JP2004342520A - Manufacturing method of secondary battery - Google Patents

Manufacturing method of secondary battery Download PDF

Info

Publication number
JP2004342520A
JP2004342520A JP2003139435A JP2003139435A JP2004342520A JP 2004342520 A JP2004342520 A JP 2004342520A JP 2003139435 A JP2003139435 A JP 2003139435A JP 2003139435 A JP2003139435 A JP 2003139435A JP 2004342520 A JP2004342520 A JP 2004342520A
Authority
JP
Japan
Prior art keywords
thickness
secondary battery
unjointed
exterior body
unjoined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003139435A
Other languages
Japanese (ja)
Other versions
JP4155100B2 (en
Inventor
Yoshiaki Ebine
美明 恵比根
Makoto Nakajima
誠 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003139435A priority Critical patent/JP4155100B2/en
Publication of JP2004342520A publication Critical patent/JP2004342520A/en
Application granted granted Critical
Publication of JP4155100B2 publication Critical patent/JP4155100B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a secondary battery in which the degasification with conditioning work or the like can be made steadily and airtightness after degassing can be secured sufficiently. <P>SOLUTION: The manufacturing method comprises a filling process in which a generating element is filled into the outer package by leaving the unjointed part 512 which communicates with inside and is separated from outside, and jointing the opening of the outer package film, a degassing process for opening a degassing hole while suppressing the thickness of the unjointed part 512 to a prescribed thickness t or less, and a refilling process for filling the generating element by jointing the unjointed part 512. In order to prevent that a large swelling or deformation are generated at the unjointed part by the increase of internal pressure due to the generated gas and the unjointed part does not return to the original shape at jointing and a part of the jointed part is separated by the concentration of stress at the surroundings of the unjointed part due to swelling of the unjointed part, the thickness of the unjointed part may be controlled when the internal pressure of the outer package is high, as a method of suppressing the swelling of the unjointed part and relieving the concentration of stress. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ラミネートフィルムのような薄く軽量な外装用フィルムにより構成される外装体をもつ二次電池について、コンディショニング時に発生するガスを簡便に抜くことができる二次電池の製造方法に関し、詳しくは、ガス抜き時に使用したガス抜き孔から液漏れ等が発生することを防止できる二次電池の製造方法に関する。
【0002】
【従来の技術】
パソコン、ビデオカメラ、携帯電話等の小型化に伴い、これらの情報関連機器、通信機器の分野に用いる電源として、リチウム二次電池などのエネルギー密度の高い二次電池が実用化され広く普及している。一方で、自動車の分野においても、環境問題、資源問題から電気自動車の開発が急がれており、この電気自動車用の電源としても種々の二次電池が検討されている。
【0003】
上述の携帯用機器、自動車等の分野において用いられる二次電池は少しでもエネルギー密度が高いことが望ましく、電池反応に本質的に関係のない電池ケース等の軽量化が試行されている。代表的な二次電池としては硬直で質量の大きい電池ケースに代えて、薄くて軽量な可撓性をもつ外装用フィルムを用いる二次電池がある。
【0004】
ところで、リチウム二次電池等の二次電池ではコンディショニングや、時間の経過によって発電要素からガスが発生することがある。発生したガスは可撓性のある外装体を膨張させるので、二次電池内部から除去することが好ましい。
【0005】
従来のガス抜き方法は発電要素を封入する薄くて軽量な外装体の接合部の一部に外装体内部と連通し且つ外部とは連通しない未接合部を設け、初期充電終了後に未接合部にガス抜き孔を設けてガス抜きをした後に、この未接合部を接合する方法が開示されている(特許文献1)。
【0006】
【特許文献1】特開2000−353497号公報
【特許文献2】特開2001−325926号公報 (請求項1、図1等)
【0007】
【発明が解決しようとする課題】
しかしながら、従来技術の方法ではコンディショニング終了後、未接合部を接合するときにしわが発生することがあり、発生したしわをトンネルとしてガス抜き孔から電解液が漏れたり電池内部に水分が混入したりするおそれがあった。
【0008】
また、ガス抜き工程時に外装体の内圧が高くなると、外装体の未接合部から接合部が剥離するおそれがあった。例えば、未接合部が剥離することを利用して二次電池の内圧が高くなった場合のガス排出を目指した電池が開示されている(特許文献2)。
【0009】
上記課題に鑑み本発明では、コンディショニング等に伴うガス抜きを確実に行えるとともにガス抜き後の密閉性を充分に担保できる二次電池の製造方法を提供することを解決すべき課題とする。
【0010】
【課題を解決するための手段及び発明の効果】
上記課題を解決する目的で本発明者らは鋭意研究を行い、しわの発生原因を精査した結果、二次電池内に発生したガスによる内圧上昇で未接合部に大きな膨張や変形が生じ、未接合部を接合するときに元通りの形態に戻らないことが一因であることを見出した。また、未接合部の膨張に伴い、未接合部の周辺で応力が集中することによって、接合部の一部が剥離することがわかった。そこで、未接合部の膨張を抑え且つ応力集中を緩和する方法として、外装体の内圧が高い場合に、未接合部の厚みを規制することに想到した。すなわち、本発明の二次電池の製造方法は、外装用フィルムで発電要素を包み、内部と連通し且つ外部から隔離されている未接合部を残し、該外装用フィルムの開口部を接合して外装体の内部に該発電要素を封入する封入工程と、
該発電要素のコンディショニングを行うコンディショニング工程と、
該未接合部の厚みを所定厚み以下に拘束しながら、該未接合部にガス抜き孔を開けて該外装体の内部と外部とを連通させるガス抜き工程と、
該未接合部を接合して該ガス抜き孔を塞いで再び該発電要素を該外装体内に封入する再封止工程とを有することを特徴とする。
【0011】
つまり、ガス抜き孔を形成する未接合部を設け、少なくともガス抜き工程時にその未接合部の厚みを所定厚み以下に拘束することで、しわ発生の大きな原因である未接合部の膨張及び変形を抑えている。また、付随的な効果として未接合部の厚みを規制することにより電池内部のガスを加圧できガス抜き孔からのガス抜き速度を向上できる。未接合部は外装用フィルムの接合とともに簡単に形成できる。
【0012】
更に前記コンディショニング工程は、前記未接合部の厚みを前記所定厚み以下に拘束しながら行う工程であることが望ましい。二次電池内部におけるガス発生は概ね二次電池のコンディショニング工程において発生しているのでガス発生当初から未接合部の厚みを規制することで、しわ発生の大きな原因である未接合部の膨張乃至は変形をより確実に抑制できる。
【0013】
そして更に、前記未接合部とともに前記発電要素を包んでいる部分の厚みについても第2所定厚み以下に拘束することが望ましい。未接合部以外の部分についても外装体の膨張による応力集中によって外装用フィルムの剥離等が起こる可能性があるからである。また、未接合部以外の部分についても厚みを規制することで電池内部のガスを加圧することができ、未接合部に設けるガス抜き孔を大きくしなくてもガス抜き工程時に速やかにガス抜きを行うことが可能となる。
【0014】
好ましい前記所定厚みとしては前記外装用フィルムの厚みの4倍から20倍の間である。また、拘束の方法は厚み方向に狭持することで拘束する拘束治具により行われることが望ましい。
【0015】
【発明の実施の形態】
本発明の二次電池の製造方法が適用できる二次電池は、可撓性をもつ外装用フィルムからなる外装体を備える電池である。可撓性をもつ外装用フィルムとしてはアルミラミネートフィルム等のラミネートフィルム、プラスチック製フィルム等が挙げられる。これら外装用フィルムにより二次電池の発電要素を包むことで外装体を構成する。これら外装用フィルムは熱溶着や超音波溶着により容易に接着できるとともに、気密性、低水分透過性に優れたものであることが望ましい。
【0016】
二次電池の発電要素としてリチウム二次電池を例として詳細に説明する。リチウム電池は正極及び負極をセパレータを介して重畳或いは巻回したものである。セパレータに代えて固体電解質を用いることもできる。リチウム二次電池は非水電池であり製造時に混入した水分が反応することでガスが発生する。また、電解液中に含まれる有機溶媒の蒸発や、電池製造後のコンディショニングにおける電極反応でガスが発生することもある。
【0017】
正極は、リチウムイオンを吸蔵・脱離できる正極活物質に導電材および結着材を混合し、必要に応じ適当な溶媒を加えて、ペースト状の正極合材としたものを、アルミニウム等の金属箔製の集電体表面に塗布、乾燥し、その後プレスによって活物質密度を高めることによって形成する。
【0018】
正極活物質にはリチウム遷移金属複合酸化物等の公知の正極活物質を用いることができる。リチウム遷移金属複合酸化物は、その電気抵抗が低く、リチウムイオンの拡散性能に優れ、高い充放電効率と良好な充放電サイクル特性とが得られるため、本正極活物質に好ましい材料である。たとえばリチウムコバルト酸化物、リチウムニッケル酸化物、リチウムマンガン酸化物や、各々にLi、Al、そしてCr等の遷移金属を添加または置換した材料等である。なお、これらのリチウム−金属複合酸化物を正極活物質として用いる場合には単独で用いるばかりでなくこれらを複数種類混合して用いることもできる。
【0019】
導電材は、正極の電気伝導性を確保するためのものであり、カーボンブラック、アセチレンブラック、黒鉛等の炭素物質粉状体の1種または2種以上を混合したものを用いることができる。結着材は、活物質粒子および導電材粒子を繋ぎ止める役割を果たすものでポリテトラフルオロエチレン、ポリフッ化ビニリデン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂を用いることができる。これら活物質、導電材、結着材を分散させる溶剤としては、N−メチル−2−ピロリドン等の有機溶剤を用いることができる。
【0020】
負極については、リチウムイオンを充電時には吸蔵し、かつ放電時には放出する負極活物質を用いることができれば、その材料構成で特に限定されるものではなく、公知の材料構成のものを用いることができる。たとえば、リチウム金属、グラファイト又は非晶質炭素等の炭素材料等である。そのなかでも特に炭素材料を用いることが好ましい。比表面積が比較的大きくでき、リチウムの吸蔵、放出速度が速いため大電流での充放電特性、出力・回生密度に対して良好となる。特に、出力・回生密度のバランスを考慮すると、充放電に伴ない電圧変化の比較的大きい炭素材料を使用することが好ましい。中でも結晶性の高い天然黒鉛や人造黒鉛などからなるものを用いることが好ましい。このような結晶性の高い炭素材を用いることにより、負極のリチウムイオンの受け渡し効率を向上させることができる。
【0021】
このように負極活物質として炭素材料を用いた場合には、これに必要に応じて正極で説明したような導電材および結着材を混合して得られた負極合材が集電体に塗布されてなるものを用いることが好ましい。
【0022】
電解液は、有機溶媒に電解質を溶解させたものである。電解液に代えてゲル電解質を採用することもできる。ゲル電解質はフッ化ビニリデン−ヘキサフルオロプロピレン共重合体(p(VdF−HFP))等の高分子を後述する電解液に分散させたものが採用できる。p(VdF−HFP)は電解液に分散することでゲル化する。
【0023】
有機溶媒は、通常リチウム二次電池の電解液に用いられる有機溶媒であれば特に限定されるものではない。例えば、カーボネート類、ハロゲン化炭化水素、エーテル類、ケトン類、ニトリル類、ラクトン類、オキソラン化合物等を用いることができる。特に、プロピレンカーボネート、エチレンカーボネート、1,2−ジメトキシエタン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、テトラヒドロフラン等及びそれらの混合溶媒が適当である。例えば、エチレンカーボネート、プロピレンカーボネートなどの高誘電率の主溶媒と、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートなどの低粘性の副溶媒との混合有機溶媒が好ましい。また、副溶媒として、ジメトキシエタン、テトラヒドロフラン及びブチルラクトンなどを用いてもよい。
【0024】
電解質は、その種類が特に限定されるものではないが、LiPF、LiBF、LiClOおよびLiAsFから選ばれる無機塩、該無機塩の誘導体、LiSOCF、LiC(SOCF、LiN(SOCF、LiN(SOおよびLiN(SOCF)(SO)から選ばれる有機塩、並びにその有機塩の誘導体の少なくとも1種であることが好ましい。
【0025】
これらの電解質の使用により、電池性能をさらに優れたものとすることができ、かつその電池性能を室温以外の温度域においてもさらに高く維持することができる。電解質の濃度についても特に限定されるものではなく、用途に応じ、電解質および有機溶媒の種類を考慮して適切に選択することが好ましい。
【0026】
セパレータは、正極および負極を電気的に絶縁し、電解液を保持する役割を果たすものである。たとえば、多孔性合成樹脂膜、特にポリオレフィン系高分子(ポリエチレン、ポリプロピレン)の多孔膜を用いればよい。なおセパレータは、正極と負極との絶縁を担保するため、正極および負極よりもさらに大きいものとするのが好ましい。
【0027】
〔二次電池の製造方法〕
本実施形態の二次電池の製造方法は封入工程とガス抜き工程と再封止工程と必要に応じてなされるその他の工程とを有する。
【0028】
(封入工程)
封入工程は外装体に発電要素を封入する工程である。発電要素の製造方法は上述したような一般的な方法が採用できる。発電要素は本封入工程前に製造しておく。なお、液体の電解液を採用した場合については本封入工程の途中に外装体の内部に電解液を注入することができる。
【0029】
外装体は発電要素を外装体の外部から隔離する部材である。一般的に発電要素は水分等に弱いので雰囲気中の水分を外装体内に透過させないように外装体は水分透過性の低い材料で構成されることが好ましい。そして外装体には、外装体の内部と連通し且つ外部から隔離されている未接合部をもつ。
【0030】
発電要素を外装体中に封入する方法としては発電要素を外装用フィルムで包んだ後に開口部を超音波溶着や熱溶着することで密閉された外装体を得ることができる。例えば、あらかじめ袋状に形成した外装用フィルム中に発電要素を挿入した後に開口部を接合して塞ぐ方法、折り返した外装用フィルムにて発電要素を挟んだ後に開口する三方の開口部を接合して塞ぐ方法がある。
【0031】
未接合部は開口部を超音波溶着等する際に同時に設けることが好ましい。例えば、超音波を照射するホーンや熱溶着を行う際の型の未接合部に相当する部分について、未接合部に当接しないような形状を形成することで超音波溶接等の操作によって簡単に未接合部を設けることができる。また、発電要素を包み込む前に、あらかじめ外装用フィルムの外周の一部を接合して袋状に加工する際に未接合部を形成する方法がある。
【0032】
未接合部の形状は特に限定しない。例えば、矩形、半円形、L字型等が挙げられる。未接合部の大きさはある程度大きいことがガス抜きの容易さの観点からは好ましい。例えば未接合部の形状が矩形である場合を例に説明すると、長さ(接合部の内縁部からの距離)や幅が小さいとガスが抜けると同時に電解液を巻き込みガス抜き孔から電解液が漏出するおそれがある。小さい幅で未接合部を形成すれば未接合部の膨張を小さくできしわの発生率を低下できるが、ガス抜き効率の低下や、ガス抜き時に電解液がガス抜き孔から漏出するおそれがある。具体的には未接合部の大きさは長さが2〜10mm程度、幅が5〜30mm程度とすることが好ましい。また、外装体における未接合部を設ける部位についても特に限定しない。
【0033】
(コンディショニング工程)
コンディショニングは発電要素に対して充放電を数サイクル繰り返すことで行うことができる。コンディショニングによって二次電池からガスが発生するおそれがある。
【0034】
コンディショニング工程を行う際には後述するガス抜き工程時と同様に未接合部の厚み等を所定厚み以下に拘束することが好ましい。コンディショニング工程ではガスが発生するので、未接合部等の厚みを拘束せずに外装体を膨張させると、接合部の剥がれや再封止工程時のしわの発生等の不都合が生じる可能性があるからである。更に外装体の未接合部以外の部位についても厚みを後述する第2所定厚み以下に拘束することが好ましい。
【0035】
(ガス抜き工程)
ガス抜き工程は外装体の内部に発生したガスを抜く工程である。ガス抜きは未接合部にガス抜き孔を形成し、外装体の内部と外部とを連通させることで行う。なお、適用する二次電池の電解質が液体である場合には、内部の電解液が漏れないように、ガス抜き孔を形成する位置が上方になるように調節しながら本工程を行う。
【0036】
ガス抜き孔は所定の部位に針を通すこと等の方法にて行うことができる。ガス抜き孔を形成する部位は特に限定しないが、発電要素から最遠部が望ましい。ガス抜き孔の形成は未接合部を形成する2枚の外装用フィルムの片方のみであっても両方であってもどちらでもよい。ガス抜き孔の大きさは特に限定しないが、直径0.5mm〜2.0mm程度である。
【0037】
ガス抜き孔の形成は、未接合部の厚みを所定厚み以下に拘束しながら行う。未接合部の厚みを規制することで、後の再封止工程において未接合部の部分へのしわ発生及び未接合部における接合部分の剥がれが抑制できる。所定厚みとしては外装フィルムの厚みの4倍から20倍の間とすることが好ましく、4倍から10倍の間とすることが更に好ましい。
【0038】
更に、未接合部とともに発電要素を包んでいる部分の厚みについても一定の厚み(第2所定厚み)以下に拘束することが好ましい。外装体の発電要素を包んでいる部分についても拘束することで外装用フィルムの剥離を抑制できるとともに、外装体を加圧することにもなってガス抜きが速やかにできる。第2所定厚みとしては外装用フィルムと発電要素との厚みを加えた厚み程度とすることがより好ましい。
【0039】
更に、外装用フィルムの接合部分についても拘束することが好ましい。拘束の程度は外装用フィルムを加圧する程度が好ましく、外装フィルムの1.5〜2.0倍程度の厚みとすることがより好ましい。
【0040】
未接合部等の厚みを規制する方法としては特に限定しない。例えば、未接合部等を厚み方向に狭持することで拘束する拘束治具により行うことができる。拘束治具の一例を図1に示す。発電要素50を厚み方向から拘束治具10及び20により狭持することで未接合部及びそれ以外の外装体の部位について厚みを規制できる。
【0041】
ガスをより速やかに抜くために、ガス抜き孔を形成した後、真空雰囲気とすることが好ましい。外装体の全体を真空雰囲気とすることで外装体の内部に発生乃至は残存したガスを除去することができる。
【0042】
(再封止工程)
再封止工程は未接合部を接合してガス抜き孔を塞いで再び発電要素を外装体内に封入する工程である。ガス抜き孔を塞ぐ方法としては封入工程において外装用フィルムの開口部を接合した方法がそのまま使用可能である。
【0043】
ガス抜き孔を塞ぐ際には未接合部の厚みを規制することは特に必須ではない。外装体内部のガスが抜け内圧が低くなっているので未接合部が膨張することがなく、その後に熱溶着や超音波溶着を行ってもしわが発生しないからである。例えばガス抜き工程を前述の拘束治具を用いて行った場合に、再封止工程は拘束治具から取り出して行うことができる。
【0044】
未接合部を塞いだ後に未接合部が形成された近傍を適正な大きさに切除することもできる。なお、適用する二次電池の電解質が液体である場合には、内部の電解液が漏れないように、ガス抜き孔を形成する位置が上方になるように調節しながら本工程を行う。
【0045】
〔作用効果〕
上述の構成をもつことから本実施形態の二次電池の製造方法は以下の作用効果をもつ。まず、封入工程において発電要素を外装体の内部に封入でき、発電要素への外部雰囲気の影響(水分等による影響)がなくなる。
【0046】
封入工程後に行うコンディショニング工程や、内部に混入した水分の反応によって、発電要素からガスが発生し外装体を膨張させる。ここで、あらかじめ未接合部やそれ以外の外装体の厚みを規制しておくことで接合部の剥がれ等を防止できる。
【0047】
ガス抜き工程では未接合部の厚みを所定厚み以下に拘束しながらガス抜き孔を未接合部に形成することでしわの発生を抑えながら外装体内部のガスを除去できる。同時に、未接合部以外の外装体の厚みを規制したり、雰囲気を真空雰囲気とすることによっても速やか且つ確実に外装体内からガスを除去することができる。ガス抜き孔は小さく且つガス抜き工程時には外装体の内圧が高いので、外装体内が外部から汚染(水分の混入等)されるおそれも少ない。その後、未接合部を接合することで、外装体の内外は完全に隔離できる。
【0048】
【実施例】
以下に、図1及び2に基づきながら本発明の二次電池を製造する方法を詳細に説明する。
【0049】
(封入工程)
平面状の外装用フィルムを折り曲げ、発電要素52を挟み込んだ後に、三方511を熱溶着にて接合した。外装用フィルムの厚みは0.1mmであった。
【0050】
まず、外装用フィルムを折り曲げた方向と垂直方向の両端511を接合し、内部に発電要素52を包んだ外装用フィルム51を形成した後、外装用フィルム51内に電解液を注入した。
【0051】
その後、残った一辺511は未接合部512を残しながら接合した。なお、発電要素52は外装体の外部と電気的に接合された正負の外部端子をもつが図面上では省略してある。
【0052】
(コンディショニング工程)
二次電池50について、拘束治具10、20の間に狭持しながら二次電池50のコンディショニングを行った。未接合部512を狭持する部分の拘束治具10、20間の隙間の厚みtは2mmであり外装用フィルムの厚みの20倍であった。また、拘束治具10、20の未接合部512を狭持する部位には未接合部512の厚み方向に設けられた貫通孔11、21をもつ。形成された貫通孔11、21の大きさは直径0.8mmであった。コンディショニングは、10Aの電流密度で3.0〜4.2V間で5サイクル充放電することによって行った。
【0053】
(ガス抜き工程)
貫通孔11、21に針(直径0.5mm)を貫通させることで未接合部512にガス抜き孔を形成した。電解液がガス抜き孔から漏れないように、針の貫通は、未接合部512を発電要素52より相対的に上方となるようにして行った。以下の再封止工程においても同様に未接合部512が相対的に上方になるようにして行った。
【0054】
未接合部512以外の外装体50の部分(外装体本体513))は発電要素52の厚みに外装用フィルムの厚みを加えた程度の厚みになるまで拘束治具10、20の間に狭持した。外装体内のガスは外装体本体の厚みが規制されているのでガス抜き孔から速やかに排出された。また、接合部511は拘束治具10、20の間に狭持することで加圧した。
【0055】
(再封止工程)
二次電池50を拘束治具10、20の間から取り出した後、未接合部512を熱溶着により接合した。外装体51の内外は完全に隔離できた。その後、外装体51のうち、未接合部512を設けた部分の接合部分が長いので短くするために一部を切断した。
【0056】
(作用効果)
ガス抜き工程時に未接合部512の厚みを規制したために、外装体51内部で発生したガスによる未接合部512の膨張が最小限に抑制できた。その結果、後の再封止工程における未接合部512の接合時のしわ発生が抑制できたとともに、外装体51の接合部511の剥離も抑制できた。
【図面の簡単な説明】
【図1】本実施例における封入工程後の二次電池を示した概略図である。
【図2】本実施例におけるコンディショニング工程及びガス抜き工程を示した概略図である。
【符号の説明】
10、20…拘束治具
11、21…貫通孔
50…二次電池
51…外装体(外装用フィルム) 511…接合部 512…未接合部
52…発電要素
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a secondary battery having an outer package constituted by a thin and lightweight outer film such as a laminate film, and relates to a method for manufacturing a secondary battery that can easily remove gas generated during conditioning. Also, the present invention relates to a method for manufacturing a secondary battery that can prevent the occurrence of liquid leakage or the like from a gas vent hole used at the time of gas venting.
[0002]
[Prior art]
With the miniaturization of personal computers, video cameras, mobile phones, etc., secondary batteries with a high energy density such as lithium secondary batteries have been put into practical use and widely used as power sources for these information-related devices and communication devices. I have. On the other hand, in the field of automobiles, the development of electric vehicles has been rushed due to environmental problems and resource problems, and various secondary batteries have been studied as power sources for electric vehicles.
[0003]
It is desirable that the secondary batteries used in the fields of the above-described portable devices, automobiles, and the like have a slightly high energy density, and attempts have been made to reduce the weight of battery cases and the like that are essentially unrelated to battery reactions. As a typical secondary battery, there is a secondary battery using a thin, lightweight, flexible exterior film instead of a rigid and large battery case.
[0004]
By the way, in a secondary battery such as a lithium secondary battery, gas may be generated from a power generating element due to conditioning or passage of time. Since the generated gas expands the flexible outer package, it is preferable to remove the generated gas from the inside of the secondary battery.
[0005]
The conventional degassing method is to provide a non-joined part that communicates with the inside of the outer body but does not communicate with the outside at a part of the joint of the thin and lightweight outer body that encloses the power generation element, A method is disclosed in which a gas vent hole is provided and gas is released, and then the unjoined portion is joined (Patent Document 1).
[0006]
[Patent Document 1] Japanese Patent Application Laid-Open No. 2000-353497 [Patent Document 2] Japanese Patent Application Laid-Open No. 2001-325926 (Claim 1, FIG. 1, etc.)
[0007]
[Problems to be solved by the invention]
However, in the method of the related art, after the conditioning is completed, wrinkles may occur when joining the unjoined portions, and the generated wrinkles may be used as tunnels to leak electrolyte from the vent holes or to mix moisture into the battery. There was a fear.
[0008]
In addition, when the internal pressure of the exterior body increases during the degassing step, there is a possibility that the bonded portion may be separated from the unjoined portion of the exterior body. For example, there is disclosed a battery that aims to discharge gas when the internal pressure of a secondary battery is increased by utilizing the peeling of an unbonded portion (Patent Document 2).
[0009]
In view of the above problems, it is an object of the present invention to provide a method of manufacturing a secondary battery capable of reliably performing degassing accompanying conditioning or the like and ensuring sufficient hermeticity after degassing.
[0010]
Means for Solving the Problems and Effects of the Invention
The inventors of the present invention have conducted intensive studies to solve the above problems, and as a result of closely examining the cause of wrinkles, large expansion and deformation have occurred in unbonded portions due to an increase in internal pressure due to gas generated in the secondary battery. It has been found that one factor is that the joint does not return to its original shape when joining. In addition, it was found that the stress was concentrated around the unjoined portion due to the expansion of the unjoined portion, and a part of the joined portion was peeled off. Therefore, as a method of suppressing the expansion of the unjoined portion and relieving the stress concentration, the present inventors have conceived to regulate the thickness of the unjoined portion when the internal pressure of the exterior body is high. That is, in the method for manufacturing a secondary battery of the present invention, the power generation element is wrapped with the exterior film, and the unjoined portion which is communicated with the inside and is isolated from the outside is joined, and the opening of the exterior film is joined. An enclosing step of enclosing the power generating element inside the exterior body,
A conditioning step of conditioning the power generating element;
A gas venting step of opening a gas vent hole in the non-joined portion to communicate the inside and the outside of the exterior body while restricting the thickness of the unjoined portion to a predetermined thickness or less,
A resealing step of joining the unjoined portion to close the gas vent hole, and enclosing the power generating element in the exterior body again.
[0011]
In other words, by providing an unjoined portion that forms a gas vent hole and constraining the thickness of the unjoined portion to a predetermined thickness or less at least during the degassing step, expansion and deformation of the unjoined portion, which is a major cause of wrinkling, is prevented. I am holding it down. Further, as an additional effect, by regulating the thickness of the unjoined portion, the gas inside the battery can be pressurized, and the speed of degassing from the gas vent hole can be improved. The unbonded portion can be easily formed together with the bonding of the exterior film.
[0012]
Further, it is desirable that the conditioning step is a step performed while restricting the thickness of the unbonded portion to the predetermined thickness or less. Since gas generation inside the secondary battery is generally generated in the conditioning step of the secondary battery, by regulating the thickness of the unbonded portion from the beginning of gas generation, the expansion or expansion of the unbonded portion, which is a major cause of wrinkling, is Deformation can be more reliably suppressed.
[0013]
Further, it is desirable that the thickness of the portion enclosing the power generation element together with the unjoined portion is also restricted to a second predetermined thickness or less. This is because, even in a portion other than the unjoined portion, peeling of the exterior film may occur due to stress concentration due to expansion of the exterior body. In addition, the gas inside the battery can be pressurized by regulating the thickness of the portion other than the unjoined portion, and the gas can be quickly released during the degassing process without increasing the size of the vent hole provided in the unjoined portion. It is possible to do.
[0014]
The preferred predetermined thickness is between 4 and 20 times the thickness of the exterior film. Further, it is desirable that the restraining method is performed by a restraining jig that restrains by holding in a thickness direction.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
A secondary battery to which the method for manufacturing a secondary battery of the present invention can be applied is a battery provided with an exterior body made of a flexible exterior film. Examples of the flexible exterior film include a laminated film such as an aluminum laminated film and a plastic film. The exterior body is formed by wrapping the power generation element of the secondary battery with these exterior films. It is desirable that these exterior films can be easily adhered by heat welding or ultrasonic welding, and have excellent airtightness and low moisture permeability.
[0016]
The lithium secondary battery will be described in detail as an example of a power generation element of the secondary battery. A lithium battery is obtained by superposing or winding a positive electrode and a negative electrode with a separator interposed therebetween. A solid electrolyte can be used instead of the separator. A lithium secondary battery is a non-aqueous battery, and generates gas by reacting with water mixed during the production. Further, gas may be generated due to evaporation of the organic solvent contained in the electrolytic solution or an electrode reaction in conditioning after battery production.
[0017]
The positive electrode is prepared by mixing a conductive material and a binder with a positive electrode active material capable of inserting and extracting lithium ions, adding an appropriate solvent as necessary, and forming a paste-like positive electrode mixture into a metal such as aluminum. It is formed by coating and drying on the surface of a current collector made of foil and then increasing the active material density by pressing.
[0018]
As the positive electrode active material, a known positive electrode active material such as a lithium transition metal composite oxide can be used. The lithium transition metal composite oxide is a preferable material for the present positive electrode active material because of its low electric resistance, excellent lithium ion diffusion performance, high charge / discharge efficiency and good charge / discharge cycle characteristics. For example, lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, or a material to which a transition metal such as Li, Al, and Cr is added or substituted, respectively. When these lithium-metal composite oxides are used as the positive electrode active material, not only can they be used alone, but also a mixture of a plurality of them can be used.
[0019]
The conductive material is for ensuring the electrical conductivity of the positive electrode, and may be a mixture of one or more powdered carbon materials such as carbon black, acetylene black, and graphite. The binder plays a role of binding the active material particles and the conductive material particles, and may be a fluororesin such as polytetrafluoroethylene, polyvinylidene fluoride, or fluororubber, or a thermoplastic resin such as polypropylene or polyethylene. . An organic solvent such as N-methyl-2-pyrrolidone can be used as a solvent for dispersing the active material, the conductive material, and the binder.
[0020]
The material of the negative electrode is not particularly limited as long as a negative electrode active material that occludes lithium ions during charging and releases lithium ions during discharging can be used, and a known material can be used. For example, it is a carbon material such as lithium metal, graphite or amorphous carbon. Among them, it is particularly preferable to use a carbon material. Since the specific surface area can be made relatively large, and the lithium insertion and extraction speed is high, the charge / discharge characteristics at a large current and the output / regeneration density are good. In particular, in consideration of the balance between the output and the regenerative density, it is preferable to use a carbon material having a relatively large voltage change accompanying charging and discharging. Above all, it is preferable to use one made of natural graphite or artificial graphite having high crystallinity. By using such a highly crystalline carbon material, the lithium ion transfer efficiency of the negative electrode can be improved.
[0021]
When a carbon material is used as the negative electrode active material, a negative electrode mixture obtained by mixing the conductive material and the binder as described for the positive electrode is applied to the current collector, if necessary. It is preferable to use those obtained.
[0022]
The electrolytic solution is obtained by dissolving an electrolyte in an organic solvent. A gel electrolyte may be used instead of the electrolyte. As the gel electrolyte, one in which a polymer such as a vinylidene fluoride-hexafluoropropylene copolymer (p (VdF-HFP)) or the like is dispersed in an electrolyte solution described later can be used. p (VdF-HFP) gels by dispersing in the electrolytic solution.
[0023]
The organic solvent is not particularly limited as long as it is an organic solvent usually used for an electrolyte of a lithium secondary battery. For example, carbonates, halogenated hydrocarbons, ethers, ketones, nitriles, lactones, oxolane compounds and the like can be used. In particular, propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, tetrahydrofuran and the like, and a mixed solvent thereof are suitable. For example, a mixed organic solvent of a high dielectric constant main solvent such as ethylene carbonate and propylene carbonate and a low-viscosity auxiliary solvent such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate is preferable. Further, dimethoxyethane, tetrahydrofuran, butyl lactone, or the like may be used as a secondary solvent.
[0024]
The type of the electrolyte is not particularly limited, but an inorganic salt selected from LiPF 6 , LiBF 4 , LiClO 4 and LiAsF 6 , a derivative of the inorganic salt, LiSO 3 CF 3 , LiC (SO 3 CF 3 ) 2, LiN (SO 3 CF 3 ) 2, LiN (SO 2 C 2 F 5) 2 and LiN (SO 2 CF 3) organic salt selected from (SO 2 C 4 F 9) , as well as derivatives of organic salts Preferably, at least one kind is used.
[0025]
By using these electrolytes, battery performance can be further improved, and the battery performance can be maintained even higher in a temperature range other than room temperature. The concentration of the electrolyte is also not particularly limited, and it is preferable to appropriately select the concentration in consideration of the type of the electrolyte and the organic solvent depending on the application.
[0026]
The separator serves to electrically insulate the positive electrode and the negative electrode and retain the electrolytic solution. For example, a porous synthetic resin film, particularly a porous film of a polyolefin polymer (polyethylene, polypropylene) may be used. Note that the separator is preferably larger than the positive electrode and the negative electrode in order to ensure insulation between the positive electrode and the negative electrode.
[0027]
[Secondary battery manufacturing method]
The method for manufacturing a secondary battery according to the present embodiment includes an encapsulation step, a degassing step, a resealing step, and other steps performed as necessary.
[0028]
(Encapsulation process)
The enclosing step is a step of enclosing the power generation element in the exterior body. The general method as described above can be used for the method of manufacturing the power generating element. The power generating element is manufactured before the main enclosing step. When a liquid electrolyte is used, the electrolyte can be injected into the exterior body during the encapsulation process.
[0029]
The exterior body is a member that isolates the power generation element from the outside of the exterior body. Generally, the power generation element is weak to moisture and the like, so that the exterior body is preferably made of a material having low moisture permeability so as to prevent moisture in the atmosphere from permeating into the exterior body. The exterior body has an unjoined portion that communicates with the inside of the exterior body and is isolated from the outside.
[0030]
As a method of enclosing the power generation element in the exterior body, the hermetically sealed exterior body can be obtained by wrapping the power generation element with an exterior film and then ultrasonically or thermally welding the opening. For example, a method of joining and closing an opening after inserting a power generation element into an exterior film formed in a bag shape in advance, and joining three sides of an opening after sandwiching the power generation element with a folded exterior film. There is a way to close.
[0031]
The unjoined portion is preferably provided at the same time as the opening is subjected to ultrasonic welding or the like. For example, the horn that irradiates ultrasonic waves or the part corresponding to the unjoined part of the mold when performing heat welding is easily formed by an operation such as ultrasonic welding by forming a shape that does not contact the unjoined part. Unjoined portions can be provided. Further, there is a method of forming an unbonded portion when a part of the outer periphery of the exterior film is bonded in advance and processed into a bag shape before enclosing the power generation element.
[0032]
The shape of the unjoined portion is not particularly limited. For example, a rectangular shape, a semicircular shape, an L-shape, and the like can be given. It is preferable that the size of the unjoined portion is large to some extent from the viewpoint of ease of degassing. For example, a case where the shape of the unjoined portion is rectangular will be described as an example. If the length (distance from the inner edge portion of the joined portion) or the width is small, the gas escapes at the same time as the electrolyte is drawn in and the electrolyte is discharged from the vent hole. May leak. If the unjoined portion is formed with a small width, the expansion of the unjoined portion can be reduced and the generation rate of wrinkles can be reduced. However, there is a possibility that the gas removal efficiency is reduced and the electrolyte solution leaks from the gas removal hole at the time of gas removal. Specifically, the size of the unjoined portion is preferably about 2 to 10 mm in length and about 5 to 30 mm in width. Further, the portion of the exterior body where the unjoined portion is provided is not particularly limited.
[0033]
(Conditioning process)
Conditioning can be performed by repeating charging and discharging of the power generating element for several cycles. Gas may be generated from the secondary battery due to conditioning.
[0034]
When performing the conditioning step, it is preferable to restrict the thickness and the like of the unjoined portion to a predetermined thickness or less, as in the gas release step described later. Since gas is generated in the conditioning step, if the exterior body is expanded without restricting the thickness of the unbonded portion and the like, inconveniences such as peeling of the bonded portion and generation of wrinkles in the resealing step may occur. Because. Further, it is preferable to restrict the thickness of the portion other than the unjoined portion of the exterior body to a second predetermined thickness or less, which will be described later.
[0035]
(Degassing process)
The degassing step is a step of discharging gas generated inside the exterior body. Degassing is performed by forming a degassing hole in the unjoined portion and connecting the inside and the outside of the exterior body. When the electrolyte of the secondary battery to be applied is a liquid, this step is performed while adjusting the position where the gas vent hole is formed to be upward so that the internal electrolyte does not leak.
[0036]
The gas vent hole can be formed by a method such as passing a needle through a predetermined portion. The location where the gas vent hole is formed is not particularly limited, but is desirably located farthest from the power generating element. The gas vent hole may be formed on either one or both of the two exterior films forming the unbonded portion. The size of the gas vent hole is not particularly limited, but is about 0.5 mm to 2.0 mm in diameter.
[0037]
The formation of the gas vent hole is performed while restricting the thickness of the unjoined portion to a predetermined thickness or less. By regulating the thickness of the unbonded portion, it is possible to suppress the occurrence of wrinkles in the unbonded portion and the separation of the bonded portion in the unbonded portion in the subsequent resealing step. The predetermined thickness is preferably between 4 and 20 times the thickness of the exterior film, and more preferably between 4 and 10 times.
[0038]
Furthermore, it is preferable that the thickness of the portion surrounding the power generating element together with the unjoined portion is also restricted to a certain thickness (second predetermined thickness) or less. By restraining the portion of the exterior body surrounding the power generation element, peeling of the exterior film can be suppressed, and gas pressure can be quickly released by pressing the exterior body. The second predetermined thickness is more preferably about the thickness of the exterior film and the power generating element.
[0039]
Further, it is preferable to restrain the joint portion of the exterior film. The degree of restraint is preferably such that the exterior film is pressed, more preferably about 1.5 to 2.0 times the thickness of the exterior film.
[0040]
There is no particular limitation on the method of regulating the thickness of the unjoined portion and the like. For example, it can be performed by a restraining jig that restrains an unjoined portion or the like by holding it in the thickness direction. FIG. 1 shows an example of the restraining jig. By sandwiching the power generating element 50 from the thickness direction with the restraining jigs 10 and 20, the thickness of the unjoined portion and the other parts of the exterior body can be regulated.
[0041]
In order to release gas more quickly, it is preferable to form a vacuum atmosphere after forming the gas release hole. By setting the entire exterior body in a vacuum atmosphere, gas generated or remaining in the interior of the exterior body can be removed.
[0042]
(Reseal process)
The resealing step is a step of joining the unjoined portions, closing the gas vent holes, and enclosing the power generating element again in the exterior body. As a method of closing the gas vent hole, a method in which the opening of the exterior film is joined in the encapsulation step can be used as it is.
[0043]
It is not particularly necessary to regulate the thickness of the unbonded portion when closing the gas vent hole. This is because the gas inside the exterior body is released and the internal pressure is low, so that the unbonded portion does not expand, and no wrinkles are generated even if thermal welding or ultrasonic welding is performed thereafter. For example, when the degassing step is performed by using the above-described restraining jig, the resealing step can be performed by taking out from the restraining jig.
[0044]
After closing the unjoined portion, the vicinity where the unjoined portion is formed can be cut to an appropriate size. When the electrolyte of the secondary battery to be applied is a liquid, this step is performed while adjusting the position where the gas vent hole is formed to be upward so that the internal electrolyte does not leak.
[0045]
(Function and effect)
With the above configuration, the method for manufacturing a secondary battery according to the present embodiment has the following operation and effects. First, in the enclosing step, the power generating element can be sealed inside the exterior body, and the influence of the external atmosphere (the influence of moisture and the like) on the power generating element is eliminated.
[0046]
A gas is generated from the power generating element due to a conditioning step performed after the enclosing step and a reaction of moisture mixed in the inside, and the exterior body is expanded. Here, the thickness of the unjoined portion and the thickness of the exterior body other than the unjoined portion can be regulated in advance, so that peeling of the joined portion can be prevented.
[0047]
In the degassing step, the gas inside the exterior body can be removed while suppressing the generation of wrinkles by forming a gas vent hole in the non-joined portion while restricting the thickness of the unjoined portion to a predetermined thickness or less. At the same time, the gas can be quickly and reliably removed from the exterior body by regulating the thickness of the exterior body other than the unjoined portion or by setting the atmosphere to a vacuum atmosphere. Since the gas vent hole is small and the internal pressure of the exterior body is high during the degassing step, the exterior body is less likely to be contaminated from the outside (such as mixing of moisture). Thereafter, by joining the unjoined portions, the inside and outside of the exterior body can be completely isolated.
[0048]
【Example】
Hereinafter, a method for manufacturing the secondary battery of the present invention will be described in detail with reference to FIGS.
[0049]
(Encapsulation process)
After bending the planar exterior film and sandwiching the power generation element 52, the three sides 511 were joined by heat welding. The thickness of the exterior film was 0.1 mm.
[0050]
First, both ends 511 in the direction perpendicular to the direction in which the exterior film was bent were joined to form an exterior film 51 enclosing the power generation element 52 therein, and then an electrolyte was injected into the exterior film 51.
[0051]
Thereafter, the remaining one side 511 was bonded while leaving the unbonded portion 512. The power generating element 52 has positive and negative external terminals electrically connected to the outside of the exterior body, but is omitted in the drawing.
[0052]
(Conditioning process)
The secondary battery 50 was conditioned while being held between the restraining jigs 10 and 20. The thickness t of the gap between the restraining jigs 10 and 20 at the portion holding the unjoined portion 512 was 2 mm, which was 20 times the thickness of the exterior film. In addition, portions of the restraining jigs 10 and 20 that sandwich the unjoined portion 512 have through holes 11 and 21 that are provided in the thickness direction of the unjoined portion 512. The size of the formed through holes 11 and 21 was 0.8 mm in diameter. Conditioning was performed by charging / discharging 5 cycles between 3.0 and 4.2 V at a current density of 10 A.
[0053]
(Degassing process)
A gas vent hole was formed in the unjoined portion 512 by passing a needle (diameter 0.5 mm) through the through holes 11 and 21. The penetration of the needle was performed so that the unbonded portion 512 was relatively higher than the power generation element 52 so that the electrolyte did not leak from the gas vent hole. In the following resealing step, the unbonded portion 512 was similarly set to be relatively higher.
[0054]
The portion of the exterior body 50 other than the unjoined portion 512 (the exterior body main body 513) is sandwiched between the restraining jigs 10 and 20 until the thickness of the power generation element 52 is added to the thickness of the exterior film. did. The gas in the exterior body was quickly discharged from the vent hole because the thickness of the exterior body was regulated. Further, the joint 511 was pressurized by being held between the restraining jigs 10 and 20.
[0055]
(Reseal process)
After taking out the secondary battery 50 from between the restraining jigs 10 and 20, the unbonded portion 512 was bonded by heat welding. The inside and outside of the exterior body 51 could be completely isolated. Thereafter, in the exterior body 51, a part where the unbonded part 512 was provided was long, so a part thereof was cut to shorten it.
[0056]
(Effect)
Since the thickness of the unbonded portion 512 was regulated during the degassing step, the expansion of the unbonded portion 512 due to the gas generated inside the exterior body 51 could be minimized. As a result, generation of wrinkles at the time of joining the unjoined portion 512 in the subsequent resealing step was able to be suppressed, and peeling of the joined portion 511 of the exterior body 51 was also able to be suppressed.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a secondary battery after an encapsulation step in the present embodiment.
FIG. 2 is a schematic view showing a conditioning step and a degassing step in the present embodiment.
[Explanation of symbols]
10, 20: restraining jigs 11, 21: through hole 50: secondary battery 51: exterior body (exterior film) 511: joined part 512: unjoined part 52: power generation element

Claims (5)

外装用フィルムで発電要素を包み、内部と連通し且つ外部から隔離されている未接合部を残し、該外装用フィルムの開口部を接合して外装体の内部に該発電要素を封入する封入工程と、
該発電要素のコンディショニングを行うコンディショニング工程と、
該未接合部の厚みを所定厚み以下に拘束しながら、該未接合部にガス抜き孔を開けて該外装体の内部と外部とを連通させるガス抜き工程と、
該未接合部を接合して該ガス抜き孔を塞いで再び該発電要素を該外装体内に封入する再封止工程とを有することを特徴とする二次電池の製造方法。
An enclosing step of enclosing the power generation element with an exterior film, leaving an unjoined portion communicating with the inside and isolated from the outside, joining an opening of the exterior film, and enclosing the power generation element inside the exterior body. When,
A conditioning step of conditioning the power generating element;
A gas venting step of opening a gas vent hole in the non-joined portion to communicate the inside and the outside of the exterior body while restricting the thickness of the unjoined portion to a predetermined thickness or less,
A resealing step of joining the unjoined portion, closing the gas vent hole, and enclosing the power generating element in the exterior body again.
前記コンディショニング工程は、前記未接合部の厚みを前記所定厚み以下に拘束しながら行う工程である請求項1に記載の二次電池の製造方法。The method of manufacturing a secondary battery according to claim 1, wherein the conditioning step is a step performed while restricting the thickness of the unjoined portion to the predetermined thickness or less. 前記未接合部とともに前記発電要素を包んでいる部分の厚みについても第2所定厚み以下に拘束する請求項1又は2に記載の二次電池の製造方法。3. The method for manufacturing a secondary battery according to claim 1, wherein a thickness of a portion surrounding the power generation element together with the unjoined portion is also restricted to a second predetermined thickness or less. 4. 前記所定厚みは前記外装用フィルムの厚みの4倍から20倍の間である請求項1〜3のいずれかに記載の二次電池の製造方法。The method for manufacturing a secondary battery according to claim 1, wherein the predetermined thickness is between 4 times and 20 times the thickness of the exterior film. 前記拘束は厚み方向に狭持することで拘束する拘束治具により行われる請求項1〜4のいずれかに記載の二次電池の製造方法。The method for manufacturing a secondary battery according to claim 1, wherein the restraining is performed by a restraining jig restraining by holding in a thickness direction.
JP2003139435A 2003-05-16 2003-05-16 Manufacturing method of secondary battery Expired - Fee Related JP4155100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003139435A JP4155100B2 (en) 2003-05-16 2003-05-16 Manufacturing method of secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003139435A JP4155100B2 (en) 2003-05-16 2003-05-16 Manufacturing method of secondary battery

Publications (2)

Publication Number Publication Date
JP2004342520A true JP2004342520A (en) 2004-12-02
JP4155100B2 JP4155100B2 (en) 2008-09-24

Family

ID=33528522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003139435A Expired - Fee Related JP4155100B2 (en) 2003-05-16 2003-05-16 Manufacturing method of secondary battery

Country Status (1)

Country Link
JP (1) JP4155100B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100586896B1 (en) 2004-07-30 2006-06-08 주식회사 이스퀘어텍 Manufacturing Apparatus of Pouch for Rechargeable Battery
WO2013187161A1 (en) 2012-06-11 2013-12-19 日産自動車株式会社 Manufacturing method and manufacturing device for secondary battery
WO2015019749A1 (en) * 2013-08-09 2015-02-12 日産自動車株式会社 Method for manufacturing laminated film, and piercing blade
JP2015088324A (en) * 2013-10-30 2015-05-07 日産自動車株式会社 Manufacturing method and manufacturing apparatus for batteries
WO2015087760A1 (en) 2013-12-11 2015-06-18 日産自動車株式会社 Process and device for forming secondary-cell gas venting hole
JP2015115161A (en) * 2013-12-11 2015-06-22 日産自動車株式会社 Manufacturing method and manufacturing apparatus of secondary battery
JP2015118816A (en) * 2013-12-18 2015-06-25 日産自動車株式会社 Electrode for secondary cell
JP2016122495A (en) * 2014-12-24 2016-07-07 昭和電工パッケージング株式会社 Battery manufacturing method
JP2017092047A (en) * 2012-04-05 2017-05-25 エルジー・ケム・リミテッド Battery cell of stair-like structure
KR20180047274A (en) * 2016-10-31 2018-05-10 주식회사 엘지화학 Apparatus for collecting inner gas in secondary electric cell and method thereof
WO2019045256A1 (en) * 2017-08-29 2019-03-07 주식회사 엘지화학 Pouch type secondary battery comprising venting induction device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101811474B1 (en) 2013-12-19 2017-12-21 주식회사 엘지화학 Apparatus of degassing battery cell and method of degassing battery cell using the same

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100586896B1 (en) 2004-07-30 2006-06-08 주식회사 이스퀘어텍 Manufacturing Apparatus of Pouch for Rechargeable Battery
JP2017092047A (en) * 2012-04-05 2017-05-25 エルジー・ケム・リミテッド Battery cell of stair-like structure
WO2013187161A1 (en) 2012-06-11 2013-12-19 日産自動車株式会社 Manufacturing method and manufacturing device for secondary battery
KR20150013245A (en) * 2012-06-11 2015-02-04 닛산 지도우샤 가부시키가이샤 Manufacturing method and manufacturing device for secondary battery
CN104380514A (en) * 2012-06-11 2015-02-25 日产自动车株式会社 Manufacturing method and manufacturing device for secondary battery
US9722274B2 (en) 2012-06-11 2017-08-01 Nissan Motor Co., Ltd. Manufacturing method and manufacturing device of secondary battery
KR101627061B1 (en) * 2012-06-11 2016-06-03 닛산 지도우샤 가부시키가이샤 Manufacturing method and manufacturing device for secondary battery
CN104380514B (en) * 2012-06-11 2016-12-28 日产自动车株式会社 The manufacture method of secondary cell and manufacture device
WO2015019749A1 (en) * 2013-08-09 2015-02-12 日産自動車株式会社 Method for manufacturing laminated film, and piercing blade
JPWO2015019749A1 (en) * 2013-08-09 2017-03-02 日産自動車株式会社 Laminate film manufacturing method and perforated blade
JP2015088324A (en) * 2013-10-30 2015-05-07 日産自動車株式会社 Manufacturing method and manufacturing apparatus for batteries
CN105794036A (en) * 2013-12-11 2016-07-20 日产自动车株式会社 Process and device for forming secondary-cell gas venting hole
US10121999B2 (en) * 2013-12-11 2018-11-06 Nissan Motor Co., Ltd. Degassing hole formation process and degassing hole formation apparatus for secondary battery
JPWO2015087760A1 (en) * 2013-12-11 2017-03-16 日産自動車株式会社 Degassing hole forming process and degassing hole forming apparatus for secondary battery
JP2015115161A (en) * 2013-12-11 2015-06-22 日産自動車株式会社 Manufacturing method and manufacturing apparatus of secondary battery
WO2015087760A1 (en) 2013-12-11 2015-06-18 日産自動車株式会社 Process and device for forming secondary-cell gas venting hole
KR20160086376A (en) * 2013-12-11 2016-07-19 닛산 지도우샤 가부시키가이샤 Process and device for forming secondary-cell gas venting hole
KR101889633B1 (en) * 2013-12-11 2018-08-17 닛산 지도우샤 가부시키가이샤 Process and device for forming secondary-cell gas venting hole
JP2015118816A (en) * 2013-12-18 2015-06-25 日産自動車株式会社 Electrode for secondary cell
JP2016122495A (en) * 2014-12-24 2016-07-07 昭和電工パッケージング株式会社 Battery manufacturing method
KR20180047274A (en) * 2016-10-31 2018-05-10 주식회사 엘지화학 Apparatus for collecting inner gas in secondary electric cell and method thereof
KR102160703B1 (en) * 2016-10-31 2020-09-28 주식회사 엘지화학 Apparatus for collecting inner gas in secondary electric cell and method thereof
WO2019045256A1 (en) * 2017-08-29 2019-03-07 주식회사 엘지화학 Pouch type secondary battery comprising venting induction device
KR20190023648A (en) * 2017-08-29 2019-03-08 주식회사 엘지화학 Pouch-Type Secondary Battery Having Venting Guidance Device
KR102324549B1 (en) 2017-08-29 2021-11-10 주식회사 엘지에너지솔루션 Pouch-Type Secondary Battery Having Venting Guidance Device
US11189881B2 (en) 2017-08-29 2021-11-30 Lg Chem, Ltd. Pouch-shaped secondary battery comprising venting guidance device

Also Published As

Publication number Publication date
JP4155100B2 (en) 2008-09-24

Similar Documents

Publication Publication Date Title
JP3795713B2 (en) Manufacturing method of sheet type battery
TWI447988B (en) Degassing method of secondary battery using centrifugal force
JP5417241B2 (en) Rectangular lithium ion secondary battery and method for manufacturing prismatic lithium ion secondary battery
JP2004119205A (en) Laminate sheet and laminate battery using the same
WO2000041263A1 (en) Thin battery and method of manufacturing
JP4155100B2 (en) Manufacturing method of secondary battery
JPH1197070A (en) Lithium secondary battery and manufacture thereof
KR20160141654A (en) Lithium ion secondary battery
JP2003272595A (en) Manufacturing method for electrochemical device, manufacturing equipment, and electrochemical device
JP4103471B2 (en) Laminated battery and vehicle equipped with the same
JP2018147574A (en) Square Lithium Ion Secondary Battery
JP2001273930A (en) Manufacturing method of polymer battery
JP6682203B2 (en) Secondary battery manufacturing method
JP2004171954A (en) Laminated secondary battery, battery pack module comprising multiple laminated secondary batteries, battery pack comprising multiple set battery modules, and electric automobile with either battery mounted
JPH11144691A (en) Thin battery and manufacture thereof
JP4465790B2 (en) Battery manufacturing method
JP3601283B2 (en) Non-aqueous electrolyte battery
JP2004349156A (en) Secondary battery and stacked secondary battery
JP2004319098A (en) Electrochemical cell and its manufacturing method
JP3562129B2 (en) Encapsulation bags and lead wires for non-aqueous electrolyte batteries
JP2000294286A (en) Polymer lithium secondary battery
JPH11102673A (en) Thin secondary battery
JP2010244865A (en) Laminated battery
JP5334109B2 (en) Laminated battery
JP2004319099A (en) Electrochemical cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080630

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees