲気下におくことで電解液の粘度を下げて放置して、電解液を電極材(電極活物質等)に浸み込ませる(浸透させる)。次に、ラミネート電池相当部の天面からプレス加圧、初期充電、高温(40℃〜60℃)雰囲気での加圧脱気を行う。   Next, the sealing bag (temporary seal member) 30 is placed in the chemical conversion treatment container 50 and subjected to chemical conversion treatment to permeate the electrolyte into the electrode materials (positive electrode material and negative electrode material) (chemical conversion treatment step) (FIG. 2A). )reference). Examples of the chemical conversion treatment include the following treatment. First, after leaving it at room temperature, it is left in an atmosphere of 40 ° C. to 60 ° C. to lower the viscosity of the electrolytic solution and let the electrolytic solution soak into (permeate) the electrode material (electrode active material or the like). ). Next, press depressurization, initial charging, and pressure deaeration in a high temperature (40 ° C. to 60 ° C.) atmosphere are performed from the top surface of the laminated battery equivalent portion.

しかる後、前記密封袋(仮シール部材)30の内部の脱気(真空脱気等)を行いながら、前記密封袋(仮シール部材)30における第2隣接辺部34の未シール開口部24をヒートシール接合して、第2隣接辺シール部27を形成して、外装材1による封止を完了する(封入工程)(図2(B)参照)。   Thereafter, while performing degassing (vacuum degassing etc.) inside the sealing bag (temporary sealing member) 30, the unsealed opening 24 of the second adjacent side portion 34 in the sealing bag (temporary sealing member) 30 is formed. Heat seal bonding is performed to form the second adjacent side seal portion 27 and the sealing with the exterior material 1 is completed (encapsulation step) (see FIG. 2B).

前記未シール開口部24をヒートシールする際のヒートシール温度は、熱可塑性樹脂層3を構成する熱可塑性樹脂の融点より高い温度に設定するのが好ましく、熱可塑性樹脂層3を構成する熱可塑性樹脂の融点より20℃〜40℃高い温度に設定するのが特に好ましい。   The heat sealing temperature when heat-sealing the unsealed opening 24 is preferably set to a temperature higher than the melting point of the thermoplastic resin constituting the thermoplastic resin layer 3, and the thermoplastic constituting the thermoplastic resin layer 3 is preferable. It is particularly preferable to set the temperature 20 to 40 ° C. higher than the melting point of the resin.

次に、前記密封袋30におけるガス室41に相当する部位(略上半部)をトリミング加工により除去して、図2(C)に示すラミネート電池10を得る。このラミネート電池10は、外装体1における電池本体部23の周囲近傍の4辺31、32、33、34の全てが封止されている(図2(C)参照)。   Next, a portion (substantially upper half) corresponding to the gas chamber 41 in the sealing bag 30 is removed by trimming to obtain a laminated battery 10 shown in FIG. In this laminated battery 10, all four sides 31, 32, 33, and 34 in the vicinity of the periphery of the battery main body portion 23 in the outer package 1 are sealed (see FIG. 2C).

前記封入工程において、前記密封袋(仮シール部材)30の未シール開口部24をヒートシールする際には、図3、4に示すヒートシールバーを用いてヒートシールを行うのが好ましい。   In the sealing step, when the unsealed opening 24 of the sealing bag (temporary sealing member) 30 is heat sealed, it is preferable to perform heat sealing using a heat seal bar shown in FIGS.

図3に示すヒートシールバー43では、内側の接触面44が、ヒートシールバーの長さ方向の中央部が突出する(中央部が凸になる)湾曲形状に構成されている。このような構成の一対のヒートシールバー43を用いて第2隣接辺部34の未シール開口部24のヒートシールを行った場合には、ヒートシール予定の未シール開口部に電解液が付着していても該電解液を周辺側に逃がしつつヒートシール接合を行うことができるので、高いシール強度を確保できる。前記ヒートシールバー43は、ヒートシールバーの幅方向の中央部が突出する(中央部が凸になる)湾曲形状に構成されたものであってもよい。また、前記前記ヒートシールバー43は、ヒートシールバーの長さ方向及び幅方向の中央部が突出する(中央部が凸になる)湾曲形状に構成されたものであってもよい。前記湾曲形状としては、特に限定されないが、例えば、円弧形状等が挙げられる。   In the heat seal bar 43 shown in FIG. 3, the inner contact surface 44 is configured in a curved shape in which the center portion in the length direction of the heat seal bar protrudes (the center portion becomes convex). When heat sealing is performed on the unsealed opening 24 of the second adjacent side 34 using the pair of heat seal bars 43 having such a configuration, the electrolyte adheres to the unsealed opening scheduled to be heat sealed. Even in such a case, the heat seal bonding can be performed while the electrolyte is released to the peripheral side, so that high sealing strength can be ensured. The heat seal bar 43 may be configured to have a curved shape in which the center portion in the width direction of the heat seal bar protrudes (the center portion becomes convex). Further, the heat seal bar 43 may be configured in a curved shape in which the center part in the length direction and the width direction of the heat seal bar protrudes (the center part becomes convex). Although it does not specifically limit as said curved shape, For example, circular arc shape etc. are mentioned.

また、図4に示すヒートシールバー46では、内側の接触面に多孔シート48が配置されている。本実施形態では、多孔シート48の両端部が、ヒートシールバー46の両側面にそれぞれ接着固定されている。このような構成の一対のヒートシールバー46を用いて第2隣接辺部34の未シール開口部24のヒートシールを行った場合には、ヒートシール予定の未シール開口部に電解液が付着していても該電解液を周辺側に逃がしつつヒートシール接合を行うことができるので、高いシール強度を確保できる。前記多孔シート48としては、特に限定されるものではないが、例えば、メッシュシート、ガラスクロスシート、不織布シート、エンボスシート等が挙げられる。前記メッシュシート、不織布シートおよびエンボスシートの素材としては、特に限定されるものではないが、例えば、ポリエステル樹脂、ポリイミド樹脂、フッ素樹脂(ポリテトラフルオロエチレン等)、ガラス(ガラスクロス等)とフッ素樹脂(ポリテトラフルオロエチレン等)の複合材などが挙げられる。   Further, in the heat seal bar 46 shown in FIG. 4, a porous sheet 48 is disposed on the inner contact surface. In the present embodiment, both end portions of the porous sheet 48 are bonded and fixed to both side surfaces of the heat seal bar 46, respectively. When heat sealing of the unsealed opening 24 of the second adjacent side 34 is performed using the pair of heat seal bars 46 having such a configuration, the electrolyte adheres to the unsealed opening scheduled to be heat sealed. Even in such a case, the heat seal bonding can be performed while the electrolyte is released to the peripheral side, so that high sealing strength can be ensured. The porous sheet 48 is not particularly limited, and examples thereof include a mesh sheet, a glass cloth sheet, a nonwoven fabric sheet, and an embossed sheet. The material of the mesh sheet, the nonwoven fabric sheet and the embossed sheet is not particularly limited. For example, polyester resin, polyimide resin, fluororesin (polytetrafluoroethylene, etc.), glass (glass cloth, etc.) and fluororesin And composite materials (polytetrafluoroethylene, etc.).

次に、本発明の製造方法で使用する外装材1について詳述する。   Next, the exterior material 1 used in the production method of the present invention will be described in detail.

前記耐熱性樹脂層(外側層)2を構成する耐熱性樹脂としては、外装材をヒートシールする際のヒートシール温度で溶融しない耐熱性樹脂を用いる。前記耐熱性樹脂としては、熱可塑性樹脂層3を構成する熱可塑性樹脂の融点より10℃以上高い融点を有する耐熱性樹脂を用いるのが好ましく、熱可塑性樹脂の融点より20℃以上高い融点を有する耐熱性樹脂を用いるのが特に好ましい。   As the heat-resistant resin constituting the heat-resistant resin layer (outer layer) 2, a heat-resistant resin that does not melt at the heat sealing temperature when heat-sealing the exterior material is used. As the heat resistant resin, it is preferable to use a heat resistant resin having a melting point higher by 10 ° C. or higher than the melting point of the thermoplastic resin constituting the thermoplastic resin layer 3, and having a melting point higher by 20 ° C. or higher than the melting point of the thermoplastic resin. It is particularly preferable to use a heat resistant resin.

前記耐熱性樹脂層(外側層)2としては、特に限定されるものではないが、例えば、ナイロンフィルム等のポリアミドフィルム、ポリエステルフィルム等が挙げられ、これらの延伸フィルムが好ましく用いられる。中でも、前記耐熱性樹脂層2としては、二軸延伸ナイロンフィルム等の二軸延伸ポリアミドフィルム、二軸延伸ポリブチレンテレフタレート(PBT)フィルム、二軸延伸ポリエチレンテレフタレート(PET)フィルム又は二軸延伸ポリエチレンナフタレート(PEN)フィルムを用いるのが特に好ましい。前記ナイロンフィルムとしては、特に限定されるものではないが、例えば、6ナイロンフィルム、6,6ナイロンフィルム、MXDナイロンフィルム等が挙げられる。なお、前記耐熱性樹脂層2は、単層で形成されていても良いし、或いは、例えばポリエステルフィルム/ポリアミドフィルムからなる複層(PETフィルム/ナイロンフィルムからなる複層等)で形成されていても良い。   The heat-resistant resin layer (outer layer) 2 is not particularly limited, and examples thereof include polyamide films such as nylon films, polyester films, and the like, and these stretched films are preferably used. Among them, the heat-resistant resin layer 2 includes a biaxially stretched polyamide film such as a biaxially stretched nylon film, a biaxially stretched polybutylene terephthalate (PBT) film, a biaxially stretched polyethylene terephthalate (PET) film or a biaxially stretched polyethylene film. It is particularly preferable to use a phthalate (PEN) film. The nylon film is not particularly limited, and examples thereof include 6 nylon film, 6,6 nylon film, MXD nylon film, and the like. The heat-resistant resin layer 2 may be formed as a single layer, or may be formed as a multilayer composed of a polyester film / polyamide film (such as a multilayer composed of PET film / nylon film). Also good.

前記耐熱性樹脂層2の厚さは、5μm〜80μmであるのが好ましい。上記好適下限値以上に設定することで外装材として十分な強度を確保できると共に、上記好適上限値以下に設定することで張り出し成形、絞り成形等の成形時の応力を小さくできて成形性を向上させることができる。   The thickness of the heat resistant resin layer 2 is preferably 5 μm to 80 μm. By setting it above the above preferred lower limit value, it is possible to ensure sufficient strength as an exterior material, and by setting it below the above preferred upper limit value, it is possible to reduce the stress at the time of molding such as stretch forming, draw forming, etc. and improve moldability Can be made.

前記熱可塑性樹脂層(内側層)3は、リチウムイオン二次電池等で用いられる腐食性の強い電解液などに対しても優れた耐薬品性を具備させると共に、外装材にヒートシール性を付与する役割を担うものである。   The thermoplastic resin layer (inner layer) 3 has excellent chemical resistance against highly corrosive electrolytes used in lithium ion secondary batteries and the like, and provides heat sealability to the exterior material. To play a role.

前記熱可塑性樹脂層3としては、特に限定されるものではないが、熱可塑性樹脂未延伸フィルム層であるのが好ましい。前記熱可塑性樹脂未延伸フィルム層3は、特に限定されるものではないが、ポリエチレン、ポリプロピレン、オレフィン系共重合体、これらの酸変性物およびアイオノマーからなる群より選ばれた少なくとも1種の熱可塑性樹脂からなる未延伸フィルムにより構成されるのが好ましい。   Although it does not specifically limit as said thermoplastic resin layer 3, It is preferable that it is a thermoplastic resin unstretched film layer. The thermoplastic resin unstretched film layer 3 is not particularly limited, but is at least one thermoplastic selected from the group consisting of polyethylene, polypropylene, olefin copolymers, acid-modified products thereof, and ionomers. It is preferably composed of an unstretched film made of a resin.

前記熱可塑性樹脂層3の厚さは、20μm〜80μmに設定されるのが好ましい。20μm以上とすることでピンホールの発生を十分に防止できると共に、80μm以下に設定することで樹脂使用量を低減できてコスト低減を図り得る。中でも、前記熱可塑性樹脂層3の厚さは30μm〜50μmに設定されるのが特に好ましい。なお、前記熱可塑性樹脂層3は、単層であってもよいし、複層であってもよい。   The thickness of the thermoplastic resin layer 3 is preferably set to 20 μm to 80 μm. When the thickness is 20 μm or more, pinholes can be sufficiently prevented from being generated, and by setting the thickness to 80 μm or less, the amount of resin used can be reduced, and the cost can be reduced. Especially, it is especially preferable that the thickness of the thermoplastic resin layer 3 is set to 30 μm to 50 μm. The thermoplastic resin layer 3 may be a single layer or a multilayer.

前記金属箔層4は、外装材1に酸素や水分の侵入を阻止するガスバリア性を付与する役割を担うものである。前記金属箔層4としては、特に限定されるものではないが、例えば、アルミニウム箔、銅箔、SUS箔(ステンレス箔)等が挙げられ、アルミニウム箔、SUS箔が一般的に用いられる。前記アルミニウム箔の材質としては、A8079−O材、A8021−O材が好ましい。前記金属箔層4の厚さは、15μm〜80μmであるのが好ましい。15μm以上であることで金属箔を製造する際の圧延時のピンホール発生を防止できると共に、80μm以下であることで張り出し成形、絞り成形等の成形時の応力を小さくできて成形性を向上させることができる。   The metal foil layer 4 plays a role of imparting a gas barrier property to the exterior material 1 to prevent entry of oxygen and moisture. Although it does not specifically limit as said metal foil layer 4, For example, aluminum foil, copper foil, SUS foil (stainless steel foil) etc. are mentioned, Aluminum foil and SUS foil are generally used. A material of the aluminum foil is preferably an A8079-O material or an A8021-O material. The thickness of the metal foil layer 4 is preferably 15 μm to 80 μm. When it is 15 μm or more, it can prevent the occurrence of pinholes during rolling when manufacturing a metal foil, and when it is 80 μm or less, it can reduce the stress during forming such as stretch forming and draw forming, thereby improving formability. be able to.

前記金属箔層4は、少なくとも内側の面(第2接着剤層6側の面)に、化成被膜処理が施されているのが好ましい。このような化成被膜処理が施されていることによって内容物(電池の電解液等)による金属箔表面の腐食を十分に防止できる。例えば、次のような処理をすることによって金属箔に化成被膜処理を施す。即ち、例えば、脱脂処理を行った後の金属箔の表面に、
1)リン酸と、
クロム酸と、
フッ化物の金属塩及びフッ化物の非金属塩からなる群より選ばれる少なくとも1種の化合物と、を含む混合物の水溶液
2)リン酸と、
アクリル系樹脂、キトサン誘導体樹脂及びフェノール系樹脂からなる群より選ばれる少なくとも1種の樹脂と、
クロム酸及びクロム(III)塩からなる群より選ばれる少なくとも1種の化合物と、を含む混合物の水溶液
3)リン酸と、
アクリル系樹脂、キトサン誘導体樹脂及びフェノール系樹脂からなる群より選ばれる少なくとも1種の樹脂と、
クロム酸及びクロム(III)塩からなる群より選ばれる少なくとも1種の化合物と、
フッ化物の金属塩及びフッ化物の非金属塩からなる群より選ばれる少なくとも1種の化合物と、を含む混合物の水溶液
上記1)〜3)のうちのいずれかの水溶液を塗工した後、乾燥することにより、化成被膜処理を施す。
The metal foil layer 4 is preferably subjected to chemical conversion coating on at least the inner surface (the surface on the second adhesive layer 6 side). By performing such a chemical conversion film treatment, corrosion of the surface of the metal foil due to the contents (battery electrolyte or the like) can be sufficiently prevented. For example, a chemical conversion film treatment is performed on the metal foil by performing the following treatment. That is, for example, on the surface of the metal foil after degreasing,
1) phosphoric acid;
Chromic acid,
An aqueous solution of a mixture comprising at least one compound selected from the group consisting of a metal salt of fluoride and a nonmetal salt of fluoride; 2) phosphoric acid;
At least one resin selected from the group consisting of acrylic resins, chitosan derivative resins and phenolic resins;
An aqueous solution of a mixture comprising at least one compound selected from the group consisting of chromic acid and a chromium (III) salt, 3) phosphoric acid,
At least one resin selected from the group consisting of acrylic resins, chitosan derivative resins and phenolic resins;
At least one compound selected from the group consisting of chromic acid and a chromium (III) salt;
An aqueous solution of a mixture comprising at least one compound selected from the group consisting of a fluoride metal salt and a fluoride non-metal salt. After applying an aqueous solution of any one of the above 1) to 3), drying is performed. By doing so, a chemical conversion coating treatment is performed.

前記化成被膜は、クロム付着量(片面当たり)として0.1mg/m2〜50mg/m2が好ましく、特に2mg/m2〜20mg/m2が好ましい。 The chemical conversion coating, chromium coating weight preferably is 0.1mg / m 2 ~50mg / m 2 as a (per one surface), in particular 2mg / m 2 ~20mg / m 2 preferred.

前記第1接着剤層5としては、特に限定されるものではないが、例えば、ポリウレタン接着剤層、ポリエステルポリウレタン接着剤層、ポリエーテルポリウレタン接着剤層等が挙げられる。前記第1接着剤層5の厚さは、1μm〜5μmに設定されるのが好ましい。中でも、外装材の薄膜化、軽量化の観点から、前記第1接着剤層5の厚さは、1μm〜3μmに設定されるのが特に好ましい。   The first adhesive layer 5 is not particularly limited, and examples thereof include a polyurethane adhesive layer, a polyester polyurethane adhesive layer, and a polyether polyurethane adhesive layer. The thickness of the first adhesive layer 5 is preferably set to 1 μm to 5 μm. Especially, it is especially preferable that the thickness of the said 1st adhesive bond layer 5 is set to 1 micrometer-3 micrometers from a viewpoint of thickness reduction of an exterior material and weight reduction.

前記第2接着剤層6としては、特に限定されるものではないが、例えば、上記第1接着剤層5として例示したものも使用できるが、電解液による膨潤の少ないポリオレフィン系接着剤を使用するのが好ましい。前記第2接着剤層6の厚さは、1μm〜5μmに設定されるのが好ましい。中でも、外装材の薄膜化、軽量化の観点から、前記第2接着剤層6の厚さは、1μm〜3μmに設定されるのが特に好ましい。   Although it does not specifically limit as said 2nd adhesive bond layer 6, For example, what was illustrated as said 1st adhesive bond layer 5 can be used, However, The polyolefin-type adhesive agent with few swelling by electrolyte solution is used. Is preferred. The thickness of the second adhesive layer 6 is preferably set to 1 μm to 5 μm. Especially, it is especially preferable that the thickness of the said 2nd adhesive bond layer 6 is set to 1 micrometer-3 micrometers from a viewpoint of thickness reduction of an exterior material and weight reduction.

本発明の製造方法において、外装材1としては、成形(深絞り成形、張り出し成形等)により、成形ケース(電池本体部23を収容できる形状のケース)に形成されたものを使用してもよいし、成形に供されていないものをそのまま使用してもよい。   In the manufacturing method of the present invention, the exterior material 1 may be formed in a molded case (a case that can accommodate the battery body 23) by molding (deep drawing molding, stretch molding, etc.). And what is not used for shaping | molding may be used as it is.

上記実施形態では、1枚の外装材1を2つ折りすることにより仮シール部材30を構成していたが、特にこのような構成に限定されるものではなく、例えば、2枚の外装材1を互いの内側層3が内面になるように(互いの内側層3が接するように)重ね合わせて構成した仮シール部材30を使用してもよい。   In the above embodiment, the temporary sealing member 30 is configured by folding one exterior material 1 in half. However, the present invention is not particularly limited to this configuration. You may use the temporary seal member 30 comprised so that the mutual inner layer 3 might become an inner surface (so that the mutual inner layer 3 may contact | connect).

次に、本発明の具体的実施例について説明するが、本発明はこれら実施例のものに特に限定されるものではない。   Next, specific examples of the present invention will be described, but the present invention is not particularly limited to these examples.

<実施例1>
厚さ35μmのアルミニウム箔(A8021−O材)4の両面に、リン酸、ポリアクリル酸、三価クロム化合物、水、アルコールからなる化成被膜処理液を塗布し、180℃で乾燥を行って、化成被膜を形成した。この化成被膜のクロム付着量は片面当たり10mg/m2であった。
<Example 1>
Applying a chemical conversion coating solution composed of phosphoric acid, polyacrylic acid, trivalent chromium compound, water, alcohol on both sides of an aluminum foil (A8021-O material) 4 having a thickness of 35 μm, and drying at 180 ° C., A conversion coating was formed. The amount of chromium deposited on this chemical conversion film was 10 mg / m 2 per side.

次に、前記化成被膜処理済みアルミニウム箔4の一方の面に、2液硬化型のウレタン系接着剤(第1接着剤層)5を介して厚さ25μmの二軸延伸ポリエチレンテレフタレート(PET)フィルム(融点:230℃)2をドライラミネートした(貼り合わせた)。   Next, a biaxially stretched polyethylene terephthalate (PET) film having a thickness of 25 μm is provided on one surface of the chemical conversion coating-treated aluminum foil 4 with a two-component curable urethane adhesive (first adhesive layer) 5 interposed therebetween. (Melting point: 230 ° C.) 2 was dry laminated (bonded).

次に、アルミニウム箔4の他方の面に接着剤液をグラビアロールを用いて塗布した後、80℃の熱風で乾燥させることによって、厚さ3μmの接着樹脂層(第2接着剤層)6を形成した。前記接着剤液として、マレイン酸変性ポリプロピレン(プロピレンとエチレンの共重合体に無水マレイン酸をグラフト重合させた変性ポリプロピレン樹脂;融解温度が80℃)15質量部を、混合溶媒(トルエン/メチルエチルケトン=8質量部/2質量部の混合溶媒)85質量部に溶解させた溶液に、ヘキサメチレンジイソシアネートのポリマー体を0.9質量部混合してなる接着剤液を使用した。   Next, after applying an adhesive liquid to the other surface of the aluminum foil 4 using a gravure roll, the adhesive resin layer (second adhesive layer) 6 having a thickness of 3 μm is formed by drying with hot air at 80 ° C. Formed. As the adhesive liquid, 15 parts by mass of maleic acid-modified polypropylene (modified polypropylene resin obtained by graft polymerization of maleic anhydride on a copolymer of propylene and ethylene; melting temperature: 80 ° C.) was mixed with a mixed solvent (toluene / methyl ethyl ketone = 8 An adhesive solution obtained by mixing 0.9 part by mass of a polymer of hexamethylene diisocyanate in a solution dissolved in 85 parts by mass of a mixed solvent of 2 parts by mass of 2 parts by mass) was used.

次に、前記アルミニウム箔4の他方の面に形成された接着樹脂層6の表面に、融点が140℃、MFR(メルトフローレイト)が4.5g/10分である、厚さ40μmのプロピレン−エチレンランダム共重合体フィルム(内側層;シーラント層)3をラミネートすることによって、図5に示す構成の外装材1を得た。   Next, the surface of the adhesive resin layer 6 formed on the other surface of the aluminum foil 4 has a melting point of 140 ° C. and an MFR (melt flow rate) of 4.5 g / 10 min. By laminating an ethylene random copolymer film (inner layer; sealant layer) 3, an exterior material 1 having the configuration shown in FIG. 5 was obtained.

上記外装材1を用いて前項で詳述した手法により図1(A)に示す仮シール部材30を作成した。この仮シール部材30の第2隣接辺部34において、その長さの30%が一端側の部分シール部25で構成され、その長さの20%が未シール開口部24で構成され、その長さの50%が他端側の部分シール部26で構成されていた。これら部分シール部25、26のシール幅は5mmに設定した。   A temporary seal member 30 shown in FIG. 1 (A) was prepared using the exterior material 1 by the method detailed in the previous section. In the second adjacent side portion 34 of the temporary seal member 30, 30% of the length is constituted by the partial seal portion 25 on one end side, and 20% of the length is constituted by the unsealed opening 24, and the length thereof. 50% of the total length was constituted by the partial seal portion 26 on the other end side. The seal width of these partial seal portions 25 and 26 was set to 5 mm.

次に、図1(B)に示すように、電解液注入用ノズル40の先端を未シール開口部24に挿通せしめて、電池本体部23に電解液を注入した。電解液としては、エチレンカーボネートとジエチレンカーボネートを1:1の容量比で混合した混合溶媒に対して六フッ化リンリチウム塩を1モル/Lの濃度となるように溶解せしめた溶液(電解液)を使用した。   Next, as shown in FIG. 1B, the tip of the electrolyte injection nozzle 40 was inserted into the unsealed opening 24 to inject the electrolyte into the battery body 23. As an electrolytic solution, a solution (electrolytic solution) obtained by dissolving lithium hexafluorophosphate in a mixed solvent in which ethylene carbonate and diethylene carbonate are mixed at a volume ratio of 1: 1 so as to have a concentration of 1 mol / L. It was used.

次いで、前項で詳述した手法により、ガス室41の上端の開口部をヒートシールしてガス室上端シール部37を形成して密封袋を構成した後(図1(C)参照)、化成処理を行った(図2(A)参照)。次に、図2(B)に示すように、第2隣接辺部34の未シール開口部24をヒートシール(シール幅5mm)して、第2隣接辺シール部27を形成して、封止を完了した。この時のヒートシール条件は、200℃×0.2MPa×6秒間とした。ヒートシールバーとしては、金属製シールバーの表面にフッ素樹脂テープが貼着されたものを用いた。次いで、ガス室41に相当する部位(略上半部)をトリミング加工により除去して、図2(C)に示すラミネート電池10を得た。   Next, after the upper end opening of the gas chamber 41 is heat-sealed to form the gas chamber upper end seal portion 37 by the method described in detail in the previous section to form a sealed bag (see FIG. 1C), a chemical conversion treatment is performed. (See FIG. 2A). Next, as shown in FIG. 2B, the unsealed opening 24 of the second adjacent side portion 34 is heat sealed (seal width 5 mm) to form a second adjacent side seal portion 27 and sealed. Completed. The heat sealing conditions at this time were 200 ° C. × 0.2 MPa × 6 seconds. As the heat seal bar, a metal seal bar having a fluororesin tape adhered to the surface thereof was used. Next, a portion (substantially upper half) corresponding to the gas chamber 41 was removed by trimming to obtain a laminated battery 10 shown in FIG.

<比較例1>
実施例1と同一構成の外装材が長さ方向の中間位置で内側層3を内側にして2つ折りされて形成された略矩形状の外装材前面部121と略矩形状の外装材背面部との間に平面視略矩形状の電池本体部123が配置され、前記2つ折りの折り曲げ辺131に対向する対向辺部132において外装材前面部121と外装材背面部とが正極タブリード111および負極タブリード112を挟み込んでヒートシールにより接合されて対向辺シール部135が形成され、前記折り曲げ辺131に隣り合う一方の第1隣接辺部133において外装材前面部121と外装材背面部とがヒートシールにより接合されて第1隣接辺シール部136が形成されてなる仮シール部材130を作成する(図6(A)参照)。
<Comparative Example 1>
A substantially rectangular exterior material front surface portion 121 and a substantially rectangular exterior material rear surface portion formed by folding an exterior material having the same configuration as in Example 1 in an intermediate position in the length direction with the inner layer 3 inside. A battery main body 123 having a substantially rectangular shape in plan view is disposed between the front surface 121 and the rear surface of the exterior material at the opposite side 132 facing the folded side 131 of the fold. 112 is sandwiched by heat sealing to form a facing side seal portion 135, and the exterior material front surface portion 121 and the exterior material back surface portion are heat-sealed at one first adjacent side portion 133 adjacent to the bent side 131. The temporary seal member 130 formed by joining and forming the first adjacent side seal portion 136 is created (see FIG. 6A).

前記仮シール部材130を第1隣接辺シール部136を下側にして立てた状態に配置して、上端開口部より挿入した電解液注入用ノズル140を用いて、実施例1と同一の電解液を電池本体部123に注入した(図6(B)参照)。   The temporary sealing member 130 is disposed in a state where the first adjacent side seal portion 136 is placed on the lower side, and the electrolytic solution same as that of the first embodiment is used by using the electrolytic solution injection nozzle 140 inserted from the upper end opening. Was injected into the battery body 123 (see FIG. 6B).

次に、前記仮シール部材130におけるガス室141の上端の開口部をヒートシールしてガス室上端シール部137を形成して密封袋を構成した(図6(C)参照)。しかる後、前記密封袋(仮シール部材)130を化成処理容器150に入れて化成処理を行って電解液を電極材(正極材および負極材)に浸透させた(図7(A)参照)。   Next, an opening at the upper end of the gas chamber 141 in the temporary seal member 130 was heat-sealed to form a gas chamber upper end seal portion 137 to constitute a sealing bag (see FIG. 6C). Thereafter, the sealing bag (temporary sealing member) 130 was placed in the chemical conversion treatment container 150 and subjected to chemical conversion treatment, and the electrolytic solution was permeated into the electrode materials (positive electrode material and negative electrode material) (see FIG. 7A).

次に、前記密封袋(仮シール部材)130の内部の脱気(真空脱気等)を行いながら、密封袋(仮シール部材)130における第2隣接辺部134をヒートシール接合して第2隣接辺シール部127を形成して、外装材による封止を完了した(図7(B)参照)。次いで、密封袋130におけるガス室141に相当する部位(略上半部)をトリミング加工により除去して、図7(C)に示すラミネート電池110を得た。   Next, while performing degassing (vacuum degassing etc.) inside the sealing bag (temporary sealing member) 130, the second adjacent side portion 134 in the sealing bag (temporary sealing member) 130 is heat-sealed and joined to the second. The adjacent side seal portion 127 was formed, and sealing with the exterior material was completed (see FIG. 7B). Next, a portion (substantially upper half) corresponding to the gas chamber 141 in the sealing bag 130 was removed by trimming to obtain a laminated battery 110 shown in FIG. 7C.

<参考例>
実施例1と同一構成の外装材1を用いて前項で詳述した手法により図1(A)に示す仮シール部材30を作成した。この参考例1では、仮シール部材30の第1隣接辺シール部36のシール強度を測定した。この第1隣接辺シール部36は、電解液注入前にヒートシールされたシール部であるから、電解液夾雑物が介在しない状態でヒートシールされたシール部である。この参考例により、電解液夾雑物が介在しない状態でヒートシールされたシール部のシール強度を把握できる。
<Reference example>
A temporary seal member 30 shown in FIG. 1 (A) was prepared by using the exterior material 1 having the same configuration as that of Example 1 by the method described in detail in the previous section. In Reference Example 1, the seal strength of the first adjacent side seal portion 36 of the temporary seal member 30 was measured. Since the first adjacent side seal portion 36 is a seal portion that has been heat-sealed before electrolyte injection, the first adjacent-side seal portion 36 is a seal portion that has been heat-sealed without the presence of electrolyte contaminants. With this reference example, it is possible to grasp the seal strength of the seal portion heat-sealed in a state where no electrolyte contaminants are present.

上記のようにして得られた各ラミネート電池に対して下記評価法に基づいて評価を行った。その結果を表1に示す。   Each laminated battery obtained as described above was evaluated based on the following evaluation method. The results are shown in Table 1.

<シール強度評価法>
実施例1については、第2隣接辺シール部27から未シール開口部24に相当するシール部を含むように試験片(幅15mm)を作成し、この試験片について島津株式会社製のオートグラフを用いて引張速度100mm/分でシール部のシール強度(剥離強度)を測定した。比較例1については、実施例1と同様に第2隣接辺シール部127から試験片(幅15mm)を作成して同様にしてシール強度を測定した。参考例については、第1隣接辺シール部36から試験片(幅15mm)を作成して同様にしてシール強度を測定した。シール強度が「50N/15mm幅」以上であるものを合格とした。
<Seal strength evaluation method>
For Example 1, a test piece (15 mm in width) was created so as to include a seal portion corresponding to the unsealed opening 24 from the second adjacent side seal portion 27, and an autograph made by Shimadzu Corporation was used for this test piece. The seal strength (peel strength) of the seal portion was measured at a tensile speed of 100 mm / min. For Comparative Example 1, a test piece (width 15 mm) was prepared from the second adjacent side seal portion 127 as in Example 1, and the seal strength was measured in the same manner. About the reference example, the test piece (15 mm in width) was created from the 1st adjacent edge seal part 36, and seal strength was measured similarly. The seal strength of “50 N / 15 mm width” or more was regarded as acceptable.

<デラミネーション(剥離)発生頻度評価法>
実施例1のラミネート電池10を10個準備し、比較例1のラミネート電池110を10個準備した。各ラミネート電池を7日間室温で放置した後に、各ラミネート電池の第2隣接辺シール部におけるデラミネーション(剥離)発生の有無を調べ、実施例1と比較例1のそれぞれについて、合計10個のサンプル(電池)中のデラミネーション発生サンプル(電池)の個数を表1に示した。
<Delamination (peeling) frequency evaluation method>
Ten laminated batteries 10 of Example 1 were prepared, and ten laminated batteries 110 of Comparative Example 1 were prepared. After each laminated battery was allowed to stand at room temperature for 7 days, the presence or absence of delamination (peeling) in the second adjacent side seal portion of each laminated battery was examined. A total of 10 samples were obtained for each of Example 1 and Comparative Example 1. The number of delamination generation samples (batteries) in the (battery) is shown in Table 1.

Figure 2016122495
Figure 2016122495

表1から明らかなように、本発明の製造方法で製造された実施例1のラミネート電池では、電解液夾雑物が介在しない状態でヒートシールされたもの(参考例1)のシール強度と同等の十分なシール強度を確保することができた。従って、実施例1のラミネート電池において、デラミネーション発生頻度は0個/10個であった。   As is clear from Table 1, in the laminated battery of Example 1 manufactured by the manufacturing method of the present invention, it was equivalent to the sealing strength of the battery that was heat-sealed without any electrolyte contaminants (Reference Example 1). Sufficient seal strength could be secured. Therefore, in the laminated battery of Example 1, the delamination occurrence frequency was 0/10.

これに対し、従来の製造方法で製造した比較例1のラミネート電池では、十分なシール強度が得られず、デラミネーション発生頻度は8個/10個であった。   On the other hand, in the laminate battery of Comparative Example 1 manufactured by the conventional manufacturing method, sufficient seal strength was not obtained, and the frequency of delamination occurrence was 8/10.

本発明に係る電池の製造方法は、ラミネートリチウムイオン2次電池等のラミネート型2次電池の製造方法として好適であるが、特にこのような用途への適用に限定されるものではない。   The method for producing a battery according to the present invention is suitable as a method for producing a laminate type secondary battery such as a laminated lithium ion secondary battery, but is not particularly limited to application to such a use.

1…外装材
2…耐熱性樹脂層(外側層)
3…熱可塑性樹脂層(内側層)
4…金属箔層
10…電池
21…外装材前面部
22…外装材背面部
23…電池本体部
24…未シール開口部
25…一方の部分シール部(第1部分シール部)
26…他方の部分シール部(第2部分シール部)
27…第2隣接辺シール部
30…仮シール部材
31…折り曲げ辺(折り曲げ部)
32…対向辺部
33…第1隣接辺部
34…第2隣接辺部
35…対向辺シール部
36…第1隣接辺シール部
40…電解液注入用ノズル
43…ヒートシールバー
44…接触面
46…ヒートシールバー
48…多孔シート
1 ... exterior material 2 ... heat-resistant resin layer (outer layer)
3 ... Thermoplastic resin layer (inner layer)
4 ... Metal foil layer 10 ... Battery 21 ... Exterior material front surface portion 22 ... Exterior material rear surface portion 23 ... Battery body portion 24 ... Unsealed opening 25 ... One partial seal portion (first partial seal portion)
26 ... The other partial seal part (second partial seal part)
27 ... Second adjacent side seal portion 30 ... Temporary seal member 31 ... Bending side (bending portion)
32 ... Opposite side 33 ... 1st adjacent side 34 ... 2nd adjacent side 35 ... Opposite side seal part 36 ... 1st adjacent side seal part 40 ... Nozzle 43 for electrolyte solution injection ... Heat seal bar 44 ... Contact surface 46 ... heat seal bar 48 ... perforated sheet

Claims (5)

外側層としての耐熱性樹脂層と、内側層としての熱可塑性樹脂層と、これら両層間に配設された金属箔層とを含む外装材で形成された平面視略矩形状の袋体の内部に電池本体部が配置され、前記袋体における前記電池本体部の周囲近傍の4辺のうち3辺が封止されると共に残る1辺部はその長さ方向の一部に未シール開口部を残してヒートシール接合されてなる仮シール部材を準備する工程と、
前記仮シール部材を前記未シール開口部を上方に向けて開口させて立てた状態に配置し、電解液注入用ノズルの先端を前記未シール開口部の直上位置に配置して又は前記未シール開口部に挿通せしめて前記電池本体部に電解液を注入する注入工程と、
前記注入工程の後に、前記仮シール部材における未シール開口部をヒートシール接合する封入工程と、を含むことを特徴とする電池の製造方法。
The inside of a bag having a substantially rectangular shape in plan view formed of an exterior material including a heat-resistant resin layer as an outer layer, a thermoplastic resin layer as an inner layer, and a metal foil layer disposed between the two layers. The battery body portion is arranged, three of the four sides of the bag body in the vicinity of the periphery of the battery body portion are sealed, and the remaining one side portion has an unsealed opening in a part of its length direction. A step of preparing a temporary seal member to be heat-sealed and left;
The temporary seal member is disposed in a standing state with the unsealed opening opened upward, and the tip of the electrolyte injection nozzle is disposed at a position immediately above the unsealed opening or the unsealed opening An injection step of injecting an electrolyte solution into the battery main body by inserting it into the part,
A method for producing a battery, comprising: an encapsulating step of heat-sealing an unsealed opening in the temporary seal member after the injecting step.
前記仮シール部材は、前記残る1辺部においてその長さ方向の一部に未シール開口部を残してその長さ方向の両端側がヒートシール接合されてなるものである請求項1に記載の電池の製造方法。   2. The battery according to claim 1, wherein the temporary seal member is formed by heat-sealing both end sides in the length direction while leaving an unsealed opening in a part in the length direction in the remaining one side portion. Manufacturing method. 前記封入工程において、内側の接触面が、ヒートシールバーの長さ方向又は/及び幅方向の中央部が突出する湾曲形状に構成されている一対のヒートシールバーを用いて前記ヒートシール接合を行う請求項1または2に記載の電池の製造方法。   In the enclosing step, the heat seal bonding is performed using a pair of heat seal bars in which the inner contact surface is configured in a curved shape in which the center part in the length direction and / or the width direction of the heat seal bar protrudes. The method for producing a battery according to claim 1 or 2. 前記封入工程において、内側の接触面に多孔シートが配置された一対のヒートシールバーを用いて前記ヒートシール接合を行う請求項1〜3のいずれか1項に記載の電池の製造方法。   The manufacturing method of the battery according to any one of claims 1 to 3, wherein in the enclosing step, the heat seal bonding is performed using a pair of heat seal bars in which a porous sheet is disposed on an inner contact surface. 前記仮シール部材における封止されている3辺のうち1辺は、前記外装材が、前記内側層を内側にして2つ折りされて形成された折り曲げ部により封止されたものである請求項1〜4のいずれか1項に記載の電池の製造方法。   2. One of the three sides sealed in the temporary sealing member is sealed by a bent portion formed by folding the exterior material into two with the inner layer inside. The manufacturing method of the battery of any one of -4.
JP2014260152A 2014-12-24 2014-12-24 Method of manufacturing battery Active JP6479458B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014260152A JP6479458B2 (en) 2014-12-24 2014-12-24 Method of manufacturing battery
TW104131110A TWI686976B (en) 2014-12-24 2015-09-21 Manufacturing method of battery
KR1020150155028A KR20160078228A (en) 2014-12-24 2015-11-05 Manufacturing method of battery
CN201510857785.9A CN105742526B (en) 2014-12-24 2015-11-30 The manufacturing method of battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014260152A JP6479458B2 (en) 2014-12-24 2014-12-24 Method of manufacturing battery

Publications (2)

Publication Number Publication Date
JP2016122495A true JP2016122495A (en) 2016-07-07
JP6479458B2 JP6479458B2 (en) 2019-03-06

Family

ID=56295950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014260152A Active JP6479458B2 (en) 2014-12-24 2014-12-24 Method of manufacturing battery

Country Status (4)

Country Link
JP (1) JP6479458B2 (en)
KR (1) KR20160078228A (en)
CN (1) CN105742526B (en)
TW (1) TWI686976B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020098675A (en) * 2018-12-17 2020-06-25 大日本印刷株式会社 Manufacturing method of power storage device and quality management method for power storage device
JP2020170641A (en) * 2019-04-03 2020-10-15 積水化学工業株式会社 Manufacturing method of laminated battery
JP2020532835A (en) * 2017-10-17 2020-11-12 エルジー・ケム・リミテッド Pouch type battery case including crack prevention structure and its manufacturing method
JP2021044220A (en) * 2019-09-13 2021-03-18 積水化学工業株式会社 Power storage element and method for manufacturing the same
CN114335821A (en) * 2022-01-05 2022-04-12 宁波容百新能源科技股份有限公司 Soft-packaged electrical core shell and soft-packaged electrical core

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6852629B2 (en) * 2017-09-12 2021-03-31 トヨタ自動車株式会社 Power storage device
JP7255515B2 (en) 2020-02-19 2023-04-11 トヨタ自動車株式会社 shift control device

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55164107U (en) * 1979-05-16 1980-11-26
JPH10308240A (en) * 1997-05-09 1998-11-17 Sanyo Electric Co Ltd Manufacture of battery
JPH11102674A (en) * 1997-09-25 1999-04-13 Toshiba Battery Co Ltd Thin secondary battery
JP2001084984A (en) * 1999-09-14 2001-03-30 Yuasa Corp Battery
JP2002110252A (en) * 2000-09-28 2002-04-12 At Battery:Kk Method of producing battery
JP2002151051A (en) * 2000-11-09 2002-05-24 Yuasa Corp Sealed battery structure, sealed battery, manufacturing method of sealed battery and manufacturing equipment of sealed battery
JP2003341624A (en) * 2002-05-22 2003-12-03 Fujimori Kogyo Co Ltd Heat-sealing apparatus, heat-sealing method, and filling and packaging machine
JP2004146183A (en) * 2002-10-24 2004-05-20 Dainippon Printing Co Ltd Secondary battery and its manufacturing method
JP2004303759A (en) * 2003-03-28 2004-10-28 Tdk Corp Method for manufacturing electrochemical device
JP2004342520A (en) * 2003-05-16 2004-12-02 Toyota Motor Corp Manufacturing method of secondary battery
JP2005093261A (en) * 2003-09-18 2005-04-07 Nec Lamilion Energy Ltd Method for manufacturing battery wrapped with laminated film
JP2005216788A (en) * 2004-01-30 2005-08-11 Sony Corp Battery
JP2008103240A (en) * 2006-10-20 2008-05-01 Dainippon Printing Co Ltd Method of manufacturing battery
JP2011070983A (en) * 2009-09-28 2011-04-07 Murata Mfg Co Ltd Method for manufacturing secondary battery
JP2013149477A (en) * 2012-01-19 2013-08-01 Hitachi Maxell Ltd Manufacturing method of nonaqueous secondary battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1173428C (en) * 2001-07-13 2004-10-27 比亚迪股份有限公司 Method for manufacturing thin lithium ion battery
JP2003109557A (en) * 2001-09-28 2003-04-11 Mitsubishi Electric Corp Non-aqueous electrolyte battery and its manufacturing method
JP2006261033A (en) 2005-03-18 2006-09-28 Dainippon Printing Co Ltd Thermally sealing method of lithium battery armoring body
JP2011216209A (en) * 2010-03-31 2011-10-27 Hitachi Maxell Energy Ltd Laminated battery and its manufacturing method
US9722274B2 (en) * 2012-06-11 2017-08-01 Nissan Motor Co., Ltd. Manufacturing method and manufacturing device of secondary battery
WO2015068548A1 (en) * 2013-11-11 2015-05-14 日産自動車株式会社 Method for manufacturing film-packaged cell

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55164107U (en) * 1979-05-16 1980-11-26
JPH10308240A (en) * 1997-05-09 1998-11-17 Sanyo Electric Co Ltd Manufacture of battery
JPH11102674A (en) * 1997-09-25 1999-04-13 Toshiba Battery Co Ltd Thin secondary battery
JP2001084984A (en) * 1999-09-14 2001-03-30 Yuasa Corp Battery
JP2002110252A (en) * 2000-09-28 2002-04-12 At Battery:Kk Method of producing battery
JP2002151051A (en) * 2000-11-09 2002-05-24 Yuasa Corp Sealed battery structure, sealed battery, manufacturing method of sealed battery and manufacturing equipment of sealed battery
JP2003341624A (en) * 2002-05-22 2003-12-03 Fujimori Kogyo Co Ltd Heat-sealing apparatus, heat-sealing method, and filling and packaging machine
JP2004146183A (en) * 2002-10-24 2004-05-20 Dainippon Printing Co Ltd Secondary battery and its manufacturing method
JP2004303759A (en) * 2003-03-28 2004-10-28 Tdk Corp Method for manufacturing electrochemical device
JP2004342520A (en) * 2003-05-16 2004-12-02 Toyota Motor Corp Manufacturing method of secondary battery
JP2005093261A (en) * 2003-09-18 2005-04-07 Nec Lamilion Energy Ltd Method for manufacturing battery wrapped with laminated film
JP2005216788A (en) * 2004-01-30 2005-08-11 Sony Corp Battery
JP2008103240A (en) * 2006-10-20 2008-05-01 Dainippon Printing Co Ltd Method of manufacturing battery
JP2011070983A (en) * 2009-09-28 2011-04-07 Murata Mfg Co Ltd Method for manufacturing secondary battery
JP2013149477A (en) * 2012-01-19 2013-08-01 Hitachi Maxell Ltd Manufacturing method of nonaqueous secondary battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
小久見善八ら, 図解 革新型蓄電池のすべて, JPN7018002440, 15 November 2011 (2011-11-15), pages 222 - 226, ISSN: 0003841237 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020532835A (en) * 2017-10-17 2020-11-12 エルジー・ケム・リミテッド Pouch type battery case including crack prevention structure and its manufacturing method
JP7055305B2 (en) 2017-10-17 2022-04-18 エルジー エナジー ソリューション リミテッド Pouch-type battery case including crack prevention structure and its manufacturing method
US11394080B2 (en) 2017-10-17 2022-07-19 Lg Energy Solution, Ltd. Pouch-shaped battery case comprising crack prevention structure and method of manufacturing the same
JP2020098675A (en) * 2018-12-17 2020-06-25 大日本印刷株式会社 Manufacturing method of power storage device and quality management method for power storage device
JP7225760B2 (en) 2018-12-17 2023-02-21 大日本印刷株式会社 Electric storage device manufacturing method and electric storage device quality control method
JP2020170641A (en) * 2019-04-03 2020-10-15 積水化学工業株式会社 Manufacturing method of laminated battery
JP7235571B2 (en) 2019-04-03 2023-03-08 積水化学工業株式会社 Laminated battery manufacturing method
JP2021044220A (en) * 2019-09-13 2021-03-18 積水化学工業株式会社 Power storage element and method for manufacturing the same
JP7328843B2 (en) 2019-09-13 2023-08-17 積水化学工業株式会社 Storage element and method for manufacturing storage element
CN114335821A (en) * 2022-01-05 2022-04-12 宁波容百新能源科技股份有限公司 Soft-packaged electrical core shell and soft-packaged electrical core
CN114335821B (en) * 2022-01-05 2024-02-09 宁波容百新能源科技股份有限公司 Soft packet of electric core casing and soft packet of electric core

Also Published As

Publication number Publication date
KR20160078228A (en) 2016-07-04
TWI686976B (en) 2020-03-01
JP6479458B2 (en) 2019-03-06
TW201624814A (en) 2016-07-01
CN105742526A (en) 2016-07-06
CN105742526B (en) 2019-11-19

Similar Documents

Publication Publication Date Title
JP6479458B2 (en) Method of manufacturing battery
JP6829742B2 (en) Laminate exterior material and laminate for laminate exterior material
JP6629514B2 (en) Manufacturing method of laminate exterior material
JP6564188B2 (en) Package for power storage devices
JP7381528B2 (en) Exterior material for power storage devices and power storage devices
JP4736164B2 (en) Battery laminated film and battery container using the same
JP6426934B2 (en) Electrochemical device and method of manufacturing the same
JP2016126826A (en) Method of manufacturing battery
JP6738171B2 (en) Exterior material for power storage device and power storage device
JP6738189B2 (en) Exterior material for power storage device and power storage device
JP6816937B2 (en) Power storage device
JP6436758B2 (en) Power storage device exterior material and power storage device
JP5611848B2 (en) Battery laminated film and battery container using the same
KR102567577B1 (en) Outer material for power storage device power storage device
JP2020098675A (en) Manufacturing method of power storage device and quality management method for power storage device
JP2010267467A (en) Container for lithium secondary battery or capacitor, and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190206

R150 Certificate of patent or registration of utility model

Ref document number: 6479458

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250