JP6738189B2 - Exterior material for power storage device and power storage device - Google Patents

Exterior material for power storage device and power storage device Download PDF

Info

Publication number
JP6738189B2
JP6738189B2 JP2016085436A JP2016085436A JP6738189B2 JP 6738189 B2 JP6738189 B2 JP 6738189B2 JP 2016085436 A JP2016085436 A JP 2016085436A JP 2016085436 A JP2016085436 A JP 2016085436A JP 6738189 B2 JP6738189 B2 JP 6738189B2
Authority
JP
Japan
Prior art keywords
melting point
layer
thickness
storage device
low melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016085436A
Other languages
Japanese (ja)
Other versions
JP2017195112A (en
Inventor
健祐 永田
健祐 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Packaging Co Ltd
Original Assignee
Showa Denko Packaging Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko Packaging Co Ltd filed Critical Showa Denko Packaging Co Ltd
Priority to JP2016085436A priority Critical patent/JP6738189B2/en
Priority to CN201710252185.9A priority patent/CN107305930B/en
Priority to KR1020170049095A priority patent/KR102351865B1/en
Priority to TW106113329A priority patent/TWI712200B/en
Publication of JP2017195112A publication Critical patent/JP2017195112A/en
Application granted granted Critical
Publication of JP6738189B2 publication Critical patent/JP6738189B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • H01M50/133Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/06Coating on the layer surface on metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Laminated Bodies (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

本発明は、スマートフォン、タブレット等の携帯機器に使用される電池やコンデンサ、ハイブリッド自動車、電気自動車、風力発電、太陽光発電、夜間電気の蓄電用に使用される電池やコンデンサ等の蓄電デバイス用の外装材および該外装材で外装された蓄電デバイスに関する。 INDUSTRIAL APPLICABILITY The present invention relates to a storage device such as a battery or a capacitor used for a mobile device such as a smartphone or a tablet, a hybrid vehicle, an electric vehicle, wind power generation, solar power generation, a battery or a capacitor used for storing electricity at night. The present invention relates to a packaging material and a power storage device packaged with the packaging material.

近年、スマートフォン、タブレット端末等のモバイル電気機器の薄型化、軽量化に伴い、これらに搭載されるリチウムイオン二次電池、リチウムポリマー二次電池、リチウムイオンキャパシタ、電気2重層コンデンサ等の蓄電デバイスの外装材としては、従来の金属缶に代えて、耐熱性樹脂層/接着剤層/金属箔層/接着剤層/熱可塑性樹脂層からなる積層体(ラミネート外装材)が用いられている(特許文献1参照)。電気自動車等の電源、蓄電用途の大型電源、キャパシタ等も上記構成の積層体(外装材)で外装されることも増えてきている。 In recent years, as mobile electric devices such as smartphones and tablet terminals have become thinner and lighter, the storage devices such as lithium-ion secondary batteries, lithium-polymer secondary batteries, lithium-ion capacitors, and electric double-layer capacitors have been installed in these devices. As the exterior material, a laminate (laminate exterior material) composed of a heat resistant resin layer/adhesive layer/metal foil layer/adhesive layer/thermoplastic resin layer is used instead of the conventional metal can (patented patent). Reference 1). Power sources for electric vehicles, large-scale power sources for storage of electricity, capacitors, and the like are increasingly being packaged with the laminate (exterior material) having the above configuration.

特開2007−161310号公報JP, 2007-163310, A

しかしながら、上記従来技術(特許文献1に記載の外装材)では次のような問題があった。即ち、電池等を外装する際には外装材のシーラント層同士を熱融着させて封止を行うが、このシーラント層の表面に異物(電極活物質、電解質等)が付着していると、ヒートシール部が薄肉化して該ヒートシール部において十分な絶縁性を確保し難い面があった。特にタブ部分では絶縁性が不十分になりやすく、短絡が生じるおそれがある。 However, the above conventional technique (the exterior material described in Patent Document 1) has the following problems. That is, when the battery or the like is packaged, the sealant layers of the package material are heat-sealed to each other for sealing, and if foreign matter (electrode active material, electrolyte, etc.) is attached to the surface of this sealant layer, There was a surface where the heat-sealed portion became thin and it was difficult to secure sufficient insulation in the heat-sealed portion. In particular, the tab portion is likely to have insufficient insulation, which may cause a short circuit.

本発明は、かかる技術的背景に鑑みてなされたものであって、シーラント層同士を熱融着させた際のシーラント層の流出を抑制できてヒートシール部において十分な絶縁性を確保できると共に、十分なシール強度を確保できる蓄電デバイス用外装材を提供する。 The present invention has been made in view of such a technical background, and it is possible to suppress the outflow of the sealant layer at the time of heat-sealing the sealant layers and ensure sufficient insulation in the heat seal portion, Provided is an exterior material for an electricity storage device that can secure a sufficient sealing strength.

前記目的を達成するために、本発明は以下の手段を提供する。 In order to achieve the above object, the present invention provides the following means.

[1]金属箔層と、該金属箔層の一方の面に積層されたシーラント層と、を含む蓄電デバイス用外装材であって、
前記シーラント層は、該シーラント層における金属箔層側の最外層を構成する熱可塑性樹脂からなる第1低融点層と、前記シーラント層における金属箔層側とは反対側の最外層を構成する熱可塑性樹脂からなる第2低融点層と、前記第1低融点層と前記第2低融点層の間に配置された熱可塑性樹脂からなる高融点中間層と、を含み、
前記高融点中間層の融点は、120℃〜180℃であり、
前記第1低融点層の融点および前記第2低融点層の融点は、前記高融点中間層の融点より低く、
前記高融点中間層の厚さが20μm以上であり、
前記高融点中間層の厚さを「X」とし、前記シーラント層の厚さを「Y」としたとき、 0.50Y ≦ X ≦ 0.99Y
の関係にあることを特徴とする蓄電デバイス用外装材。
[1] An exterior material for an electricity storage device, which includes a metal foil layer and a sealant layer laminated on one surface of the metal foil layer,
The sealant layer comprises a first low melting point layer made of a thermoplastic resin forming an outermost layer on the metal foil layer side in the sealant layer, and a heat forming an outermost layer on the side opposite to the metal foil layer side in the sealant layer. A second low melting point layer made of a plastic resin, and a high melting point intermediate layer made of a thermoplastic resin disposed between the first low melting point layer and the second low melting point layer,
The melting point of the high melting point intermediate layer is 120° C. to 180° C.,
The melting point of the first low melting point layer and the melting point of the second low melting point layer are lower than the melting point of the high melting point intermediate layer,
The high melting point intermediate layer has a thickness of 20 μm or more,
When the thickness of the high melting point intermediate layer is "X" and the thickness of the sealant layer is "Y", 0.50Y ≤ X ≤ 0.99Y
An outer casing material for an electricity storage device, characterized in that

[2]前記第1低融点層の厚さが0.5μm以上であり、前記第2低融点層の厚さが1μm以上である前項1に記載の蓄電デバイス用外装材。 [2] The outer packaging material for an electricity storage device according to the above item 1, wherein the first low melting point layer has a thickness of 0.5 μm or more and the second low melting point layer has a thickness of 1 μm or more.

[3]前記高融点中間層の融点は前記第1低融点層の融点より20℃以上高く、かつ前記高融点中間層の融点は前記第2低融点層の融点より20℃以上高い前項1または2に記載の蓄電デバイス用外装材。 [3] The melting point of the high melting point intermediate layer is higher than the melting point of the first low melting point layer by 20° C. or more, and the melting point of the high melting point intermediate layer is higher than the melting point of the second low melting point layer by 20° C. or more. The exterior material for an electricity storage device according to 2.

[4]前記高融点中間層を構成する熱可塑性樹脂が、重量平均分子量が200,000〜800,000の範囲のエチレン−プロピレンブロック共重合体樹脂であり、
前記第1低融点層を構成する熱可塑性樹脂および前記第2低融点層を構成する熱可塑性樹脂が、重量平均分子量が10,000〜200,000の範囲のエチレン−プロピレンランダム共重合体樹脂である前項1〜3のいずれか1項に記載の蓄電デバイス用外装材。
[4] The thermoplastic resin forming the high melting point intermediate layer is an ethylene-propylene block copolymer resin having a weight average molecular weight of 200,000 to 800,000.
The thermoplastic resin forming the first low melting point layer and the thermoplastic resin forming the second low melting point layer are ethylene-propylene random copolymer resins having a weight average molecular weight of 10,000 to 200,000. The outer packaging material for an electricity storage device according to any one of the preceding items 1 to 3.

[5]前記金属箔層の他方の面に外側接着剤層を介して耐熱性樹脂層が積層されている前項1〜4のいずれか1項に記載の蓄電デバイス用外装材。 [5] The exterior material for an electricity storage device according to any one of the above items 1 to 4, wherein a heat resistant resin layer is laminated on the other surface of the metal foil layer with an outer adhesive layer interposed therebetween.

[6]蓄電デバイス本体部と、
前項1〜5のいずれか1項に記載の蓄電デバイス用外装材とを備え、
前記蓄電デバイス本体部が、前記外装材で外装されていることを特徴とする蓄電デバイス。
[6] A power storage device body,
An outer storage material for an electricity storage device according to any one of the preceding items 1 to 5,
An electricity storage device, wherein the electricity storage device body is covered with the exterior material.

[1]の発明では、高融点中間層の融点が120℃〜180℃であり、かつ高融点中間層の外側に低融点層が存在するので、シーラント層同士を熱融着させた際にヒートシール部での高融点中間層の流出を抑制することができ、かつ高融点中間層の厚さが20μm以上であって、0.50Y≦X≦0.99Yの関係にあるから、シーラント層同士を熱融着させる際にシーラント層の流出による肉厚の減少を抑制できてヒートシール部において十分な絶縁性を確保することができて、短絡の発生を十分に防止できる。また、上記高融点中間層の両側に、高融点中間層の融点より低い融点を有した第1低融点層と第2低融点層が配置されているから、シーラント層同士を熱融着させる際に高融点中間層を溶融させることなく良好にヒートシールを行うことができて十分なシール強度でもってシール接合できる(ヒートシール部において十分なシール強度を確保できる)。 In the invention [1], since the melting point of the high-melting-point intermediate layer is 120° C. to 180° C. and the low-melting-point layer exists outside the high-melting-point intermediate layer, heat is applied when the sealant layers are heat-sealed. Since the outflow of the high melting point intermediate layer at the seal portion can be suppressed, the thickness of the high melting point intermediate layer is 20 μm or more, and the relationship of 0.50Y≦X≦0.99Y is satisfied, the sealant layers are It is possible to suppress a decrease in wall thickness due to the outflow of the sealant layer when heat-sealing the resin, to ensure sufficient insulation in the heat-sealed portion, and to sufficiently prevent the occurrence of a short circuit. Further, since the first low melting point layer and the second low melting point layer having a melting point lower than that of the high melting point intermediate layer are arranged on both sides of the high melting point intermediate layer, when the sealant layers are heat-sealed to each other. In addition, good heat sealing can be performed without melting the high melting point intermediate layer, and seal bonding can be performed with sufficient sealing strength (sufficient sealing strength can be secured in the heat sealing portion).

[2]の発明では、第1低融点層の厚さが0.5μm以上であり、第2低融点層の厚さが1μm以上であるから、シーラント層同士を熱融着させる際に、より十分なシール強度でもってシール接合できる(ヒートシール部においてより十分なシール強度を確保できる)。 In the invention [2], since the thickness of the first low melting point layer is 0.5 μm or more and the thickness of the second low melting point layer is 1 μm or more, when the sealant layers are heat-sealed together, Seal joining can be performed with sufficient sealing strength (more sufficient sealing strength can be secured in the heat-sealed portion).

[3]の発明では、高融点中間層の融点は第1低融点層の融点より20℃以上高く、かつ高融点中間層の融点は第2低融点層の融点より20℃以上高い構成であるので、シーラント層同士を熱融着させた際にヒートシール部でのシーラント層の流出を十分に抑制することができて、ヒートシール部においてより十分な絶縁性を確保できる。 In the invention [3], the melting point of the high melting point intermediate layer is higher than that of the first low melting point layer by 20° C. or more, and the melting point of the high melting point intermediate layer is higher than that of the second low melting point layer by 20° C. or more. Therefore, it is possible to sufficiently suppress the outflow of the sealant layer at the heat seal portion when the sealant layers are heat-sealed to each other, and it is possible to secure more sufficient insulation at the heat seal portion.

[4]の発明では、高融点中間層を構成する熱可塑性樹脂が、重量平均分子量が200,000〜800,000の範囲のエチレン−プロピレンブロック共重合体樹脂であるので、シーラント層同士を熱融着させた際にヒートシール部でのシーラント層の流出をより十分に抑制することができて、ヒートシール部での絶縁性をさらに向上させることができる。また、前記第1、2低融点層を構成する熱可塑性樹脂が、それぞれ重量平均分子量が10,000〜200,000の範囲のエチレン−プロピレンランダム共重合体樹脂であるので、シーラント層同士を熱融着させる際に、さらに十分なシール強度でもってシール接合できる(ヒートシール部においてより十分なシール強度を確保できる)。 In the invention [4], since the thermoplastic resin constituting the high melting point intermediate layer is an ethylene-propylene block copolymer resin having a weight average molecular weight in the range of 200,000 to 800,000, the sealant layers are heated together. It is possible to more sufficiently suppress the outflow of the sealant layer at the heat-sealed portion when fusion-bonded, and it is possible to further improve the insulating property at the heat-sealed portion. In addition, since the thermoplastic resin forming the first and second low melting point layers is an ethylene-propylene random copolymer resin having a weight average molecular weight of 10,000 to 200,000, respectively, the sealant layers are heated to each other. At the time of fusion bonding, it is possible to perform seal joining with more sufficient sealing strength (more sufficient sealing strength can be secured in the heat-sealed portion).

[5]の発明では、金属箔層の他方の面に外側接着剤層を介して耐熱性樹脂層が積層されているから、金属箔層の他方の面側の絶縁性を十分に確保できるし、外装材の物理的強度および耐衝撃性を向上させることができる。 In the invention [5], since the heat-resistant resin layer is laminated on the other surface of the metal foil layer via the outer adhesive layer, the insulation property on the other surface side of the metal foil layer can be sufficiently secured. The physical strength and impact resistance of the exterior material can be improved.

[6]の発明(蓄電デバイス)では、ヒートシール部が十分なシール強度で接合されると共にヒートシール部において十分な絶縁性が確保された外装材で外装された蓄電デバイスが提供される。 According to the invention [6] (electric storage device), there is provided an electric storage device in which the heat-sealed portion is joined with a sufficient seal strength, and the heat-sealed portion is covered with an exterior material that ensures sufficient insulation.

本発明に係る蓄電デバイス用外装材の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the exterior material for electrical storage devices which concerns on this invention. 本発明に係る蓄電デバイス用外装材を用いて構成された蓄電デバイスの一実施形態を示す断面図である。FIG. 1 is a cross-sectional view showing an embodiment of an electricity storage device configured by using an electricity storage device exterior material according to the present invention.

本発明に係る蓄電デバイス用外装材1の一実施形態を図1に示す。この蓄電デバイス用外装材1は、リチウムイオン2次電池ケース用として用いられるものである。前記蓄電デバイス用外装材1は、例えば、深絞り成形、張り出し成形等の成形に供されて2次電池のケース等として用いられる。また、前記蓄電デバイス用外装材1は、成形に供されることなく平面状の外装材としても使用できる(図2参照)。 FIG. 1 shows one embodiment of the exterior material 1 for an electricity storage device according to the present invention. The exterior material 1 for an electricity storage device is used for a lithium ion secondary battery case. The exterior material 1 for the electricity storage device is used for forming such as deep drawing and overhang forming, and is used as a case of a secondary battery or the like. Further, the exterior material 1 for the electricity storage device can be used as a planar exterior material without being subjected to molding (see FIG. 2).

本実施形態では、前記蓄電デバイス用外装材1は、金属箔層4の一方の面に内側接着剤層6を介してシーラント層(内側層)3が積層一体化されると共に、前記金属箔層4の他方の面に外側接着剤層5を介して耐熱性樹脂層(外側層)2が積層一体化された構成からなる。 In the present embodiment, in the exterior material 1 for an electricity storage device, the sealant layer (inner layer) 3 is laminated and integrated on one surface of the metal foil layer 4 via the inner adhesive layer 6, and the metal foil layer The heat-resistant resin layer (outer layer) 2 is laminated and integrated on the other surface of 4 with an outer adhesive layer 5 interposed therebetween.

前記シーラント層(熱可塑性樹脂層)(内側層)3は、リチウムイオン二次電池等で用いられる腐食性の強い電解液などに対しても優れた耐薬品性を具備させると共に、外装材にヒートシール性を付与する役割を担うものである。 The sealant layer (thermoplastic resin layer) (inner layer) 3 has excellent chemical resistance against a highly corrosive electrolytic solution used in a lithium ion secondary battery or the like, and heats the exterior material. It plays a role of imparting a sealing property.

本発明では、前記シーラント層3は、該シーラント層3における金属箔層4側の最外層を構成する熱可塑性樹脂からなる第1低融点層7と、前記シーラント層3における金属箔層側とは反対側の最外層を構成する熱可塑性樹脂からなる第2低融点層8と、前記第1低融点層7と前記第2低融点層8の間に配置された熱可塑性樹脂からなる高融点中間層9と、を含む構成であり(図1参照)、前記高融点中間層9の融点は、120℃〜180℃であり、前記第1低融点層7の融点および前記第2低融点層8の融点は、前記高融点中間層9の融点より低く、前記高融点中間層の厚さが20μm以上であり、かつ前記高融点中間層9の厚さを「X」とし、前記シーラント層3の厚さを「Y」としたとき、0.50Y≦X≦0.99Yの関係にある構成とする。 In the present invention, the sealant layer 3 is composed of the first low melting point layer 7 made of a thermoplastic resin that constitutes the outermost layer of the sealant layer 3 on the metal foil layer 4 side and the metal foil layer side of the sealant layer 3. A second low melting point layer 8 made of a thermoplastic resin forming the outermost layer on the opposite side, and a high melting point intermediate made of a thermoplastic resin arranged between the first low melting point layer 7 and the second low melting point layer 8. The melting point of the high melting point intermediate layer 9 is 120° C. to 180° C., and the melting point of the first low melting point layer 7 and the second low melting point layer 8 are included. Is lower than the melting point of the high-melting-point intermediate layer 9, the thickness of the high-melting-point intermediate layer is 20 μm or more, and the thickness of the high-melting-point intermediate layer 9 is “X”. When the thickness is “Y”, the relationship is 0.50Y≦X≦0.99Y.

なお、上記実施形態では、前記シーラント層3は、前記第1低融点層7/高融点中間層9/第2低融点層8の3層積層構成であるが、特にこのような3層積層構成に限定されるものではなく、前記第1低融点層7、前記高融点中間層9、前記第2低融点層8を少なくとも含む構成であれば、4層積層構成、5層積層構成、或いは6層以上の積層構成であってもよい。 In the above embodiment, the sealant layer 3 has a three-layer laminated structure of the first low melting point layer 7/high melting point intermediate layer 9/second low melting point layer 8, but such a three layer laminated structure is particularly preferable. However, the structure is not limited to the above, as long as it includes at least the first low melting point layer 7, the high melting point intermediate layer 9, and the second low melting point layer 8, a four-layer laminated structure, a five-layer laminated structure, or 6 It may have a laminated structure of more than one layer.

前記高融点中間層9の融点は、120℃〜180℃である必要がある。120℃未満である場合にはシーラント層同士を熱融着させた際にヒートシール部において高融点中間層も流出が生じやすいのでヒートシール部において十分な絶縁性を確保し難い。一方、融点が180℃を超えるとシーラント層同士を熱融着させるのにシール温度を高くする必要があるが、シール温度が高いと電解液が熱の影響を受けて分解しやすいという問題を生じる。中でも、高融点中間層9の融点は、150℃〜170℃であるのが好ましい。なお、シーラント層同士を熱融着する際のヒートシール温度は、高融点中間層9の融点に対して+10℃〜+40℃の範囲に設定するのがよい。 The melting point of the high melting point intermediate layer 9 needs to be 120° C. to 180° C. When the temperature is lower than 120° C., when the sealant layers are heat-sealed together, the high-melting-point intermediate layer also easily flows out in the heat-sealed portion, so that it is difficult to secure sufficient insulation in the heat-sealed portion. On the other hand, if the melting point exceeds 180° C., it is necessary to raise the sealing temperature in order to heat-bond the sealant layers to each other, but if the sealing temperature is high, the electrolytic solution is affected by heat and easily decomposes. .. Among them, the melting point of the high melting point intermediate layer 9 is preferably 150°C to 170°C. The heat-sealing temperature at the time of heat-sealing the sealant layers is preferably set within the range of +10°C to +40°C with respect to the melting point of the high melting point intermediate layer 9.

前記高融点中間層9の厚さは20μm以上であることを必要とする。20μm未満ではヒートシール後に、十分な絶縁性を確保するためのシーラント層3の厚さを維持(確保)することができない。中でも、前記高融点中間層9の厚さは20μm〜30μmであるのが好ましい。なお、前記高融点中間層9の厚さが大きくなり過ぎると、ヒートシール時の熱の伝導が低下してシール接合が十分でなくなる可能性があり、この観点から前記高融点中間層9の厚さは、40μm以下に設定するのがよい。 The high melting point intermediate layer 9 needs to have a thickness of 20 μm or more. If the thickness is less than 20 μm, the thickness of the sealant layer 3 for ensuring sufficient insulation cannot be maintained (ensured) after heat sealing. Above all, the thickness of the high melting point intermediate layer 9 is preferably 20 μm to 30 μm. If the thickness of the high-melting-point intermediate layer 9 is too large, heat conduction during heat sealing may be reduced and seal bonding may not be sufficient. From this viewpoint, the thickness of the high-melting-point intermediate layer 9 may be reduced. It is preferable to set the thickness to 40 μm or less.

更に、前記高融点中間層9の厚さを「X」とし、前記シーラント層3の厚さを「Y」としたとき、0.50Y≦X≦0.99Yの関係にある構成とする。高融点中間層9の厚さXが、シーラント層3の厚さYの50%未満である場合には、シーラント層同士を熱融着させた際に低融点層が流出しすぎてヒートシール後において絶縁部分の距離を十分に確保できなくなる恐れがある。また、高融点中間層9の厚さXが、シーラント層3の厚さYの99%以上である場合には、シーラント層同士を熱融着させる際に十分なシール強度でもってシール接合できないという問題を生じる。中でも、0.60Y≦X≦0.90Yの関係にある構成とするのが好ましい。 Further, when the thickness of the high melting point intermediate layer 9 is "X" and the thickness of the sealant layer 3 is "Y", the relationship of 0.50Y≤X≤0.99Y is established. When the thickness X of the high-melting-point intermediate layer 9 is less than 50% of the thickness Y of the sealant layer 3, the low-melting-point layer flows out too much when the sealant layers are heat-sealed, and after heat sealing. There is a risk that the distance between the insulating parts cannot be secured sufficiently. Further, when the thickness X of the high-melting-point intermediate layer 9 is 99% or more of the thickness Y of the sealant layer 3, it is said that seal joining cannot be performed with sufficient seal strength when heat-sealing the sealant layers. Cause problems. Above all, it is preferable that the constitution is such that 0.60Y≦X≦0.90Y.

前記高融点中間層9の融点は、前記第1低融点層7の融点より20℃以上高く、かつ前記高融点中間層9の融点は、前記第2低融点層8の融点より20℃以上高い構成であるのが好ましい。このような構成とすることで、シーラント層同士を熱融着させた際にヒートシール部でのシーラント層3の流出を十分に抑制することができる。中でも、前記高融点中間層9の融点は、前記第1低融点層7の融点より25℃〜35℃高く、かつ前記高融点中間層9の融点は、前記第2低融点層8の融点より25℃〜35℃高い構成であるのが好ましい。 The melting point of the high melting point intermediate layer 9 is higher than the melting point of the first low melting point layer 7 by 20° C. or more, and the melting point of the high melting point intermediate layer 9 is higher than the melting point of the second low melting point layer 8 by 20° C. or more. It is preferably configured. With such a configuration, it is possible to sufficiently suppress the outflow of the sealant layer 3 at the heat seal portion when the sealant layers are heat-sealed to each other. Among them, the melting point of the high melting point intermediate layer 9 is higher than the melting point of the first low melting point layer 7 by 25° C. to 35° C., and the melting point of the high melting point intermediate layer 9 is higher than the melting point of the second low melting point layer 8. It is preferable that the temperature is higher by 25°C to 35°C.

なお、前記第1低融点層7の融点及び前記第2低融点層8の融点は、いずれも、90℃〜140℃の範囲であるのが好ましい。 The melting point of the first low melting point layer 7 and the melting point of the second low melting point layer 8 are both preferably in the range of 90°C to 140°C.

前記前記第1低融点層7、前記第2低融点層8および前記高融点中間層9を形成する熱可塑性樹脂としては、特に限定されるものではないが、無延伸フィルムであるのが好ましい。前記熱可塑性樹脂としては、特に限定されるものではないが、ポリエチレン、ポリプロピレン、オレフィン系共重合体、これらの酸変性物およびアイオノマーからなる群より選ばれた少なくとも1種の熱可塑性樹脂を用いるのが好ましい。 The thermoplastic resin forming the first low melting point layer 7, the second low melting point layer 8 and the high melting point intermediate layer 9 is not particularly limited, but is preferably a non-stretched film. The thermoplastic resin is not particularly limited, but at least one thermoplastic resin selected from the group consisting of polyethylene, polypropylene, olefin copolymers, acid-modified products thereof and ionomers is used. Is preferred.

中でも、前記高融点中間層9を構成する熱可塑性樹脂は、重量平均分子量が200,000〜800,000の範囲のエチレン−プロピレンブロック共重合体樹脂であるのが好ましい。この場合には、シーラント層同士を熱融着させた際にヒートシール部でのシーラント層の流出をより十分に抑制できる。 Among them, the thermoplastic resin constituting the high melting point intermediate layer 9 is preferably an ethylene-propylene block copolymer resin having a weight average molecular weight of 200,000 to 800,000. In this case, when the sealant layers are heat-sealed to each other, the outflow of the sealant layer at the heat seal portion can be more sufficiently suppressed.

また、前記第1低融点層7を構成する熱可塑性樹脂および前記第2低融点層8を構成する熱可塑性樹脂は、重量平均分子量が10,000〜200,000の範囲のエチレン−プロピレンランダム共重合体樹脂であるのが好ましい。この場合には、シーラント層同士を熱融着させる際にさらに十分なシール強度でもってシール接合できる。例えば、前記第1低融点層7が重量平均分子量が100,000のエチレン−プロピレンランダム共重合体樹脂で形成され、前記第2低融点層8が重量平均分子量が70,000のエチレン−プロピレンランダム共重合体樹脂で形成された構成や、前記第1低融点層7および前記第2低融点層8が、いずれも重量平均分子量が120,000のエチレン−プロピレンランダム共重合体樹脂で形成された構成等を例示できる。 The thermoplastic resin forming the first low melting point layer 7 and the thermoplastic resin forming the second low melting point layer 8 are ethylene-propylene random copolymers having a weight average molecular weight of 10,000 to 200,000. It is preferably a polymer resin. In this case, when the sealant layers are heat-sealed to each other, the seal joining can be performed with more sufficient seal strength. For example, the first low melting point layer 7 is formed of an ethylene-propylene random copolymer resin having a weight average molecular weight of 100,000, and the second low melting point layer 8 is an ethylene-propylene random copolymer having a weight average molecular weight of 70,000. The structure formed of a copolymer resin and the first low melting point layer 7 and the second low melting point layer 8 were both formed of an ethylene-propylene random copolymer resin having a weight average molecular weight of 120,000. The configuration etc. can be illustrated.

また、前記第1低融点層7の厚さが0.5μm以上であり、前記第2低融点層8の厚さが1μm以上である構成を採用するのが好ましく、このような構成を採用した場合にはシーラント層同士を熱融着させる際に、より十分なシール強度を確保してシール接合できる。中でも、前記第1低融点層7の厚さは、1μm〜10μmであるのが特に好ましい。また、前記第2低融点層8の厚さは、1μm〜10μmであるのが特に好ましい。 Further, it is preferable to adopt a configuration in which the thickness of the first low melting point layer 7 is 0.5 μm or more and the thickness of the second low melting point layer 8 is 1 μm or more, and such a configuration is adopted. In this case, when the sealant layers are heat-sealed to each other, a sufficient seal strength can be secured and the seal joining can be performed. Among them, the thickness of the first low melting point layer 7 is particularly preferably 1 μm to 10 μm. The thickness of the second low melting point layer 8 is particularly preferably 1 μm to 10 μm.

前記シーラント層3の厚さ(全体厚さ)は、21μm〜40μmに設定されるのが好ましい。21μm以上とすることでピンホールの発生を十分に防止できると共に、40μm以下に設定することで樹脂使用量を低減できてコスト低減を図り得る。中でも、前記シーラント層3の厚さは、25μm〜35μmに設定されるのが特に好ましい。 The thickness (total thickness) of the sealant layer 3 is preferably set to 21 μm to 40 μm. When the thickness is 21 μm or more, generation of pinholes can be sufficiently prevented, and when the thickness is 40 μm or less, the amount of resin used can be reduced and the cost can be reduced. Above all, the thickness of the sealant layer 3 is particularly preferably set to 25 μm to 35 μm.

前記金属箔層4は、外装材1に酸素や水分の侵入を阻止するガスバリア性を付与する役割を担うものである。前記金属箔層4としては、特に限定されるものではないが、例えば、アルミニウム箔、SUS箔(ステンレス箔)、銅箔等が挙げられ、アルミニウム箔が一般的に用いられる。前記金属箔層4の厚さは、10μm〜100μmであるのが好ましい。10μm以上であることで金属箔を製造する際の圧延時のピンホール発生を防止できると共に、100μm以下であることで張り出し成形、絞り成形等の成形時の応力を小さくできて成形性を向上させることができる。中でも、前記金属箔層4の厚さは、20μm〜50μmであるのが特に好ましい。 The metal foil layer 4 plays a role of imparting a gas barrier property to the exterior material 1 to prevent oxygen and moisture from entering. The metal foil layer 4 is not particularly limited, but examples thereof include aluminum foil, SUS foil (stainless steel foil), copper foil, and the like, and aluminum foil is generally used. The thickness of the metal foil layer 4 is preferably 10 μm to 100 μm. When it is 10 μm or more, pinholes can be prevented from being generated during rolling when manufacturing a metal foil, and when it is 100 μm or less, stress at the time of forming such as overhang forming and draw forming can be reduced to improve formability. be able to. Above all, the thickness of the metal foil layer 4 is particularly preferably 20 μm to 50 μm.

前記金属箔層4は、少なくとも内側の面(内側接着剤層6側の面)に化成処理が施されているのが好ましい。このような化成処理が施されていることによって内容物(電池の電解液等)による金属箔表面の腐食を十分に防止できる。例えば次のような処理をすることによって金属箔に化成処理を施す。即ち、例えば、脱脂処理を行った金属箔の表面に、
1)リン酸と、
クロム酸と、
フッ化物の金属塩及びフッ化物の非金属塩からなる群より選ばれる少なくとも1種の化合物と、を含む混合物の水溶液
2)リン酸と、
アクリル系樹脂、キトサン誘導体樹脂及びフェノール系樹脂からなる群より選ばれる少なくとも1種の樹脂と、
クロム酸及びクロム(III)塩からなる群より選ばれる少なくとも1種の化合物と、を含む混合物の水溶液
3)リン酸と、
アクリル系樹脂、キトサン誘導体樹脂及びフェノール系樹脂からなる群より選ばれる少なくとも1種の樹脂と、
クロム酸及びクロム(III)塩からなる群より選ばれる少なくとも1種の化合物と、
フッ化物の金属塩及びフッ化物の非金属塩からなる群より選ばれる少なくとも1種の化合物と、を含む混合物の水溶液
上記1)〜3)のうちのいずれかの水溶液を塗工した後、乾燥することにより、化成処理を施す。
It is preferable that at least the inner surface (the surface on the inner adhesive layer 6 side) of the metal foil layer 4 is subjected to a chemical conversion treatment. By performing such a chemical conversion treatment, it is possible to sufficiently prevent the corrosion of the surface of the metal foil due to the contents (such as the electrolytic solution of the battery). For example, the metal foil is subjected to chemical conversion treatment by the following treatment. That is, for example, on the surface of the degreased metal foil,
1) phosphoric acid,
Chromic acid,
An aqueous solution of a mixture containing at least one compound selected from the group consisting of metal salts of fluorides and non-metal salts of fluorides 2) phosphoric acid;
At least one resin selected from the group consisting of acrylic resins, chitosan derivative resins and phenolic resins;
An aqueous solution of a mixture containing at least one compound selected from the group consisting of chromic acid and chromium (III) salts, 3) phosphoric acid, and
At least one resin selected from the group consisting of acrylic resins, chitosan derivative resins and phenolic resins;
At least one compound selected from the group consisting of chromic acid and chromium (III) salts;
Aqueous solution of mixture containing at least one compound selected from the group consisting of metal salts of fluorides and non-metal salts of fluorides, and applied with an aqueous solution of any one of the above 1) to 3), and then dried. By doing so, chemical conversion treatment is performed.

前記化成皮膜は、クロム付着量(片面当たり)として0.1mg/m2〜50mg/m2が好ましく、特に2mg/m2〜20mg/m2が好ましい。 The conversion coating, chromium coating weight preferably is 0.1mg / m 2 ~50mg / m 2 as a (per one surface), in particular 2mg / m 2 ~20mg / m 2 preferred.

本発明において、前記耐熱性樹脂層2は、必須の構成層ではないものの、前記金属箔層4の他方の面に外側接着剤層5を介して耐熱性樹脂層2が積層された構成を採用するのが好ましい(図1参照)。このような耐熱性樹脂層2を設けることにより、金属箔層4の他方の面側の絶縁性を十分に確保できるし、外装材1の物理的強度および耐衝撃性を向上させることができる。 In the present invention, the heat-resistant resin layer 2 is not an essential constituent layer, but the heat-resistant resin layer 2 is laminated on the other surface of the metal foil layer 4 with the outer adhesive layer 5 interposed therebetween. Preferably (see FIG. 1). By providing such a heat-resistant resin layer 2, it is possible to sufficiently secure the insulating property on the other surface side of the metal foil layer 4, and to improve the physical strength and impact resistance of the exterior material 1.

前記耐熱性樹脂層(外側層)2を構成する耐熱性樹脂としては、外装材をヒートシールする際のヒートシール温度で溶融しない耐熱性樹脂を用いる。前記耐熱性樹脂としては、シーラント層3を構成する高融点中間層9の融点より10℃以上高い融点を有する耐熱性樹脂を用いるのが好ましく、高融点中間層9の融点より20℃以上高い融点を有する耐熱性樹脂を用いるのが特に好ましい。 As the heat-resistant resin that constitutes the heat-resistant resin layer (outer layer) 2, a heat-resistant resin that does not melt at the heat-sealing temperature when the exterior material is heat-sealed is used. As the heat-resistant resin, it is preferable to use a heat-resistant resin having a melting point higher than the melting point of the high-melting-point intermediate layer 9 constituting the sealant layer 3 by 10° C. or more, and a melting point higher than the melting point of the high-melting-point intermediate layer 9 by 20° C. or more. It is particularly preferable to use a heat resistant resin having

前記耐熱性樹脂層(外側層)2としては、特に限定されるものではないが、例えば、ナイロンフィルム等のポリアミドフィルム、ポリエステルフィルム、ポリオレフィンフィルム等が挙げられ、これらの延伸フィルムが好ましく用いられる。中でも、前記耐熱性樹脂層2としては、二軸延伸ナイロンフィルム等の二軸延伸ポリアミドフィルム、二軸延伸ポリブチレンテレフタレート(PBT)フィルム、二軸延伸ポリエチレンテレフタレート(PET)フィルム、二軸延伸ポリエチレンナフタレート(PEN)フィルム、二軸延伸ポリプロピレンフィルムを用いるのが特に好ましい。前記ナイロンフィルムとしては、特に限定されるものではないが、例えば、6ナイロンフィルム、6,6ナイロンフィルム、MXDナイロンフィルム等が挙げられる。なお、前記耐熱性樹脂層2は、単層で形成されていても良いし、或いは、例えばポリエステルフィルム/ポリアミドフィルムからなる複層(PETフィルム/ナイロンフィルムからなる複層等)で形成されていても良い。前記例示した複層構成において、ポリエステルフィルムがポリアミドフィルムよりも外側に配置されるのが好ましく、同様にPETフィルムがナイロンフィルムよりも外側に配置されるのが好ましい。 The heat resistant resin layer (outer layer) 2 is not particularly limited, but examples thereof include polyamide films such as nylon films, polyester films, polyolefin films and the like, and stretched films thereof are preferably used. Among them, as the heat resistant resin layer 2, biaxially stretched polyamide film such as biaxially stretched nylon film, biaxially stretched polybutylene terephthalate (PBT) film, biaxially stretched polyethylene terephthalate (PET) film, biaxially stretched polyethylene It is particularly preferable to use a phthalate (PEN) film or a biaxially oriented polypropylene film. The nylon film is not particularly limited, but examples thereof include 6 nylon film, 6,6 nylon film, MXD nylon film and the like. The heat-resistant resin layer 2 may be formed of a single layer, or may be formed of, for example, a multi-layer composed of a polyester film/a polyamide film (a multi-layer composed of a PET film/nylon film, etc.). Is also good. In the multilayer structure illustrated above, the polyester film is preferably arranged outside the polyamide film, and similarly, the PET film is preferably arranged outside the nylon film.

前記耐熱性樹脂層2の厚さは、8μm〜50μmであるのが好ましい。上記好適下限値以上に設定することで外装材として十分な強度を確保できると共に、上記好適上限値以下に設定することで張り出し成形、絞り成形等の成形時の応力を小さくできて成形性を向上させることができる。中でも、前記耐熱性樹脂層2の厚さは、12μm〜25μmであるのが特に好ましい。 The heat-resistant resin layer 2 preferably has a thickness of 8 μm to 50 μm. By setting the above preferable lower limit value or more, sufficient strength as an exterior material can be secured, and by setting the above preferable upper limit value or less, stress at the time of forming such as overhang forming and drawing forming can be reduced to improve formability. Can be made. Above all, the thickness of the heat resistant resin layer 2 is particularly preferably 12 μm to 25 μm.

前記外側接着剤層5としては、特に限定されるものではないが、例えば、ポリウレタン接着剤層、ポリエステルポリウレタン接着剤層、ポリエーテルポリウレタン接着剤層等が挙げられる。前記外側接着剤層5の厚さは、1μm〜5μmに設定されるのが好ましい。中でも、外装材の薄膜化、軽量化の観点から、前記外側接着剤層5の厚さは、1μm〜3μmに設定されるのが特に好ましい。 The outer adhesive layer 5 is not particularly limited, but examples thereof include a polyurethane adhesive layer, a polyester polyurethane adhesive layer, and a polyether polyurethane adhesive layer. The thickness of the outer adhesive layer 5 is preferably set to 1 μm to 5 μm. Above all, the thickness of the outer adhesive layer 5 is particularly preferably set to 1 μm to 3 μm from the viewpoint of reducing the thickness and weight of the exterior material.

前記内側接着剤層6としては、特に限定されるものではないが、例えば、上記外側接着剤層5として例示したものも使用できるが、電解液による膨潤の少ないポリオレフィン系接着剤を使用するのが好ましい。前記内側接着剤層6の厚さは、1μm〜5μmに設定されるのが好ましい。中でも、外装材の薄膜化、軽量化の観点から、前記内側接着剤層6の厚さは、1μm〜3μmに設定されるのが特に好ましい。 The inner adhesive layer 6 is not particularly limited, and for example, those exemplified as the outer adhesive layer 5 can be used, but it is preferable to use a polyolefin-based adhesive that is less swelled by an electrolytic solution. preferable. The thickness of the inner adhesive layer 6 is preferably set to 1 μm to 5 μm. Above all, it is particularly preferable that the thickness of the inner adhesive layer 6 is set to 1 μm to 3 μm from the viewpoint of reducing the thickness and weight of the exterior material.

本発明の蓄電デバイス用外装材1の厚さは、60μm〜160μmに設定されるのが好ましい。 The thickness of the exterior material 1 for an electricity storage device of the present invention is preferably set to 60 μm to 160 μm.

本発明の外装材1を成形(深絞り成形、張り出し成形等)することにより、成形ケース(電池ケース等)を得ることができる。なお、本発明の外装材1は、成形に供されずにそのまま使用することもできる。 A molding case (battery case or the like) can be obtained by molding (deep-drawing, overhang molding, or the like) the exterior material 1 of the present invention. The exterior material 1 of the present invention can be used as it is without being subjected to molding.

本発明の外装材1を用いて構成された蓄電デバイス20の一実施形態を図2に示す。この蓄電デバイス20は、リチウムイオン2次電池である。 FIG. 2 shows an embodiment of an electricity storage device 20 configured by using the exterior material 1 of the present invention. The electricity storage device 20 is a lithium-ion secondary battery.

前記電池20は、正極活物質、負極活物質、セパレータ、電解質から構成されるベアセル21と、正極および負極にそれぞれ接続されたタブリード22と、成形に供されていない平面状の前記外装材1と、前記外装材1が成形されて得られた収容凹部11bを有する成形ケース11とを備える(図2参照)。前記ベアセル21および前記タブリード22により蓄電デバイス本体部19が構成されている。 The battery 20 includes a bare cell 21 composed of a positive electrode active material, a negative electrode active material, a separator, and an electrolyte, tab leads 22 respectively connected to the positive electrode and the negative electrode, and the planar outer packaging material 1 that is not subjected to molding. And a molding case 11 having a housing recess 11b obtained by molding the exterior material 1 (see FIG. 2). The bare cell 21 and the tab lead 22 form a power storage device body 19.

前記成形ケース11の収容凹部11b内に前記ベアセル21と前記タブリード22の一部が収容され、該成形ケース11の上に前記平面状の外装材1が配置され、該外装材1の周縁部(の内側層3)と前記成形ケース11の封止用周縁部11a(の内側層3)とがヒートシールにより接合されて熱封止部(ヒートシール部)が形成されることによって、前記蓄電デバイス(電池)20が構成されている。なお、前記タブリード22の先端部は、外部に導出されている(図2参照)。 The bare cell 21 and a part of the tab lead 22 are housed in the housing recess 11b of the molding case 11, the planar exterior material 1 is disposed on the molding case 11, and the peripheral portion of the exterior material 1 ( The inner layer 3) and the sealing peripheral edge 11a (the inner layer 3) of the molding case 11 are joined by heat sealing to form a heat-sealed portion (heat-sealed portion). A (battery) 20 is configured. The tip end of the tab lead 22 is led to the outside (see FIG. 2).

次に、本発明の具体的実施例について説明するが、本発明はこれら実施例のものに特に限定されるものではない。 Next, specific examples of the present invention will be described, but the present invention is not particularly limited to these examples.

<実施例1>
厚さ35μmのアルミニウム箔(JIS H4160に規定されるA8021の焼鈍したアルミニウム箔)4の両面に、リン酸、ポリアクリル酸(アクリル系樹脂)、クロム(III)塩化合物、水、アルコールからなる化成処理液を塗布した後、180℃で乾燥を行って、化成皮膜を形成した。この化成皮膜のクロム付着量は片面当たり10mg/m2であった。
<Example 1>
A chemical conversion consisting of phosphoric acid, polyacrylic acid (acrylic resin), chromium (III) salt compound, water, and alcohol on both sides of a 35 μm thick aluminum foil (A8021 annealed aluminum foil specified in JIS H4160) 4. After applying the treatment liquid, it was dried at 180° C. to form a chemical conversion film. The amount of chromium deposited on this chemical conversion coating was 10 mg/m 2 per side.

次に、前記化成処理済みアルミニウム箔4の一方の面に、2液硬化型のウレタン系接着剤5を介して、厚さ15μmの二軸延伸6ナイロンフィルム(外側層)2をドライラミネートした(貼り合わせた)。 Next, a biaxially stretched 6-nylon film (outer layer) 2 having a thickness of 15 μm was dry-laminated on one surface of the chemical conversion-treated aluminum foil 4 via a two-component curing type urethane adhesive 5 ( Pasted together).

次に、融点137℃のエチレン−プロピレンランダム共重合体(重量平均分子量が150,000)からなる厚さ4.5μmの第1低融点層7、融点163℃のエチレン−プロピレンブロック共重合体(重量平均分子量が600,000)からなる厚さ21μmの高融点中間層9、融点137℃のエチレン−プロピレンランダム共重合体(重量平均分子量が150,000)からなる厚さ4.5μmの第2低融点層8がこの順で3層積層されるようにTダイを用いて共押出することにより、これら3層が積層されてなる厚さ30μmのシーラントフィルム(第1低融点層7/高融点中間層9/第2低融点層8)3を得た後、該シーラントフィルム(内側層)3の第1低融点層7面を、2液硬化型のマレイン酸変性ポリプロピレン接着剤(硬化剤が多官能イソシアネート)6を介して、前記ドライラミネート後のアルミニウム箔4の他方の面に重ね合わせて、ゴムニップロールと、100℃に加熱されたラミネートロールとの間に挟み込んで圧着することによりドライラミネートし、しかる後、40℃で5日間エージングする(加熱する)ことによって、図1に示す構成の厚さ86μmの蓄電デバイス用外装材1を得た。 Next, a 4.5 μm thick first low melting point layer 7 made of an ethylene-propylene random copolymer having a melting point of 137° C. (weight average molecular weight of 150,000) and an ethylene-propylene block copolymer having a melting point of 163° C. ( A high melting point intermediate layer 9 having a weight average molecular weight of 600,000 and a thickness of 21 μm, and an ethylene-propylene random copolymer having a melting point of 137° C. (weight average molecular weight of 150,000) and a second thickness of 4.5 μm. The low melting point layer 8 is co-extruded using a T die so that three layers are laminated in this order, and a sealant film having a thickness of 30 μm is formed by laminating these three layers (first low melting point layer 7/high melting point 7). After obtaining the intermediate layer 9/second low melting point layer 8)3, the surface of the first low melting point layer 7 of the sealant film (inner layer) 3 is fixed to a two-component curing type maleic acid-modified polypropylene adhesive (where the curing agent is Polyfunctional isocyanate) 6 is put on the other surface of the aluminum foil 4 after the dry lamination, and the laminate is sandwiched between a rubber nip roll and a laminating roll heated to 100° C. and pressure-bonded to dry laminate. Then, after that, by aging (heating) at 40° C. for 5 days, a packaging material 1 for an electricity storage device having a structure shown in FIG. 1 and a thickness of 86 μm was obtained.

なお、前記高融点中間層(エチレン−プロピレンブロック共重合体)の詳細について説明すると、前記高融点中間層は、融点が163℃、結晶融解エネルギーが58J/gである第1エラストマー変性オレフィン系樹脂99質量%、融点が144℃、結晶融解エネルギーが19J/gである第2エラストマー変性オレフィン系樹脂1質量%の組成からなる樹脂組成物により形成されている。前記第1エラストマー変性オレフィン系樹脂および前記第2エラストマー変性オレフィン系樹脂は、いずれも、エラストマー変性ホモポリプロピレンまたは/およびエラストマー変性ランダム共重合体からなる。前記エラストマー変性ランダム共重合体は、共重合成分としてプロピレン及びプロピレンを除く他の共重合成分を含有するランダム共重合体のエラストマー変性体である。なお、高融点中間層のみをSEM観察(走査電子顕微鏡で観察)したところ、高融点中間層は、エラストマー成分が島になっている海島構造を備えていることを確認することができた。 The high melting point intermediate layer (ethylene-propylene block copolymer) will be described in detail. The high melting point intermediate layer has a melting point of 163° C. and a crystal melting energy of 58 J/g. It is formed of a resin composition having a composition of 99% by mass, a melting point of 144° C., and a crystal melting energy of 19 J/g, which is 1% by mass of a second elastomer-modified olefin resin. Each of the first elastomer-modified olefin resin and the second elastomer-modified olefin resin is composed of an elastomer-modified homopolypropylene or/and an elastomer-modified random copolymer. The elastomer-modified random copolymer is an elastomer-modified random copolymer containing propylene and other copolymer components other than propylene as a copolymer component. When only the high melting point intermediate layer was observed by SEM (observation with a scanning electron microscope), it could be confirmed that the high melting point intermediate layer had a sea-island structure in which the elastomer component was an island.

上記「融点」の語は、JIS K7121−1987に準拠して、示差走査熱量測定(DSC)によって測定された融解ピーク温度を意味し、「結晶融解エネルギー」の語は、JIS K7122−1987に準拠して、示差走査熱量測定(DSC)によって測定された融解熱(結晶融解エネルギー)を意味する。 The term "melting point" means a melting peak temperature measured by differential scanning calorimetry (DSC) according to JIS K7121-1987, and the term "crystal melting energy" complies with JIS K7122-1987. And the heat of fusion (crystal fusion energy) measured by differential scanning calorimetry (DSC).

また、前記2液硬化型マレイン酸変性ポリプロピレン接着剤として、主剤としてのマレイン酸変性ポリプロピレン(融点80℃、酸価10mgKOH/g)100質量部、硬化剤としてのヘキサメチレンジイソシアナートのイソシアヌレート体(NCO含有率:20質量%)8質量部、さらに溶剤が混合されてなる接着剤溶液を用い、該接着剤溶液を固形分塗布量が2g/m2になるように、前記アルミニウム箔4の他方の面に塗布し、加熱乾燥させた後、前記シーラントフィルム3の第1低融点層7面に重ね合わせた。 Further, as the two-component curing type maleic acid-modified polypropylene adhesive, 100 parts by mass of maleic acid-modified polypropylene (melting point 80° C., acid value 10 mgKOH/g) as a main agent, hexamethylene diisocyanate isocyanurate as a curing agent (NCO content: 20% by mass) 8 parts by mass, and using an adhesive solution further mixed with a solvent, the adhesive solution is mixed with the aluminum foil 4 so that the solid content coating amount becomes 2 g/m 2 . After coating on the other surface and heating and drying, it was laminated on the surface of the first low melting point layer 7 of the sealant film 3.

<実施例2>
シーラントフィルムとして、融点115℃の低密度ポリエチレン(重量平均分子量が80,000)からなる厚さ3.75μmの第1低融点層7、融点142℃のエチレン−プロピレンブロック共重合体(重量平均分子量が400,000)からなる厚さ22.5μmの高融点中間層9、融点115℃の低密度ポリエチレン(重量平均分子量が80,000)からなる厚さ3.75μmの第2低融点層8がこの順で積層されてなる厚さ30μmのシーラントフィルム3を用いた以外は、実施例1と同様にして、図1に示す構成の厚さ86μmの蓄電デバイス用外装材1を得た。
<Example 2>
As the sealant film, a low-density polyethylene (weight average molecular weight: 80,000) having a melting point of 115° C., a first low melting point layer 7 having a thickness of 3.75 μm, an ethylene-propylene block copolymer having a melting point of 142° C. (weight average molecular weight: A high melting point intermediate layer 9 having a thickness of 22.5 μm and a second low melting point layer 3 having a thickness of 3.75 μm and made of low density polyethylene (having a weight average molecular weight of 80,000) having a melting point of 115° C. Except for using the sealant film 3 having a thickness of 30 μm laminated in this order, an outer casing material 1 for an electricity storage device having a structure shown in FIG. 1 and having a thickness of 86 μm was obtained in the same manner as in Example 1.

<実施例3>
シーラントフィルムとして、融点135℃のエチレン−プロピレンランダム共重合体(重量平均分子量が120,000)からなる厚さ1.5μmの第1低融点層7、融点161℃のエチレン−プロピレンブロック共重合体(重量平均分子量が500,000)からなる厚さ27μmの高融点中間層9、融点135℃のエチレン−プロピレンランダム共重合体(重量平均分子量が120,000)からなる厚さ1.5μmの第2低融点層8がこの順で積層されてなる厚さ30μmのシーラントフィルム3を用いた以外は、実施例1と同様にして、図1に示す構成の厚さ86μmの蓄電デバイス用外装材1を得た。
<Example 3>
As a sealant film, a first low melting point layer 7 having a thickness of 1.5 μm and made of an ethylene-propylene random copolymer (weight average molecular weight: 120,000) having a melting point of 135° C., an ethylene-propylene block copolymer having a melting point of 161° C. A high-melting-point intermediate layer 9 having a thickness of 27 μm (weight average molecular weight of 500,000) and an ethylene-propylene random copolymer having a melting point of 135° C. (weight average molecular weight of 120,000) having a thickness of 1.5 μm. (2) Except for using the sealant film 3 having a thickness of 30 μm, which is formed by laminating the low melting point layers 8 in this order, the same procedure as in Example 1 was performed. Got

<実施例4>
シーラントフィルムとして、融点137℃のエチレン−プロピレンランダム共重合体(重量平均分子量が150,000)からなる厚さ6μmの第1低融点層7、融点163℃のエチレン−プロピレンブロック共重合体(重量平均分子量が600,000)からなる厚さ21μmの高融点中間層9、融点137℃のエチレン−プロピレンランダム共重合体(重量平均分子量が150,000)からなる厚さ3μmの第2低融点層8がこの順で積層されてなる厚さ30μmのシーラントフィルム3を用いた以外は、実施例1と同様にして、図1に示す構成の厚さ86μmの蓄電デバイス用外装材1を得た。
<Example 4>
As the sealant film, a first low melting point layer 7 having a thickness of 6 μm and comprising an ethylene-propylene random copolymer (weight average molecular weight: 150,000) having a melting point of 137° C., an ethylene-propylene block copolymer having a melting point of 163° C. (weight: 21 μm thick high melting point intermediate layer 9 having an average molecular weight of 600,000, and a second low melting point layer 3 μm thick made of an ethylene-propylene random copolymer having a melting point of 137° C. (weight average molecular weight of 150,000). The same procedure as in Example 1 was carried out except that the sealant film 3 having a thickness of 30 μm formed by laminating 8 in this order was used to obtain the exterior material 1 for an electricity storage device having a thickness shown in FIG. 1 and having a thickness of 86 μm.

<実施例5>
シーラントフィルムとして、融点137℃のエチレン−プロピレンランダム共重合体(重量平均分子量が150,000)からなる厚さ3μmの第1低融点層7、融点163℃のエチレン−プロピレンブロック共重合体(重量平均分子量が600,000)からなる厚さ21μmの高融点中間層9、融点137℃のエチレン−プロピレンランダム共重合体(重量平均分子量が150,000)からなる厚さ6μmの第2低融点層8がこの順で積層されてなる厚さ30μmのシーラントフィルム3を用いた以外は、実施例1と同様にして、図1に示す構成の厚さ86μmの蓄電デバイス用外装材1を得た。
<Example 5>
As the sealant film, a first low melting point layer 7 having a thickness of 3 μm and made of an ethylene-propylene random copolymer (weight average molecular weight: 150,000) having a melting point of 137° C., an ethylene-propylene block copolymer having a melting point of 163° C. (weight: 21 μm thick high melting point intermediate layer 9 having an average molecular weight of 600,000 and a 6 μm thick second low melting point layer made of an ethylene-propylene random copolymer having a melting point of 137° C. (weight average molecular weight of 150,000). Except for using the sealant film 3 having a thickness of 30 μm formed by laminating 8 in this order, the exterior material 1 for an electricity storage device having a thickness shown in FIG. 1 and having a thickness of 86 μm was obtained in the same manner as in Example 1.

参考例
シーラントフィルムとして、融点137℃のエチレン−プロピレンランダム共重合体(重量平均分子量が150,000)からなる厚さ4.5μmの第1低融点層7、融点152℃のエチレン−プロピレンブロック共重合体(重量平均分子量が400,000)からなる厚さ21μmの高融点中間層9、融点137℃のエチレン−プロピレンランダム共重合体(重量平均分子量が150,000)からなる厚さ4.5μmの第2低融点層8がこの順で積層されてなる厚さ30μmのシーラントフィルム3を用いた以外は、実施例1と
同様にして、図1に示す構成の厚さ86μmの蓄電デバイス用外装材1を得た。
< Reference example >
As a sealant film, a first low melting point layer 7 having a thickness of 4.5 μm and made of an ethylene-propylene random copolymer having a melting point of 137° C. (weight average molecular weight of 150,000); an ethylene-propylene block copolymer having a melting point of 152° C. A high melting point intermediate layer 9 having a thickness (weight average molecular weight of 400,000) of 21 μm and an ethylene-propylene random copolymer having a melting point of 137° C. (weight average molecular weight of 150,000) having a thickness of 4.5 μm. (2) Except for using the sealant film 3 having a thickness of 30 μm, which is formed by laminating the low melting point layers 8 in this order, the same procedure as in Example 1 was performed. Got

<比較例1>
シーラントフィルムとして、融点140℃のエチレン−プロピレンランダム共重合体(重量平均分子量が140,000)からなる厚さ10.5μmの第1低融点層7、融点163℃のエチレン−プロピレンブロック共重合体(重量平均分子量が600,000)からなる厚さ9μmの高融点中間層9、融点140℃のエチレン−プロピレンランダム共重合体(重量平均分子量が140,000)からなる厚さ10.5μmの第2低融点層8がこの順で積層されてなる厚さ30μmのシーラントフィルム3を用いた以外は、実施例1と同様にして、厚さ86μmの蓄電デバイス用外装材を得た。
<Comparative Example 1>
As the sealant film, a first low melting point layer 7 having a thickness of 10.5 μm and comprising an ethylene-propylene random copolymer having a melting point of 140° C. (weight average molecular weight 140,000), an ethylene-propylene block copolymer having a melting point of 163° C. A high-melting-point intermediate layer 9 having a thickness of 9 μm (having a weight-average molecular weight of 600,000) and an ethylene-propylene random copolymer having a melting point of 140° C. (weight-average molecular weight of 140,000) having a thickness of 10.5 μm. 2 An outer packaging material for an electricity storage device having a thickness of 86 μm was obtained in the same manner as in Example 1 except that the sealant film 3 having a thickness of 30 μm and having the low melting point layer 8 laminated in this order was used.

<比較例2>
シーラントフィルムとして、融点140℃のエチレン−プロピレンランダム共重合体(重量平均分子量が140,000)からなる厚さ15μmの第1低融点層、融点156℃のエチレン−プロピレンブロック共重合体(重量平均分子量が450,000)からなる厚さ15μmの高融点中間層、がこの順で積層されてなる厚さ30μmのシーラントフィルムを用いた以外は、実施例1と同様にして、厚さ86μmの蓄電デバイス用外装材を得た。なお、得られた蓄電デバイス用外装材において、第1低融点層は、シーラント層における金属箔層側の最外層を構成している。
<Comparative example 2>
As the sealant film, a first low melting point layer having a thickness of 15 μm and comprising an ethylene-propylene random copolymer having a melting point of 140° C. (weight average molecular weight 140,000) and an ethylene-propylene block copolymer having a melting point of 156° C. (weight average A high-melting-point intermediate layer having a molecular weight of 450,000) having a thickness of 15 μm, and a sealant film having a thickness of 30 μm, which are laminated in this order, were used. A device exterior material was obtained. In addition, in the obtained exterior material for an electricity storage device, the first low melting point layer constitutes the outermost layer on the metal foil layer side in the sealant layer.

<比較例3>
シーラントフィルムとして、融点115℃の低密度ポリエチレン(重量平均分子量が80,000)からなる厚さ10.5μmの第1低融点層7、融点142℃のエチレン−プロピレンブロック共重合体(重量平均分子量が400,000)からなる厚さ9μmの高融点中間層9、融点115℃の低密度ポリエチレン(重量平均分子量が80,000)からなる厚さ10.5μmの第2低融点層8がこの順で積層されてなる厚さ30μmのシーラントフィルム3を用いた以外は、実施例1と同様にして、厚さ86μmの蓄電デバイス用外装材を得た。
<Comparative example 3>
As the sealant film, a low-density polyethylene (weight average molecular weight: 80,000) having a melting point of 115° C., a first low melting point layer 7 having a thickness of 10.5 μm, an ethylene-propylene block copolymer having a melting point of 142° C. (weight average molecular weight: In the order of a high melting point intermediate layer 9 having a thickness of 9 μm and a second low melting point layer 8 having a thickness of 10.5 μm and made of low density polyethylene (weight average molecular weight: 80,000) having a melting point of 115° C. In the same manner as in Example 1 except that the sealant film 3 having a thickness of 30 μm laminated in step 1 was used, an outer casing material for an electricity storage device having a thickness of 86 μm was obtained.

Figure 0006738189
Figure 0006738189

上記のようにして得られた各蓄電デバイス用外装材に対して下記測定法に基づいて評価を行った。その結果を表1に示す。なお、表1において、X/Yは、(高融点中間層の厚さ)÷(シーラント層の厚さ)を意味する。また、表1において、絶縁抵抗値について「>200MΩ」の表記は、絶縁抵抗値が200MΩより大きい値であることを示す。 Each of the electric storage device exterior materials obtained as described above was evaluated based on the following measurement method. The results are shown in Table 1. In Table 1, X/Y means (thickness of high melting point intermediate layer)/(thickness of sealant layer). Further, in Table 1, the notation “>200 MΩ” for the insulation resistance value indicates that the insulation resistance value is a value larger than 200 MΩ.

<絶縁抵抗値測定法>
得られた蓄電デバイス用外装材から縦100mm×横15mmの大きさの矩形状の試験片を2枚切り出す。これら一対の試験片を互いのシーラント層で接触するように重ね合わせて両面加熱式のヒートシーラーで、シール幅5mm、0.15MPaの条件で2秒間シーラント層同士の熱融着を行った。なお、実施例1、3〜6、比較例1、2では、ヒートシール温度を180℃に設定し、実施例2と比較例3ではヒートシール温度を160℃に設定した(表1参照)。
<Insulation resistance measurement method>
Two rectangular test pieces with a size of 100 mm in length and 15 mm in width are cut out from the obtained exterior material for an electricity storage device. The pair of test pieces were superposed so that the sealant layers contact each other, and the sealant layers were heat-sealed for 2 seconds under a condition of a seal width of 5 mm and 0.15 MPa with a double-sided heat sealer. In Examples 1, 3 to 6 and Comparative Examples 1 and 2, the heat sealing temperature was set to 180°C, and in Example 2 and Comparative Example 3, the heat sealing temperature was set to 160°C (see Table 1).

次に、試験片の長さ方向の両端部のそれぞれに導電性の両面テープを貼り付けてアルミニウム箔層との導通を確保した。絶縁抵抗測定装置(日置電機社製;品番HIOKI3154)の端子と、前記試験片の長さ方向の両端部の両面テープとを結線して回路を形成した後、25V、5秒の条件で電圧印加を行って絶縁抵抗値を測定した。 Next, a conductive double-sided tape was attached to each of both ends of the test piece in the lengthwise direction to secure electrical continuity with the aluminum foil layer. After forming a circuit by connecting the terminals of the insulation resistance measuring device (manufactured by Hioki Electric Co.; product number HIOKI3154) and the double-sided tapes at both ends in the length direction of the test piece, voltage is applied under the condition of 25V for 5 seconds. Then, the insulation resistance value was measured.

<シール強度測定法>
外装材を幅15mm×長さ100mmの短冊状に切り出して試験片を得る。前記試験片を2枚準備し、これら2枚の試験片を互いの内側層が内側になるようにして重ね合わせた後、幅15mmにわたって全面のヒートシールを行って熱封止部(ヒートシール部)を形成した。前記ヒートシールは、テスター産業株式会社製のヒートシール装置(TP−701−A)を用いて、シール圧0.2MPa(ゲージ表示圧)で2秒間の片面加熱により行った。なお、実施例1、3〜6、比較例1、2の試験片では、ヒートシール温度を180℃に設定し、実施例2と比較例3の試験片では、ヒートシール温度を160℃に設定して、ヒートシールを行った。
<Seal strength measurement method>
A test piece is obtained by cutting the exterior material into a strip shape having a width of 15 mm and a length of 100 mm. Two test pieces were prepared, and these two test pieces were superposed on each other with their inner layers facing inward, and then heat-sealed on the entire surface over a width of 15 mm to form a heat-sealed portion (heat-sealed portion). ) Was formed. The heat-sealing was performed by using a heat-sealing device (TP-701-A) manufactured by Tester Sangyo Co., Ltd. and heating the one side for 2 seconds at a sealing pressure of 0.2 MPa (gauge display pressure). The heat-sealing temperature was set to 180° C. for the test pieces of Examples 1, 3 to 6 and Comparative Examples 1 and 2, and the heat-sealing temperature was set to 160° C. for the test pieces of Example 2 and Comparative Example 3. Then, heat sealing was performed.

次に、JIS Z0238−1998に準拠して、前記ヒートシールされた2枚の試験片についてその剥離強度を測定した。前記ヒートシールされた2枚の試験片のそれぞれの未シール部となる両端部をチャックして引張速度(グリップ移動速度)100mm/分でT字剥離(90度剥離)することによって剥離強度を測定し、これをシール強度(N/15mm幅)とした。 Next, according to JIS Z0238-1998, the peel strength of the two heat-sealed test pieces was measured. Peel strength is measured by chucking both ends of each of the two heat-sealed test pieces, which are unsealed portions, and performing T-shaped peeling (90 degree peeling) at a pulling speed (grip moving speed) of 100 mm/min. This was taken as the sealing strength (N/15 mm width).

表1から明らかなように、本発明に係る実施例1〜6の蓄電デバイス用外装材では、絶縁抵抗値が大きい値であり、ヒートシール部において十分な絶縁性を確保できていた。 As is clear from Table 1, in the exterior materials for electricity storage devices of Examples 1 to 6 according to the present invention, the insulation resistance was a large value, and sufficient insulation could be secured in the heat-sealed portion.

これに対し、X/Yが本発明の規定範囲から逸脱する比較例1、3、および第2低融点層を備えていない比較例2では、いずれも絶縁抵抗値が小さく、十分な絶縁性を確保することができなかった。 On the other hand, in Comparative Examples 1 and 3 in which X/Y deviates from the specified range of the present invention, and Comparative Example 2 in which the second low melting point layer is not provided, the insulation resistance value is small, and sufficient insulation is obtained. I could not secure.

本発明に係る蓄電デバイス用外装材は、具体例として、例えば、
・リチウム2次電池(リチウムイオン電池、リチウムポリマー電池等)等の蓄電デバイス
・リチウムイオンキャパシタ
・電気2重層コンデンサ
等の各種蓄電デバイスの外装材として用いられる。また、本発明に係る蓄電デバイスは、上記例示した蓄電デバイスの他、全固体電池も含む。
Specific examples of the exterior material for an electricity storage device according to the present invention include:
-Used as an exterior material for various power storage devices such as lithium secondary batteries (lithium ion batteries, lithium polymer batteries, etc.), lithium ion capacitors, electric double layer capacitors, etc. Further, the electricity storage device according to the present invention includes an all-solid-state battery in addition to the electricity storage device exemplified above.

1…蓄電デバイス用外装材
2…耐熱性樹脂層(外側層)
3…シーラント層(内側層)
4…金属箔層
5…外側接着剤層
6…内側接着剤層
7…第1低融点層
8…第2低融点層
9…高融点中間層
11…成形ケース
19…蓄電デバイス本体部
20…蓄電デバイス
1... Exterior material for electricity storage device 2... Heat-resistant resin layer (outer layer)
3... Sealant layer (inner layer)
4... Metal foil layer 5... Outer adhesive layer 6... Inner adhesive layer 7... First low melting point layer 8... Second low melting point layer 9... High melting point intermediate layer 11... Molding case 19... Electric storage device body 20... Electric storage device

Claims (5)

金属箔層と、該金属箔層の一方の面に積層されたシーラント層と、を含む蓄電デバイス用外装材であって、
前記シーラント層は、該シーラント層における金属箔層側の最外層を構成する熱可塑性樹脂からなる第1低融点層と、前記シーラント層における金属箔層側とは反対側の最外層を構成する熱可塑性樹脂からなる第2低融点層と、前記第1低融点層と前記第2低融点層の間に配置された熱可塑性樹脂からなる高融点中間層と、を含み、
前記高融点中間層の融点は、120℃〜180℃であり、
前記第1低融点層の融点および前記第2低融点層の融点は、前記高融点中間層の融点より低く、
前記高融点中間層の厚さが20μm以上であり、
前記高融点中間層の厚さを「X」とし、前記シーラント層の厚さを「Y」としたとき、 0.50Y ≦ X ≦ 0.99Y
の関係にあり、
前記高融点中間層の融点は、前記第1低融点層の融点より25℃〜35℃高く、
前記高融点中間層の融点は、前記第2低融点層の融点より25℃〜35℃高いことを特徴とする蓄電デバイス用外装材。
A packaging material for an electricity storage device, comprising a metal foil layer and a sealant layer laminated on one surface of the metal foil layer,
The sealant layer comprises a first low melting point layer made of a thermoplastic resin forming an outermost layer on the metal foil layer side in the sealant layer, and a heat forming an outermost layer on the side opposite to the metal foil layer side in the sealant layer. A second low melting point layer made of a plastic resin, and a high melting point intermediate layer made of a thermoplastic resin disposed between the first low melting point layer and the second low melting point layer,
The melting point of the high melting point intermediate layer is 120° C. to 180° C.,
The melting point of the first low melting point layer and the melting point of the second low melting point layer are lower than the melting point of the high melting point intermediate layer,
The high melting point intermediate layer has a thickness of 20 μm or more,
When the thickness of the high melting point intermediate layer is "X" and the thickness of the sealant layer is "Y", 0.50Y ≤ X ≤ 0.99Y
There is of the relationship,
The melting point of the high melting point intermediate layer is 25° C. to 35° C. higher than the melting point of the first low melting point layer,
The exterior material for an electricity storage device, wherein the melting point of the high melting point intermediate layer is 25° C. to 35° C. higher than the melting point of the second low melting point layer.
前記第1低融点層の厚さが0.5μm以上であり、前記第2低融点層の厚さが1μm以上である請求項1に記載の蓄電デバイス用外装材。 The outer packaging material for an electricity storage device according to claim 1, wherein the first low melting point layer has a thickness of 0.5 μm or more, and the second low melting point layer has a thickness of 1 μm or more. 前記高融点中間層を構成する熱可塑性樹脂が、重量平均分子量が200,000〜800,000の範囲のエチレン−プロピレンブロック共重合体樹脂であり、The thermoplastic resin constituting the high melting point intermediate layer is an ethylene-propylene block copolymer resin having a weight average molecular weight of 200,000 to 800,000,
前記第1低融点層を構成する熱可塑性樹脂および前記第2低融点層を構成する熱可塑性樹脂が、重量平均分子量が10,000〜200,000の範囲のエチレン−プロピレンランダム共重合体樹脂である請求項1または2に記載の蓄電デバイス用外装材。 The thermoplastic resin forming the first low melting point layer and the thermoplastic resin forming the second low melting point layer are ethylene-propylene random copolymer resins having a weight average molecular weight of 10,000 to 200,000. The exterior material for an electricity storage device according to claim 1 or 2.
前記金属箔層の他方の面に外側接着剤層を介して耐熱性樹脂層が積層されている請求項1〜3のいずれか1項に記載の蓄電デバイス用外装材。The exterior material for an electricity storage device according to any one of claims 1 to 3, wherein a heat resistant resin layer is laminated on the other surface of the metal foil layer via an outer adhesive layer. 蓄電デバイス本体部と、An electricity storage device body,
請求項1〜4のいずれか1項に記載の蓄電デバイス用外装材とを備え、 An exterior material for an electricity storage device according to any one of claims 1 to 4,
前記蓄電デバイス本体部が、前記外装材で外装されていることを特徴とする蓄電デバイス。 An electricity storage device, wherein the electricity storage device body is covered with the exterior material.
JP2016085436A 2016-04-21 2016-04-21 Exterior material for power storage device and power storage device Active JP6738189B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016085436A JP6738189B2 (en) 2016-04-21 2016-04-21 Exterior material for power storage device and power storage device
CN201710252185.9A CN107305930B (en) 2016-04-21 2017-04-17 Outer packaging material for electricity storage device and electricity storage device
KR1020170049095A KR102351865B1 (en) 2016-04-21 2017-04-17 Exterior material for electrical storage device and electrical storage device
TW106113329A TWI712200B (en) 2016-04-21 2017-04-20 Exterior materials for power storage devices and power storage devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016085436A JP6738189B2 (en) 2016-04-21 2016-04-21 Exterior material for power storage device and power storage device

Publications (2)

Publication Number Publication Date
JP2017195112A JP2017195112A (en) 2017-10-26
JP6738189B2 true JP6738189B2 (en) 2020-08-12

Family

ID=60151115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016085436A Active JP6738189B2 (en) 2016-04-21 2016-04-21 Exterior material for power storage device and power storage device

Country Status (4)

Country Link
JP (1) JP6738189B2 (en)
KR (1) KR102351865B1 (en)
CN (1) CN107305930B (en)
TW (1) TWI712200B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110341260B (en) * 2018-04-02 2021-10-29 昭和电工包装株式会社 Laminate for molded container, and package
JP7291494B2 (en) * 2018-04-02 2023-06-15 株式会社レゾナック・パッケージング Laminate for molded container, molded container and package
JP7240824B2 (en) * 2018-06-07 2023-03-16 株式会社レゾナック・パッケージング Deep-drawn molded case for exterior of power storage device and power storage device
WO2023058734A1 (en) * 2021-10-06 2023-04-13 大日本印刷株式会社 Adhesive film, adhesive film manufacturing method, power storage device, and power storage device manufacturing method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0203265B1 (en) * 1982-11-23 1989-08-30 American National Can Company Multiple layer flexible sheet structure for packaging, including tubes made from such structure
JP4732884B2 (en) 2005-12-15 2011-07-27 昭和電工パッケージング株式会社 Electronic parts case packaging and electronic parts case
JP2010531120A (en) * 2007-06-21 2010-09-16 インターデイジタル テクノロジー コーポレーション Handover related measurement report for E-UTRAN
JP5441271B2 (en) * 2011-01-27 2014-03-12 日東電工株式会社 Nonaqueous battery laminate
KR101309392B1 (en) * 2012-04-19 2013-09-17 율촌화학 주식회사 Cell pouch with high insulation resistance
JP5626404B1 (en) * 2013-05-10 2014-11-19 大日本印刷株式会社 Battery packaging materials
EP2955770B1 (en) * 2013-02-06 2019-05-08 Dai Nippon Printing Co., Ltd. Battery packaging material
JP6276047B2 (en) * 2014-01-31 2018-02-07 昭和電工パッケージング株式会社 Packaging material, packaging material manufacturing method and molded case
JP6381234B2 (en) * 2014-03-06 2018-08-29 昭和電工パッケージング株式会社 Insulating film for sealing tab and electrochemical device
JP6479323B2 (en) * 2014-03-14 2019-03-06 昭和電工パッケージング株式会社 Packaging material, battery outer case and battery
JP6349986B2 (en) * 2014-06-09 2018-07-04 凸版印刷株式会社 Terminal film for power storage device and power storage device
JP6939545B2 (en) * 2015-03-31 2021-09-22 大日本印刷株式会社 Battery packaging materials, their manufacturing methods, and batteries
JP6679918B2 (en) * 2015-12-18 2020-04-15 大日本印刷株式会社 Battery packaging material

Also Published As

Publication number Publication date
CN107305930A (en) 2017-10-31
JP2017195112A (en) 2017-10-26
CN107305930B (en) 2022-03-22
TW201810764A (en) 2018-03-16
TWI712200B (en) 2020-12-01
KR102351865B1 (en) 2022-01-14
KR20170120502A (en) 2017-10-31

Similar Documents

Publication Publication Date Title
JP7381528B2 (en) Exterior material for power storage devices and power storage devices
KR102195195B1 (en) Outer casing material for battery and battery
JP5347411B2 (en) Packaging materials for electrochemical cells
JP6389096B2 (en) Power storage device exterior material and power storage device
JP6738189B2 (en) Exterior material for power storage device and power storage device
CN107204406B (en) Outer packaging material for electricity storage device and electricity storage device
US20210057683A1 (en) Power storage device packaging material and power storage device using the packaging material
JP6738164B2 (en) Exterior material for power storage device and power storage device
CN105742714B (en) Method for manufacturing battery
JP2021177488A (en) Sealant film for exterior material of power storage device, exterior material for power storage device, and method for manufacturing the same
JP5899880B2 (en) Electrochemical cell packaging material and electrochemical cell using the same
JP5194922B2 (en) Packaging materials for electrochemical cells
JP6253953B2 (en) Ribbed outer packaging material for electrochemical devices and electrochemical device
KR102567577B1 (en) Outer material for power storage device power storage device
KR102669314B1 (en) Outer material and power storage device for power storage device
JP6936044B2 (en) Laminate material
JP6083448B2 (en) Packaging materials for electrochemical cells
JP2017182922A (en) Outer packaging material for electricity storage device, and method of producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200717

R150 Certificate of patent or registration of utility model

Ref document number: 6738189

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250