JP6421809B2 - Sulfide all-solid battery manufacturing method and sulfide all-solid battery - Google Patents

Sulfide all-solid battery manufacturing method and sulfide all-solid battery Download PDF

Info

Publication number
JP6421809B2
JP6421809B2 JP2016202880A JP2016202880A JP6421809B2 JP 6421809 B2 JP6421809 B2 JP 6421809B2 JP 2016202880 A JP2016202880 A JP 2016202880A JP 2016202880 A JP2016202880 A JP 2016202880A JP 6421809 B2 JP6421809 B2 JP 6421809B2
Authority
JP
Japan
Prior art keywords
sulfide
negative electrode
battery
active material
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016202880A
Other languages
Japanese (ja)
Other versions
JP2017126552A (en
Inventor
元 長谷川
元 長谷川
徳洋 尾瀬
徳洋 尾瀬
健吾 芳賀
健吾 芳賀
光俊 大瀧
光俊 大瀧
敬介 大森
敬介 大森
健志 當寺ヶ盛
健志 當寺ヶ盛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to US15/377,418 priority Critical patent/US10396394B2/en
Priority to CN201710013976.6A priority patent/CN106960980B/en
Publication of JP2017126552A publication Critical patent/JP2017126552A/en
Application granted granted Critical
Publication of JP6421809B2 publication Critical patent/JP6421809B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、硫化物全固体電池の製造方法および硫化物全固体電池に関する。   The present invention relates to a method for producing a sulfide all solid state battery and a sulfide all solid state battery.

全固体電池の分野において、従来から、電池の充放電に着目し、全固体電池の性能向上を図る試みがある。
例えば、特許文献1には、アルゴンガス雰囲気下で充放電を実施する硫化物全固体電池が開示されている。
In the field of all-solid-state batteries, there have been attempts to improve the performance of all-solid-state batteries by paying attention to battery charge / discharge.
For example, Patent Document 1 discloses a sulfide all solid state battery that performs charging and discharging in an argon gas atmosphere.

一方で、硫化物系固体電解質の表面に着目し、硫化物全固体電池の性能向上を図る試みがある。
例えば、特許文献3には、表面に自らが酸化されてなる酸化物層を有した硫化物系固体電解質を備えた全固体電池が開示されている。
On the other hand, paying attention to the surface of the sulfide-based solid electrolyte, there is an attempt to improve the performance of the sulfide all-solid battery.
For example, Patent Document 3 discloses an all-solid battery including a sulfide-based solid electrolyte having an oxide layer formed by oxidation on its surface.

特開2014−143133号公報JP 2014-143133 A 特開2014−086209号公報JP 2014-086209 A 特開2012−094445号公報JP2012-094445A

しかし、特許文献1に開示されているような従来の硫化物全固体電池では、負極でのリチウム失活等により、容量維持率が低下してしまうという問題がある。
本発明は上記実情を鑑みて成し遂げられたものであり、本発明の目的は、容量維持率の高い硫化物全固体電池の製造方法および硫化物全固体電池を提供することである。
However, the conventional sulfide all solid state battery disclosed in Patent Document 1 has a problem in that the capacity retention rate is reduced due to lithium deactivation at the negative electrode.
The present invention has been accomplished in view of the above circumstances, and an object of the present invention is to provide a method for producing a sulfide all-solid battery having a high capacity retention rate and a sulfide all-solid battery.

本発明の硫化物全固体電池の製造方法は、硫化物全固体電池を形成する電池形成工程と、
前記電池形成工程後、前記硫化物全固体電池を初回充電する工程と、を有し、
前記初回充電工程時、及び、前記初回充電工程後の少なくともいずれか一方において、前記硫化物全固体電池を酸素含有ガス雰囲気下に曝露することを特徴とする。
The method for producing a sulfide all solid state battery of the present invention includes a battery forming step for forming a sulfide all solid state battery,
And after the battery formation step, charging the sulfide all solid state battery for the first time,
The sulfide all solid state battery is exposed to an oxygen-containing gas atmosphere during at least one of the initial charging step and after the initial charging step.

本発明の硫化物全固体電池の製造方法は、前記初回充電工程において、前記硫化物全固体電池を酸素含有ガス雰囲気下、初回充電し、前記初回充電工程後に、前記硫化物全固体電池を酸素含有ガス雰囲気下に曝露することが好ましい。   The sulfide all solid state battery manufacturing method of the present invention is the initial charging step, wherein the sulfide all solid state battery is initially charged in an oxygen-containing gas atmosphere, and after the initial charging step, the sulfide all solid state battery is oxygenated. It is preferable to expose in a gas atmosphere.

本発明の硫化物全固体電池の製造方法は、前記初回充電工程において、前記硫化物全固体電池を酸素含有ガス雰囲気下、かつ、前記硫化物全固体電池が備える負極の電位が0.85V(vs.Li/Li)以下となる初回充電を行うことが好ましい。 In the method for producing a sulfide all solid state battery according to the present invention, in the initial charging step, the sulfide all solid state battery is placed in an oxygen-containing gas atmosphere, and the potential of the negative electrode provided in the sulfide all solid state battery is 0.85 V ( vs. Li / Li + ) or less is preferably performed.

本発明の硫化物全固体電池は、正極活物質を含有する正極活物質層を有する正極と、負極活物質を含有する負極活物質層を有する負極と、当該正極及び当該負極の間に配置され、固体電解質を含有する固体電解質層とを備え、
少なくとも前記負極活物質層または前記固体電解質層のいずれか一方は、硫化物系固体電解質を含有し、
前記硫化物系固体電解質は、前記負極活物質との接触面に、当該接触面以外の部分よりも酸素濃度の高い酸素濃化層を有することを特徴とする。
The sulfide all solid state battery of the present invention is disposed between a positive electrode having a positive electrode active material layer containing a positive electrode active material, a negative electrode having a negative electrode active material layer containing a negative electrode active material, and the positive electrode and the negative electrode. A solid electrolyte layer containing a solid electrolyte,
At least one of the negative electrode active material layer or the solid electrolyte layer contains a sulfide-based solid electrolyte,
The sulfide-based solid electrolyte has an oxygen-concentrated layer having a higher oxygen concentration than a portion other than the contact surface on the contact surface with the negative electrode active material.

本発明によれば、容量維持率の高い硫化物全固体電池の製造方法および硫化物全固体電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of a sulfide all-solid-state battery with a high capacity | capacitance maintenance factor and a sulfide all-solid-state battery can be provided.

電池形成工程で形成する硫化物全固体電池の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of the sulfide all-solid-state battery formed at a battery formation process. 硫化物全固体電池の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of a sulfide all solid battery. 硫化物全固体電池の他の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows another example of a sulfide all-solid-state battery. 実施例1〜2における初回充電時のdQ/dV曲線である。It is a dQ / dV curve at the time of the first charge in Examples 1-2. 実施例4で得られた負極を示すTEM画像である。6 is a TEM image showing a negative electrode obtained in Example 4. 実施例4で得られた負極の酸素成分を示すEDX画像である。6 is an EDX image showing the oxygen component of the negative electrode obtained in Example 4. 実施例4、比較例2における電池抵抗を示す測定結果である。It is a measurement result which shows the battery resistance in Example 4 and Comparative Example 2. 参考例1〜4における固体電解質中の酸素含有割合を示す測定結果である。It is a measurement result which shows the oxygen content rate in the solid electrolyte in Reference Examples 1-4.

以下、本発明における硫化物全固体電池の製造方法および硫化物全固体電池について、詳細に説明する。   Hereinafter, the manufacturing method of a sulfide all solid state battery and the sulfide all solid state battery in the present invention will be described in detail.

A.硫化物全固体電池の製造方法
本発明の硫化物全固体電池の製造方法は、硫化物全固体電池を形成する電池形成工程と、
前記電池形成工程後、前記硫化物全固体電池を初回充電する工程と、を有し、
前記初回充電工程時、及び、前記初回充電工程後の少なくともいずれか一方において、前記硫化物全固体電池を酸素含有ガス雰囲気下に曝露することを特徴とする。
A. Method for Producing Sulfide All-Solid Battery A method for producing a sulfide all-solid battery of the present invention includes a battery forming step for forming a sulfide all-solid battery,
And after the battery formation step, charging the sulfide all solid state battery for the first time,
The sulfide all solid state battery is exposed to an oxygen-containing gas atmosphere during at least one of the initial charging step and after the initial charging step.

本発明者らは、酸素含有ガス雰囲気下で硫化物全固体電池を初回充電すること、及び/又は、初回充電後、硫化物全固体電池を酸素含有ガス雰囲気下に曝すことにより、硫化物全固体電池の容量維持率が著しく向上することを見出した。
これは、アルゴンガスなどの不活性ガス雰囲気から酸素含有ガス雰囲気になることで、硫化物全固体電池の負極に含まれる固体電解質が変質し、その後、固体電解質が変化(劣化)し難くなるためであると推定される。その根拠として、初回充電後の電圧を3.65Vに調整し、硫化物全固体電池を酸素含有ガス雰囲気下に曝した際に、硫化物全固体電池の電圧が3.65Vから3.55V程度に変化したことが本発明者らにより確認されている。
The inventors of the present invention charge the sulfide all solid state battery for the first time in an oxygen-containing gas atmosphere and / or expose the sulfide all solid state battery to the oxygen-containing gas atmosphere after the initial charge, thereby It has been found that the capacity retention rate of the solid battery is remarkably improved.
This is because by changing from an inert gas atmosphere such as argon gas to an oxygen-containing gas atmosphere, the solid electrolyte contained in the negative electrode of the sulfide all solid state battery is altered, and thereafter the solid electrolyte is less likely to change (deteriorate). It is estimated that. As a basis for this, when the voltage after the initial charge is adjusted to 3.65V and the sulfide all solid state battery is exposed to an oxygen-containing gas atmosphere, the voltage of the sulfide all solid state battery is about 3.65V to 3.55V. It has been confirmed by the present inventors that this has changed.

本発明の全固体電池の製造方法は、少なくとも、(1)電池形成工程、(2)初回充電工程を有する。   The manufacturing method of the all-solid-state battery of this invention has at least (1) battery formation process and (2) initial charge process.

(1)電池形成工程
電池形成工程は、硫化物全固体電池を形成する工程である。
硫化物全固体電池は、少なくとも、正極と、負極と、正極及び負極の間に配置される固体電解質層を備える。
なお、電池形成工程で形成される硫化物全固体電池は、充放電が可能な状態の電池である。
(1) Battery formation process A battery formation process is a process of forming a sulfide all solid battery.
The sulfide all solid battery includes at least a positive electrode, a negative electrode, and a solid electrolyte layer disposed between the positive electrode and the negative electrode.
The sulfide all solid state battery formed in the battery forming process is a battery that can be charged and discharged.

図1は、本発明の電池形成工程で形成する硫化物全固体電池の一例を示す断面模式図である。
硫化物全固体電池100は、正極活物質層12及び正極集電体14を含む正極16と、負極活物質層13及び負極集電体15を含む負極17と、正極16と負極17の間に配置される固体電解質層11を備える。
FIG. 1 is a schematic cross-sectional view showing an example of a sulfide all solid state battery formed in the battery formation step of the present invention.
The sulfide all solid state battery 100 includes a positive electrode 16 including a positive electrode active material layer 12 and a positive electrode current collector 14, a negative electrode 17 including a negative electrode active material layer 13 and a negative electrode current collector 15, and between the positive electrode 16 and the negative electrode 17. A solid electrolyte layer 11 is provided.

正極は、少なくとも正極活物質層を有し、必要に応じ、さらに正極集電体を備える。
正極活物質層は少なくとも正極活物質を含有し、必要に応じ、導電材、結着剤、及び、後述する固体電解質を含有する。
正極活物質としては、従来公知の材料を用いることができる。硫化物全固体電池がリチウム電池の場合は、例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、Li1+xNi1/3Mn1/3Co1/3(0≦x<0.3)、マンガン酸リチウム(LiMn)、Li1+xMn2−x−y(Mは、Al、Mg、Co、Fe、Ni、Znからなる群より選ばれる少なくとも一種の元素、0≦x<0.5、0≦y<2)で表わされる組成の異種元素置換Li−Mnスピネル、チタン酸リチウム、リン酸金属リチウム(LiMPO、M=Fe、Mn、Co、Ni)等が挙げられる。
正極活物質の形状は特に限定されず、粒子状、板状等が挙げられる。
正極活物質は、当該正極活物質の表面を固体電解質で被覆した被覆層を有していることが好ましい。
正極活物質の表面を固体電解質で被覆する方法は特に限定されず、例えば、転動流動式コーティング装置(株式会社パウレック製)を用いて、大気環境において正極活物質にLiNbO等の固体電解質をコーティングし、大気環境において焼成を行う方法等が挙げられる。また、例えば、スパッタリング法、ゾルゲル法、静電噴霧法、ボールミリング法等が挙げられる。
被覆層を形成する固体電解質としては、リチウムイオン伝導性を有し、且つ、活物質や固体電解質と接触しても流動せず、被覆層の形態を維持し得る物質であればよく、例えば、LiNbO、LiTi12、LiPO等が挙げられる。
その他、正極活物質層に用いられる固体電解質は、後述する固体電解質層に用いるものと同様のものを用いることができる。
結着剤としては、特に限定されず、ブタジエンゴム(BR)、ポリビニリデンフロライド(PVdF)、スチレン・ブタジエンゴム(SBR)等が挙げられる。
導電材としては、特に限定されず、例えば、アセチレンブラック、ケッチェンブラック、カーボンファイバー等の炭素材料や金属材料を挙げることができる。
正極活物質層の厚さは、特に限定されないが、例えば、10〜250μm、中でも20〜200μmであることが好ましい。
正極活物質層における正極活物質の含有量は、特に限定されないが、例えば、50体積%〜90体積%であることが好ましい。
正極集電体は、正極活物質層の集電を行う機能を有するものである。正極集電体の材料としては、例えば、SUS、Ni、Cr、Au、Pt、Al、Fe、Ti、Zn等の金属材料等が挙げられる。また、正極集電体の形状としては、例えば、箔状、板状、メッシュ状等を挙げることができる。
正極は、さらに、正極集電体に接続された正極リードを備えていてもよい。
The positive electrode has at least a positive electrode active material layer, and further includes a positive electrode current collector as necessary.
The positive electrode active material layer contains at least a positive electrode active material, and optionally contains a conductive material, a binder, and a solid electrolyte described later.
A conventionally known material can be used as the positive electrode active material. When the sulfide all solid state battery is a lithium battery, for example, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), Li 1 + x Ni 1/3 Mn 1/3 Co 1/3 O 2 (0 ≦ x <0.3), lithium manganate (LiMn 2 O 4 ), Li 1 + x Mn 2−xy M y O 4 (M is at least selected from the group consisting of Al, Mg, Co, Fe, Ni, Zn) One element, hetero-element-substituted Li-Mn spinel having a composition represented by 0 ≦ x <0.5, 0 ≦ y <2), lithium titanate, lithium metal phosphate (LiMPO 4 , M = Fe, Mn, Co , Ni) and the like.
The shape of the positive electrode active material is not particularly limited, and examples thereof include particles and plates.
The positive electrode active material preferably has a coating layer in which the surface of the positive electrode active material is coated with a solid electrolyte.
The method for coating the surface of the positive electrode active material with the solid electrolyte is not particularly limited. For example, a solid electrolyte such as LiNbO 3 can be applied to the positive electrode active material in an atmospheric environment using a rolling fluid type coating apparatus (manufactured by POWREC, Inc.). Examples of the method include coating and firing in an atmospheric environment. Moreover, for example, a sputtering method, a sol-gel method, an electrostatic spray method, a ball milling method, and the like can be given.
The solid electrolyte that forms the coating layer may be any material that has lithium ion conductivity, does not flow even when in contact with the active material or the solid electrolyte, and can maintain the shape of the coating layer. LiNbO 3, Li 4 Ti 5 O 12, Li 3 PO 4 and the like.
In addition, the thing similar to what is used for the solid electrolyte layer mentioned later can be used for the solid electrolyte used for a positive electrode active material layer.
The binder is not particularly limited, and examples thereof include butadiene rubber (BR), polyvinylidene fluoride (PVdF), and styrene / butadiene rubber (SBR).
The conductive material is not particularly limited, and examples thereof include carbon materials and metal materials such as acetylene black, ketjen black, and carbon fiber.
Although the thickness of a positive electrode active material layer is not specifically limited, For example, it is preferable that it is 10-250 micrometers, especially 20-200 micrometers.
Although content of the positive electrode active material in a positive electrode active material layer is not specifically limited, For example, it is preferable that they are 50 volume%-90 volume%.
The positive electrode current collector has a function of collecting current of the positive electrode active material layer. Examples of the material for the positive electrode current collector include metal materials such as SUS, Ni, Cr, Au, Pt, Al, Fe, Ti, and Zn. Examples of the shape of the positive electrode current collector include a foil shape, a plate shape, and a mesh shape.
The positive electrode may further include a positive electrode lead connected to the positive electrode current collector.

本発明における粒子の平均粒径は、常法により算出される。粒子の平均粒径の算出方法の例は以下の通りである。まず、適切な倍率(例えば、5万〜100万倍)の透過型電子顕微鏡(Transmission Electron Microscope;以下、TEMと称する。)画像又は走査型電子顕微鏡(Scanning Electron Microscope;以下、SEMと称する。)画像において、ある1つの粒子について、当該粒子を球状と見なした際の粒径を算出する。このようなTEM観察又はSEM観察による粒径の算出を、同じ種類の200〜300個の粒子について行い、これらの粒子の平均を平均粒径とする。   The average particle diameter of the particles in the present invention is calculated by a conventional method. An example of a method for calculating the average particle size of the particles is as follows. First, a transmission electron microscope (hereinafter referred to as TEM) with an appropriate magnification (for example, 50,000 to 1,000,000 times), an image or a scanning electron microscope (hereinafter referred to as SEM). In the image, for a certain particle, the particle diameter when the particle is regarded as spherical is calculated. Calculation of the particle size by such TEM observation or SEM observation is performed for 200 to 300 particles of the same type, and the average of these particles is taken as the average particle size.

負極は、少なくとも負極活物質層を有し、必要に応じ、負極活物質層の集電を行う負極集電体を備える。
負極活物質層は、少なくとも負極活物質を含有し、必要に応じ、導電材、結着剤、及び、後述する固体電解質を含有する。
負極活物質としては、グラファイト、ハードカーボン等の炭素材料、SiおよびSi合金、LiTi12等が挙げられる。
負極活物質の形状は特に限定されず、粒子状、板状等が挙げられる。
負極活物質層に用いられる導電材、及び、結着剤は、上述した正極活物質層に用いるものと同様のものを用いることができる。負極活物質層に用いられる固体電解質は、後述する固体電解質層に用いるものと同様のものを用いることができる。
負極活物質層の厚さは、特に限定されないが、例えば、10〜100μm、中でも10〜50μmであることが好ましい。
負極活物質層における負極活物質の含有量は、特に限定されないが、例えば、20体積%〜90体積%であることが好ましい。
負極集電体の材料としては、例えば、SUS、Cu、Ni、Fe、Ti、Co、Zn等の金属材料等が挙げられる。負極集電体の形状としては、上述した正極集電体の形状と同様のものを採用することができる。
The negative electrode includes at least a negative electrode active material layer and, if necessary, a negative electrode current collector that collects the negative electrode active material layer.
The negative electrode active material layer contains at least a negative electrode active material, and if necessary, contains a conductive material, a binder, and a solid electrolyte described later.
Examples of the negative electrode active material include carbon materials such as graphite and hard carbon, Si and Si alloys, Li 4 Ti 5 O 12 and the like.
The shape of the negative electrode active material is not particularly limited, and examples thereof include particles and plates.
As the conductive material and the binder used for the negative electrode active material layer, the same materials as those used for the positive electrode active material layer described above can be used. The same thing as what is used for the solid electrolyte layer mentioned later can be used for the solid electrolyte used for a negative electrode active material layer.
Although the thickness of a negative electrode active material layer is not specifically limited, For example, it is preferable that it is 10-100 micrometers, especially 10-50 micrometers.
Although content of the negative electrode active material in a negative electrode active material layer is not specifically limited, For example, it is preferable that they are 20 volume%-90 volume%.
Examples of the material for the negative electrode current collector include metal materials such as SUS, Cu, Ni, Fe, Ti, Co, and Zn. As the shape of the negative electrode current collector, the same shape as that of the positive electrode current collector described above can be adopted.

固体電解質層は、少なくとも固体電解質を含有し、必要に応じて結着剤等を含有していても良い。
固体電解質は、硫化物系固体電解質であることが好ましい。硫化物系固体電解質としては、例えば、LiS−SiS、LiI−LiS−SiS、LiI−LiS−P、LiI−LiS−P、LiI−LiPO−P、LiI−LiO−LiS−P、LiBr−LiI−LiS−P、LiS−P等が挙げられる。具体的には、15LiBr・10LiI・75(0.75LiS・0.25P)、70(0.06LiO・0.69LiS・0.25P)・30LiI等が挙げられる。
固体電解質の形状は特に限定されず、粒子状、板状等が挙げられる。
固体電解質層に用いられる結着剤は、上述した正極活物質層に用いるものと同様のものを用いることができる。
The solid electrolyte layer contains at least a solid electrolyte, and may contain a binder or the like as necessary.
The solid electrolyte is preferably a sulfide solid electrolyte. Examples of the sulfide-based solid electrolyte include Li 2 S—SiS 2 , LiI—Li 2 S—SiS 2 , LiI—Li 2 S—P 2 S 5 , LiI—Li 2 S—P 2 O 5 , LiI— include Li 3 PO 4 -P 2 S 5 , LiI-Li 2 O-Li 2 S-P 2 S 5, LiBr-LiI-Li 2 S-P 2 S 5, Li 2 S-P 2 S 5 or the like . Specifically, 15LiBr · 10LiI · 75 (0.75Li 2 S · 0.25P 2 S 5 ), 70 (0.06Li 2 O · 0.69Li 2 S · 0.25P 2 S 5 ) · 30LiI, etc. Can be mentioned.
The shape of the solid electrolyte is not particularly limited, and examples thereof include particles and plates.
The binder used for the solid electrolyte layer can be the same as that used for the positive electrode active material layer described above.

硫化物全固体電池は、必要に応じ、正極、負極、固体電解質層を収容する外装体を備える。
外装体の形状としては、特に限定されないが、ラミネート型等を挙げることができる。
外装体の材質は、電解質に安定なものであれば特に限定されないが、ポリプロピレン、ポリエチレン、及び、アクリル樹脂等の樹脂が挙げられる。
なお、外装体がラミネート型の硫化物全固体電池の場合、当該硫化物全固体電池は、後述する酸素含有ガス雰囲気下における初回充電後に、真空吸引しながらラミネート化されるものや、酸素含有ガス雰囲気下における初回充電後に、アルゴンガス雰囲気に変え、ラミネート化されるものであってもよい。
The sulfide all solid state battery includes an exterior body that accommodates a positive electrode, a negative electrode, and a solid electrolyte layer as necessary.
Although it does not specifically limit as a shape of an exterior body, A laminate type etc. can be mentioned.
The material of the exterior body is not particularly limited as long as it is stable to the electrolyte, and examples thereof include resins such as polypropylene, polyethylene, and acrylic resin.
When the outer package is a laminate-type sulfide all-solid battery, the sulfide all-solid battery is one that is laminated with vacuum suction after the initial charge in an oxygen-containing gas atmosphere described later, or an oxygen-containing gas. After the first charge in the atmosphere, the film may be laminated by changing to an argon gas atmosphere.

(2)初回充電工程
初回充電工程は、前記電池形成工程後、前記硫化物全固体電池を初回充電する工程である。
本発明においては、初回充電工程時、及び、初回充電工程後の少なくともいずれか一方において、硫化物全固体電池を酸素含有ガス雰囲気下に曝露する。
そして、硫化物全固体電池の容量維持率向上の観点から、初回充電工程時、及び、初回充電工程後のいずれにおいても、硫化物全固体電池を酸素含有ガス雰囲気下に曝露することが好ましい。
初回充電の条件は特に限定されず、定電流定電圧充電等が挙げられる。電流値は、特に限定されないが、例えば、0.1mAh〜10mAhであることが好ましい。電流値が小さすぎると充電に時間がかかり、電流値が大きすぎると過電圧が大きくなるからである。
酸素含有ガスとしては、純酸素、空気等が挙げられる。空気は乾燥空気であることが好ましい。
(2) Initial charging step The initial charging step is a step of initially charging the sulfide all solid state battery after the battery forming step.
In the present invention, the sulfide all solid state battery is exposed to an oxygen-containing gas atmosphere at the time of the first charging step and / or at least one after the first charging step.
And from a viewpoint of the capacity maintenance rate improvement of a sulfide all-solid-state battery, it is preferable to expose a sulfide all-solid-state battery in oxygen-containing gas atmosphere both in the first charge process and after the first charge process.
The conditions for the initial charging are not particularly limited, and examples thereof include constant current and constant voltage charging. The current value is not particularly limited, but is preferably 0.1 mAh to 10 mAh, for example. This is because if the current value is too small, it takes time to charge, and if the current value is too large, the overvoltage increases.
Examples of the oxygen-containing gas include pure oxygen and air. The air is preferably dry air.

酸素含有ガス雰囲気下において初回充電工程を行う場合、負極の電位が0.85V(vs.Li/Li)以下となるまで充電を行うことが好ましく、0.70V(vs.Li/Li)以下となるまで充電を行うことがより好ましい。負極の電位を、前述した範囲となるまで充電を行うことで、さらに容量維持率を向上させることができるからである。 When the initial charging step is performed in an oxygen-containing gas atmosphere, charging is preferably performed until the potential of the negative electrode is 0.85 V (vs. Li / Li + ) or less, and 0.70 V (vs. Li / Li + ). It is more preferable to charge until it becomes the following. This is because the capacity retention rate can be further improved by charging the negative electrode potential until it falls within the above-described range.

(3)初回充電工程後
初回充電工程後の硫化物全固体電池の開回路電圧は、特に限定されないが、2.80V以上、3.8V以下に維持することが好ましい。
初回充電工程後における、酸素含有ガス雰囲気下に曝露する時間は特に限定されず、24時間〜30日が好ましい。
曝露温度は特に限定されず、0〜60℃が好ましい。
酸素含有ガスとしては、上記初回充電工程で用いるものと同様のものを用いることができる。
(3) After the initial charging step The open circuit voltage of the sulfide all solid state battery after the initial charging step is not particularly limited, but is preferably maintained at 2.80 V or more and 3.8 V or less.
The exposure time in the oxygen-containing gas atmosphere after the initial charging step is not particularly limited, and is preferably 24 hours to 30 days.
The exposure temperature is not particularly limited and is preferably 0 to 60 ° C.
As the oxygen-containing gas, the same gas as that used in the initial charging step can be used.

本発明の製造方法で得られる硫化物全固体電池としては、リチウム電池、ナトリウム電池、マグネシウム電池及びカルシウム電池等を挙げることができ、中でも、リチウム電池が好ましい。   Examples of the sulfide all solid battery obtained by the production method of the present invention include a lithium battery, a sodium battery, a magnesium battery, and a calcium battery. Among them, a lithium battery is preferable.

B.硫化物全固体電池
本発明の硫化物全固体電池は、正極活物質を含有する正極活物質層を有する正極と、負極活物質を含有する負極活物質層を有する負極と、当該正極及び当該負極の間に配置され、固体電解質を含有する固体電解質層とを備え、
少なくとも前記負極活物質層または前記固体電解質層のいずれか一方は、硫化物系固体電解質を含有し、
前記硫化物系固体電解質は、前記負極活物質との接触面に、当該接触面以外の部分よりも酸素濃度の高い酸素濃化層を有することを特徴とする。
B. Sulfide all-solid battery The sulfide all-solid battery of the present invention includes a positive electrode having a positive electrode active material layer containing a positive electrode active material, a negative electrode having a negative electrode active material layer containing a negative electrode active material, the positive electrode, and the negative electrode. And a solid electrolyte layer containing a solid electrolyte,
At least one of the negative electrode active material layer or the solid electrolyte layer contains a sulfide-based solid electrolyte,
The sulfide-based solid electrolyte has an oxygen-concentrated layer having a higher oxygen concentration than a portion other than the contact surface on the contact surface with the negative electrode active material.

本発明者らは、酸素含有ガス雰囲気下で硫化物全固体電池を初回充電することにより、硫化物系固体電解質の負極活物質との接触面に、接触面以外の部分よりも酸素濃度の高い酸素濃化層を形成することで、硫化物全固体電池の容量維持率が著しく向上することを見出した。
これは、形成された酸素濃化層が、負極活物質と硫化物系固体電解質との接触を抑制し、硫化物系固体電解質が変化(劣化)し難くなるためであると推定される。
The present inventors charge the sulfide all solid state battery for the first time under an oxygen-containing gas atmosphere, so that the oxygen concentration is higher on the contact surface of the sulfide-based solid electrolyte with the negative electrode active material than on the portion other than the contact surface. It has been found that the capacity retention rate of the sulfide all solid state battery is remarkably improved by forming the oxygen concentrated layer.
This is presumably because the formed oxygen-concentrated layer suppresses the contact between the negative electrode active material and the sulfide-based solid electrolyte, and the sulfide-based solid electrolyte hardly changes (deteriorates).

図2は、本発明の硫化物全固体電池の一例を示す断面模式図である。
硫化物全固体電池200は、正極活物質層12及び正極集電体14を含む正極16と、負極活物質層13及び負極集電体15を含む負極17と、正極16と負極17の間に配置される固体電解質層11を備える。さらに、負極活物質層13は、負極活物質21と硫化物系固体電解質22とを備え、負極活物質21と硫化物系固体電解質22との接触面に酸素濃化層18を備える。
FIG. 2 is a schematic cross-sectional view showing an example of the sulfide all solid state battery of the present invention.
The sulfide all solid state battery 200 includes a positive electrode 16 including a positive electrode active material layer 12 and a positive electrode current collector 14, a negative electrode 17 including a negative electrode active material layer 13 and a negative electrode current collector 15, and a positive electrode 16 and a negative electrode 17. A solid electrolyte layer 11 is provided. Furthermore, the negative electrode active material layer 13 includes a negative electrode active material 21 and a sulfide-based solid electrolyte 22, and includes an oxygen concentrating layer 18 on a contact surface between the negative electrode active material 21 and the sulfide-based solid electrolyte 22.

図3は、本発明の硫化物全固体電池の他の一例を示す断面模式図である。
硫化物全固体電池300は、正極活物質層12及び正極集電体14を含む正極16と、負極活物質層13及び負極集電体15を含む負極17と、正極16と負極17の間に配置される固体電解質層11を備える。さらに、固体電解質層11の負極活物質層13との接触面に酸素濃化層18を備える。
以下、硫化物全固体電池について、構成ごとに説明する。
FIG. 3 is a schematic cross-sectional view showing another example of the sulfide all solid state battery of the present invention.
The sulfide all solid state battery 300 includes a positive electrode 16 including a positive electrode active material layer 12 and a positive electrode current collector 14, a negative electrode 17 including a negative electrode active material layer 13 and a negative electrode current collector 15, and a positive electrode 16 and a negative electrode 17. A solid electrolyte layer 11 is provided. Furthermore, the oxygen concentration layer 18 is provided on the contact surface of the solid electrolyte layer 11 with the negative electrode active material layer 13.
Hereinafter, the sulfide all solid state battery will be described for each configuration.

(1)正極
正極は、少なくとも正極活物質層を有し、必要に応じ、正極活物質層の集電を行う正極集電体を備える。
正極活物質層は少なくとも正極活物質を含有し、必要に応じ、導電材、結着剤、及び、固体電解質を含有する。
正極集電体、正極活物質、導電材、結着剤、及び、固体電解質は、上記「A.硫化物全固体電池の製造方法」に記載した内容と同様である。
(1) Positive electrode The positive electrode includes at least a positive electrode active material layer, and includes a positive electrode current collector that collects the positive electrode active material layer as necessary.
The positive electrode active material layer contains at least a positive electrode active material, and contains a conductive material, a binder, and a solid electrolyte as necessary.
The positive electrode current collector, the positive electrode active material, the conductive material, the binder, and the solid electrolyte are the same as those described in the above-mentioned “A. Method for producing sulfide all-solid battery”.

(2)負極
負極は、少なくとも負極活物質層を有し、必要に応じ、負極活物質層の集電を行う負極集電体を備える。
負極活物質層は、少なくとも負極活物質を含有し、必要に応じ、導電材、結着剤、及び、固体電解質を含有する。
また、少なくとも負極活物質層または後述する固体電解質層のいずれか一方は、硫化物系固体電解質を含有する。
負極集電体、負極活物質、導電材、結着剤、及び、固体電解質は、上記「A.硫化物全固体電池の製造方法」に記載した内容と同様である。
(2) Negative Electrode The negative electrode includes at least a negative electrode active material layer, and includes a negative electrode current collector that collects current from the negative electrode active material layer as necessary.
The negative electrode active material layer contains at least a negative electrode active material, and contains a conductive material, a binder, and a solid electrolyte as necessary.
At least one of the negative electrode active material layer and the solid electrolyte layer described later contains a sulfide-based solid electrolyte.
The negative electrode current collector, the negative electrode active material, the conductive material, the binder, and the solid electrolyte are the same as those described in “A. Method for producing sulfide all solid battery” above.

(3)固体電解質層
固体電解質層は、少なくとも固体電解質を含有し、必要に応じて結着剤等を含有していても良い。
また、少なくとも上述した負極活物質層または固体電解質層のいずれか一方は、硫化物系固体電解質を含有する。
固体電解質、及び、結着剤は、上記「A.硫化物全固体電池の製造方法」に記載した内容と同様である。
(3) Solid electrolyte layer The solid electrolyte layer contains at least a solid electrolyte, and may contain a binder or the like as necessary.
At least one of the negative electrode active material layer and the solid electrolyte layer described above contains a sulfide-based solid electrolyte.
The solid electrolyte and the binder are the same as those described in the above “A. Method for producing sulfide all solid state battery”.

(4)酸素濃化層
酸素濃化層は、硫化物系固体電解質において、負極活物質との接触面に形成され、当該接触面以外の部分よりも酸素濃度の高い層である。酸素濃化層は、負極活物質層中の負極活物質と硫化物系固体電解質との接触面に形成されていてもよく、負極活物質層と硫化物系固体電解質を含有する固体電解質層との接触面に形成されていてもよい。酸素濃化層の形成方法は、例えば、初回充電工程時、及び、初回充電工程後の少なくともいずれか一方において、硫化物全固体電池を酸素含有ガス雰囲気下に曝露することが挙げられる。その中でも、初回充電工程時、及び、初回充電工程後のいずれにおいても、硫化物全固体電池を酸素含有ガス雰囲気下に曝露することが好ましい。より効率的に酸素濃化層を形成することができるからである。
また、酸素濃化層は、硫化物系固体電解質の負極活物質との接触面にのみ形成されていることが好ましい。酸素濃化層が、負極活物質との接触面以外に多く形成されると、硫化物系固体電解質のイオン伝導度が低下してしまう可能性があるからである。
(4) Oxygen-concentrated layer The oxygen-concentrated layer is a layer formed on the contact surface with the negative electrode active material in the sulfide-based solid electrolyte and having a higher oxygen concentration than the portion other than the contact surface. The oxygen concentrating layer may be formed on a contact surface between the negative electrode active material and the sulfide solid electrolyte in the negative electrode active material layer, and includes a negative electrode active material layer and a solid electrolyte layer containing the sulfide solid electrolyte, It may be formed on the contact surface. Examples of the method for forming the oxygen-concentrated layer include exposing the sulfide all-solid-state battery to an oxygen-containing gas atmosphere during at least one of the first charging step and after the first charging step. Among these, it is preferable to expose the sulfide all solid state battery in an oxygen-containing gas atmosphere both in the first charging step and after the first charging step. This is because the oxygen-concentrated layer can be formed more efficiently.
Moreover, it is preferable that the oxygen concentration layer is formed only on the contact surface of the sulfide-based solid electrolyte with the negative electrode active material. This is because if the oxygen-concentrated layer is formed in many areas other than the contact surface with the negative electrode active material, the ionic conductivity of the sulfide-based solid electrolyte may be lowered.

酸素濃化層の平均厚さは特に限定されるものではないが、例えば0.1nm以上であることが好ましく、1nm以上であることがより好ましく、また、100nm以下であることが好ましく、10nm以下であることがより好ましい。酸素濃化層の平均厚さは、例えば走査型電子顕微鏡(SEM)または透過型電子顕微鏡(TEM)による観察で求めることができる。   The average thickness of the oxygen-concentrated layer is not particularly limited, but is preferably 0.1 nm or more, more preferably 1 nm or more, and preferably 100 nm or less, preferably 10 nm or less. It is more preferable that The average thickness of the oxygen-concentrated layer can be determined by observation with a scanning electron microscope (SEM) or a transmission electron microscope (TEM), for example.

また、酸素濃化層の形成状態は、例えば、X線回折(XRD)測定やTEM−EDX(Transmission Electron Microscope−Energy Dispersive X−ray Spectroscope)、STEM−EDX(Scanning Transmission Electron Microscope−Energy Dispersive X−ray Spectroscope)、RBS(Rutherford Backscattering Spectrometry)、PIXE(Particle Induced X‐ray Emission)、HFS(Hydrogen Forward Scattering)、NRA(Nuclear Reaction Analysis)分析等により確認することができる。   In addition, the formation state of the oxygen-enriched layer is, for example, X-ray diffraction (XRD) measurement, TEM-EDX (Transmission Electron Microscope-Energy Dispersive X-ray Spectroscopy, STEM-EDX (Scanning TransTransscope) ray Spectroscope), RBS (Rutherford Backscattering Spectrometry), PIXE (Particle Induced X-ray Emission), HFS (Hydrogen Forward Scattering), NRA (Natural Scattering) sis) can be confirmed by analysis or the like.

(5)その他の部材
硫化物全固体電池は、必要に応じ、正極、負極、固体電解質層を収容する外装体を備える。
外装体の形状としては、特に限定されないが、例えば、コイン型、ラミネート型、円筒型および角型等を挙げることができる。
外装体の材質は、電解質に安定なものであれば特に限定されないが、ポリプロピレン、ポリエチレン、及び、アクリル樹脂等の樹脂が挙げられる。
(5) Other members The sulfide all solid state battery includes an exterior body that accommodates the positive electrode, the negative electrode, and the solid electrolyte layer as necessary.
Although it does not specifically limit as a shape of an exterior body, For example, a coin type | mold, a laminate type | mold, a cylindrical shape, a square shape etc. can be mentioned.
The material of the exterior body is not particularly limited as long as it is stable to the electrolyte, and examples thereof include resins such as polypropylene, polyethylene, and acrylic resin.

(6)硫化物全固体電池
硫化物全固体電池としては、リチウム電池、ナトリウム電池、マグネシウム電池及びカルシウム電池等を挙げることができ、中でも、リチウム電池が好ましい。
また、硫化物全固体電池の形状としては、例えば、コイン型、ラミネート型、円筒型および角型等を挙げることができる。
(6) Sulfide all-solid battery Examples of the sulfide all-solid battery include a lithium battery, a sodium battery, a magnesium battery, and a calcium battery. Among these, a lithium battery is preferable.
Examples of the shape of the sulfide all solid state battery include a coin type, a laminate type, a cylindrical type, and a square type.

(実施例1)
[電池形成工程]
[正極の作製]
転動流動式コーティング装置(株式会社パウレック製)を用いて、大気環境において正極活物質に固体電解質としてLiNbOをコーティングし、大気環境において焼成を行い、正極活物質の表面を固体電解質で被覆した。
ポリプロピレン(PP)製容器に酪酸ブチル、PVdF系バインダー(株式会社クレハ製)の5質量%酪酸ブチル溶液、上記固体電解質をコーティングした正極活物質と硫化物系固体電解質(LiBr、LiIを含むLiS−P系ガラスセラミックス)を容器に加え、導電材としてVGCF(商標)(昭和電工株式会社製)を加え、超音波分散装置(株式会社エスエムテー製 UH−50)で30秒間攪拌した。
次に、容器を振盪器(柴田科学株式会社製、TTM−1)で3分間振盪させ、さらに超音波分散装置で30秒間攪拌した。
振盪器で3分間振盪した後、アプリケーターを使用してブレード法によりAl箔(日本製箔株式会社製)上に塗工した。
そして、塗工した電極を自然乾燥させた。
その後、100℃のホットプレート上で30分間乾燥させることにより正極を得た。
Example 1
[Battery formation process]
[Production of positive electrode]
Using a rolling fluid type coating device (manufactured by POWREC Co., Ltd.), the cathode active material was coated with LiNbO 3 as a solid electrolyte in the atmospheric environment, and baked in the atmospheric environment, and the surface of the cathode active material was coated with the solid electrolyte. .
A 5% by mass butyl butyrate solution of butyl butyrate, PVdF binder (manufactured by Kureha Co., Ltd.) in a polypropylene (PP) container, a positive electrode active material coated with the solid electrolyte, and a sulfide solid electrolyte (Li 2 containing LiBr and LiI) S—P 2 S 5 glass ceramics) was added to the container, VGCF (trademark) (manufactured by Showa Denko KK) was added as a conductive material, and the mixture was stirred for 30 seconds with an ultrasonic dispersion device (UH-50 manufactured by SMT Corporation). .
Next, the container was shaken with a shaker (manufactured by Shibata Kagaku Co., Ltd., TTM-1) for 3 minutes, and further stirred with an ultrasonic dispersion device for 30 seconds.
After shaking for 3 minutes with a shaker, coating was performed on Al foil (manufactured by Nihon Foil Co., Ltd.) by the blade method using an applicator.
Then, the coated electrode was naturally dried.
Then, the positive electrode was obtained by making it dry on a 100 degreeC hotplate for 30 minutes.

[負極の作製]
PP製容器に酪酸ブチル、PVdF系バインダー(株式会社クレハ製)の5質量%酪酸ブチル溶液、負極活物質として平均粒径10μmの天然黒鉛系カーボン(日本カーボン株式会社製)、硫化物系固体電解質としてLiBr、LiIを含むLiS−P系ガラスセラミックスを容器に加え、超音波分散装置(株式会社エスエムテー製 UH−50)で30秒間攪拌した。
次に、容器を振盪器(柴田科学株式会社製、TTM−1)で30分間振盪させた。
アプリケーターを使用してブレード法にてCu箔(古河電気工業株式会社製)上に塗工した。
そして、塗工した電極を、自然乾燥させた。
その後、100℃のホットプレート上で30分間乾燥させることにより負極を得た。
[Production of negative electrode]
PP container with 5% butyl butyrate solution of butyl butyrate, PVdF binder (manufactured by Kureha Co., Ltd.), natural graphite carbon (Nippon Carbon Co., Ltd.) with an average particle size of 10 μm as a negative electrode active material, sulfide solid electrolyte as LiBr, adding Li 2 S-P 2 S 5 -based glass ceramic containing LiI in a vessel and stirred for 30 seconds with an ultrasonic dispersing device (manufactured by SMT Ltd. UH-50).
Next, the container was shaken for 30 minutes with a shaker (manufactured by Shibata Kagaku Co., Ltd., TTM-1).
It coated on Cu foil (made by Furukawa Electric Co., Ltd.) by the blade method using the applicator.
Then, the coated electrode was naturally dried.
Then, the negative electrode was obtained by making it dry for 30 minutes on a 100 degreeC hotplate.

[固体電解質層の作製]
PP製容器にヘプタン、ブタジエンゴム(BR)系バインダー(JSR株式会社製)の5質量%ヘプタン溶液、平均粒径2.5μmの硫化物系固体電解質としてLiBr及びLiIを含むLiS−P系ガラスセラミックスを加え、超音波分散装置(エスエムテー製 UH−50)で30秒間攪拌した。
次に、容器を振盪器(柴田科学株式会社製、TTM−1)で30分間振盪させた。
その後、アプリケーターを使用してブレード法にてAl箔上に塗工した。
塗工後、自然乾燥した。
その後、100℃のホットプレート上で30分間乾燥させることにより固体電解質層を得た。
[Production of solid electrolyte layer]
Heptane PP container made, butadiene rubber (BR) binder 5 wt% heptane solution of (JSR Co., Ltd.), Li 2 S-P 2 containing LiBr and LiI as a sulfide-based solid electrolyte having an average particle diameter of 2.5μm It added S 5 based glass ceramics, and stirred for 30 seconds with an ultrasonic dispersing device (manufactured by SMT Ltd. UH-50).
Next, the container was shaken for 30 minutes with a shaker (manufactured by Shibata Kagaku Co., Ltd., TTM-1).
Then, it coated on Al foil with the blade method using the applicator.
After coating, it was naturally dried.
Then, the solid electrolyte layer was obtained by making it dry for 30 minutes on a 100 degreeC hotplate.

[硫化物全固体電池の作製]
1cmの金型に固体電解質層を入れて1ton/cm(≒98MPa)でプレスし、その片側に正極を入れ、1ton/cm(≒98MPa)でプレスし、さらにもう片側に負極を入れ、6ton/cm(≒588MPa)でプレスすることにより硫化物全固体電池を得た。
[Preparation of sulfide all solid state battery]
The mold 1 cm 2 putting a solid electrolyte layer and pressed at 1ton / cm 2 (≒ 98MPa) , put a positive electrode on one side and pressed at 1ton / cm 2 (≒ 98MPa) , then put in a negative longer on one side , 6 ton / cm 2 (≈588 MPa) to obtain a sulfide all solid state battery.

[初回充電工程]
得られた硫化物全固体電池をアルゴンガスで満たされたガラス製容器の中に入れ、25℃の環境下において、1/3Cで4.37Vまで定電流定電圧(CCCV)充電を行い、1/3Cで3VまでCCCV放電を行い、初期容量を求めた。
実施例1における初回充電時のdQ/dV曲線を図4に示す。
[初回充電工程後]
その後、硫化物全固体電池の開回路電圧を3.65Vに調整し、ガラス製容器の雰囲気をアルゴンガス雰囲気から乾燥空気雰囲気に変更した。その後、耐久試験として、硫化物全固体電池の開回路電圧を4.25Vに再調整し、60℃で28日間保存した。
[First charging process]
The obtained sulfide all solid state battery is placed in a glass container filled with argon gas, and is charged at a constant current and constant voltage (CCCV) up to 4.37 V at 1/3 C in an environment of 25 ° C. CCCV discharge was performed up to 3V at / 3C to determine the initial capacity.
The dQ / dV curve at the time of the first charge in Example 1 is shown in FIG.
[After initial charging process]
Thereafter, the open circuit voltage of the sulfide all solid state battery was adjusted to 3.65 V, and the atmosphere of the glass container was changed from an argon gas atmosphere to a dry air atmosphere. Then, as an endurance test, the open circuit voltage of the sulfide all solid state battery was readjusted to 4.25 V and stored at 60 ° C. for 28 days.

(実施例2)
初回充電工程において、ガラス製容器の雰囲気を乾燥空気雰囲気にしたこと以外は、実施例1と同様に硫化物全固体電池を製造した。
実施例2における初回充電時のdQ/dV曲線を図4に示す。
図4に示すように、実施例1では、初回充電時にdQ/dV曲線のピークが現れていない。一方、実施例2では、初回充電時に2.9V付近(2.8−3.0V)にdQ/dV曲線のピークが現れていることがわかる。これは、酸素含有ガス雰囲気下で初回充電を行うことによって、2.9V付近での反応量が多くなったためであると推察される。
したがって、2.8〜3.0V以上の電圧を維持したまま、硫化物全固体電池を酸素含有ガス雰囲気下に曝すことにより、初回充電時と同様の効果が得られると推察される。
(Example 2)
In the initial charging step, a sulfide all solid state battery was manufactured in the same manner as in Example 1 except that the atmosphere of the glass container was changed to a dry air atmosphere.
The dQ / dV curve at the time of the first charge in Example 2 is shown in FIG.
As shown in FIG. 4, in Example 1, the peak of the dQ / dV curve does not appear at the first charge. On the other hand, in Example 2, it can be seen that the peak of the dQ / dV curve appears in the vicinity of 2.9 V (2.8-3.0 V) during the initial charge. This is presumably because the amount of reaction in the vicinity of 2.9 V was increased by performing the initial charge in an oxygen-containing gas atmosphere.
Therefore, it is presumed that the same effect as the first charge can be obtained by exposing the sulfide all solid state battery to an oxygen-containing gas atmosphere while maintaining a voltage of 2.8 to 3.0 V or more.

(実施例3)
初回充電工程において、ガラス製容器の雰囲気を乾燥空気雰囲気にし、初回充電工程後において、ガラス製容器の雰囲気をアルゴンガス雰囲気にしたこと以外は、実施例1と同様に硫化物全固体電池を製造した。
(Example 3)
A sulfide all solid state battery is manufactured in the same manner as in Example 1 except that the atmosphere of the glass container is changed to a dry air atmosphere in the initial charging process, and the atmosphere of the glass container is changed to an argon gas atmosphere after the initial charging process. did.

(比較例1)
初回充電工程後において、ガラス製容器の雰囲気をアルゴンガス雰囲気のままにしたこと以外は、実施例1と同様に硫化物全固体電池を製造した。
(Comparative Example 1)
After the initial charging step, a sulfide all solid state battery was manufactured in the same manner as in Example 1 except that the atmosphere of the glass container was kept in the argon gas atmosphere.

[容量維持率]
実施例1〜3、比較例1で得られた硫化物全固体電池について、25℃で3VまでCCCV放電後、4.37VまでCCCV充電し、3VまでCCCV放電を行い、各電池の耐久後容量を求めた。
そして、耐久後容量/初期容量から容量維持率を求めた。そして、比較例1の容量維持率を100%としたときの、比較例1に対する実施例1〜3の容量維持率の比(容量維持比)を算出した。結果を表1に示す。
[Capacity maintenance rate]
About the sulfide all solid state battery obtained in Examples 1 to 3 and Comparative Example 1, CCCV discharge to 3 V at 25 ° C., CCCV charge to 4.37 V, CCCV discharge to 3 V, and the post-endurance capacity of each battery Asked.
And the capacity | capacitance maintenance factor was calculated | required from the capacity | capacitance after an endurance / initial stage capacity | capacitance. And ratio (capacity maintenance ratio) of the capacity maintenance rate of Examples 1-3 to comparative example 1 when the capacity maintenance rate of comparative example 1 was made into 100% was computed. The results are shown in Table 1.

表1に示すように、比較例1に対する実施例1〜3の容量維持率の比は、実施例1が1.10、実施例2が1.13、実施例3が1.11であった。
表1に示すように、実施例1は、比較例1に対して1.10倍容量維持率が向上していることから、初回充電後、電池電圧(開回路電圧)を3.65Vに調整し、アルゴンガス雰囲気から酸素含有ガス雰囲気に変更することにより、容量維持率が大幅に向上することがわかる。
これは、初回充電前には容量維持率の向上効果が得られなかったことから、初回充電後に維持した電圧が影響していると推測される。
また、表1に示すように、実施例2は実施例1よりも、容量維持率が高いことがわかる。そのため、硫化物全固体電池を形成後すぐに、当該硫化物全固体電池を酸素含有ガス雰囲気に入れ、その状態で初回充電を実施することにより、アルゴンガス雰囲気で初回充電した実施例1よりも容量維持率が向上することがわかる。
さらに、表1に示すように、実施例2は実施例3よりも、容量維持率が高いことがわかる。そのため、初回充電時だけでなく、初回充電後においても酸素含有ガスにさらすことにより、容量維持率が向上することがわかる。
As shown in Table 1, the ratio of the capacity retention ratio of Examples 1 to 3 with respect to Comparative Example 1 was 1.10 in Example 1, 1.13 in Example 2, and 1.11. .
As shown in Table 1, in Example 1, the capacity retention rate was improved by 1.10 times compared to Comparative Example 1, so the battery voltage (open circuit voltage) was adjusted to 3.65 V after the first charge. And it turns out that a capacity | capacitance maintenance factor improves significantly by changing from argon gas atmosphere to oxygen-containing gas atmosphere.
This is presumed that the voltage maintained after the first charge has an influence because the capacity maintenance rate is not improved before the first charge.
Further, as shown in Table 1, it can be seen that Example 2 has a higher capacity retention rate than Example 1. Therefore, immediately after the formation of the sulfide all solid state battery, the sulfide all solid state battery is placed in an oxygen-containing gas atmosphere, and the initial charge is performed in that state, thereby making the first charge in an argon gas atmosphere. It can be seen that the capacity retention rate is improved.
Furthermore, as shown in Table 1, Example 2 has a higher capacity retention rate than Example 3. Therefore, it can be seen that the capacity retention rate is improved by exposure to the oxygen-containing gas not only during the initial charge but also after the initial charge.

(実施例4)
初回充電工程において、得られた硫化物全固体電池を、乾燥空気雰囲気(露点−75℃)のガラス製容器の中に入れ、負極の電位が0.08V(vs.Li/Li)となるまで充電し、その後電池電圧が3Vとなるまで放電を行い、初期容量を求めたこと、および、その後、ガラス製容器内の雰囲気をアルゴンガスに置換し、その後の電池評価を行ったこと以外は、実施例1と同様に電池を作製し、評価を行なった。
Example 4
In the first charging step, the obtained sulfide all solid state battery is put in a glass container in a dry air atmosphere (dew point −75 ° C.), and the negative electrode potential becomes 0.08 V (vs. Li / Li + ). The battery was discharged until the battery voltage reached 3 V, and the initial capacity was determined. Thereafter, the atmosphere in the glass container was replaced with argon gas, and the subsequent battery evaluation was performed. A battery was prepared and evaluated in the same manner as in Example 1.

(実施例5)
初回充電工程において、負極の電位が0.7V(vs.Li/Li)となるまで充電したこと以外は、実施例4と同様に電池を作製し、評価を行った。
(Example 5)
A battery was prepared and evaluated in the same manner as in Example 4 except that in the initial charging step, the negative electrode was charged until the potential of the negative electrode became 0.7 V (vs. Li / Li + ).

(実施例6)
初回充電工程において、負極の電位が0.85V(vs.Li/Li)となるまで充電したこと以外は、実施例4と同様に電池を作製し、評価を行った。
(Example 6)
A battery was prepared and evaluated in the same manner as in Example 4 except that in the initial charging step, the negative electrode was charged until the potential of the negative electrode became 0.85 V (vs. Li / Li + ).

(実施例7)
初回充電工程において、負極の電位が1.0V(vs.Li/Li)となるまで充電したこと以外は、実施例4と同様に電池を作製し、評価を行った。
(Example 7)
A battery was prepared and evaluated in the same manner as in Example 4 except that in the initial charging step, the negative electrode was charged until the potential of the negative electrode became 1.0 V (vs. Li / Li + ).

[容量維持率]
実施例4〜7で得られた硫化物全固体電池について、0.8mA(終止電流条件:0.016mAh)で4.1Vまで充電し、0.5mA(終止電流条件:0.16mAh)で3Vまで放電を行った。その後、3.9Vまで充電し、60℃で28日間保存して、各電池の耐久後容量を求めた。
そして、耐久後容量/初期容量から容量維持率を求めた。そして、実施例7の容量維持率を100%としたときの、実施例7に対する実施例4〜6の容量維持率の比(容量維持比)を算出した。結果を表2に示す。
[Capacity maintenance rate]
The sulfide all solid state batteries obtained in Examples 4 to 7 were charged to 4.1 V at 0.8 mA (end current condition: 0.016 mAh), and 3 V at 0.5 mA (end current condition: 0.16 mAh). Discharge was performed. Thereafter, the battery was charged to 3.9 V and stored at 60 ° C. for 28 days, and the post-endurance capacity of each battery was determined.
And the capacity | capacitance maintenance factor was calculated | required from the capacity | capacitance after an endurance / initial stage capacity | capacitance. And the ratio (capacity maintenance ratio) of the capacity maintenance ratio of Examples 4-6 with respect to Example 7 when the capacity maintenance ratio of Example 7 was set to 100% was calculated. The results are shown in Table 2.

表2に示すように、実施例7に対する実施例4〜6の容量維持比は、実施例4が1.19、実施例5が1.15、実施例6が1.09であった。以上の結果から、初回充電の終了時の負極電位を0.85V(vs.Li/Li)以下にすることで、容量維持率がさらに向上することがわかる。これは、負極の電位を0.85V(vs.Li/Li)以下にまで充電することで、負極活物質に接している硫化物系固体電解質が酸素ガスと反応して、酸素濃化層が効率よく形成されるためであると推測される。 As shown in Table 2, the capacity retention ratios of Examples 4 to 6 with respect to Example 7 were 1.19 in Example 4, 1.15 in Example 5, and 1.09 in Example 6. From the above results, it can be seen that the capacity retention rate is further improved by setting the negative electrode potential at the end of the initial charge to 0.85 V (vs. Li / Li + ) or less. This is because when the potential of the negative electrode is charged to 0.85 V (vs. Li / Li + ) or less, the sulfide solid electrolyte in contact with the negative electrode active material reacts with oxygen gas, and the oxygen concentrated layer This is presumed to be because of the efficient formation.

[界面のTEM観察]
上記の[初回充電工程]における初回充放電が終了した実施例4の負極の、負極活物質と硫化物系固体電解質との界面を、TEM(透過型電子顕微鏡)を用いて観察した。図5Aに負極のTEM画像、図5Bに酸素成分を示すTEM−EDX画像を示す。図5Bに示すように、硫化物系固体電解質の負極活物質との接触面において、当該接触面以外の部分よりも酸素濃度の高い酸素濃化層が形成されていることが確認された。また、硫化物系固体電解質の内部や負極活物質と接触していない面には酸素濃化層が形成していないことが確認された。これは、酸素含有ガス雰囲気下で初回充電工程を行うことで、硫化物系固体電解質の負極活物質との接触面のみが酸素ガスと反応して、酸素濃化層を選択的に形成するためであると推測される。
[TEM observation of interface]
The interface between the negative electrode active material and the sulfide-based solid electrolyte of the negative electrode of Example 4 in which the first charge / discharge in the [first charge step] was completed was observed using a TEM (transmission electron microscope). FIG. 5A shows a TEM image of the negative electrode, and FIG. 5B shows a TEM-EDX image showing the oxygen component. As shown in FIG. 5B, it was confirmed that an oxygen concentrating layer having a higher oxygen concentration than that of the portion other than the contact surface was formed on the contact surface of the sulfide-based solid electrolyte with the negative electrode active material. It was also confirmed that no oxygen-concentrated layer was formed on the inside of the sulfide-based solid electrolyte or on the surface not in contact with the negative electrode active material. This is because by performing the initial charging step in an oxygen-containing gas atmosphere, only the contact surface of the sulfide-based solid electrolyte with the negative electrode active material reacts with oxygen gas to selectively form an oxygen-enriched layer. It is estimated that.

(比較例2)
初回充電工程を行わなかったこと以外は、実施例4と同様に電池を作製し、評価を行った。
(Comparative Example 2)
A battery was prepared and evaluated in the same manner as in Example 4 except that the initial charging step was not performed.

[電池評価]
実施例4、比較例2で得られた硫化物全固体電池について、0.8mA(終止電流条件:0.016mAh)で4.1Vまで充電し、0.5mA(終止電流条件:0.16mAh)で3Vまで放電を行った。その後、3.9Vに充電して電圧を調整し、4.8mAで放電した際の5秒後の電圧降下量から電池抵抗を求めた。結果を図6に示す。
図6に示すように、実施例4の電池抵抗は、乾燥空気雰囲気下での初回充電工程を行っていない比較例2の電池抵抗とほぼ同等の値を示すことが確認された。一般的に、硫化物系固体電解質における酸素含有量を増加させると、電池抵抗が増加する傾向にあるが、酸素含有ガス雰囲気下において、初回充電を行うことにより、酸素濃化層が硫化物系固体電解質の負極活物質との接触面に選択的に形成されるため、硫化物系固体電解質中の酸素含有量が必要最小限となり、電池抵抗の増加を抑制しつつ、容量維持率を向上させることができていると推測される。
[Battery evaluation]
About the sulfide all solid state battery obtained in Example 4 and Comparative Example 2, it was charged to 4.1 V at 0.8 mA (end current condition: 0.016 mAh), and 0.5 mA (end current condition: 0.16 mAh). Was discharged to 3V. Thereafter, the voltage was adjusted by charging to 3.9 V, and the battery resistance was determined from the amount of voltage drop after 5 seconds when discharged at 4.8 mA. The results are shown in FIG.
As shown in FIG. 6, it was confirmed that the battery resistance of Example 4 showed a value almost equivalent to the battery resistance of Comparative Example 2 in which the initial charging step was not performed in a dry air atmosphere. In general, when the oxygen content in a sulfide-based solid electrolyte is increased, battery resistance tends to increase. However, by performing initial charging in an oxygen-containing gas atmosphere, the oxygen-concentrated layer becomes sulfide-based. Since it is selectively formed on the contact surface of the solid electrolyte with the negative electrode active material, the oxygen content in the sulfide-based solid electrolyte is minimized and the capacity retention rate is improved while suppressing an increase in battery resistance. I guess it is possible.

(参考例1)
硫化物系固体電解質としてLiBr及びLiIを含むLiS−P系ガラスセラミックスを1cmの金型に入れて1ton/cm(≒98MPa)でプレスし、固体電解質ペレットを作製した。
SUS集電体と、上記作製した固体電解質ペレットと、Li金属箔と、SUS集電体とをこの順に積層し、評価用電池を作製した。
(Reference Example 1)
A Li 2 S—P 2 S 5 glass ceramic containing LiBr and LiI as a sulfide-based solid electrolyte was placed in a 1 cm 2 mold and pressed at 1 ton / cm 2 (≈98 MPa) to produce a solid electrolyte pellet.
A SUS current collector, the solid electrolyte pellet produced above, a Li metal foil, and a SUS current collector were laminated in this order to produce a battery for evaluation.

(参考例2)
参考例1で作成した評価用電池を乾燥空気雰囲気(露点−75℃)のガラス製容器の中に入れ、負極の電位が0.08V(vs.Li/Li)となるまで充電し、その後電池電圧が3Vとなるまで放電を行った。
その後、ガラス製容器内の雰囲気をアルゴンガスに置換し、その後の分析評価を行った。
(Reference Example 2)
The evaluation battery prepared in Reference Example 1 is placed in a glass container in a dry air atmosphere (dew point −75 ° C.) and charged until the potential of the negative electrode becomes 0.08 V (vs. Li / Li + ). Discharging was performed until the battery voltage reached 3V.
Thereafter, the atmosphere in the glass container was replaced with argon gas, and the subsequent analysis evaluation was performed.

(参考例3)
作成した評価用電池を乾燥空気雰囲気(露点−75℃)のガラス製容器の中に入れ、充放電を行わなかったこと以外は、参考例2と同様に評価用電池を作製し、評価を行った。
(Reference Example 3)
The evaluation battery was prepared and evaluated in the same manner as in Reference Example 2 except that the prepared evaluation battery was placed in a glass container in a dry air atmosphere (dew point -75 ° C.) and charging / discharging was not performed. It was.

(参考例4)
作成した評価用電池をアルゴンガスで満たされたガラス製容器の中に入れ、負極の電位が0.08V(vs.Li/Li)となるまで充電し、その後電池電圧が3Vとなるまで放電を行ったこと以外は、参考例2と同様に評価用電池を作製し、評価を行った。
(Reference Example 4)
The prepared evaluation battery is put in a glass container filled with argon gas, charged until the negative electrode potential becomes 0.08 V (vs. Li / Li + ), and then discharged until the battery voltage becomes 3 V. A battery for evaluation was prepared and evaluated in the same manner as in Reference Example 2 except that.

[電解質の分析]
参考例1〜4で得られた評価用電池の固体電解質のSUS集電体と接していた表面部分について、RBS、PIXE、HFS、NRA分析を行い、硫化物系固体電解質中の硫黄元素に対する酸素含有割合(O/P)を算出した。結果を図7に示す。
図7に示すように、参考例2では参考例1と比較して、硫化物系固体電解質中の酸素含有割合が大幅に増加していることが確認された。一方、参考例3や参考例4では参考例1と比較して、硫化物系固体電解質中の酸素含有割合はわずかしか増加していないことが確認された。これらの結果から、酸素含有ガス雰囲気下において、初回充電を行うことで、硫化物系固体電解質中の酸素含有割合が大幅に増加することが分かった。これは、硫化物系固体電解質を酸素含有ガス雰囲気下で、ある一定の電位以下の状態にすることで、硫化物系固体電解質が酸素ガスと反応して酸素濃化層が効率的に形成されるためであると推測される。
[Analysis of electrolytes]
RBS, PIXE, HFS, NRA analysis was performed on the surface portion of the evaluation battery obtained in Reference Examples 1 to 4 that was in contact with the SUS current collector, and oxygen with respect to elemental sulfur in the sulfide-based solid electrolyte was analyzed. The content ratio (O / P) was calculated. The results are shown in FIG.
As shown in FIG. 7, it was confirmed that the oxygen content ratio in the sulfide-based solid electrolyte was significantly increased in Reference Example 2 as compared with Reference Example 1. On the other hand, in Reference Example 3 and Reference Example 4, it was confirmed that the oxygen content ratio in the sulfide-based solid electrolyte was slightly increased as compared with Reference Example 1. From these results, it was found that the oxygen content ratio in the sulfide-based solid electrolyte was significantly increased by performing the initial charge in an oxygen-containing gas atmosphere. This is because the sulfide-based solid electrolyte reacts with oxygen gas to form an oxygen-concentrated layer efficiently by bringing the sulfide-based solid electrolyte to a state below a certain potential in an oxygen-containing gas atmosphere. This is presumed to be due to this.

11 固体電解質層
12 正極活物質層
13 負極活物質層
14 正極集電体
15 負極集電体
16 正極
17 負極
18 酸素濃化層
21 負極活物質
22 硫化物系固体電解質
100 硫化物全固体電池
200 硫化物全固体電池
300 硫化物全固体電池
DESCRIPTION OF SYMBOLS 11 Solid electrolyte layer 12 Positive electrode active material layer 13 Negative electrode active material layer 14 Positive electrode current collector 15 Negative electrode current collector 16 Positive electrode 17 Negative electrode 18 Oxygen concentration layer 21 Negative electrode active material 22 Sulfide solid electrolyte 100 Sulfide all solid battery 200 Sulfide all-solid battery 300 Sulfide all-solid battery

Claims (4)

硫化物全固体電池を形成する電池形成工程と、
前記電池形成工程後、前記硫化物全固体電池を初回充電する工程と、を有し、
前記初回充電工程時、及び、前記初回充電工程後の少なくともいずれか一方において、前記硫化物全固体電池を酸素含有ガス雰囲気下に曝露することを特徴とする、硫化物全固体電池の製造方法。
A battery forming process for forming a sulfide all solid state battery;
And after the battery formation step, charging the sulfide all solid state battery for the first time,
The method for producing a sulfide all solid state battery, wherein the sulfide all solid state battery is exposed to an oxygen-containing gas atmosphere during at least one of the first charging step and after the first charging step.
前記初回充電工程において、前記硫化物全固体電池を酸素含有ガス雰囲気下、初回充電し、
前記初回充電工程後に、前記硫化物全固体電池を酸素含有ガス雰囲気下に曝露する、請求項1に記載の硫化物全固体電池の製造方法。
In the initial charging step, the sulfide all solid state battery is initially charged in an oxygen-containing gas atmosphere,
The method for producing a sulfide all solid state battery according to claim 1, wherein the sulfide all solid state battery is exposed to an oxygen-containing gas atmosphere after the initial charging step.
前記初回充電工程において、前記硫化物全固体電池を酸素含有ガス雰囲気下、かつ、前記硫化物全固体電池が備える負極の電位が0.85V(vs.Li/Li)以下となる初回充電を行うことを特徴とする、請求項1又は2に記載の硫化物全固体電池の製造方法。 In the initial charging step, initial charging is performed in which the sulfide all solid state battery is in an oxygen-containing gas atmosphere and the negative electrode potential of the sulfide all solid state battery is 0.85 V (vs. Li / Li + ) or less. The method for producing a sulfide all solid state battery according to claim 1, wherein the method is performed. 正極活物質を含有する正極活物質層を有する正極と、負極活物質を含有する負極活物質層を有する負極と、当該正極及び当該負極の間に配置され、固体電解質を含有する固体電解質層とを備え、
少なくとも前記負極活物質層または前記固体電解質層のいずれか一方は、硫化物系固体電解質を含有し、
前記硫化物系固体電解質は、前記負極活物質との接触面に、当該接触面以外の部分よりも酸素濃度の高い酸素濃化層を有することを特徴とする硫化物全固体電池。
A positive electrode having a positive electrode active material layer containing a positive electrode active material, a negative electrode having a negative electrode active material layer containing a negative electrode active material, a solid electrolyte layer disposed between the positive electrode and the negative electrode and containing a solid electrolyte, With
At least one of the negative electrode active material layer or the solid electrolyte layer contains a sulfide-based solid electrolyte,
The sulfide-based solid electrolyte according to claim 1, wherein the sulfide-based solid electrolyte has an oxygen-concentrated layer having a higher oxygen concentration than a portion other than the contact surface on a contact surface with the negative electrode active material.
JP2016202880A 2016-01-12 2016-10-14 Sulfide all-solid battery manufacturing method and sulfide all-solid battery Active JP6421809B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/377,418 US10396394B2 (en) 2016-01-12 2016-12-13 Method for producing sulfide all-solid-state battery and sulfide all-solid-state battery
CN201710013976.6A CN106960980B (en) 2016-01-12 2017-01-10 Method for manufacturing sulfide all-solid-state battery and sulfide all-solid-state battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016003603 2016-01-12
JP2016003603 2016-01-12

Publications (2)

Publication Number Publication Date
JP2017126552A JP2017126552A (en) 2017-07-20
JP6421809B2 true JP6421809B2 (en) 2018-11-14

Family

ID=59364264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016202880A Active JP6421809B2 (en) 2016-01-12 2016-10-14 Sulfide all-solid battery manufacturing method and sulfide all-solid battery

Country Status (2)

Country Link
JP (1) JP6421809B2 (en)
CN (1) CN106960980B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110311168B (en) * 2019-06-19 2022-02-22 浙江锋锂新能源科技有限公司 Sulfide solid electrolyte, preparation method thereof and all-solid-state battery
JP7226302B2 (en) 2019-12-26 2023-02-21 トヨタ自動車株式会社 Solid-state battery and manufacturing method thereof
JP7226371B2 (en) * 2020-02-21 2023-02-21 トヨタ自動車株式会社 All-solid battery
US11271247B1 (en) * 2020-12-15 2022-03-08 WATTRII, Inc. Solid-state battery and method of forming same
CN113506911B (en) * 2021-07-15 2024-03-08 山东威固新能源科技有限公司 Sulfide solid electrolyte material, preparation method and application thereof, and all-solid-state lithium battery

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1064502A (en) * 1996-08-23 1998-03-06 Toray Ind Inc Battery separator and battery
JP3057556B2 (en) * 1996-09-04 2000-06-26 古河電池株式会社 Secondary battery charge / discharge method and battery charge / discharge device used for the same
JP2003217671A (en) * 2002-01-18 2003-07-31 At Battery:Kk Manufacturing method for gastight battery and sealing evaluation method for gastight battery
JP4383781B2 (en) * 2002-08-21 2009-12-16 株式会社東芝 Battery manufacturing method
JP2011086555A (en) * 2009-10-16 2011-04-28 Sumitomo Electric Ind Ltd Nonaqueous electrolyte battery, and manufacturing method thereof
JP5691401B2 (en) * 2010-10-28 2015-04-01 トヨタ自動車株式会社 Sulfide solid electrolyte particles
JP2012160379A (en) * 2011-02-01 2012-08-23 Sumitomo Electric Ind Ltd Nonaqueous electrolyte battery and method for manufacturing the same
JP2013098024A (en) * 2011-11-01 2013-05-20 Toyota Motor Corp Electrode material manufacturing method, and electrode material
JP2013161646A (en) * 2012-02-03 2013-08-19 Sumitomo Electric Ind Ltd Nonaqueous electrolyte battery and manufacturing method therefor, and electric vehicle using the same
CN103904311B (en) * 2012-12-28 2016-05-18 国联汽车动力电池研究院有限责任公司 Lithium-rich manganese-based anode material that a kind of surface is coated compound and preparation method thereof
JP5594379B2 (en) * 2013-01-25 2014-09-24 トヨタ自動車株式会社 Secondary battery positive electrode, secondary battery positive electrode manufacturing method, and all-solid secondary battery

Also Published As

Publication number Publication date
CN106960980B (en) 2019-12-17
CN106960980A (en) 2017-07-18
JP2017126552A (en) 2017-07-20

Similar Documents

Publication Publication Date Title
JP6724571B2 (en) Solid battery
JP6090249B2 (en) Composite active material and method for producing the same
JP6421809B2 (en) Sulfide all-solid battery manufacturing method and sulfide all-solid battery
JP7331443B2 (en) All-solid battery
KR20220127253A (en) Positive electrode active material for all-solid-state lithium-ion battery, electrode and all-solid-state lithium-ion battery
KR102233910B1 (en) Cathode, all-solid-state battery and methods for producing them
WO2013132592A1 (en) Solid sulfide battery system and method for controlling solid sulfide battery
US20220166002A1 (en) Cathode, all-solid-state battery and methods for producing them
KR20230043216A (en) lithium secondary battery
JP6576033B2 (en) Lithium ion secondary battery and method for producing positive electrode active material for lithium ion secondary battery
WO2021132512A1 (en) Positive electrode active material for all solid-state lithium ion secondary battery, manufacturing method therefor, and all solid-state lithium ion secondary battery
JP7226302B2 (en) Solid-state battery and manufacturing method thereof
JP2012146395A (en) Electrode body, manufacturing method for the same, and nonaqueous electrolyte battery
JP7096184B2 (en) Lithium-ion secondary battery and its manufacturing method
JP6411959B2 (en) Positive electrode mixture and all-solid-state lithium battery
JP6965860B2 (en) All solid state battery
JP2017068929A (en) Method for manufacturing all-solid battery
JP2019175568A (en) Lithium ion secondary battery
CN111201638A (en) Electrode plate, electricity storage element, and method for manufacturing electrode plate
US10396394B2 (en) Method for producing sulfide all-solid-state battery and sulfide all-solid-state battery
JP6828240B2 (en) Manufacturing method of all-solid-state battery
JP2020092000A (en) Sulfide solid battery
JP7188224B2 (en) All-solid battery
WO2023223582A1 (en) Battery and production method for battery
WO2023281910A1 (en) Battery and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181001

R151 Written notification of patent or utility model registration

Ref document number: 6421809

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151