JP2017126422A - Method for manufacturing all-solid battery - Google Patents

Method for manufacturing all-solid battery Download PDF

Info

Publication number
JP2017126422A
JP2017126422A JP2016003621A JP2016003621A JP2017126422A JP 2017126422 A JP2017126422 A JP 2017126422A JP 2016003621 A JP2016003621 A JP 2016003621A JP 2016003621 A JP2016003621 A JP 2016003621A JP 2017126422 A JP2017126422 A JP 2017126422A
Authority
JP
Japan
Prior art keywords
battery
solid
positive electrode
battery element
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016003621A
Other languages
Japanese (ja)
Other versions
JP6828240B2 (en
Inventor
元 長谷川
Hajime Hasegawa
元 長谷川
徳洋 尾瀬
Tokuhiro Ose
徳洋 尾瀬
健吾 芳賀
Kengo Haga
健吾 芳賀
光俊 大瀧
Mitsutoshi Otaki
光俊 大瀧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016003621A priority Critical patent/JP6828240B2/en
Publication of JP2017126422A publication Critical patent/JP2017126422A/en
Application granted granted Critical
Publication of JP6828240B2 publication Critical patent/JP6828240B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing an all-solid battery, by which the displacement of a battery element can be suppressed.SOLUTION: A method for manufacturing an all-solid battery in which a battery element arranged by laminating positive and negative electrodes each having a collecting tab part in part thereof, and a solid electrolyte layer to be disposed between the positive and negative electrodes is sealed in an outer packaging body comprises the steps of: disposing the outer packaging body so as to cover the battery element and welding the collecting tab parts with the outer packaging body to form an unwelded part in at least part of the outer packaging body except parts in contact with the collecting tab parts of the outer packaging body; initially charging the battery element under an oxygen-containing gas atmosphere after the unwelded part-forming step; and welding the unwelded part of the outer packaging body to seal the battery element by the outer packaging body after the initially charging step.SELECTED DRAWING: Figure 1

Description

本発明は、全固体電池の製造方法に関する。   The present invention relates to a method for manufacturing an all-solid battery.

全固体電池の分野において、従来から、電池の充放電に着目し、全固体電池の性能向上を図る試みがある。
例えば、特許文献1には、アルゴンガス雰囲気下で充放電を実施する硫化物全固体電池が開示されている。
In the field of all-solid-state batteries, there have been attempts to improve the performance of all-solid-state batteries by paying attention to battery charge / discharge.
For example, Patent Document 1 discloses a sulfide all solid state battery that performs charging and discharging in an argon gas atmosphere.

特開2014−143133号公報JP 2014-143133 A 特開2014−086209号公報JP 2014-086209 A

全固体電池の製造において、電池の性能向上のために、特定のガス雰囲気下(酸素雰囲気下)において初回充電する工程を設けることが考えられる。しかし、積層型ラミネート電池等の封止する必要がある電池の場合には、当該封止前に初回充電工程を行う必要があるが、封止前の状態で初回充電を行うと、各層の位置ずれが生じるという問題がある。
本発明は上記実情を鑑みて成し遂げられたものであり、本発明の目的は、電池要素の位置ずれを抑制することができる全固体電池の製造方法を提供することである。
In the production of an all-solid-state battery, it is conceivable to provide a first charging step in a specific gas atmosphere (in an oxygen atmosphere) in order to improve battery performance. However, in the case of a battery that needs to be sealed, such as a laminated laminate battery, it is necessary to perform the initial charging step before the sealing, but if the initial charging is performed in the state before sealing, the position of each layer There is a problem that deviation occurs.
The present invention has been accomplished in view of the above circumstances, and an object of the present invention is to provide a method for manufacturing an all-solid battery capable of suppressing displacement of battery elements.

本発明の全固体電池の製造方法は、少なくとも一部に集電タブ部を有した正極及び負極と、当該正極及び当該負極の間に配置される固体電解質層とを積層した電池要素を外装体で封止した全固体電池の製造方法において、
前記電池要素を覆うように前記外装体を配置し、前記集電タブ部と前記外装体とを溶着し、且つ、前記外装体の前記集電タブ部と接する部分以外の少なくとも一部に未溶着部を形成する工程と、
前記未溶着部形成工程後、前記電池要素を酸素含有ガス雰囲気下で初回充電する工程と、
前記初回充電工程後、前記外装体の未溶着部を溶着して前記電池要素を前記外装体で封止する工程と、を有することを特徴とする。
The method for producing an all-solid battery according to the present invention includes a battery element in which a positive electrode and a negative electrode having a current collecting tab portion at least in part, and a solid electrolyte layer disposed between the positive electrode and the negative electrode are stacked. In the method for producing an all-solid battery sealed with
The exterior body is disposed so as to cover the battery element, the current collecting tab portion and the exterior body are welded, and at least part of the exterior body other than the portion in contact with the current collection tab portion is not welded Forming a part;
After the unwelded portion forming step, the step of charging the battery element for the first time in an oxygen-containing gas atmosphere;
After the initial charging step, a step of welding an unwelded portion of the outer package and sealing the battery element with the outer package is provided.

本発明によれば、電池要素の位置ずれを抑制することができる全固体電池の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the all-solid-state battery which can suppress the position shift of a battery element can be provided.

本発明の製造方法における初回充電工程時の全固体電池の一例を示す模式図である。It is a schematic diagram which shows an example of the all-solid-state battery at the time of the first charge process in the manufacturing method of this invention. 本発明の製造方法における初回充電工程時の全固体電池の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of the all-solid-state battery at the time of the first charge process in the manufacturing method of this invention. 従来の全固体電池の一例を示す模式図である。It is a schematic diagram which shows an example of the conventional all-solid-state battery. 従来の全固体電池の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of the conventional all-solid-state battery.

本発明の全固体電池の製造方法は、少なくとも一部に集電タブ部を有した正極及び負極と、当該正極及び当該負極の間に配置される固体電解質層とを積層した電池要素を外装体で封止した全固体電池の製造方法において、
前記電池要素を覆うように前記外装体を配置し、前記集電タブ部と前記外装体とを溶着し、且つ、前記外装体の前記集電タブ部と接する部分以外の少なくとも一部に未溶着部を形成する工程と、
前記未溶着部形成工程後、前記電池要素を酸素含有ガス雰囲気下で初回充電する工程と、
前記初回充電工程後、前記外装体の未溶着部を溶着して前記電池要素を前記外装体で封止する工程と、を有することを特徴とする。
The method for producing an all-solid battery according to the present invention includes a battery element in which a positive electrode and a negative electrode having a current collecting tab portion at least in part, and a solid electrolyte layer disposed between the positive electrode and the negative electrode are stacked. In the method for producing an all-solid battery sealed with
The exterior body is disposed so as to cover the battery element, the current collecting tab portion and the exterior body are welded, and at least part of the exterior body other than the portion in contact with the current collection tab portion is not welded Forming a part;
After the unwelded portion forming step, the step of charging the battery element for the first time in an oxygen-containing gas atmosphere;
After the initial charging step, a step of welding an unwelded portion of the outer package and sealing the battery element with the outer package is provided.

図3は、従来の全固体電池の一例を示す模式図である。
図3に示すように、全固体電池300は、正極2、負極3、正極2及び負極3の間に固体電解質層(図示せず)が積層され、正極2には正極集電タブ部4が設けられ、負極3には負極集電タブ部5が設けられている。そして、正極集電タブ部4及び負極集電タブ部5は、外部端子7と接続されている。
FIG. 3 is a schematic view showing an example of a conventional all-solid battery.
As shown in FIG. 3, the all solid state battery 300 includes a positive electrode 2, a negative electrode 3, a positive electrode 2, and a negative electrode 3 having a solid electrolyte layer (not shown) stacked thereon. The negative electrode 3 is provided with a negative electrode current collecting tab portion 5. The positive electrode current collecting tab portion 4 and the negative electrode current collecting tab portion 5 are connected to the external terminal 7.

図4は、従来の全固体電池の一例を示す断面模式図である。
図4に示すように、全固体電池400は、鉛直方向下側から順に、拘束板8、負極集電体(負極集電タブ部5)、負極3、固体電解質層9、正極2、正極集電体(正極集電タブ部4)、拘束板8を積層してなる。
FIG. 4 is a schematic cross-sectional view showing an example of a conventional all-solid battery.
As shown in FIG. 4, the all-solid battery 400 includes a restraint plate 8, a negative electrode current collector (negative electrode current collection tab portion 5), a negative electrode 3, a solid electrolyte layer 9, a positive electrode 2, and a positive electrode collection in order from the lower side in the vertical direction. An electric body (positive electrode current collecting tab portion 4) and a constraining plate 8 are laminated.

図3、4に示すような従来の全固体電池であれは、酸素環境に触れやすいため、効率よく酸素と電池を接触させる事ができる。
しかし、外装体がないため、外部から異物混入しやすいという問題がある。
また、充電する際に拘束されていないため、電池要素の位置ずれが生じやすいという問題がある。
Since the conventional all solid state battery as shown in FIGS. 3 and 4 is easy to touch the oxygen environment, the battery can be efficiently contacted with oxygen.
However, since there is no exterior body, there is a problem that foreign matters are easily mixed from the outside.
Moreover, since it is not restrained when charging, there exists a problem that the position shift of a battery element tends to arise.

図1は、本発明の製造方法における初回充電工程時の全固体電池の一例を示す模式図である。
図1に示すように、全固体電池100は、ラミネート製の外装体1内に正極2、負極3、正極2及び負極3の間に固体電解質層(図示せず)が積層され、正極2には正極集電タブ部4が設けられ、負極3には負極集電タブ部5が設けられ、正極集電タブ部4及び負極集電タブ部5の端部と外装体1との接触部位が溶着され、溶着部6が形成されている。そして、正極集電タブ部4及び負極集電タブ部5は、外部端子7と接続されている。
FIG. 1 is a schematic diagram showing an example of an all solid state battery during an initial charging step in the production method of the present invention.
As shown in FIG. 1, an all-solid battery 100 includes a laminated outer package 1 in which a positive electrode 2, a negative electrode 3, a positive electrode 2, and a negative electrode 3 are laminated with a solid electrolyte layer (not shown). Is provided with a positive electrode current collecting tab portion 4, a negative electrode 3 is provided with a negative electrode current collecting tab portion 5, and a contact portion between the end portions of the positive electrode current collecting tab portion 4 and the negative electrode current collecting tab portion 5 and the outer package 1 is provided. It welds and the welding part 6 is formed. The positive electrode current collecting tab portion 4 and the negative electrode current collecting tab portion 5 are connected to the external terminal 7.

図2は、本発明の製造方法における初回充電工程時の全固体電池の一例を示す断面模式図である。
図2に示すように、全固体電池200は、鉛直方向下側から順に、拘束板8、外装体1、負極集電体(負極集電タブ部5)、負極3、固体電解質層9、正極2、正極集電体(正極集電タブ部4)、外装体1、拘束板8を積層してなる。
FIG. 2 is a schematic cross-sectional view showing an example of an all solid state battery during the initial charging step in the production method of the present invention.
As shown in FIG. 2, the all-solid-state battery 200 includes, in order from the lower side in the vertical direction, the restraint plate 8, the exterior body 1, the negative electrode current collector (negative electrode current collection tab portion 5), the negative electrode 3, the solid electrolyte layer 9, and the positive electrode. 2. A positive electrode current collector (positive electrode current collection tab portion 4), an outer package 1, and a restraint plate 8 are laminated.

本発明者らは、電池要素の集電タブが存在する辺のみ外装体と溶着した後、それ以外の辺の少なくとも一部を解放した状態で初回充電することを見出した。
これにより、集電タブ部が外装体と溶着されているため、電池要素の位置ずれを抑制することができる。
また、電池の性能向上のために酸素含有ガス雰囲気下で初回充電する際に、異物混入を抑制することができる。
さらに、酸素環境に触れやすい状態を維持したまま、直接電池に拘束板等が接触するリスクが低減される。
The inventors of the present invention have found that after only the side where the current collecting tab of the battery element is present is welded to the exterior body, the initial charge is performed with at least a part of the other side being released.
Thereby, since the current collection tab part is welded with the exterior body, the position shift of a battery element can be suppressed.
In addition, foreign substances can be prevented from being mixed during the initial charge in an oxygen-containing gas atmosphere in order to improve battery performance.
Furthermore, the risk that the restraint plate or the like directly contacts the battery while maintaining a state in which it is easy to touch the oxygen environment is reduced.

本発明の全固体電池の製造方法は、少なくとも、(1)未溶着部形成工程、(2)初回充電工程、(3)封止工程を有する。   The manufacturing method of the all-solid-state battery of this invention has at least (1) unwelded part formation process, (2) initial charge process, and (3) sealing process.

(1)未溶着部形成工程
未溶着部形成工程は、電池要素を覆うように外装体を配置し、集電タブ部と外装体とを溶着し、且つ、外装体の集電タブ部と接する部分以外の少なくとも一部に未溶着部を形成する工程である。
未溶着部を形成することにより電池要素を酸素含有ガス雰囲気下に曝すことができる。
電池要素は、少なくとも一部に集電タブ部を有した正極及び負極と、当該正極及び当該負極の間に配置される固体電解質層とを積層してなる。
(1) Unwelded portion forming step In the unwelded portion forming step, the exterior body is disposed so as to cover the battery element, the current collecting tab portion and the exterior body are welded, and the current collecting tab portion of the exterior body is contacted. This is a step of forming an unwelded portion in at least a part other than the portion.
By forming the unwelded portion, the battery element can be exposed to an oxygen-containing gas atmosphere.
The battery element is formed by laminating a positive electrode and a negative electrode having a current collecting tab part at least in part, and a solid electrolyte layer disposed between the positive electrode and the negative electrode.

正極は、少なくとも正極活物質を含有し、必要に応じ、導電材、結着剤、及び、後述する固体電解質を含有し、当該正極の少なくとも一部に集電タブ部を有する。
正極の集電タブ部の位置は、外部端子と接続可能な位置であれば特に限定されない。
正極の集電タブ部として用いられる正極集電体としては、SUS、Ni、Cr、Au、Pt、Al、Fe、Ti、Zn等の金属材料等が挙げられる。
正極活物質としては、従来公知の材料を用いることができる。全固体電池がリチウム電池の場合は、例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、Li1+xNi1/3Mn1/3Co1/3(0≦x<0.3)、マンガン酸リチウム(LiMn)、Li1+xMn2−x−y(Mは、Al、Mg、Co、Fe、Ni、Znからなる群より選ばれる少なくとも一種の元素、0≦x<0.5、0≦y<2)で表わされる組成の異種元素置換Li−Mnスピネル、チタン酸リチウム、リン酸金属リチウム(LiMPO、M=Fe、Mn、Co、Ni)等が挙げられる。
正極活物質の形状は特に限定されず、粒子状、板状等が挙げられる。
正極活物質は、当該正極活物質の表面を固体電解質で被覆した被覆層を有していることが好ましい。
正極活物質の表面を固体電解質で被覆する方法は特に限定されず、例えば、転動流動式コーティング装置(株式会社パウレック製)を用いて、大気環境において正極活物質にLiNbO等の固体電解質をコーティングし、大気環境において焼成を行う方法等が挙げられる。
被覆層を形成する固体電解質としては、リチウムイオン伝導性を有し、且つ、活物質や固体電解質と接触しても流動せず、被覆層の形態を維持し得る物質であればよく、例えば、LiNbO、LiTi12、LiPO等が挙げられる。
結着剤としては、特に限定されず、ブタジエンゴム(BR)、ポリビニリデンフロライド(PVdF)、スチレン・ブタジエンゴム(SBR)等が挙げられる。
導電材としては、特に限定されず、例えば、アセチレンブラック、ケッチェンブラック、カーボンファイバー等を挙げることができる。
The positive electrode contains at least a positive electrode active material, and if necessary, contains a conductive material, a binder, and a solid electrolyte described later, and has a current collecting tab portion on at least a part of the positive electrode.
The position of the current collection tab part of a positive electrode will not be specifically limited if it is a position which can be connected with an external terminal.
Examples of the positive electrode current collector used as the current collecting tab portion of the positive electrode include metal materials such as SUS, Ni, Cr, Au, Pt, Al, Fe, Ti, and Zn.
A conventionally known material can be used as the positive electrode active material. When the all-solid battery is a lithium battery, for example, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), Li 1 + x Ni 1/3 Mn 1/3 Co 1/3 O 2 (0 ≦ x <0 .3), lithium manganate (LiMn 2 O 4 ), Li 1 + x Mn 2−xy M y O 4 (M is at least one selected from the group consisting of Al, Mg, Co, Fe, Ni, Zn) Element, Li—Mn spinel with different composition represented by 0 ≦ x <0.5, 0 ≦ y <2), lithium titanate, lithium metal phosphate (LiMPO 4 , M = Fe, Mn, Co, Ni ) And the like.
The shape of the positive electrode active material is not particularly limited, and examples thereof include particles and plates.
The positive electrode active material preferably has a coating layer in which the surface of the positive electrode active material is coated with a solid electrolyte.
The method for coating the surface of the positive electrode active material with the solid electrolyte is not particularly limited. For example, a solid electrolyte such as LiNbO 3 can be applied to the positive electrode active material in an atmospheric environment using a rolling fluid type coating apparatus (manufactured by POWREC, Inc.). Examples of the method include coating and firing in an atmospheric environment.
The solid electrolyte that forms the coating layer may be any material that has lithium ion conductivity, does not flow even when in contact with the active material or the solid electrolyte, and can maintain the shape of the coating layer. LiNbO 3, Li 4 Ti 5 O 12, Li 3 PO 4 and the like.
The binder is not particularly limited, and examples thereof include butadiene rubber (BR), polyvinylidene fluoride (PVdF), and styrene / butadiene rubber (SBR).
The conductive material is not particularly limited, and examples thereof include acetylene black, ketjen black, and carbon fiber.

正極の作製方法は、特に限定されず、以下に一例を示す。
ポリプロピレン(PP)製容器に酪酸ブチル、PVdF系バインダー(株式会社クレハ製)の5質量%酪酸ブチル溶液、上記固体電解質をコーティングした正極活物質と硫化物系固体電解質(LiBr、LiIを含むLiS−P系ガラスセラミックス)を容器に加え、導電材としてVGCF(商標)(昭和電工株式会社製)を加え、超音波分散装置(株式会社エスエムテー製 UH−50)で30秒間攪拌する。
次に、容器を振盪器(柴田科学株式会社製、TTM−1)で3分間振盪させ、さらに超音波分散装置で30秒間攪拌する。
振盪器で3分間振盪した後、アプリケーターを使用してブレード法によりAl箔(日本製箔株式会社製)上に塗工する。
そして、塗工した電極を自然乾燥させる。
その後、100℃のホットプレート上で30分間乾燥させることにより正極を得られる。
The method for producing the positive electrode is not particularly limited, and an example is shown below.
A 5% by mass butyl butyrate solution of butyl butyrate, PVdF binder (manufactured by Kureha Co., Ltd.) in a polypropylene (PP) container, a positive electrode active material coated with the solid electrolyte, and a sulfide solid electrolyte (Li 2 containing LiBr and LiI) S-P 2 S 5 series glass ceramics) is added to the container, VGCF (trademark) (manufactured by Showa Denko KK) is added as a conductive material, and the mixture is stirred for 30 seconds with an ultrasonic dispersing device (SMT Co., Ltd. UH-50). .
Next, the container is shaken with a shaker (manufactured by Shibata Kagaku Co., Ltd., TTM-1) for 3 minutes, and further stirred with an ultrasonic dispersion device for 30 seconds.
After shaking for 3 minutes with a shaker, coating is performed on Al foil (manufactured by Nihon Foil Co., Ltd.) by the blade method using an applicator.
Then, the coated electrode is naturally dried.
Then, a positive electrode is obtained by making it dry for 30 minutes on a 100 degreeC hotplate.

負極は、少なくとも負極活物質を含有し、必要に応じ、導電材、結着剤、及び、後述する固体電解質を含有し、当該負極の少なくとも一部に集電タブ部を有する。
負極の集電タブ部の位置は、外部端子と接続可能な位置であれば特に限定されない。
負極の集電タブ部として用いられる負極集電体としては、SUS、Cu、Ni、Fe、Ti、Co、Zn等の金属材料等が挙げられる。
負極活物質としては、グラファイト、ハードカーボン等の炭素材料、SiおよびSi合金、LiTi12等が挙げられる。
負極に用いられる導電材、結着剤、及び、固体電解質は、上述した正極に用いるものと同様のものを用いることができる。
The negative electrode contains at least a negative electrode active material, and if necessary, contains a conductive material, a binder, and a solid electrolyte described later, and has a current collecting tab portion in at least a part of the negative electrode.
The position of the current collection tab part of a negative electrode will not be specifically limited if it is a position which can be connected with an external terminal.
Examples of the negative electrode current collector used as the current collecting tab portion of the negative electrode include metal materials such as SUS, Cu, Ni, Fe, Ti, Co, and Zn.
Examples of the negative electrode active material include carbon materials such as graphite and hard carbon, Si and Si alloys, Li 4 Ti 5 O 12 and the like.
As the conductive material, the binder, and the solid electrolyte used for the negative electrode, the same materials as those used for the positive electrode described above can be used.

負極の作製方法は、特に限定されず、以下に一例を示す。
PP製容器に酪酸ブチル、PVdF系バインダー(株式会社クレハ製)の5質量%酪酸ブチル溶液、負極活物質として平均粒径10μmの天然黒鉛系カーボン(日本カーボン株式会社製)、硫化物系固体電解質としてLiBr、LiIを含むLiS−P系ガラスセラミックスを容器に加え、超音波分散装置(株式会社エスエムテー製 UH−50)で30秒間攪拌する。
次に、容器を振盪器(柴田科学株式会社製、TTM−1)で30分間振盪させる。
アプリケーターを使用してブレード法にてCu箔(古河電気工業株式会社製)上に塗工する。
そして、塗工した電極を、自然乾燥させる。
その後、100℃のホットプレート上で30分間乾燥させることにより負極を得られる。
The method for producing the negative electrode is not particularly limited, and an example is shown below.
PP container with 5% butyl butyrate solution of butyl butyrate, PVdF binder (manufactured by Kureha Co., Ltd.), natural graphite carbon (Nippon Carbon Co., Ltd.) with an average particle size of 10 μm as a negative electrode active material, sulfide solid electrolyte as LiBr, added to the vessel to Li 2 S-P 2 S 5 -based glass ceramic containing LiI, stirred for 30 seconds with an ultrasonic dispersing device (manufactured by SMT Ltd. UH-50).
Next, the container is shaken for 30 minutes with a shaker (manufactured by Shibata Kagaku Co., Ltd., TTM-1).
It coats on Cu foil (made by Furukawa Electric Co., Ltd.) by a blade method using an applicator.
Then, the coated electrode is naturally dried.
Then, a negative electrode is obtained by drying for 30 minutes on a 100 degreeC hotplate.

本発明における粒子の平均粒径は、常法により算出される。粒子の平均粒径の算出方法の例は以下の通りである。まず、適切な倍率(例えば、5万〜100万倍)の透過型電子顕微鏡(Transmission Electron Microscope;以下、TEMと称する。)画像又は走査型電子顕微鏡(Scanning Electron Microscope;以下、SEMと称する。)画像において、ある1つの粒子について、当該粒子を球状と見なした際の粒径を算出する。このようなTEM観察又はSEM観察による粒径の算出を、同じ種類の200〜300個の粒子について行い、これらの粒子の平均を平均粒径とする。   The average particle diameter of the particles in the present invention is calculated by a conventional method. An example of a method for calculating the average particle size of the particles is as follows. First, a transmission electron microscope (hereinafter referred to as TEM) with an appropriate magnification (for example, 50,000 to 1,000,000 times), an image or a scanning electron microscope (hereinafter referred to as SEM). In the image, for a certain particle, the particle diameter when the particle is regarded as spherical is calculated. Calculation of the particle size by such TEM observation or SEM observation is performed for 200 to 300 particles of the same type, and the average of these particles is taken as the average particle size.

固体電解質層は、少なくとも固体電解質を含有し、必要に応じて結着剤等を含有していても良い。
固体電解質は、イオン伝導性を有するものであれば特に限定されず、例えば、LiO−B−P、LiO−SiO等の酸化物系非晶質固体電解質、LiS−SiS、LiI−LiS−SiS、LiI−LiS−P、LiI−LiS−P、LiI−LiPO−P、LiS−P等の硫化物系非晶質固体電解質、LiI、LiN、LiLaTa12、LiLaZr12、LiBaLaTa12、LiPO(4−3/2w)(w<1)、Li3.6Si0.60.4等の結晶質酸化物・酸窒化物等が挙げられる。
固体電解質層に用いられる結着剤は、上述した正極に用いるものと同様のものを用いることができる。
The solid electrolyte layer contains at least a solid electrolyte, and may contain a binder or the like as necessary.
The solid electrolyte is not particularly limited as long as it has ion conductivity. For example, an oxide-based amorphous solid electrolyte such as Li 2 O—B 2 O 3 —P 2 O 5 or Li 2 O—SiO 2 is used. , Li 2 S-SiS 2, LiI-Li 2 S-SiS 2, LiI-Li 2 S-P 2 S 5, LiI-Li 2 S-P 2 O 5, LiI-Li 3 PO 4 -P 2 S 5 Sulfide-based amorphous solid electrolyte such as Li 2 S—P 2 S 5 , LiI, Li 3 N, Li 5 La 3 Ta 2 O 12 , Li 7 La 3 Zr 2 O 12 , Li 6 BaLa 2 Ta 2 Examples thereof include crystalline oxides and oxynitrides such as O 12 , Li 3 PO (4-3 / 2w) N w (w <1), and Li 3.6 Si 0.6 P 0.4 O 4 .
The binder used for the solid electrolyte layer can be the same as that used for the positive electrode described above.

固体電解質層の作製方法は、特に限定されず、以下に一例を示す。
PP製容器にヘプタン、ブタジエンゴム(BR)系バインダー(JSR株式会社製)の5質量%ヘプタン溶液、平均粒径2.5μmの硫化物系固体電解質としてLiBr及びLiIを含むLiS−P系ガラスセラミックスを加え、超音波分散装置(エスエムテー製 UH−50)で30秒間攪拌する。
次に、容器を振盪器(柴田科学株式会社製、TTM−1)で30分間振盪させる。
その後、アプリケーターを使用してブレード法にてAl箔上に塗工する。
塗工後、自然乾燥する。
その後、100℃のホットプレート上で30分間乾燥させることにより固体電解質層が得られる。
The manufacturing method of a solid electrolyte layer is not specifically limited, An example is shown below.
Heptane PP container made, butadiene rubber (BR) binder 5 wt% heptane solution of (JSR Co., Ltd.), Li 2 S-P 2 containing LiBr and LiI as a sulfide-based solid electrolyte having an average particle diameter of 2.5μm It added S 5 based glass ceramics, stirred for 30 seconds with an ultrasonic dispersing device (manufactured by SMT Ltd. UH-50).
Next, the container is shaken for 30 minutes with a shaker (manufactured by Shibata Kagaku Co., Ltd., TTM-1).
Then, it coats on Al foil with a blade method using an applicator.
After coating, dry naturally.
Then, a solid electrolyte layer is obtained by making it dry on a 100 degreeC hotplate for 30 minutes.

外装体の形状としては、特に限定されないが、ラミネート型等を挙げることができる。
外装体の材質は、電解質に安定なものであれば特に限定されないが、ポリプロピレン、ポリエチレン、及び、アクリル樹脂等の樹脂が挙げられる。
Although it does not specifically limit as a shape of an exterior body, A laminate type etc. can be mentioned.
The material of the exterior body is not particularly limited as long as it is stable to the electrolyte, and examples thereof include resins such as polypropylene, polyethylene, and acrylic resin.

(2)初回充電工程
初回充電工程は、未溶着部形成工程後、前記電池要素を酸素含有ガス雰囲気下で初回充電する工程である。これにより、全固体電池の容量維持率を向上させることができる。
初回充電の条件は特に限定されず、定電流定電圧充電等が挙げられる。
酸素含有ガスとしては、純酸素、空気等が挙げられる。
(2) Initial charging step The initial charging step is a step of initially charging the battery element in an oxygen-containing gas atmosphere after the unwelded portion forming step. Thereby, the capacity maintenance rate of the all-solid-state battery can be improved.
The conditions for the initial charging are not particularly limited, and examples thereof include constant current and constant voltage charging.
Examples of the oxygen-containing gas include pure oxygen and air.

(3)封止工程
封止工程は、初回充電工程後、外装体の未溶着部を溶着して電池要素を外装体で封止する工程である。
溶着方法は特に限定されず、従来公知の方法を用いることができる。ラミネート型電池の場合、熱圧着等が挙げられる。
(3) Sealing process The sealing process is a process of sealing the battery element with the exterior body by welding the unwelded portion of the exterior body after the initial charging process.
The welding method is not particularly limited, and a conventionally known method can be used. In the case of a laminate type battery, thermocompression bonding and the like can be mentioned.

本発明の製造方法で得られる全固体電池としては、リチウム電池、ナトリウム電池、マグネシウム電池及びカルシウム電池等を挙げることができ、中でも、リチウム電池が好ましい。   Examples of the all solid state battery obtained by the production method of the present invention include a lithium battery, a sodium battery, a magnesium battery, and a calcium battery. Among these, a lithium battery is preferable.

1 外装体
2 正極
3 負極
4 正極集電タブ部(正極集電体)
5 負極集電タブ部(負極集電体)
6 溶着部
7 外部端子
8 拘束板
9 固体電解質層
100 全固体電池
200 全固体電池
300 全固体電池
400 全固体電池
DESCRIPTION OF SYMBOLS 1 Exterior body 2 Positive electrode 3 Negative electrode 4 Positive electrode current collection tab part (positive electrode current collector)
5 Negative electrode current collector tab (negative electrode current collector)
6 welding part 7 external terminal 8 restraint plate 9 solid electrolyte layer 100 all solid state battery 200 all solid state battery 300 all solid state battery 400 all solid state battery

Claims (1)

少なくとも一部に集電タブ部を有した正極及び負極と、当該正極及び当該負極の間に配置される固体電解質層とを積層した電池要素を外装体で封止した全固体電池の製造方法において、
前記電池要素を覆うように前記外装体を配置し、前記集電タブ部と前記外装体とを溶着し、且つ、前記外装体の前記集電タブ部と接する部分以外の少なくとも一部に未溶着部を形成する工程と、
前記未溶着部形成工程後、前記電池要素を酸素含有ガス雰囲気下で初回充電する工程と、
前記初回充電工程後、前記外装体の未溶着部を溶着して前記電池要素を前記外装体で封止する工程と、を有することを特徴とする全固体電池の製造方法。
In a method for producing an all-solid battery in which a battery element in which a positive electrode and a negative electrode having a current collecting tab portion at least in part and a solid electrolyte layer disposed between the positive electrode and the negative electrode is laminated is sealed with an outer package. ,
The exterior body is disposed so as to cover the battery element, the current collecting tab portion and the exterior body are welded, and at least part of the exterior body other than the portion in contact with the current collection tab portion is not welded Forming a part;
After the unwelded portion forming step, the step of charging the battery element for the first time in an oxygen-containing gas atmosphere;
And a step of welding an unwelded portion of the outer package and sealing the battery element with the outer package after the initial charging step.
JP2016003621A 2016-01-12 2016-01-12 Manufacturing method of all-solid-state battery Active JP6828240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016003621A JP6828240B2 (en) 2016-01-12 2016-01-12 Manufacturing method of all-solid-state battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016003621A JP6828240B2 (en) 2016-01-12 2016-01-12 Manufacturing method of all-solid-state battery

Publications (2)

Publication Number Publication Date
JP2017126422A true JP2017126422A (en) 2017-07-20
JP6828240B2 JP6828240B2 (en) 2021-02-10

Family

ID=59364217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016003621A Active JP6828240B2 (en) 2016-01-12 2016-01-12 Manufacturing method of all-solid-state battery

Country Status (1)

Country Link
JP (1) JP6828240B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023550529A (en) * 2020-12-15 2023-12-01 ワットリー,インク. Solid state battery and method of forming it

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000285954A (en) * 1999-03-30 2000-10-13 Sanyo Electric Co Ltd Manufacture of thin battery using laminated exterior body
JP2001093580A (en) * 1999-09-21 2001-04-06 Tdk Corp Manufacturing method of sheet battery
JP2004296097A (en) * 2003-03-25 2004-10-21 Sanyo Electric Co Ltd Usage of lithium secondary battery
JP2005093825A (en) * 2003-09-18 2005-04-07 Sii Micro Parts Ltd Flat plate type electrochemical cell
JP2006278897A (en) * 2005-03-30 2006-10-12 Tdk Corp Electrochemical device
JP2008103240A (en) * 2006-10-20 2008-05-01 Dainippon Printing Co Ltd Method of manufacturing battery
JP2010080105A (en) * 2008-09-24 2010-04-08 Panasonic Corp Method of manufacturing nonaqueous electrolyte secondary battery
JP2012069305A (en) * 2010-09-22 2012-04-05 Hitachi Zosen Corp Manufacturing method of all-solid secondary battery
JP2014222607A (en) * 2013-05-13 2014-11-27 日産自動車株式会社 Cathode active material containing solid-solution active material, cathode containing cathode active material, and nonaqueous electrolyte secondary battery employing cathode
WO2015064721A1 (en) * 2013-10-31 2015-05-07 積水化学工業株式会社 Lithium ion secondary cell and method for producing lithium ion secondary cell
JP2015122236A (en) * 2013-12-24 2015-07-02 日産自動車株式会社 Method for manufacturing nonaqueous electrolyte secondary battery

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000285954A (en) * 1999-03-30 2000-10-13 Sanyo Electric Co Ltd Manufacture of thin battery using laminated exterior body
JP2001093580A (en) * 1999-09-21 2001-04-06 Tdk Corp Manufacturing method of sheet battery
JP2004296097A (en) * 2003-03-25 2004-10-21 Sanyo Electric Co Ltd Usage of lithium secondary battery
JP2005093825A (en) * 2003-09-18 2005-04-07 Sii Micro Parts Ltd Flat plate type electrochemical cell
JP2006278897A (en) * 2005-03-30 2006-10-12 Tdk Corp Electrochemical device
JP2008103240A (en) * 2006-10-20 2008-05-01 Dainippon Printing Co Ltd Method of manufacturing battery
JP2010080105A (en) * 2008-09-24 2010-04-08 Panasonic Corp Method of manufacturing nonaqueous electrolyte secondary battery
JP2012069305A (en) * 2010-09-22 2012-04-05 Hitachi Zosen Corp Manufacturing method of all-solid secondary battery
JP2014222607A (en) * 2013-05-13 2014-11-27 日産自動車株式会社 Cathode active material containing solid-solution active material, cathode containing cathode active material, and nonaqueous electrolyte secondary battery employing cathode
WO2015064721A1 (en) * 2013-10-31 2015-05-07 積水化学工業株式会社 Lithium ion secondary cell and method for producing lithium ion secondary cell
JP2015122236A (en) * 2013-12-24 2015-07-02 日産自動車株式会社 Method for manufacturing nonaqueous electrolyte secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023550529A (en) * 2020-12-15 2023-12-01 ワットリー,インク. Solid state battery and method of forming it

Also Published As

Publication number Publication date
JP6828240B2 (en) 2021-02-10

Similar Documents

Publication Publication Date Title
JP6469725B2 (en) Galvanic element and manufacturing method thereof
JP5742905B2 (en) Positive electrode active material layer
US9985314B2 (en) All-solid battery and method for manufacturing the same
JP6724571B2 (en) Solid battery
JP5761582B2 (en) Secondary battery
JP5850154B2 (en) Manufacturing method of all solid state battery
JP6259704B2 (en) Method for producing electrode for all solid state battery and method for producing all solid state battery
WO2013132592A1 (en) Solid sulfide battery system and method for controlling solid sulfide battery
JP7102831B2 (en) Positive electrode and lithium ion secondary battery
WO2015049996A1 (en) Secondary battery
JP6421809B2 (en) Sulfide all-solid battery manufacturing method and sulfide all-solid battery
JP5806335B2 (en) Electrode body and manufacturing method thereof
JP2011222215A (en) Lithium ion secondary battery
CN110416630B (en) All-solid-state battery
JP2014154446A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP5692605B2 (en) Non-aqueous electrolyte secondary battery
JP2017126422A (en) Method for manufacturing all-solid battery
JP5755870B2 (en) Positive electrode for secondary battery, secondary battery, and method for producing positive electrode for secondary battery
WO2015111194A1 (en) Electrical device
CN111435729B (en) Lithium ion secondary battery
JP7398231B2 (en) All-solid-state battery system
JP7336772B2 (en) Slurry for secondary battery, positive electrode for secondary battery, and secondary battery
WO2017138116A1 (en) Lithium ion battery and method for manufacturing same
CN113950757A (en) Electric storage element
JP7433004B2 (en) all solid state battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210104

R151 Written notification of patent or utility model registration

Ref document number: 6828240

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151