JP6436758B2 - Power storage device exterior material and power storage device - Google Patents

Power storage device exterior material and power storage device Download PDF

Info

Publication number
JP6436758B2
JP6436758B2 JP2014255885A JP2014255885A JP6436758B2 JP 6436758 B2 JP6436758 B2 JP 6436758B2 JP 2014255885 A JP2014255885 A JP 2014255885A JP 2014255885 A JP2014255885 A JP 2014255885A JP 6436758 B2 JP6436758 B2 JP 6436758B2
Authority
JP
Japan
Prior art keywords
layer
storage device
vapor deposition
exterior material
resin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014255885A
Other languages
Japanese (ja)
Other versions
JP2016115640A (en
Inventor
勇二 南堀
勇二 南堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Packaging Co Ltd
Original Assignee
Showa Denko Packaging Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko Packaging Co Ltd filed Critical Showa Denko Packaging Co Ltd
Priority to JP2014255885A priority Critical patent/JP6436758B2/en
Priority to TW104130058A priority patent/TWI677129B/en
Priority to KR1020150154999A priority patent/KR20160074384A/en
Priority to CN201510751227.4A priority patent/CN105720216A/en
Publication of JP2016115640A publication Critical patent/JP2016115640A/en
Application granted granted Critical
Publication of JP6436758B2 publication Critical patent/JP6436758B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、スマートフォン、タブレット等の携帯機器に使用される電池やコンデンサ、ハイブリッド自動車、電気自動車、風力発電、太陽光発電、夜間電気の蓄電用に使用される電池やコンデンサ等の蓄電デバイス用の外装材および該外装材で外装された蓄電デバイスに関する。   The present invention is for batteries and capacitors used for portable devices such as smartphones and tablets, hybrid vehicles, electric vehicles, wind power generation, solar power generation, storage devices such as batteries and capacitors used for storage of night electricity. The present invention relates to an exterior material and an electricity storage device that is exteriorized with the exterior material.

近年、スマートフォン、タブレット端末等のモバイル電気機器の薄型化、軽量化に伴い、これらに搭載されるリチウムイオン二次電池、リチウムポリマー二次電池、リチウムイオンキャパシタ、電気2重層コンデンサ等の蓄電デバイスの外装材としては、従来の金属缶に代えて、耐熱性樹脂層/接着剤層/金属箔層/接着剤層/熱可塑性樹脂層からなる積層体が用いられている(特許文献1、2参照)。通常、前記積層体に対して張り出し成形や深絞り成形が行われることによって、略直方体形状等の立体形状に成形される。また、電気自動車等の電源、蓄電用途の大型電源、キャパシタ等も上記構成の積層体(外装材)で外装されることも増えてきている。   In recent years, as mobile electrical devices such as smartphones and tablet terminals have become thinner and lighter, power storage devices such as lithium-ion secondary batteries, lithium-polymer secondary batteries, lithium-ion capacitors, and electric double-layer capacitors that are installed in these devices have been reduced. As the exterior material, a laminate composed of a heat resistant resin layer / adhesive layer / metal foil layer / adhesive layer / thermoplastic resin layer is used instead of a conventional metal can (see Patent Documents 1 and 2). ). Usually, the laminate is formed into a three-dimensional shape such as a substantially rectangular parallelepiped shape by performing overhang molding or deep drawing. In addition, a power source for an electric vehicle, a large-scale power source for power storage, a capacitor, and the like are increasingly covered with a laminate (exterior material) having the above-described configuration.

上記外装材において、外側層の耐熱性樹脂フィルムとしては、張り出し成形や深絞り成形を行うときにより良好な成形性を確保する観点から、ポリアミド樹脂フィルム又はポリエステル樹脂フィルムを使用するのが一般的である(特許文献1、2参照)。   In the exterior material, as the heat-resistant resin film of the outer layer, it is common to use a polyamide resin film or a polyester resin film from the viewpoint of ensuring better moldability when performing overhang molding or deep drawing. Yes (see Patent Documents 1 and 2).

特開2011−98759号公報JP 2011-98759 A 特開2005−26152号公報Japanese Patent Laid-Open No. 2005-26152

しかしながら、ポリアミド樹脂フィルム層やポリエステル樹脂フィルム層等は、吸湿性が高いことから、このようなフィルムを外側層に用いた外装材では、吸湿等によりカール(反り)を発生しやすいという問題があった。ポリアミド樹脂フィルムを使用した場合には特にカールが生じやすかった。   However, since the polyamide resin film layer, the polyester resin film layer, and the like have high hygroscopicity, an exterior material using such a film as an outer layer has a problem that curling (warping) is likely to occur due to moisture absorption. It was. When a polyamide resin film was used, curling was particularly likely to occur.

外装材にこのようなカールが発生すると、外装材シートを成形する際に、金型の定位置に装着できず、成形不良が発生したりするほか、成形した電池ケース内に電池要素を装填してケースの周縁部をヒートシールする際にシールする位置がずれたり、ヒートシール部にしわが発生する等の不良を発生しやすい。   When such curling occurs in the exterior material, when the exterior material sheet is molded, it cannot be mounted in the fixed position of the mold, and molding failure may occur, and the battery element is loaded in the molded battery case. When the peripheral edge of the case is heat-sealed, the sealing position is likely to be shifted, and defects such as wrinkles in the heat-sealed portion are likely to occur.

本発明は、かかる技術的背景に鑑みてなされたものであって、良好な成形性を確保できると共に、カール発生(反り発生)を防止できる蓄電デバイス用外装材を提供することを目的とする。   The present invention has been made in view of such a technical background, and an object of the present invention is to provide an exterior device for an electricity storage device that can ensure good moldability and prevent curling (curling).

前記目的を達成するために、本発明は以下の手段を提供する。   In order to achieve the above object, the present invention provides the following means.

[1]外側層としての耐熱性樹脂層と、内側層としての熱可塑性樹脂層と、これら両層間に配設された金属箔層とを含む蓄電デバイス用外装材であって、
前記耐熱性樹脂層の外面側に蒸着層が積層され、
前記蒸着層は、金属、金属酸化物及びシリカからなる群より選ばれる少なくとも1種の蒸着材料が蒸着されて形成されたものであることを特徴とする蓄電デバイス用外装材。
[1] A power storage device exterior material including a heat-resistant resin layer as an outer layer, a thermoplastic resin layer as an inner layer, and a metal foil layer disposed between both layers,
A vapor deposition layer is laminated on the outer surface side of the heat resistant resin layer,
The said vapor deposition layer is formed by vapor-depositing at least 1 sort (s) of vapor deposition material chosen from the group which consists of a metal, a metal oxide, and a silica, The exterior material for electrical storage devices characterized by the above-mentioned.

[2]前記蒸着層の外面側に保護樹脂層が積層され、
前記保護樹脂層は、アクリル系樹脂、フッ素系樹脂、ウレタン系樹脂、ポリエステル系樹脂、エポキシ系樹脂及びフェノキシ系樹脂からなる群より選ばれる1種または2種以上の樹脂で形成されている前項1に記載の蓄電デバイス用外装材。
[2] A protective resin layer is laminated on the outer surface side of the vapor deposition layer,
The protective resin layer is formed of one or more resins selected from the group consisting of acrylic resins, fluorine resins, urethane resins, polyester resins, epoxy resins, and phenoxy resins. An exterior material for an electricity storage device according to 1.

[3]蓄電デバイス本体部と、
前項1または2に記載の蓄電デバイス用外装材とを備え、
前記蓄電デバイス本体部が、前記外装材で外装されていることを特徴とする蓄電デバイス。
[3] An electricity storage device body,
The exterior material for an electricity storage device according to 1 or 2 above,
The electricity storage device, wherein the electricity storage device body is covered with the exterior material.

[1]の発明では、外装材における耐熱性樹脂層の外面側に蒸着層が積層され、該蒸着層は、金属、金属酸化物及びシリカからなる群より選ばれる少なくとも1種の蒸着材料で形成されているので、このような蒸着層の存在により外部からの水分の侵入を抑制することができる。従って、耐熱性樹脂層への水分の侵入、耐熱性樹脂層の吸湿を防止できるので、外装材のカール発生を防止できる(反り発生を防止できる)。また、耐熱性樹脂層の外面側に蒸着層が積層されていることで、耐熱性樹脂層の強度低下を抑制できるので、成形性をより向上できるし、突き刺し強度もより向上できる。   In the invention of [1], a vapor deposition layer is laminated on the outer surface side of the heat resistant resin layer in the exterior material, and the vapor deposition layer is formed of at least one vapor deposition material selected from the group consisting of metal, metal oxide and silica. Therefore, the presence of such a vapor deposition layer can suppress the entry of moisture from the outside. Accordingly, moisture can be prevented from entering the heat resistant resin layer and moisture absorption of the heat resistant resin layer can be prevented, so that curling of the exterior material can be prevented (warpage can be prevented). Moreover, since the vapor deposition layer is laminated | stacked on the outer surface side of the heat resistant resin layer, since the strength reduction of a heat resistant resin layer can be suppressed, a moldability can be improved more and the puncture strength can also be improved more.

[2]の発明では、蒸着層のさらに外面側に上記特定の保護樹脂層が積層された構成であるので、蒸着層の剥離、脱落を十分に防止できて、外部からの水分侵入に対する抑止効果を長期間にわたって持続できる。また、このような保護樹脂層を積層していることによってデバイス作成の際の加工が容易になる(加工性を向上できる)。また、上記特定の樹脂(アクリル系樹脂、フッ素系樹脂、ウレタン系樹脂、ポリエステル系樹脂、エポキシ系樹脂及びフェノキシ系樹脂からなる群より選ばれる1種または2種以上の樹脂)は、耐薬品性に優れているので、この保護樹脂層が外面側に配置されていることで、耐電解液性を向上させることができる(例えば電解液が外装材の外面に付着しても何ら支障が生じない)。   In the invention of [2], since the specific protective resin layer is laminated on the outer surface side of the vapor deposition layer, it is possible to sufficiently prevent the vapor deposition layer from peeling and dropping, and to prevent moisture from entering from the outside. Can last for a long time. Further, by laminating such a protective resin layer, processing during device creation becomes easy (workability can be improved). In addition, the specific resin (one or more resins selected from the group consisting of acrylic resins, fluorine resins, urethane resins, polyester resins, epoxy resins, and phenoxy resins) has chemical resistance. Since this protective resin layer is arranged on the outer surface side, the electrolytic solution resistance can be improved (for example, no trouble occurs even if the electrolytic solution adheres to the outer surface of the exterior material). ).

[3]の発明では、カール発生を生じ難い外装材で外装された高品質の蓄電デバイスが提供される。   In the invention of [3], a high-quality power storage device is provided that is packaged with an exterior material that is less likely to curl.

本発明に係る蓄電デバイス用外装材の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the exterior material for electrical storage devices which concerns on this invention. 本発明に係る蓄電デバイス用外装材の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of the exterior material for electrical storage devices which concerns on this invention. 本発明に係る蓄電デバイス用外装材を用いて構成された蓄電デバイスの一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the electrical storage device comprised using the exterior material for electrical storage devices which concerns on this invention. カール防止性評価法の説明図であり、(A)は評価サンプルに切り込みを入れた直後の状態の斜視図、(B)は評価サンプルに反りが生じた状態の斜視図、(C)は(B)におけるX−X線の断面図である。It is explanatory drawing of an anti-curl evaluation method, (A) is a perspective view in the state immediately after making a cut | incision in an evaluation sample, (B) is a perspective view in the state where curvature occurred in the evaluation sample, (C) is ( It is sectional drawing of the XX line in B).

本発明に係る蓄電デバイス用外装材1の一実施形態を図1に示す。この蓄電デバイス用外装材1は、リチウムイオン2次電池ケース用として用いられるものである。前記蓄電デバイス用外装材1は、例えば、深絞り成形、張り出し成形等の成形に供されて2次電池のケース等として用いられる。   One embodiment of an exterior material 1 for an electricity storage device according to the present invention is shown in FIG. The power storage device exterior material 1 is used for a lithium ion secondary battery case. The power storage device exterior material 1 is used, for example, as a case of a secondary battery by being subjected to molding such as deep drawing molding or stretch molding.

前記蓄電デバイス用外装材1は、金属箔層4の一方の面4aに第1接着剤層5を介して耐熱性樹脂層(外側層)2が積層一体化され、前記金属箔層4の他方の面4bに第2接着剤層6を介して熱可塑性樹脂層(内側層)3が積層一体化され、前記耐熱性樹脂層2の外面に蒸着層7が積層されてなる。本実施形態では、前記蒸着層7の外面に保護樹脂層8が積層されている(図1参照)。   In the power storage device exterior material 1, a heat resistant resin layer (outer layer) 2 is laminated and integrated on one surface 4 a of the metal foil layer 4 via a first adhesive layer 5, and the other side of the metal foil layer 4. A thermoplastic resin layer (inner layer) 3 is laminated and integrated on the surface 4 b with a second adhesive layer 6 interposed therebetween, and a vapor deposition layer 7 is laminated on the outer surface of the heat resistant resin layer 2. In this embodiment, a protective resin layer 8 is laminated on the outer surface of the vapor deposition layer 7 (see FIG. 1).

本発明において、前記蒸着層7は、前記耐熱性樹脂層2の外面側に積層される。前記蒸着層7は、金属、金属酸化物及びシリカからなる群より選ばれる少なくとも1種の蒸着材料が蒸着されて形成されたものである。前記蒸着材料は、製造過程において、前記耐熱性樹脂層2の外面に蒸着されたものであってもよいし、前記保護樹脂層8の内面に蒸着されたものであってもよい。蒸着対象面には、予めコロナ処理、易接着コート処理等を施すようにしてもよい。前記蒸着の手法としては、特に限定されるものではないが、例えば、化学蒸着法(CVD法)、物理蒸着法(DVD法)等が挙げられる。   In the present invention, the vapor deposition layer 7 is laminated on the outer surface side of the heat resistant resin layer 2. The vapor deposition layer 7 is formed by vapor-depositing at least one vapor deposition material selected from the group consisting of metals, metal oxides, and silica. The vapor deposition material may be vapor-deposited on the outer surface of the heat-resistant resin layer 2 in the manufacturing process, or may be vapor-deposited on the inner surface of the protective resin layer 8. The surface to be vapor-deposited may be previously subjected to corona treatment, easy adhesion coating treatment, or the like. The vapor deposition technique is not particularly limited, and examples thereof include chemical vapor deposition (CVD) and physical vapor deposition (DVD).

前記金属としては、特に限定されるものではないが、例えば、アルミニウム、クロム、金、銀、銅、プラチナ、ニッケル等が挙げられる。前記金属酸化物しては、特に限定されるものではないが、例えば、アルミナ等が挙げられる。   Although it does not specifically limit as said metal, For example, aluminum, chromium, gold | metal | money, silver, copper, platinum, nickel etc. are mentioned. Although it does not specifically limit as said metal oxide, For example, an alumina etc. are mentioned.

前記蒸着層7は、2層以上の蒸着層で構成されていてもよい。例えば、シリカ蒸着層/アルミナ蒸着層の2層積層構成等が挙げられる。   The vapor deposition layer 7 may be composed of two or more vapor deposition layers. For example, a two-layer laminated structure of silica vapor deposition layer / alumina vapor deposition layer can be used.

前記蒸着層7の厚さは、50Å〜10000Åに設定されるのが好ましい。50Å以上であることで耐熱性樹脂層2の吸湿を十分に防止できるし、10000Å以下であることで、コスト低減に資するし、外装材の柔軟性を十分に確保できる。中でも、前記蒸着層7の厚さは、200Å〜2000Åに設定されるのが特に好ましい。   The thickness of the vapor deposition layer 7 is preferably set to 50 to 10000 mm. The moisture absorption of the heat-resistant resin layer 2 can be sufficiently prevented when the thickness is 50 mm or more, and the cost can be reduced and the flexibility of the exterior material can be sufficiently secured when the thickness is 10000 mm or less. Especially, it is especially preferable that the thickness of the vapor deposition layer 7 is set to 200 mm to 2000 mm.

本発明では、前記蒸着層7の外面側に保護樹脂層8がさらに積層された構成を採用するのが好ましい。前記保護樹脂層8は、アクリル系樹脂、フッ素系樹脂、ウレタン系樹脂、ポリエステル系樹脂、エポキシ系樹脂及びフェノキシ系樹脂からなる群より選ばれる1種または2種以上の樹脂で形成されているのが好ましい。中でも、前記保護樹脂層8は、フッ素系樹脂、ウレタン系樹脂、フェノキシ系樹脂、又は、ウレタン系樹脂とフェノキシ系樹脂の混合樹脂で形成されているのが特に好ましい。   In the present invention, it is preferable to adopt a configuration in which a protective resin layer 8 is further laminated on the outer surface side of the vapor deposition layer 7. The protective resin layer 8 is formed of one or more resins selected from the group consisting of acrylic resins, fluorine resins, urethane resins, polyester resins, epoxy resins, and phenoxy resins. Is preferred. Among these, the protective resin layer 8 is particularly preferably formed of a fluorine resin, a urethane resin, a phenoxy resin, or a mixed resin of a urethane resin and a phenoxy resin.

前記保護樹脂層8の厚さは、0.5μm〜5μmに設定されているのが好ましい。0.5μm以上であることで蒸着層の剥離、脱落、傷付きを十分に防止できるし、5μm以下であることで外装材の軽量性及び蓄電デバイスのエネルギー密度を十分に確保できる。   The thickness of the protective resin layer 8 is preferably set to 0.5 μm to 5 μm. When the thickness is 0.5 μm or more, the vapor deposition layer can be sufficiently prevented from peeling off, falling off, or being damaged, and when the thickness is 5 μm or less, the lightness of the exterior material and the energy density of the electricity storage device can be sufficiently secured.

前記耐熱性樹脂層(外側層)2を構成する耐熱性樹脂としては、外装材をヒートシールする際のヒートシール温度で溶融しない耐熱性樹脂を用いる。前記耐熱性樹脂としては、熱可塑性樹脂層3を構成する熱可塑性樹脂の融点より10℃以上高い融点を有する耐熱性樹脂を用いるのが好ましく、熱可塑性樹脂の融点より20℃以上高い融点を有する耐熱性樹脂を用いるのが特に好ましい。   As the heat-resistant resin constituting the heat-resistant resin layer (outer layer) 2, a heat-resistant resin that does not melt at the heat sealing temperature when heat-sealing the exterior material is used. As the heat resistant resin, it is preferable to use a heat resistant resin having a melting point higher by 10 ° C. or higher than the melting point of the thermoplastic resin constituting the thermoplastic resin layer 3, and having a melting point higher by 20 ° C. or higher than the melting point of the thermoplastic resin. It is particularly preferable to use a heat resistant resin.

前記耐熱性樹脂層(外側層)2としては、特に限定されるものではないが、例えば、ナイロンフィルム等のポリアミドフィルム、ポリエステルフィルム等が挙げられ、これらの延伸フィルムが好ましく用いられる。中でも、前記耐熱性樹脂層2としては、二軸延伸ナイロンフィルム等の二軸延伸ポリアミドフィルム、二軸延伸ポリブチレンテレフタレート(PBT)フィルム、二軸延伸ポリエチレンテレフタレート(PET)フィルム又は二軸延伸ポリエチレンナフタレート(PEN)フィルムを用いるのが特に好ましい。前記ナイロンフィルムとしては、特に限定されるものではないが、例えば、6ナイロンフィルム、6,6ナイロンフィルム、MXDナイロンフィルム等が挙げられる。なお、前記耐熱性樹脂層2は、単層で形成されていても良いし、或いは、例えばポリエステルフィルム/ポリアミドフィルムからなる複層(PETフィルム/ナイロンフィルムからなる複層等)で形成されていても良い。   The heat-resistant resin layer (outer layer) 2 is not particularly limited, and examples thereof include polyamide films such as nylon films, polyester films, and the like, and these stretched films are preferably used. Among them, the heat-resistant resin layer 2 includes a biaxially stretched polyamide film such as a biaxially stretched nylon film, a biaxially stretched polybutylene terephthalate (PBT) film, a biaxially stretched polyethylene terephthalate (PET) film or a biaxially stretched polyethylene film. It is particularly preferable to use a phthalate (PEN) film. The nylon film is not particularly limited, and examples thereof include 6 nylon film, 6,6 nylon film, MXD nylon film, and the like. The heat-resistant resin layer 2 may be formed as a single layer, or may be formed as a multilayer composed of a polyester film / polyamide film (such as a multilayer composed of PET film / nylon film). Also good.

前記耐熱性樹脂層2の厚さは、5μm〜50μmであるのが好ましい。ポリエステルフィルムを用いる場合には厚さは5μm〜50μmであるのが好ましく、ナイロンフィルムを用いる場合には厚さは12μm〜50μmであるのが好ましい。上記好適下限値以上に設定することで外装材として十分な強度を確保できると共に、上記好適上限値以下に設定することで張り出し成形、絞り成形等の成形時の応力を小さくできて成形性を向上させることができる。   The thickness of the heat resistant resin layer 2 is preferably 5 μm to 50 μm. When using a polyester film, the thickness is preferably 5 μm to 50 μm, and when using a nylon film, the thickness is preferably 12 μm to 50 μm. By setting it above the above preferred lower limit value, it is possible to ensure sufficient strength as an exterior material, and by setting it below the above preferred upper limit value, it is possible to reduce the stress at the time of molding such as stretch forming, draw forming, etc. and improve moldability Can be made.

前記熱可塑性樹脂層(内側層)3は、リチウムイオン二次電池等で用いられる腐食性の強い電解液などに対しても優れた耐薬品性を具備させると共に、外装材にヒートシール性を付与する役割を担うものである。   The thermoplastic resin layer (inner layer) 3 has excellent chemical resistance against highly corrosive electrolytes used in lithium ion secondary batteries and the like, and provides heat sealability to the exterior material. To play a role.

前記熱可塑性樹脂層3としては、特に限定されるものではないが、熱可塑性樹脂未延伸フィルム層であるのが好ましい。前記熱可塑性樹脂未延伸フィルム層3は、特に限定されるものではないが、ポリエチレン、ポリプロピレン、オレフィン系共重合体、これらの酸変性物およびアイオノマーからなる群より選ばれた少なくとも1種の熱可塑性樹脂からなる未延伸フィルムにより構成されるのが好ましい。   Although it does not specifically limit as said thermoplastic resin layer 3, It is preferable that it is a thermoplastic resin unstretched film layer. The thermoplastic resin unstretched film layer 3 is not particularly limited, but is at least one thermoplastic selected from the group consisting of polyethylene, polypropylene, olefin copolymers, acid-modified products thereof, and ionomers. It is preferably composed of an unstretched film made of a resin.

前記熱可塑性樹脂層3の厚さは、20μm〜80μmに設定されるのが好ましい。20μm以上とすることでピンホールの発生を十分に防止できると共に、80μm以下に設定することで樹脂使用量を低減できてコスト低減を図り得る。中でも、前記熱可塑性樹脂層3の厚さは30μm〜50μmに設定されるのが特に好ましい。なお、前記熱可塑性樹脂層3は、単層であってもよいし、複層であってもよい。   The thickness of the thermoplastic resin layer 3 is preferably set to 20 μm to 80 μm. When the thickness is 20 μm or more, pinholes can be sufficiently prevented from being generated, and by setting the thickness to 80 μm or less, the amount of resin used can be reduced, and the cost can be reduced. Especially, it is especially preferable that the thickness of the thermoplastic resin layer 3 is set to 30 μm to 50 μm. The thermoplastic resin layer 3 may be a single layer or a multilayer.

前記金属箔層4は、外装材1に酸素や水分の侵入を阻止するガスバリア性を付与する役割を担うものである。前記金属箔層4としては、特に限定されるものではないが、例えば、アルミニウム箔、銅箔、SUS(ステンレス)箔等が挙げられ、アルミニウム箔、SUS箔が一般的に用いられる。アルミニウム箔の材質として、A8079のO材、A8021のO材が好ましい。前記金属箔層4の厚さは、15μm〜80μmであるのが好ましい。15μm以上であることで金属箔を製造する際の圧延時のピンホール発生を防止できると共に、80μm以下であることで張り出し成形、絞り成形等の成形時の応力を小さくできて成形性を向上させることができる。   The metal foil layer 4 plays a role of imparting a gas barrier property to the exterior material 1 to prevent entry of oxygen and moisture. Although it does not specifically limit as said metal foil layer 4, For example, aluminum foil, copper foil, SUS (stainless steel) foil etc. are mentioned, Aluminum foil and SUS foil are generally used. As the material of the aluminum foil, an O material of A8079 and an O material of A8021 are preferable. The thickness of the metal foil layer 4 is preferably 15 μm to 80 μm. When it is 15 μm or more, it can prevent the occurrence of pinholes during rolling when manufacturing a metal foil, and when it is 80 μm or less, it can reduce the stress during forming such as stretch forming and draw forming, thereby improving formability. be able to.

前記金属箔層4は、少なくとも内側の面4b(第2接着剤層6側の面)に、化成処理が施されているのが好ましい。このような化成処理が施されていることによって内容物(電池の電解液等)による金属箔表面の腐食を十分に防止できる。例えば次のような処理をすることによって金属箔に化成処理を施す。即ち、例えば、脱脂処理を行った金属箔の表面に、
1)リン酸と、
クロム酸と、
フッ化物の金属塩及びフッ化物の非金属塩からなる群より選ばれる少なくとも1種の化合物と、を含む混合物の水溶液
2)リン酸と、
アクリル系樹脂、キトサン誘導体樹脂及びフェノール系樹脂からなる群より選ばれる少なくとも1種の樹脂と、
クロム酸及びクロム(III)塩からなる群より選ばれる少なくとも1種の化合物と、を含む混合物の水溶液
3)リン酸と、
アクリル系樹脂、キトサン誘導体樹脂及びフェノール系樹脂からなる群より選ばれる少なくとも1種の樹脂と、
クロム酸及びクロム(III)塩からなる群より選ばれる少なくとも1種の化合物と、
フッ化物の金属塩及びフッ化物の非金属塩からなる群より選ばれる少なくとも1種の化合物と、を含む混合物の水溶液
上記1)〜3)のうちのいずれかの水溶液を塗工した後、乾燥することにより、化成処理を施す。
The metal foil layer 4 is preferably subjected to chemical conversion treatment on at least the inner surface 4b (surface on the second adhesive layer 6 side). By performing such a chemical conversion treatment, corrosion of the metal foil surface by the contents (battery electrolyte or the like) can be sufficiently prevented. For example, the metal foil is subjected to chemical conversion treatment by the following treatment. That is, for example, on the surface of the metal foil that has been degreased,
1) phosphoric acid;
Chromic acid,
An aqueous solution of a mixture comprising at least one compound selected from the group consisting of a metal salt of fluoride and a nonmetal salt of fluoride; 2) phosphoric acid;
At least one resin selected from the group consisting of acrylic resins, chitosan derivative resins and phenolic resins;
An aqueous solution of a mixture comprising at least one compound selected from the group consisting of chromic acid and a chromium (III) salt, 3) phosphoric acid,
At least one resin selected from the group consisting of acrylic resins, chitosan derivative resins and phenolic resins;
At least one compound selected from the group consisting of chromic acid and a chromium (III) salt;
An aqueous solution of a mixture comprising at least one compound selected from the group consisting of a fluoride metal salt and a fluoride non-metal salt. After applying an aqueous solution of any one of the above 1) to 3), drying is performed. Then, chemical conversion treatment is performed.

前記化成皮膜は、クロム付着量(片面当たり)として0.1mg/m2〜50mg/m2が好ましく、特に2mg/m2〜20mg/m2が好ましい。 The conversion coating, chromium coating weight preferably is 0.1mg / m 2 ~50mg / m 2 as a (per one surface), in particular 2mg / m 2 ~20mg / m 2 preferred.

前記第1接着剤層5としては、特に限定されるものではないが、例えば、ポリウレタン接着剤層、ポリエステルポリウレタン接着剤層、ポリエーテルポリウレタン接着剤層等が挙げられる。前記第1接着剤層5の厚さは、1μm〜5μmに設定されるのが好ましい。中でも、外装材の薄膜化、軽量化の観点から、前記第1接着剤層5の厚さは、1μm〜3μmに設定されるのが特に好ましい。   The first adhesive layer 5 is not particularly limited, and examples thereof include a polyurethane adhesive layer, a polyester polyurethane adhesive layer, and a polyether polyurethane adhesive layer. The thickness of the first adhesive layer 5 is preferably set to 1 μm to 5 μm. Especially, it is especially preferable that the thickness of the said 1st adhesive bond layer 5 is set to 1 micrometer-3 micrometers from a viewpoint of thickness reduction of an exterior material and weight reduction.

前記第2接着剤層6としては、特に限定されるものではないが、例えば、上記第1接着剤層5として例示したものも使用できるが、電解液による膨潤の少ないポリオレフィン系接着剤を使用するのが好ましい。前記第2接着剤層6の厚さは、1μm〜5μmに設定されるのが好ましい。中でも、外装材の薄膜化、軽量化の観点から、前記第2接着剤層6の厚さは、1μm〜3μmに設定されるのが特に好ましい。   Although it does not specifically limit as said 2nd adhesive bond layer 6, For example, what was illustrated as said 1st adhesive bond layer 5 can be used, However, The polyolefin-type adhesive agent with few swelling by electrolyte solution is used. Is preferred. The thickness of the second adhesive layer 6 is preferably set to 1 μm to 5 μm. Especially, it is especially preferable that the thickness of the said 2nd adhesive bond layer 6 is set to 1 micrometer-3 micrometers from a viewpoint of thickness reduction of an exterior material and weight reduction.

本発明の外装材1を成形(深絞り成形、張り出し成形等)することにより、成形ケース(電池ケース等)を得ることができる。なお、本発明の外装材1は、成形に供されずにそのまま使用することもできる。   A molded case (battery case or the like) can be obtained by molding the outer packaging material 1 of the present invention (deep drawing molding, stretch molding or the like). In addition, the exterior material 1 of this invention can also be used as it is, without using for shaping | molding.

本発明の外装材1を用いて構成された蓄電デバイス20の一実施形態を図3に示す。この蓄電デバイス20は、リチウムイオン2次電池である。   One embodiment of the electrical storage device 20 comprised using the exterior | packing material 1 of this invention is shown in FIG. The electricity storage device 20 is a lithium ion secondary battery.

前記電池20は、電解質21と、タブリード22と、成形に供されていない平面状の前記外装材1と、前記外装材1が成形されて得られた収容凹部11bを有する成形ケース11とを備える(図3参照)。前記電解質21および前記タブリード22等により蓄電デバイス本体部19が構成されている。   The battery 20 includes an electrolyte 21, a tab lead 22, the planar outer packaging material 1 that is not used for molding, and a molding case 11 having an accommodation recess 11 b obtained by molding the outer packaging material 1. (See FIG. 3). The electrolyte device main body 19 is constituted by the electrolyte 21, the tab lead 22, and the like.

前記成形ケース11の収容凹部11b内に前記電解質21と前記タブリード22の一部が収容され、該成形ケース11の上に前記平面状の外装材1が配置され、該外装材1の周縁部(の内側層3)と前記成形ケース11の封止用周縁部11a(の内側層3)とが接合されて封止されることによって、前記電池20が構成されている。なお、前記タブリード22の先端部は、外部に導出されている(図3参照)。   A part of the electrolyte 21 and the tab lead 22 is accommodated in the accommodating recess 11 b of the molding case 11, the planar exterior material 1 is disposed on the molding case 11, and a peripheral portion ( The inner layer 3) and the sealing peripheral edge portion 11a (the inner layer 3) of the molded case 11 are joined and sealed to form the battery 20. The leading end of the tab lead 22 is led out to the outside (see FIG. 3).

なお、上記実施形態では、蒸着層7の外面側に保護樹脂層8が積層された構成が採用されていたが、特にこのような構成に限定されるものではなく、例えば、図2に示すように保護樹脂層8が設けられていない構成(蒸着層7が露出した構成)、或いは、保護樹脂層8に代えて他の層が蒸着層7の外面側に積層された構成を採用することもできる。   In the above-described embodiment, the configuration in which the protective resin layer 8 is laminated on the outer surface side of the vapor deposition layer 7 is adopted. However, the configuration is not particularly limited to this, and for example, as shown in FIG. It is also possible to adopt a configuration in which the protective resin layer 8 is not provided (a configuration in which the vapor deposition layer 7 is exposed), or a configuration in which another layer is laminated on the outer surface side of the vapor deposition layer 7 instead of the protective resin layer 8. it can.

次に、本発明の具体的実施例について説明するが、本発明はこれら実施例のものに特に限定されるものではない。   Next, specific examples of the present invention will be described, but the present invention is not particularly limited to these examples.

<実施例1>
厚さ25μmの二軸延伸ポリエチレンテレフタレート(PET)フィルム(融点:230℃)2の片面に、電子線加熱による物理蒸着法によりシリカを蒸着して厚さ1000Åの蒸着層7を形成した。
<Example 1>
Silica was vapor-deposited on one side of a 25 μm-thick biaxially stretched polyethylene terephthalate (PET) film (melting point: 230 ° C.) 2 by physical vapor deposition by electron beam heating to form a vapor deposition layer 7 having a thickness of 1000 mm.

一方、厚さ35μmのアルミニウム箔4の両面に、リン酸、ポリアクリル酸、三価クロム化合物、水、アルコールからなる化成処理液を塗布し、180℃で乾燥を行って、化成皮膜を形成した。この化成皮膜のクロム付着量は片面当たり10mg/m2であった。 On the other hand, a chemical conversion treatment solution composed of phosphoric acid, polyacrylic acid, a trivalent chromium compound, water, and alcohol was applied to both surfaces of a 35 μm thick aluminum foil 4 and dried at 180 ° C. to form a chemical conversion film. . The amount of chromium deposited on this chemical film was 10 mg / m 2 per side.

次に、前記化成処理済みアルミニウム箔4の一方の面4aに、2液硬化型のウレタン系接着剤(第1接着剤層)5を介して前記蒸着層7付き二軸延伸PETフィルム2をドライラミネートした(貼り合わせた)。この時、二軸延伸PETフィルムの非蒸着面がウレタン系接着剤5と接触するようにしてラミネートした。   Next, the biaxially stretched PET film 2 with the vapor deposition layer 7 is dried on one surface 4a of the chemical conversion treated aluminum foil 4 via a two-component curable urethane adhesive (first adhesive layer) 5. Laminated (laminated). At this time, the biaxially stretched PET film was laminated so that the non-deposition surface of the PET film was in contact with the urethane adhesive 5.

次に、アルミニウム箔4の他方の面4bに接着剤液をグラビアロールを用いて塗布した後、80℃の熱風で乾燥させることによって、厚さ3μmの接着樹脂層(第2接着剤層)6を形成した。前記接着剤液として、マレイン酸変性ポリプロピレン(プロピレンとエチレンの共重合体に無水マレイン酸をグラフト重合させた変性ポリプロピレン樹脂;融解温度が80℃)15質量部を、混合溶媒(トルエン/メチルエチルケトン=8質量部/2質量部の混合溶媒)85質量部に溶解させた溶液に、ヘキサメチレンジイソシアネートのポリマー体を0.9質量部混合してなる接着剤液を使用した。   Next, after applying an adhesive liquid to the other surface 4b of the aluminum foil 4 using a gravure roll, the adhesive resin layer (second adhesive layer) 6 having a thickness of 3 μm is dried by hot air at 80 ° C. Formed. As the adhesive liquid, 15 parts by mass of maleic acid-modified polypropylene (modified polypropylene resin obtained by graft polymerization of maleic anhydride on a copolymer of propylene and ethylene; melting temperature: 80 ° C.) was mixed with a mixed solvent (toluene / methyl ethyl ketone = 8 An adhesive solution obtained by mixing 0.9 part by mass of a polymer of hexamethylene diisocyanate in a solution dissolved in 85 parts by mass of a mixed solvent of 2 parts by mass of 2 parts by mass) was used.

次に、前記アルミニウム箔4の他方の面4bに形成された接着樹脂層6の表面に、融点が140℃、MFR(メルトフローレイト)が4.5g/10分である、厚さ40μmのプロピレン−エチレンランダム共重合体フィルム(内側層;シーラント層)3をラミネートすることによって、図2に示す構成の蓄電デバイス用外装材1を得た。   Next, on the surface of the adhesive resin layer 6 formed on the other surface 4b of the aluminum foil 4, propylene having a thickness of 40 μm and a melting point of 140 ° C. and an MFR (melt flow rate) of 4.5 g / 10 min. -By laminating an ethylene random copolymer film (inner layer; sealant layer) 3, an exterior material 1 for an electricity storage device having the configuration shown in FIG. 2 was obtained.

<実施例2>
厚さ25μmの二軸延伸PETフィルムに代えて、厚さ12μmの二軸延伸PETフィルム(融点230℃)/厚さ15μmの二軸延伸ポリアミドフィルム(融点220℃の6ナイロンフィルム)の2層積層フィルム(ポリアミドフィルムが外側に配置され、ポリアミドフィルム表面に蒸着層が積層されている)を用いると共に、厚さ1000Åのシリカ蒸着層に代えて厚さ600Åのアルミニウム蒸着層7を抵抗加熱による物理蒸着法により形成した以外は、実施例1と同様にして、図2に示す構成の蓄電デバイス用外装材1を得た。
<Example 2>
Instead of a 25 μm thick biaxially stretched PET film, a 12 μm thick biaxially stretched PET film (melting point 230 ° C.) / 15 μm thick biaxially stretched polyamide film (melting point 220 ° C. 6 nylon film) A film (a polyamide film is arranged on the outside and a vapor deposition layer is laminated on the polyamide film surface) is used, and an aluminum vapor deposition layer 7 having a thickness of 600 mm is replaced with a physical vapor deposition by resistance heating instead of a silica vapor deposition layer having a thickness of 1000 mm. Except that it was formed by the method, the electricity storage device exterior material 1 having the configuration shown in FIG. 2 was obtained in the same manner as in Example 1.

<実施例3>
2層積層フィルムに代えて、厚さ25μmの二軸延伸ポリアミドフィルム(融点220℃の6ナイロンフィルム)を用いた以外は、実施例2と同様にして、図2に示す構成の蓄電デバイス用外装材1を得た。
<Example 3>
An exterior for an electricity storage device having the configuration shown in FIG. 2 was used in the same manner as in Example 2 except that a biaxially stretched polyamide film (6 nylon film having a melting point of 220 ° C.) having a thickness of 25 μm was used instead of the two-layer laminated film. Material 1 was obtained.

<実施例4>
厚さ1000Åのシリカ蒸着層に代えて、厚さ1500Åのシリカ−アルミナ蒸着層(シリカとアルミナの混合物を蒸着させてなる蒸着層)を電子線加熱による物理蒸着法により形成した以外は、実施例1と同様にして、図2に示す構成の蓄電デバイス用外装材1を得た。
<Example 4>
Example except that instead of the silica vapor deposition layer having a thickness of 1000 mm, a silica-alumina vapor deposition layer having a thickness of 1500 mm (a vapor deposition layer formed by vapor deposition of a mixture of silica and alumina) was formed by physical vapor deposition by electron beam heating. In the same manner as in Example 1, a power storage device exterior material 1 having the configuration shown in FIG.

<実施例5>
厚さ25μmの二軸延伸PETフィルムに代えて、厚さ25μmの二軸延伸ポリアミドフィルム(融点220℃の6ナイロンフィルム)を用いた以外は、実施例1と同様にして、図2に示す構成の蓄電デバイス用外装材1を得た。
<Example 5>
The configuration shown in FIG. 2 is the same as that of Example 1 except that a 25 μm thick biaxially stretched polyamide film (6 nylon film having a melting point of 220 ° C.) is used instead of the 25 μm thick biaxially stretched PET film. The outer packaging material 1 for an electricity storage device was obtained.

<実施例6>
二軸延伸ポリアミドフィルム2の外面に積層された蒸着層7の外面に、さらにウレタン樹脂からなる厚さ2μmの保護樹脂層8を積層した以外は、実施例5と同様にして、図1に示す構成の蓄電デバイス用外装材1を得た。なお、蒸着層外面への保護樹脂層の積層は、グラビアロールを用いて塗布した後80℃の熱風で乾燥することにより行った。
<Example 6>
FIG. 1 shows the same as in Example 5 except that a protective resin layer 8 made of urethane resin and having a thickness of 2 μm is further laminated on the outer surface of the vapor deposition layer 7 laminated on the outer surface of the biaxially stretched polyamide film 2. An exterior material 1 for an electricity storage device having a configuration was obtained. In addition, lamination | stacking of the protective resin layer on the outer surface of a vapor deposition layer was performed by apply | coating using a gravure roll and drying with 80 degreeC hot air.

<実施例7>
二軸延伸ポリアミドフィルム2の外面に積層されたアルミニウム蒸着層7の外面に、さらにウレタン樹脂およびフェノキシ樹脂の混合樹脂からなる厚さ2μmの保護樹脂層8を積層した以外は、実施例3と同様にして、図1に示す構成の蓄電デバイス用外装材1を得た。なお、蒸着層外面への保護樹脂層の積層は、グラビアロールを用いて塗布した後80℃の熱風で乾燥することにより行った。
<Example 7>
Example 3 except that a protective resin layer 8 having a thickness of 2 μm made of a mixed resin of urethane resin and phenoxy resin was further laminated on the outer surface of the aluminum vapor deposition layer 7 laminated on the outer surface of the biaxially stretched polyamide film 2. Thus, an exterior material 1 for an electricity storage device having the configuration shown in FIG. 1 was obtained. In addition, lamination | stacking of the protective resin layer on the outer surface of a vapor deposition layer was performed by apply | coating using a gravure roll and drying with 80 degreeC hot air.

<実施例8>
シリカ蒸着層の厚さを1000Åに代えて2000Åに設定し、シリカ蒸着層7の外面に、さらにアクリル樹脂からなる厚さ2μmの保護樹脂層8を積層した以外は、実施例1と同様にして、図1に示す構成の蓄電デバイス用外装材1を得た。なお、蒸着層外面への保護樹脂層の積層は、グラビアロールを用いて塗布した後80℃の熱風で乾燥することにより行った。
<Example 8>
The thickness of the silica vapor deposition layer was set to 2000 mm instead of 1000 mm, and the protective resin layer 8 made of acrylic resin and having a thickness of 2 μm was further laminated on the outer surface of the silica vapor deposition layer 7 in the same manner as in Example 1. 1 to obtain the exterior device 1 for an electricity storage device having the configuration shown in FIG. In addition, lamination | stacking of the protective resin layer on the outer surface of a vapor deposition layer was performed by apply | coating using a gravure roll and drying with 80 degreeC hot air.

<実施例9>
二軸延伸ポリアミドフィルム2の外面に積層されたアルミニウム蒸着層7の外面に、さらにエポキシ樹脂からなる厚さ2μmの保護樹脂層8を積層した以外は、実施例3と同様にして、図1に示す構成の蓄電デバイス用外装材1を得た。なお、蒸着層外面への保護樹脂層の積層は、グラビアロールを用いて塗布した後80℃の熱風で乾燥することにより行った。
<Example 9>
In the same manner as in Example 3, except that a protective resin layer 8 made of epoxy resin and having a thickness of 2 μm was further laminated on the outer surface of the aluminum vapor deposition layer 7 laminated on the outer surface of the biaxially stretched polyamide film 2, FIG. The exterior device 1 for an electricity storage device having the structure shown was obtained. In addition, lamination | stacking of the protective resin layer on the outer surface of a vapor deposition layer was performed by apply | coating using a gravure roll and drying with 80 degreeC hot air.

<実施例10>
二軸延伸ポリアミドフィルム2の外面に積層されたアルミニウム蒸着層7の外面に、さらにポリエステル樹脂からなる厚さ2μmの保護樹脂層8を積層した以外は、実施例3と同様にして、図1に示す構成の蓄電デバイス用外装材1を得た。なお、蒸着層外面への保護樹脂層の積層は、グラビアロールを用いて塗布した後80℃の熱風で乾燥することにより行った。
<Example 10>
In the same manner as in Example 3, except that a protective resin layer 8 made of polyester resin and having a thickness of 2 μm was further laminated on the outer surface of the aluminum vapor deposition layer 7 laminated on the outer surface of the biaxially stretched polyamide film 2, FIG. The exterior device 1 for an electricity storage device having the structure shown was obtained. In addition, lamination | stacking of the protective resin layer on the outer surface of a vapor deposition layer was performed by apply | coating using a gravure roll and drying with 80 degreeC hot air.

<実施例11>
二軸延伸ポリアミドフィルム2の外面に積層されたアルミニウム蒸着層7の外面に、さらにフッ素樹脂からなる厚さ2μmの保護樹脂層8を積層した以外は、実施例3と同様にして、図1に示す構成の蓄電デバイス用外装材1を得た。なお、蒸着層外面への保護樹脂層の積層は、グラビアロールを用いて塗布した後80℃の熱風で乾燥することにより行った。
<Example 11>
In the same manner as in Example 3, except that a protective resin layer 8 made of a fluororesin was further laminated on the outer surface of the aluminum vapor-deposited layer 7 laminated on the outer surface of the biaxially stretched polyamide film 2, FIG. The exterior device 1 for an electricity storage device having the structure shown was obtained. In addition, lamination | stacking of the protective resin layer on the outer surface of a vapor deposition layer was performed by apply | coating using a gravure roll and drying with 80 degreeC hot air.

<比較例1>
シリカ蒸着層を設けない構成とした以外は、実施例1と同様にして、蓄電デバイス用外装材を得た。
<Comparative Example 1>
An exterior material for an electricity storage device was obtained in the same manner as in Example 1 except that the silica vapor deposition layer was not provided.

<比較例2>
アルミニウム蒸着層を設けない構成とした以外は、実施例3と同様にして、蓄電デバイス用外装材を得た。
<Comparative Example 2>
An exterior material for an electricity storage device was obtained in the same manner as in Example 3 except that the aluminum vapor deposition layer was not provided.

<比較例3>
化成処理済みアルミニウム箔の一方の面に二軸延伸ポリアミドフィルムをドライラミネートする際に、二軸延伸ポリアミドフィルム2の蒸着面(アルミニウム蒸着層7)がウレタン系接着剤5と接触するようにしてラミネートした以外は、実施例3と同様にして、蓄電デバイス用外装材を得た。
<Comparative Example 3>
When the biaxially stretched polyamide film is dry-laminated on one surface of the chemically treated aluminum foil, the laminated surface is such that the vapor-deposited surface (aluminum vapor-deposited layer 7) of the biaxially stretched polyamide film 2 is in contact with the urethane adhesive 5 Except having done, it carried out similarly to Example 3, and obtained the exterior | packing material for electrical storage devices.

Figure 0006436758
Figure 0006436758

上記のようにして得られた各蓄電デバイス用外装材に対して下記評価法に基づいて性能評価を行った。その結果を表1に示す。   Performance evaluation was performed based on the following evaluation method with respect to each outer packaging material for an electricity storage device obtained as described above. The results are shown in Table 1.

<成形性評価法>
株式会社アマダ製の張り出し成形機(品番:TP−25C−X2)を用いて外装材に対して縦55mm×横35mmの略直方体形状に張り出し成形を行い、即ち成形深さを変えて絞り成形を行い、得られた成形体におけるコーナー部におけるピンホール及び割れの有無を調べ、このようなピンホール及び割れが発生しない「最大成形深さ(mm)」を調べた。最大成形深さが7.0mm以上であるものを「○」、最大成形深さが6.0mm以上7.0mm未満であるものを「△」、最大成形深さが6.0mm未満であるものを「×」とした。
<Formability evaluation method>
Using an overhang molding machine manufactured by Amada Co., Ltd. (Part No .: TP-25C-X2), the exterior material is stretched into a substantially rectangular parallelepiped shape of 55 mm in length and 35 mm in width, that is, it is drawn by changing the molding depth. The obtained molded body was examined for the presence or absence of pinholes and cracks at the corners, and the “maximum molding depth (mm)” at which such pinholes and cracks did not occur was examined. “○” when the maximum forming depth is 7.0 mm or more, “△” when the maximum forming depth is 6.0 mm or more and less than 7.0 mm, and those where the maximum forming depth is less than 6.0 mm Was marked “x”.

<耐電解液性評価法>
外装材を15mm幅にカットして測定片を作成し、エチレンカーボネートとジエチレンカーボネートを1:1の容量比で混合した混合溶媒に対して六フッ化リンリチウム塩を1モル/Lの濃度となるように溶解せしめた溶液及び前記測定片を四フッ化エチレン樹脂製の広口ボトルに入れて85℃のオーブン中に1週間保存した後、測定片を取り出してアルミニウム箔4とエチレン−プロピレンランダム共重合体樹脂層(内側層)3の界面で剥離して両者間のラミネート強度(接着強度)(N/15mm幅)を測定した。接着強度が10(N/15mm幅)以上であるものを「○」、接着強度が5(N/15mm幅)以上10(N/15mm幅)未満であるものを「△」、接着強度が5(N/15mm幅)未満であるものを「×」とした。
<Electrolytic solution resistance evaluation method>
The exterior material is cut to a width of 15 mm to prepare a measurement piece, and the concentration of lithium hexafluorophosphate is 1 mol / L with respect to a mixed solvent in which ethylene carbonate and diethylene carbonate are mixed at a volume ratio of 1: 1. The solution dissolved in this manner and the measurement piece were placed in a wide-mouthed bottle made of ethylene tetrafluoride resin and stored in an oven at 85 ° C. for one week. Then, the measurement piece was taken out and the aluminum foil 4 and ethylene-propylene random co-polymerized After peeling at the interface of the combined resin layer (inner layer) 3, the laminate strength (adhesive strength) (N / 15 mm width) between them was measured. “◯” indicates that the adhesive strength is 10 (N / 15 mm width) or more, “△” indicates that the adhesive strength is 5 (N / 15 mm width) or more and less than 10 (N / 15 mm width), and the adhesive strength is 5 What was less than (N / 15mm width) was made into "x".

<カール防止性評価法>
外装材を100mm×100mmの正方形状に切り出し、図4(A)に示すように、正方形の対角線に沿って中央点(重心)で交差する上下貫通切り込み(一方の切り込み31が長さ40mm、他方の切り込み31が長さ40mm)を入れた後、相対湿度75%、温度23℃の環境下の室内における水平台の上にサンプルを蒸着層7又は保護樹脂層8を下面側にして内側層3を上面側にして載置した。この状態で1時間経過した後、水平台の上面からサンプルの最も高い部位(中央点部)までの高さ(反り量)Hを測定した(図4(C)参照)。高さHが10mm未満であるものを「○」、高さHが10mm以上15mm未満であるものを「△」、高さHが15mm以上であるものを「×」とした。
<Anti-curl evaluation method>
The exterior material is cut into a square shape of 100 mm × 100 mm, and as shown in FIG. 4A, the upper and lower through-cuts intersecting at the center point (center of gravity) along the diagonal of the square (one cut 31 is 40 mm in length, the other And the inner layer 3 with the vapor-deposited layer 7 or the protective resin layer 8 on the lower surface side on a horizontal platform in a room with a relative humidity of 75% and a temperature of 23 ° C. Was placed on the upper surface side. After 1 hour in this state, the height (warpage amount) H from the upper surface of the horizontal table to the highest portion (center point portion) of the sample was measured (see FIG. 4C). The case where the height H is less than 10 mm is indicated by “◯”, the case where the height H is 10 mm or more and less than 15 mm is indicated by “Δ”, and the case where the height H is 15 mm or more is indicated by “X”.

表1から明らかなように、本発明の実施例1〜11の蓄電デバイス用外装材は、最大成形深さが大きく、深い成形を行っても優れた成形性を確保できると共に、耐電解液性にも優れ、さらにカール防止性にも優れていた。   As is clear from Table 1, the outer packaging materials for electricity storage devices of Examples 1 to 11 of the present invention have a large maximum molding depth, and can ensure excellent moldability even when deep molding is performed, and also have resistance to electrolyte. It was also excellent in curling prevention.

これに対し、比較例1〜3の外装材は、反りが大きくカール防止性に劣っていた。   On the other hand, the exterior materials of Comparative Examples 1 to 3 had large warpage and poor curl prevention.

本発明に係る蓄電デバイス用外装材は、具体例として、例えば、
・リチウム2次電池(リチウムイオン電池、リチウムポリマー電池等)などの蓄電デバイス
・リチウムイオンキャパシタ
・電気2重層コンデンサ
等の各種蓄電デバイスの外装材として用いられる。
As a specific example, an exterior material for an electricity storage device according to the present invention is, for example,
-Electric storage devices such as lithium secondary batteries (lithium ion batteries, lithium polymer batteries, etc.)-Used as exterior materials for various electric storage devices such as lithium ion capacitors and electric double layer capacitors.

1…蓄電デバイス用外装材
2…耐熱性樹脂層(外側層)
3…熱可塑性樹脂層(内側層)
4…金属箔層
5…第1接着剤層
6…第2接着剤層
7…蒸着層
8…保護樹脂層
11…成形ケース
19…蓄電デバイス本体部
20…蓄電デバイス
DESCRIPTION OF SYMBOLS 1 ... Exterior material for electrical storage devices 2 ... Heat-resistant resin layer (outer layer)
3 ... Thermoplastic resin layer (inner layer)
DESCRIPTION OF SYMBOLS 4 ... Metal foil layer 5 ... 1st adhesive bond layer 6 ... 2nd adhesive bond layer 7 ... Deposition layer 8 ... Protective resin layer 11 ... Molding case 19 ... Power storage device main-body part 20 ... Power storage device

Claims (2)

外側層としての耐熱性樹脂層と、内側層としての熱可塑性樹脂層と、これら両層間に配設された金属箔層とを含む蓄電デバイス用外装材であって、
前記耐熱性樹脂層の外面側に蒸着層が積層され、
前記蒸着層は、金属、金属酸化物及びシリカからなる群より選ばれる少なくとも1種の蒸着材料が蒸着されて形成されたものであり、
前記蒸着層の外面側に保護樹脂層が積層され、
前記保護樹脂層は、アクリル系樹脂、フッ素系樹脂、ウレタン系樹脂、ポリエステル系樹脂、エポキシ系樹脂及びフェノキシ系樹脂からなる群より選ばれる1種または2種以上の樹脂で形成されていることを特徴とする蓄電デバイス用外装材。
A power storage device exterior material comprising a heat-resistant resin layer as an outer layer, a thermoplastic resin layer as an inner layer, and a metal foil layer disposed between both layers,
A vapor deposition layer is laminated on the outer surface side of the heat resistant resin layer,
The deposited layer is a metal state, and are intended to at least one of the evaporation material selected from the group consisting of metal oxide and silica are formed by vapor deposition,
A protective resin layer is laminated on the outer surface side of the vapor deposition layer,
The protective resin layer is an acrylic resin, fluorine resin, urethane resin, polyester resin, that you have been formed by one or more resins selected from the group consisting of epoxy resins and phenoxy resins An exterior material for an electricity storage device.
蓄電デバイス本体部と、
請求項1に記載の蓄電デバイス用外装材とを備え、
前記蓄電デバイス本体部が、前記外装材で外装されていることを特徴とする蓄電デバイス。
An electricity storage device body,
And an exterior material for an electricity storage device according to claim 1 ,
The electricity storage device, wherein the electricity storage device body is covered with the exterior material.
JP2014255885A 2014-12-18 2014-12-18 Power storage device exterior material and power storage device Active JP6436758B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014255885A JP6436758B2 (en) 2014-12-18 2014-12-18 Power storage device exterior material and power storage device
TW104130058A TWI677129B (en) 2014-12-18 2015-09-11 External storage material and power storage device for power storage device
KR1020150154999A KR20160074384A (en) 2014-12-18 2015-11-05 Exterior material for electrical storage device and electrical storage device
CN201510751227.4A CN105720216A (en) 2014-12-18 2015-11-06 External package materials for an electrical storage device and the electrical storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014255885A JP6436758B2 (en) 2014-12-18 2014-12-18 Power storage device exterior material and power storage device

Publications (2)

Publication Number Publication Date
JP2016115640A JP2016115640A (en) 2016-06-23
JP6436758B2 true JP6436758B2 (en) 2018-12-12

Family

ID=56140164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014255885A Active JP6436758B2 (en) 2014-12-18 2014-12-18 Power storage device exterior material and power storage device

Country Status (4)

Country Link
JP (1) JP6436758B2 (en)
KR (1) KR20160074384A (en)
CN (1) CN105720216A (en)
TW (1) TWI677129B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101954954B1 (en) 2016-06-15 2019-03-07 현대자동차주식회사 The coating method of the vehicle interior parts
JP2019031078A (en) * 2017-08-09 2019-02-28 旭化成株式会社 Cylindrical molded body, barrier plug, container with barrier plug, and ink accommodation tube
JP2020003448A (en) * 2018-07-02 2020-01-09 凸版印刷株式会社 Stimulus-responsive reversible deformation structure and method for manufacturing the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4839498B2 (en) * 2000-03-08 2011-12-21 大日本印刷株式会社 Method for producing polymer battery packaging material
JP4922544B2 (en) 2003-07-04 2012-04-25 昭和電工パッケージング株式会社 Method for producing battery case packaging material
JP2011098759A (en) 2009-11-06 2011-05-19 Showa Denko Packaging Co Ltd Packaging material for molding
TWI511351B (en) * 2010-10-14 2015-12-01 Toppan Printing Co Ltd Lithium-ion battery exterior materials
CN202782010U (en) * 2011-03-29 2013-03-13 昭和电工包装株式会社 Packing material for molding
CN102431239B (en) * 2011-06-14 2015-03-25 刘继福 Polymer lithium ion battery core outer package forming material
JP6468625B2 (en) * 2011-11-07 2019-02-13 凸版印刷株式会社 Power storage device exterior materials
JP2013134823A (en) * 2011-12-26 2013-07-08 Showa Denko Kk Battery exterior laminate, battery case using the laminate and battery
JP2013225412A (en) * 2012-04-20 2013-10-31 Kohjin Holdings Co Ltd Battery case packaging material for cold molding including biaxially-oriented polybutylene terephthalate film
JP5962346B2 (en) * 2012-08-31 2016-08-03 大日本印刷株式会社 Battery packaging materials
JP6366964B2 (en) * 2014-03-13 2018-08-01 昭和電工パッケージング株式会社 Exterior material for electrochemical device and electrochemical device

Also Published As

Publication number Publication date
JP2016115640A (en) 2016-06-23
TWI677129B (en) 2019-11-11
TW201624801A (en) 2016-07-01
KR20160074384A (en) 2016-06-28
CN105720216A (en) 2016-06-29

Similar Documents

Publication Publication Date Title
JP6389096B2 (en) Power storage device exterior material and power storage device
JP6755722B2 (en) Exterior material for power storage device and power storage device
JP6932523B2 (en) Exterior materials for power storage devices and power storage devices
JP6366964B2 (en) Exterior material for electrochemical device and electrochemical device
JP5293845B2 (en) Packaging materials for electrochemical cells
JP6276047B2 (en) Packaging material, packaging material manufacturing method and molded case
JP7240824B2 (en) Deep-drawn molded case for exterior of power storage device and power storage device
JP2019051634A (en) Packaging material for molding, exterior case for power storage device, and power storage device
JP6738164B2 (en) Exterior material for power storage device and power storage device
JP6943547B2 (en) Sealant film for exterior material of power storage device, exterior material for power storage device and its manufacturing method
JP6595634B2 (en) Packaging materials and molded cases
JP6436758B2 (en) Power storage device exterior material and power storage device
CN105720217B (en) Outer packaging material for electricity storage device and electricity storage device
JP6738189B2 (en) Exterior material for power storage device and power storage device
JP6860983B2 (en) Sealant film for exterior material of power storage device, exterior material for power storage device and its manufacturing method
JP2016126826A (en) Method of manufacturing battery
JP6253953B2 (en) Ribbed outer packaging material for electrochemical devices and electrochemical device
JP4736188B2 (en) Lithium ion battery packaging material and manufacturing method thereof
JP6979847B2 (en) Exterior materials for power storage devices and power storage devices
JP6180887B2 (en) Electrochemical devices
JP6767795B2 (en) Exterior materials for power storage devices and their manufacturing methods
JP6936044B2 (en) Laminate material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20180821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181113

R150 Certificate of patent or registration of utility model

Ref document number: 6436758

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250