JP2001273930A - Manufacturing method of polymer battery - Google Patents

Manufacturing method of polymer battery

Info

Publication number
JP2001273930A
JP2001273930A JP2000088002A JP2000088002A JP2001273930A JP 2001273930 A JP2001273930 A JP 2001273930A JP 2000088002 A JP2000088002 A JP 2000088002A JP 2000088002 A JP2000088002 A JP 2000088002A JP 2001273930 A JP2001273930 A JP 2001273930A
Authority
JP
Japan
Prior art keywords
battery
negative electrode
positive electrode
polymer
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000088002A
Other languages
Japanese (ja)
Inventor
Shigeyuki Unoki
重幸 鵜木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000088002A priority Critical patent/JP2001273930A/en
Publication of JP2001273930A publication Critical patent/JP2001273930A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a polymer battery which allows flexibility in the shape of a battery. SOLUTION: This is the manufacturing method equipped with the first process to house a battery element group composed of a positive electrode, a negative electrode and a solid polyelectrolyte in a flexible sheath body, the second process in which the inside of the flexible sheath body is sealed under a reducing pressure less than atmospheric pressure, and the third process in which the positive electrode, the negative electrode and the solid electrolyte and heat welded. Otherwise, this is the manufacturing method in which a heat press bonding is made after having returned the third process to the atmosphere of higher than the atmospheric pressure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電池形状の自由度
を確立できるポリマー電池の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a polymer battery capable of establishing a degree of freedom in battery shape.

【0002】[0002]

【従来の技術】近年、民生用電子機器のポータブル化、
コードレス化が急速に進んでいる。さらには、身体に装
着するウェアラブル化の構想も進んでいる。これにつれ
て駆動用電源を担う小型、軽量、薄型、自由形状で、か
つ高エネルギー密度を有する二次電池への要望が高まっ
ている。このような観点から、非水系二次電池、特にリ
チウムポリマー二次電池は、とりわけ高電圧、高エネル
ギー密度を有し、且つ薄型化、形状の自由化が可能な電
池としてその期待は大きく開発が急がれている。
2. Description of the Related Art In recent years, portable electronic devices have become more portable.
Cordless technology is rapidly advancing. Furthermore, the concept of wearable attachment to the body is also in progress. Accordingly, there is an increasing demand for a small, lightweight, thin, free-form, and high-energy-density secondary battery serving as a driving power supply. From this point of view, non-aqueous secondary batteries, especially lithium polymer secondary batteries, are expected to be highly developed as batteries that have high voltage, high energy density, and can be made thinner and more flexible in shape. I'm in a hurry.

【0003】[0003]

【発明が解決しようとする課題】リチウムポリマー二次
電池の構造は、ほぼ次の3タイプに分けらる。
The structure of a lithium polymer secondary battery is roughly divided into the following three types.

【0004】タイプ1.ポリマーを含む正極、負極をあ
らかじめ熱溶着し電池内でゲル化させるタイプ。
Type 1. A type in which the positive and negative electrodes containing a polymer are heat-welded in advance and gelled in the battery.

【0005】タイプ2.ポリマーまたはモノマーを含有
した電解液を電池内に注液し電池内でゲル化させるタイ
プ。
Type 2. A type in which an electrolyte containing a polymer or monomer is injected into the battery and gelled in the battery.

【0006】タイプ3.正極と負極の間にあらかじめ形
成した高分子固体電解質シートをはさみ熱溶着させるタ
イプ。
[0006] Type 3. A type in which a polymer solid electrolyte sheet formed in advance is sandwiched between the positive electrode and the negative electrode, and heat-sealed.

【0007】タイプ1、タイプ2は共に正極、負極、セ
パレータを構成した後に電池内で電解質をゲル化させる
ため、特に大面積における正極、負極間距離の面内均一
性およびゲルの均一性、均質性に問題があった。
Type 1 and Type 2 both form a positive electrode, a negative electrode, and a separator, and then cause the electrolyte to gel in the battery. Therefore, the in-plane uniformity of the distance between the positive electrode and the negative electrode, the uniformity of the gel, and the uniformity are particularly large in the area. There was a problem with sex.

【0008】タイプ3は、あらかじめ固体電解質シート
を形成するため、正極、負極間距離の面内均一性および
電解質ゲルの均一性、均質性は保たれるが、従来の熱ロ
ール法および平板プレス法では電池要素の大きさに熱ロ
ール装置および平板プレス装置による制約があり形状の
完全な自由化は困難であった。
[0008] In Type 3, since the solid electrolyte sheet is formed in advance, the in-plane uniformity of the distance between the positive electrode and the negative electrode and the uniformity and homogeneity of the electrolyte gel can be maintained. In this case, the size of the battery element was limited by the hot roll device and the flat plate pressing device, and it was difficult to completely liberalize the shape.

【0009】よって、従来の製造法では、形状の自由化
は困難であり、特に3次元形状は2次元で形成したもの
を折り曲げる必要があるため、折り曲げ部で短絡の問題
があり、さらに困難であった。
Therefore, in the conventional manufacturing method, it is difficult to liberalize the shape. In particular, since it is necessary to bend a three-dimensional shape formed in two dimensions, there is a problem of a short circuit at a bent portion, which is more difficult. there were.

【0010】本発明は、このようなポリマー電池の製造
に関する問題を解決し、電池の形状自由度を実現するポ
リマー電池の製造方法を提供することを目的とする。
[0010] It is an object of the present invention to provide a method of manufacturing a polymer battery which solves such a problem relating to the manufacture of a polymer battery and realizes a degree of freedom in shape of the battery.

【0011】[0011]

【課題を解決するための手段】上記の目的を達成するた
めの請求項1の発明は、正極と負極と高分子固体電解質
とからなる電池要素群をフレキシブル外装体内に収納す
る第一工程と、前記フレキシブル外装体内を大気圧未満
に減圧後封口する第二工程と、前記正極と前記負極と前
記固体電解質とを熱溶着する第三工程を備えたことを特
徴とするポリマー電池の製造方法である。
According to the first aspect of the present invention, there is provided a first step of housing a battery element group including a positive electrode, a negative electrode, and a solid polymer electrolyte in a flexible package. A method for producing a polymer battery, comprising: a second step of closing the flexible outer casing after reducing the pressure to below atmospheric pressure, and a third step of heat-welding the positive electrode, the negative electrode, and the solid electrolyte. .

【0012】また、請求項2の発明は、正極と負極と高
分子固体電解質とからなる電池要素群をフレキシブル外
装体内に収納する第一工程と、前記電池要素入りフレキ
シブル外装体を大気圧未満雰囲気内で封口する第二工程
と、大気圧以上の雰囲気に戻した後に前記正極と前記負
極と前記固体電解質とを熱溶着する第三工程を備えたこ
とを特徴とするポリマー電池の製造方法である。
[0012] The invention according to claim 2 is a first step of accommodating a battery element group comprising a positive electrode, a negative electrode, and a polymer solid electrolyte in a flexible outer casing; And a third step of heat-welding the positive electrode, the negative electrode, and the solid electrolyte after returning to an atmosphere at or above atmospheric pressure. .

【0013】[0013]

【発明の実施の形態】本発明で使用可能な高分子固体電
解質としては、有機高分子化合物と電解液をゲル化によ
り一体化されたゲル状高分子固体電解質が望ましい。
BEST MODE FOR CARRYING OUT THE INVENTION As a polymer solid electrolyte usable in the present invention, a gel polymer solid electrolyte in which an organic polymer compound and an electrolytic solution are integrated by gelation is desirable.

【0014】ゲル状高分子固体電解質を構成する有機高
分子化合物としては、イオン伝導度が高い、ポリフッ化
ビニリデン系樹脂、ポリアクリロニトリル系樹脂、ポリ
アクリレート系樹脂などが好ましい。
As the organic polymer compound constituting the gel polymer solid electrolyte, a polyvinylidene fluoride resin, a polyacrylonitrile resin, a polyacrylate resin or the like having a high ionic conductivity is preferable.

【0015】ゲル状高分子固体電解質を構成する非水系
電解液溶媒としては、主成分として環状カーボネートお
よび鎖状カーボネートが含有され、前記環状カーボネー
トとしては、エチレンカーボネート(EC)、プロピレ
ンカーボネート(PC)、およびブチレンカーボネート
(BC)から選ばれる少なくとも一種以上であることが
好ましく、前記鎖状カーボネートとしては、ジメチルカ
ーボネート(DMC)、ジエチルカーボネート(DE
C)、およびエチルメチルカーボネート(EMC)等か
ら選ばれる少なくとも一種以上であることが好ましい。
The non-aqueous electrolyte solvent constituting the gelled polymer solid electrolyte contains cyclic carbonate and chain carbonate as main components, and the cyclic carbonate includes ethylene carbonate (EC) and propylene carbonate (PC). And at least one selected from butylene carbonate (BC). Examples of the chain carbonate include dimethyl carbonate (DMC) and diethyl carbonate (DE).
C) and at least one selected from the group consisting of ethyl methyl carbonate (EMC) and the like.

【0016】ゲル状高分子固体電解質を構成する非水系
電解液溶質としては、電子吸引性の強いリチウム塩、例
えば、LiPF6、LiBF4、LiClO4、LiAs
6、LiCF3SO3、LiN(SO2CF32、LiN
(SO2252、LiC(SO2CF33等が好まし
く、これらの溶質は、一種類で使用しても良く、二種類
以上組み合わせて使用しても良い。また、これらの溶質
は、前記非水系溶媒に0.5M〜1.5Mの濃度で溶解
されていることが好ましい。
As the non-aqueous electrolyte solute constituting the gel polymer solid electrolyte, a lithium salt having a strong electron-withdrawing property, for example, LiPF 6 , LiBF 4 , LiClO 4 , LiAs
F 6 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN
(SO 2 C 2 F 5 ) 2 , LiC (SO 2 CF 3 ) 3 and the like are preferable, and these solutes may be used alone or in combination of two or more. It is preferable that these solutes are dissolved in the non-aqueous solvent at a concentration of 0.5M to 1.5M.

【0017】また、ゲル状高分子固体電解質は、ポリオ
レフィン系樹脂からなる微多孔膜、織布、不織布などか
らなるセパレータを含んでいても良い。
Further, the gelled polymer solid electrolyte may include a microporous membrane made of a polyolefin resin, and a separator made of a woven or nonwoven fabric.

【0018】本発明で使用可能なフレキシブル外装体と
しては、アルミニウム箔を中間の一層とし、その内側に
ポリプロピレンフィルムを、外側にポリエチレンテレフ
タレートフィルムとナイロンフィルムをそれぞれラミネ
ートで一体化したアルミラミネートフィルムなどが好ま
しい。
As the flexible outer package usable in the present invention, an aluminum laminated film having an aluminum foil as an intermediate layer, a polypropylene film on the inner side, and a polyethylene terephthalate film and a nylon film integrated on the outer side, respectively, is used. preferable.

【0019】本発明によって作製された電池要素は、電
池内部が大気圧以下の減圧状態であるため、熱溶着の
際、大気圧以上の状態に戻すと電池要素に均一に圧力が
かかり正極、負極間距離が均一且つ良好な密着性が保た
れる。これにより、ハイレート放電、充放電サイクル時
に正極、負極間距離の不均一および密着性が悪いため、
極板の一部に負荷が集中することに起因する活物質の劣
化を抑制することができる。
In the battery element manufactured according to the present invention, since the inside of the battery is in a reduced pressure state below the atmospheric pressure, the pressure is uniformly applied to the battery element when the pressure is returned to a state higher than the atmospheric pressure during thermal welding. The uniform distance and good adhesion are maintained. Due to this, high-rate discharge, unevenness of the distance between the positive electrode and the negative electrode during charge / discharge cycles and poor adhesion,
It is possible to suppress deterioration of the active material due to concentration of a load on a part of the electrode plate.

【0020】なお、大気圧以下の減圧状態とは、100
Pa以下であり、好ましくは10Pa〜100Paの範
囲が好ましい。
The reduced pressure state below the atmospheric pressure means 100
Pa or less, and preferably in the range of 10 Pa to 100 Pa.

【0021】大気圧以上状態とは、100000Pa以
上で、好ましくは100000Pa〜130000Pa
の範囲で、高分子固体電解質層が薄くなることによる、
正極と負極の短絡が発生しない程度であることが好まし
い。
The state above the atmospheric pressure is 100,000 Pa or more, preferably 100,000 to 130,000 Pa.
Within the range, the polymer solid electrolyte layer becomes thinner,
It is preferable that the short circuit between the positive electrode and the negative electrode does not occur.

【0022】熱溶着条件は、フッ素系樹脂の場合、90
℃〜105℃、1〜3時間程度が好ましい。
The conditions for heat welding are as follows:
C. to 105.degree. C. for about 1 to 3 hours are preferable.

【0023】また、本発明によって作製された電池要素
は、あらかじめ成形されたフレキシブル外装体に正極、
負極、高分子固体電解質シートをフレキシブル外装体の
形状にあわせて入れてから、熱溶着しているため、湾曲
部で正極、負極間距離が短くなることによる短絡不良を
抑制することができ、電池の3次元形状が可能になる。
Further, the battery element manufactured according to the present invention comprises a pre-formed flexible casing, a positive electrode,
Since the negative electrode and the polymer solid electrolyte sheet are inserted according to the shape of the flexible outer package and then heat-welded, short-circuit failure due to a short distance between the positive electrode and the negative electrode in the curved portion can be suppressed, and the battery Is possible.

【0024】二次電池を構成する高分子固体電解質以外
の構成部材については特に限定されず、従来使用されて
いる構成部材を使用できる。
The components other than the solid polymer electrolyte constituting the secondary battery are not particularly limited, and conventionally used components can be used.

【0025】例えば、正極活物質としては、リチウムイ
オンをゲストとして受け入れ得るリチウム含有遷移金属
化合物が使用される。例えば、コバルト、マンガン、ニ
ッケル、クロム、鉄およびバナジウムから群より選ばれ
る少なくとも一種類の金属とリチウムとの複合金属酸化
物、LiCoO2、LiMnO2、LiNiO2、LiC
xNi(1-x)2(0<x<1)、LiCrO2、αLi
FeO2、LiVO2等が挙げられる。
For example, a lithium-containing transition metal compound capable of accepting lithium ions as a guest is used as the positive electrode active material. For example, a composite metal oxide of lithium and at least one metal selected from the group consisting of cobalt, manganese, nickel, chromium, iron and vanadium, LiCoO 2 , LiMnO 2 , LiNiO 2 , LiC
o x Ni (1-x) O 2 (0 <x <1), LiCrO 2, αLi
FeO 2 , LiVO 2, and the like.

【0026】負極活物質としては、リチウムイオンを吸
蔵、脱離し得る黒鉛型結晶構造を有するグラファイトを
含む材料、例えば天然黒鉛や人造黒鉛が使用される。特
に、格子面(002)の面間隔(d002)が3.350
〜3.400Åである黒鉛型結晶構造を有する炭素材料
を使用することが好ましい。
As the negative electrode active material, a material containing graphite having a graphite type crystal structure capable of inserting and extracting lithium ions, for example, natural graphite and artificial graphite is used. In particular, the spacing (d 002 ) of the lattice plane ( 002 ) is 3.350.
It is preferable to use a carbon material having a graphite type crystal structure of about 3.400 °.

【0027】[0027]

【実施例】以下、本発明を実施例および比較例を挙げて
詳細説明するが、これらは、本発明を何ら限定するもの
ではない。
EXAMPLES Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but these do not limit the present invention in any way.

【0028】図1、図2および図3は本発明の一実施形
態であるリチウムポリマー電池の上面図および断面図で
ある。
FIGS. 1, 2 and 3 are a top view and a sectional view of a lithium polymer battery according to an embodiment of the present invention.

【0029】1.正極板の作製 正極1はラス加工したアルミニウム箔を集電体1aとし
て、この両面に正極活物質であるLiCoO2と導電剤
としてのアセチレンブラックおよび結着剤としてのポリ
マー、例えばフッ化ビニリデン(VDF)とヘキサフル
オロプロピレン(HFP)との共重合体P(VDF−H
FP)を有機溶媒、例えばN−メチル−2−ピロリドン
に混練分散させたペーストを塗着、乾燥、圧延し、正極
合材層1bを形成し正極板とする。
1. Preparation of Positive Electrode The positive electrode 1 has a current collector 1a made of lath-processed aluminum foil, and has LiCoO 2 as a positive electrode active material, acetylene black as a conductive agent, and a polymer as a binder, for example, vinylidene fluoride (VDF) P) (VDF-H) with hexafluoropropylene (HFP)
A paste in which FP) is kneaded and dispersed in an organic solvent, for example, N-methyl-2-pyrrolidone, is applied, dried, and rolled to form a positive electrode mixture layer 1b to obtain a positive electrode plate.

【0030】2.負極板の作製 負極2はラス加工した銅箔を集電体2aとして、この両
面に負極活物質である人造黒鉛(d002=3.355
Å)と前記P(VDF−HFP)の粉末を有機溶媒、例
えばN−メチル−2−ピロリドンに混練分散させたペー
ストを塗着、乾燥圧延し、負極合材層2bを形成し負極
板とする。
2. Preparation of Negative Electrode Plate The negative electrode 2 was formed of a lath-processed copper foil as a current collector 2a, and artificial graphite (d 002 = 3.355) as a negative electrode active material was formed on both surfaces thereof
Å) and a paste in which the powder of P (VDF-HFP) is kneaded and dispersed in an organic solvent, for example, N-methyl-2-pyrrolidone, is applied, and dried and rolled to form a negative electrode mixture layer 2b to form a negative electrode plate. .

【0031】3.高分子電解質の作製 高分子電解質3は、前記P(VDF−HFP)樹脂を加
熱押し出し成形することによりシート状にし、非水系溶
媒としてエチレンカーボネート(EC)とジエチルカー
ボネート(DEC)との重量比が1:3で、電解液溶質
としてLiPF 6を1M添加混合した電解液中に、前記
シート状樹脂を95℃、1時間保持することにより電解
液をゲル化により一体化した高分子電解質とする。
3. Preparation of Polymer Electrolyte The polymer electrolyte 3 was prepared by adding the P (VDF-HFP) resin.
It is made into a sheet by hot extrusion molding,
Ethylene carbonate (EC) and diethyl carbonate as the medium
1: 3 weight ratio with Bonate (DEC), electrolyte solute
As LiPF 6Was added to and mixed with 1 M of the above electrolyte solution.
Electrolysis by holding the sheet resin at 95 ° C for 1 hour
The polymer electrolyte is integrated by gelation of the liquid.

【0032】4.電池要素の作製 このように作製した2枚の正極板1の間に、高分子電解
質3を配置させ、この高分子電解質3間に負極板2を配
置し、全体が図2に示すように積層化させて電池要素4
を構成する。
4. Preparation of Battery Element A polymer electrolyte 3 is disposed between the two positive electrode plates 1 prepared as described above, and a negative electrode plate 2 is disposed between the polymer electrolytes 3 and the whole is laminated as shown in FIG. Battery element 4
Is configured.

【0033】5.リチウムポリマー電池の作製 図1に示すように、上述のようにして作製した電池要素
の1cは正極の集電体に設けたリード取り付け部であ
り、ここにはアルミニウム箔製正極リード5を溶接す
る。2cは負極の集電体に設けたリード取り付け部であ
り、ここには銅箔製負極リード6を溶接する。7はアル
ミニウム箔を中間の一層とし、その内側にポリプロピレ
ンフィルムを、外側にポリエチレンテレフタレートフィ
ルムとナイロンフィルムをそれぞれラミネートで一体化
したアルミラミネートフィルムから形成されたフレキシ
ブル外装体である。このアルミラミネート袋7の内部に
収容された電池要素4は、正極のリード5および負極の
リード6が袋の外部へ引き出され、その先端を出入力端
子8、9とする。10、11はリード5、6の中間部分
に設けられた絶縁保護フィルムであり、アルミラミネー
ト袋7の開口部を熱融着などで封口する際にリード5、
6の電気的絶縁と気密を確保するものである。尚、アル
ミラミネート袋7は、前記のアルミラミネートフィルム
を帯状に切断し、その長さ方向の中央部Tで2つ折り
し、上下の2辺P1とP2を予め熱融着したものであ
り、開口している残り1辺のP3部分から電池要素4を
挿入する。
5. 1. Production of Lithium Polymer Battery As shown in FIG. 1, 1c of the battery element produced as described above is a lead attachment portion provided on a positive electrode current collector, and an aluminum foil positive electrode lead 5 is welded here. . Reference numeral 2c denotes a lead mounting portion provided on the current collector of the negative electrode, to which a copper foil negative electrode lead 6 is welded. Reference numeral 7 denotes a flexible exterior body formed of an aluminum laminate film in which an aluminum foil is used as an intermediate layer, a polypropylene film is laminated on the inside, and a polyethylene terephthalate film and a nylon film are laminated on the outside. The battery element 4 accommodated in the aluminum laminate bag 7 has the positive electrode lead 5 and the negative electrode lead 6 drawn out of the bag, and the leading ends thereof are input / output terminals 8 and 9. Reference numerals 10 and 11 denote insulating protective films provided at intermediate portions of the leads 5 and 6, which are used to seal the opening of the aluminum laminate bag 7 by heat sealing or the like.
6 to ensure electrical insulation and airtightness. The aluminum laminate bag 7 is obtained by cutting the above-described aluminum laminate film into a strip shape, folding the aluminum laminate film at a central portion T in the longitudinal direction thereof, and heat-sealing the upper and lower sides P1 and P2 in advance. The battery element 4 is inserted from the P3 portion of the remaining one side.

【0034】(実施例1)前記電池要素4が入ったアル
ミラミネート袋7内を100Paに減圧した後、P3部
分を熱融着する。その後、100℃恒温槽中に1時間放
置し、電池要素4を熱溶着により一体化したものを実施
例1の電池要素aとする。
Example 1 After reducing the pressure in the aluminum laminate bag 7 containing the battery element 4 to 100 Pa, the P3 portion is heat-sealed. Thereafter, the battery element 4 was left in a constant temperature bath at 100 ° C. for 1 hour, and the battery element 4 was integrated by heat welding to obtain a battery element a of Example 1.

【0035】(実施例2)前記電池要素4が入ったアル
ミラミネート袋7を真空装置に入れ50Paに減圧した
後、P3部分を熱融着する。その後、真空装置より取り
出し、100000Paに加圧しながら90℃恒温槽中
に1時間放置し、電池要素4を熱溶着により一体化した
ものを実施例2の電池要素bとする。
(Example 2) The aluminum laminate bag 7 containing the battery element 4 is placed in a vacuum device, the pressure is reduced to 50 Pa, and the P3 portion is heat-sealed. Thereafter, the battery element 4 was taken out from the vacuum apparatus, left in a thermostat at 90 ° C. for 1 hour while being pressurized to 100,000 Pa, and the battery element 4 was integrated by heat welding to obtain a battery element b of Example 2.

【0036】(実施例3)前記電池要素4が入った図3
に示す形状のアルミラミネート袋7内を、100Paに
減圧した後、P3部分を熱融着する。その後、100℃
恒温槽中に1時間放置し、電池要素4を熱溶着により一
体化したものを実施例3の電池要素cとする。
(Embodiment 3) FIG. 3 including the battery element 4
After the pressure inside the aluminum laminate bag 7 having the shape shown in FIG. 7 is reduced to 100 Pa, the P3 portion is heat-sealed. Then 100 ° C
A battery element c of Example 3 was left in a thermostat for 1 hour, and the battery element 4 was integrated by heat welding.

【0037】(実施例4)前記電池要素4が入った図3
に示す形状のアルミラミネート袋7を真空装置に入れ、
100Paに減圧した後、P3部分を熱融着する。その
後、真空装置より取り出し100℃恒温槽中に1時間放
置し、電池要素4を熱溶着により一体化したものを実施
例4の電池要素dとする。
(Embodiment 4) FIG. 3 including the battery element 4
Put the aluminum laminate bag 7 of the shape shown in
After reducing the pressure to 100 Pa, the P3 portion is heat-sealed. Thereafter, the battery element 4 was taken out of the vacuum apparatus, left in a thermostat at 100 ° C. for 1 hour, and the battery element 4 was integrated by heat welding to obtain a battery element d of Example 4.

【0038】(比較例1)前記電池要素4が入ったアル
ミラミネート袋7内を、減圧せずにP3部分を熱融着す
る。その後、100℃恒温槽中に1時間放置し、電池要
素4を熱溶着により一体化したものを比較例1の電池要
素eとする。
(Comparative Example 1) The portion P3 is heat-sealed in the aluminum laminate bag 7 containing the battery element 4 without reducing the pressure. Thereafter, the battery element 4 was left in a thermostat at 100 ° C. for 1 hour, and the battery element 4 was integrated by heat welding to obtain a battery element e of Comparative Example 1.

【0039】(比較例2)前記電池要素4が入ったアル
ミラミネート袋7を真空装置に入れ、100Paに減圧
した後、P3部分を熱融着する。その後、真空装置より
取り出し、100000Paに加圧しながら100℃恒
温槽中に1時間放置し、電池要素4を熱溶着により一体
化し、さらに図4と同様の形状に折り曲げたものを比較
例2の電池要素fとする。
(Comparative Example 2) The aluminum laminate bag 7 containing the battery element 4 was put in a vacuum device, the pressure was reduced to 100 Pa, and the P3 portion was heat-sealed. Thereafter, the battery element 4 was taken out from the vacuum apparatus, left in a constant temperature bath at 100 ° C. for 1 hour while being pressurized to 100,000 Pa, integrated with the battery element 4 by heat welding, and further bent into the same shape as in FIG. Element f.

【0040】このようにして作製した実施例1〜実施例
4、比較例1〜比較例2のリチウムポリマー電池の公称
容量は、500mAhである。
The nominal capacity of the lithium polymer batteries thus produced in Examples 1 to 4 and Comparative Examples 1 and 2 is 500 mAh.

【0041】6.試験 a.内部微小短絡確認試験 このように作製したリチウムポリマー電池を20℃恒温
槽中で300mA(0.6C)の充電電流で電池電圧が
4.2Vになるまで充電し、その後、4.2Vの定電圧
で充電電流が50mA(0.1C)になるまで充電して
満充電状態とする。このように満充電された電池を60
℃恒温槽入れ、72時間後に取り出し、25℃恒温槽中
2時間放置後電池電圧を測定すると、表1に示す結果と
なった。
6. Test a. Internal micro short-circuit confirmation test The lithium polymer battery thus manufactured was charged in a constant temperature bath at 20 ° C with a charging current of 300 mA (0.6 C) until the battery voltage reached 4.2 V, and then a constant voltage of 4.2 V was applied. To charge the battery until the charging current becomes 50 mA (0.1 C) to make the battery fully charged. A fully charged battery in this manner
C., placed in a thermostat, taken out after 72 hours, left in a thermostat at 25.degree. C. for 2 hours, and measured the battery voltage. The results shown in Table 1 were obtained.

【0042】b.サイクル特性 このように作製したリチウムポリマー電池を20℃恒温
槽中で300mA(0.6C)の充電電流で電池電圧が
4.2Vになるまで充電し、その後、4.2Vの定電圧
で充電電流が50mA(0.1C)になるまで充電し、
次に500mA(1C)の放電電流で終止電圧が3.0
Vまで放電し、この充放電を繰り返した。初期放電容量
を100%としたときの100サイクル時での放電容量
維持率は、表1に示す結果となった。
B. Cycle Characteristics The lithium polymer battery thus prepared was charged in a constant temperature bath at 20 ° C. with a charging current of 300 mA (0.6 C) until the battery voltage reached 4.2 V, and then charged at a constant voltage of 4.2 V. Until it reaches 50 mA (0.1 C),
Next, at a discharge current of 500 mA (1 C), the cutoff voltage becomes 3.0.
And the charge and discharge were repeated. Table 1 shows the discharge capacity retention ratio at 100 cycles when the initial discharge capacity was 100%.

【0043】[0043]

【表1】 [Table 1]

【0044】上記表1から明らかなように、減圧状態で
電池要素を熱溶着していない比較例1のサイクル特性
は、82.3%となり、減圧状態で電池要素を熱溶着し
た、実施例1、実施例2、実施例3、実施例4のそれぞ
れのサイクル特性である89.9%、91.2%、9
0.0%、90.8%と比較し、劣っていた。
As is clear from Table 1, the cycle characteristics of Comparative Example 1 in which the battery element was not thermally welded under reduced pressure was 82.3%, and Example 1 in which the battery element was thermally welded under reduced pressure. , 99.2%, 91.2%, and 99.9%, which are the cycle characteristics of Examples 2, 3, and 4, respectively.
It was inferior to 0.0% and 90.8%.

【0045】このことより、電池内を減圧してから熱溶
着する方法は、正極、負極間距離の均一化、および密着
性の良化により、極板の一部に負荷が集中することに起
因する活物質劣化の抑制が可能であることを示してい
る。
From this, the method of heat welding after reducing the pressure in the battery is because the load is concentrated on a part of the electrode plate due to the uniform distance between the positive electrode and the negative electrode and the improvement of the adhesion. This shows that active material deterioration can be suppressed.

【0046】さらに、上記表1から明らかなように、電
池要素を熱溶着した後に折り曲げた比較例2の微小短絡
確認試験の電圧は、3.98Vとなり、電池要素を折り
曲げた後に熱溶着した実施例3、実施例4の微小短絡確
認試験の電圧、それぞれ4.15V、4.15Vと比較
し、比較例2は微小短絡していることを示している。
Further, as is apparent from Table 1 above, the voltage of the small short-circuit confirmation test of Comparative Example 2 in which the battery element was thermally welded and then bent was 3.98 V, and the battery element was folded and then thermally welded. Compared with the voltages of the small short-circuit confirmation tests of Example 3 and Example 4, which are 4.15 V and 4.15 V, respectively, Comparative Example 2 indicates that there is a minute short-circuit.

【0047】このことより、電池要素を折り曲げた後に
熱溶着する方法は、湾曲部で正極、負極間距離が短くな
ることによる短絡不良の抑制が可能であることを示して
いる。
From the above, it is shown that the method of heat-welding after bending the battery element can suppress a short circuit failure due to a short distance between the positive electrode and the negative electrode in the curved portion.

【0048】なお、本発明は記載の実施例に限定され
ず、発明の趣旨から容易に置換可能な様々な組み合わせ
が可能である。特に、上記実施例の高分子固体電解質の
有機高分子化合物、電解液溶媒、電解液溶質の組み合わ
せは限定されるものではない。
It should be noted that the present invention is not limited to the described embodiments, and various combinations that can be easily replaced from the gist of the invention are possible. In particular, the combination of the organic polymer compound of the polymer solid electrolyte, the electrolyte solvent, and the electrolyte solute in the above embodiment is not limited.

【0049】[0049]

【発明の効果】以上のように本発明により、正極と負極
と高分子固体電解質とからなる電池要素群をフレキシブ
ル外装体内に収納する第一工程と、前記フレキシブル外
装体内を大気圧未満に減圧後封口する第二工程と、前記
正極と前記負極と前記固体電解質とを熱溶着する第三工
程を備えた製造方法。または、前記第三工程を大気圧以
上の雰囲気に戻した後に熱圧着する製造方法により、電
池の形状自由度を実現するポリマー電池を提供できる。
As described above, according to the present invention, the first step of housing the battery element group including the positive electrode, the negative electrode, and the polymer solid electrolyte in the flexible outer casing, and the step of reducing the pressure of the flexible outer casing to below atmospheric pressure. A manufacturing method comprising: a second step of sealing; and a third step of heat-welding the positive electrode, the negative electrode, and the solid electrolyte. Alternatively, it is possible to provide a polymer battery realizing a degree of freedom in battery shape by a manufacturing method of performing thermocompression bonding after returning the third step to an atmosphere of an atmospheric pressure or higher.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態における電池の上面図FIG. 1 is a top view of a battery according to an embodiment of the present invention.

【図2】同電池の断面図FIG. 2 is a sectional view of the battery.

【図3】本発明の一実施形態における3次元形状電池の
断面図
FIG. 3 is a sectional view of a three-dimensional battery according to an embodiment of the present invention.

【図4】従来例の一実施形態における3次元形状電池の
断面図
FIG. 4 is a cross-sectional view of a three-dimensional battery according to an embodiment of the related art.

【符号の説明】[Explanation of symbols]

1 正極 1a 正極集電体 1b 正極合剤層 1c 正極リード取り付け部 2 負極 2a 負極集電体 2b 負極合剤層 2c 負極リード取り付け部 3 高分子固体電解質 4 電池要素 5 正極リード 6 負極リード 7 アルミラミネート袋 8 正極出力端子 9 負極出力端子 10 正極リード絶縁保護フィルム 11 負極リード絶縁保護フィルム P1 アルミラミネートフィルム熱溶着部 P2 アルミラミネートフィルム熱溶着部 P3 アルミラミネートフィルム熱溶着部 T アルミラミネートフィルム折り曲げ部 DESCRIPTION OF SYMBOLS 1 Positive electrode 1a Positive electrode collector 1b Positive electrode mixture layer 1c Positive electrode lead attachment part 2 Negative electrode 2a Negative electrode collector 2b Negative electrode mixture layer 2c Negative electrode lead attaching part 3 Polymer solid electrolyte 4 Battery element 5 Positive electrode lead 6 Negative electrode lead 7 Aluminum Laminate bag 8 Positive electrode output terminal 9 Negative electrode output terminal 10 Positive electrode lead insulation protection film 11 Negative electrode lead insulation protection film P1 Aluminum laminated film heat welded part P2 Aluminum laminated film heat welded part P3 Aluminum laminated film heat welded part T Aluminum laminated film bent part

フロントページの続き Fターム(参考) 5H011 AA00 CC02 CC06 CC10 DD05 FF02 JJ25 5H029 AJ00 AK03 AL07 AM00 AM03 AM07 AM16 BJ04 BJ12 CJ02 CJ05 CJ06 CJ28 DJ02 DJ08 DJ09 DJ11 DJ13 DJ14 DJ16 EJ01 EJ12 EJ14 Continued on the front page F term (reference) 5H011 AA00 CC02 CC06 CC10 DD05 FF02 JJ25 5H029 AJ00 AK03 AL07 AM00 AM03 AM07 AM16 BJ04 BJ12 CJ02 CJ05 CJ06 CJ28 DJ02 DJ08 DJ09 DJ11 DJ13 DJ14 DJ16 EJ01 EJ12 EJ14

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 正極と負極と高分子固体電解質とからな
る電池要素群をフレキシブル外装体内に収納する第一工
程と、前記フレキシブル外装体内を大気圧未満に減圧後
封口する第二工程と、前記正極と前記負極と前記固体電
解質とを熱溶着する第三工程を備えたことを特徴とする
ポリマー電池の製造方法。
A first step of accommodating a battery element group comprising a positive electrode, a negative electrode, and a polymer solid electrolyte in a flexible outer casing, a second step of reducing the pressure of the flexible outer casing to below atmospheric pressure, and closing the flexible outer casing; A method for producing a polymer battery, comprising a third step of thermally welding a positive electrode, the negative electrode, and the solid electrolyte.
【請求項2】 正極と負極と高分子固体電解質とからな
る電池要素群をフレキシブル外装体内に収納する第一工
程と、前記電池要素入りフレキシブル外装体を大気圧未
満雰囲気内で封口する第二工程と、大気圧以上の雰囲気
に戻した後に前記正極と前記負極と前記固体電解質とを
熱溶着する第三工程を備えたことを特徴とするポリマー
電池の製造方法。
2. A first step of housing a battery element group including a positive electrode, a negative electrode, and a polymer solid electrolyte in a flexible outer casing, and a second step of sealing the flexible outer casing containing the battery element in an atmosphere under atmospheric pressure. And a third step of heat-welding the positive electrode, the negative electrode, and the solid electrolyte after returning to an atmosphere at or above atmospheric pressure.
【請求項3】 前記高分子固体電解質が、有機高分子化
合物と電解液をゲル化により一体化されたものを用いる
ことを特徴とする請求項1または請求項2に記載のポリ
マー電池の製造方法。
3. The method for producing a polymer battery according to claim 1, wherein the polymer solid electrolyte is obtained by integrating an organic polymer compound and an electrolytic solution by gelation. .
【請求項4】 前記有機高分子化合物が、フッ素系樹脂
であることを特徴とする請求項3記載のポリマー電池の
製造方法。
4. The method according to claim 3, wherein the organic polymer compound is a fluororesin.
【請求項5】 前記有機高分子化合物が、独立泡および
/または貫通孔を有するフッ素系樹脂であることを特徴
とする請求項3に記載のポリマー電池の製造方法。
5. The method according to claim 3, wherein the organic polymer compound is a fluororesin having closed cells and / or through holes.
【請求項6】 前記正極および負極の少なくとも一方が
バインダーで結着された活物質粒子層を有する構造であ
ることを特徴とする請求項1または請求項2に記載のポ
リマー電池の製造方法。
6. The method for producing a polymer battery according to claim 1, wherein at least one of the positive electrode and the negative electrode has a structure having an active material particle layer bound by a binder.
【請求項7】 前記フレキシブル外装体として、あらか
じめ3次元形状に形成されていることを特徴とする請求
項1または請求項2に記載のポリマー電池の製造方法。
7. The method for producing a polymer battery according to claim 1, wherein the flexible exterior body is formed in a three-dimensional shape in advance.
JP2000088002A 2000-03-28 2000-03-28 Manufacturing method of polymer battery Pending JP2001273930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000088002A JP2001273930A (en) 2000-03-28 2000-03-28 Manufacturing method of polymer battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000088002A JP2001273930A (en) 2000-03-28 2000-03-28 Manufacturing method of polymer battery

Publications (1)

Publication Number Publication Date
JP2001273930A true JP2001273930A (en) 2001-10-05

Family

ID=18603934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000088002A Pending JP2001273930A (en) 2000-03-28 2000-03-28 Manufacturing method of polymer battery

Country Status (1)

Country Link
JP (1) JP2001273930A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005078963A (en) * 2003-09-01 2005-03-24 Sony Corp Nonaqueous electrolyte secondary battery and its manufacturing method
JP2005228573A (en) * 2004-02-12 2005-08-25 Toshiba Corp Closed type battery
JP2013522844A (en) * 2010-03-19 2013-06-13 エルジー ケム. エルティーディ. Pouch type case and battery pack including the same
US20140113184A1 (en) * 2012-10-18 2014-04-24 Apple Inc. Three-dimensional non-rectangular battery cell structures
WO2015053277A1 (en) * 2013-10-08 2015-04-16 コニカミノルタ株式会社 Flexible secondary battery and electronic device
CN105229838A (en) * 2013-07-31 2016-01-06 株式会社Lg化学 Bending electrode stack and the battery cell comprising this electrode stack
US9929393B2 (en) 2015-09-30 2018-03-27 Apple Inc. Wound battery cells with notches accommodating electrode connections
US10014551B2 (en) 2010-09-02 2018-07-03 Samsung Sdi Co., Ltd. Electrode assembly having bending portions and secondary battery including the same
CN108400378A (en) * 2018-03-15 2018-08-14 清陶(昆山)能源发展有限公司 A kind of all-solid lithium-ion battery flexible and preparation method thereof
US10135097B2 (en) 2010-07-16 2018-11-20 Apple Inc. Construction of non-rectangular batteries
US10868290B2 (en) 2016-02-26 2020-12-15 Apple Inc. Lithium-metal batteries having improved dimensional stability and methods of manufacture

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005078963A (en) * 2003-09-01 2005-03-24 Sony Corp Nonaqueous electrolyte secondary battery and its manufacturing method
JP2005228573A (en) * 2004-02-12 2005-08-25 Toshiba Corp Closed type battery
JP2013522844A (en) * 2010-03-19 2013-06-13 エルジー ケム. エルティーディ. Pouch type case and battery pack including the same
US11081750B2 (en) 2010-03-19 2021-08-03 Lg Chem, Ltd. Pouch type case and battery pack including the same
US11024887B2 (en) 2010-07-16 2021-06-01 Apple Inc. Construction of non-rectangular batteries
US10135097B2 (en) 2010-07-16 2018-11-20 Apple Inc. Construction of non-rectangular batteries
US10014551B2 (en) 2010-09-02 2018-07-03 Samsung Sdi Co., Ltd. Electrode assembly having bending portions and secondary battery including the same
US20140113184A1 (en) * 2012-10-18 2014-04-24 Apple Inc. Three-dimensional non-rectangular battery cell structures
CN104737322A (en) * 2012-10-18 2015-06-24 苹果公司 Three-dimensional non-rectangular battery cell structures
CN105229838A (en) * 2013-07-31 2016-01-06 株式会社Lg化学 Bending electrode stack and the battery cell comprising this electrode stack
JP2016521905A (en) * 2013-07-31 2016-07-25 エルジー・ケム・リミテッド Curved electrode laminate and battery cell including the same
US9799926B2 (en) 2013-07-31 2017-10-24 Lg Chem, Ltd. Curved electrode stack and battery cell including the same
WO2015053277A1 (en) * 2013-10-08 2015-04-16 コニカミノルタ株式会社 Flexible secondary battery and electronic device
US9819014B2 (en) 2013-10-08 2017-11-14 Konica Minolta, Inc. Flexible secondary battery with polymer softening agent and internal depressurization
JPWO2015053277A1 (en) * 2013-10-08 2017-03-09 コニカミノルタ株式会社 Flexible secondary batteries, electronic devices
US9929393B2 (en) 2015-09-30 2018-03-27 Apple Inc. Wound battery cells with notches accommodating electrode connections
US10868290B2 (en) 2016-02-26 2020-12-15 Apple Inc. Lithium-metal batteries having improved dimensional stability and methods of manufacture
US11784302B2 (en) 2016-02-26 2023-10-10 Apple Inc. Lithium-metal batteries having improved dimensional stability and methods of manufacture
CN108400378A (en) * 2018-03-15 2018-08-14 清陶(昆山)能源发展有限公司 A kind of all-solid lithium-ion battery flexible and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6517917B2 (en) Rectangular battery cell including two or more case members
KR100711669B1 (en) Solid Electrolyte Battery
JP3964521B2 (en) Assembled battery
KR101684026B1 (en) Nonaqueous electrolyte battery, battery pack and storage battery apparatus
JP2001167743A (en) Secondary battery and electronic device using the same
JP3831939B2 (en) battery
US20170214026A1 (en) Flexible battery
JP4178926B2 (en) Bipolar battery, bipolar battery manufacturing method, battery pack and vehicle
JP4621325B2 (en) Thin battery
JP4432146B2 (en) Nonaqueous electrolyte secondary battery
JP2001273930A (en) Manufacturing method of polymer battery
JP4218400B2 (en) Bipolar battery, bipolar battery manufacturing method, battery pack and vehicle
JP2008262788A (en) Nonaqueous electrolyte battery
JP3675354B2 (en) Solid electrolyte battery and manufacturing method thereof
JP4887634B2 (en) Battery and its sealing method
JP2000173657A (en) Solid electrolyte battery
JP5964102B2 (en) Manufacturing method of battery having flat electrode body
JP2004171954A (en) Laminated secondary battery, battery pack module comprising multiple laminated secondary batteries, battery pack comprising multiple set battery modules, and electric automobile with either battery mounted
JP2000306556A (en) Framed battery
WO2022051914A1 (en) Electrochemical device and electronic device
JPH11162421A (en) Sheet type battery
JP2000277159A (en) Nonaqueous electrolyte secondary battery
JP2003346768A (en) Non-aqueous electrolyte secondary battery
JP2010021043A (en) Separator, manufacturing method of separator and battery
JP3588412B2 (en) Thin rechargeable battery