JP2005093825A - Flat plate type electrochemical cell - Google Patents

Flat plate type electrochemical cell Download PDF

Info

Publication number
JP2005093825A
JP2005093825A JP2003326772A JP2003326772A JP2005093825A JP 2005093825 A JP2005093825 A JP 2005093825A JP 2003326772 A JP2003326772 A JP 2003326772A JP 2003326772 A JP2003326772 A JP 2003326772A JP 2005093825 A JP2005093825 A JP 2005093825A
Authority
JP
Japan
Prior art keywords
metal
current collector
electrochemical cell
electrode
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003326772A
Other languages
Japanese (ja)
Inventor
Kensuke Tawara
謙介 田原
Shuichi Aizu
修一 会津
Hiroyuki Koseki
裕之 小関
Kazutoshi Takeda
和俊 竹田
Tsugio Sakai
次夫 酒井
Shunji Watanabe
俊二 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SII Micro Parts Ltd
Original Assignee
SII Micro Parts Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SII Micro Parts Ltd filed Critical SII Micro Parts Ltd
Priority to JP2003326772A priority Critical patent/JP2005093825A/en
Publication of JP2005093825A publication Critical patent/JP2005093825A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-reliability flat plate type electrochemical cell which is easily made high in energy density, small-sized and thin and free of a defect in connection with a collector due to deformation and breakage of a lead terminal. <P>SOLUTION: Employed is a structure provided with a protection frame protecting an external lead terminal led out of a sealing body of an exterior body. Namely, an electrochemical cell having an electrochemical cell element which is carried on a metal pyroelectric body and has at least a couple of electrodes functioning as positive or negative electrodes and an ion conductive electrolyte, the bag-shaped exterior body which is formed of a resin film or a laminate film of resin and metal foil and in which the electrochemical cell is stored inside and hermetically sealed, and a couple of metal leads for electrically connecting the couple of electrodes of the electrochemical cell element to an external circuit is in such a structure that tip parts of the metal leads are held or protected by a protection frame part constituted by leading at least of one of the gold leads out of the cell from the sealing part of the exterior body and extending the exterior body from a peripehral edge of the sealing part. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、アルカリ電池やリチウム電池またはリチウムイオン電池等の化学電池や電気二重層キャパシタ等の電気化学セルに関するものであり、特に電気化学セルと外部回路とを電気的に接続するための外部リード端子及びその周辺部の構造に関するものである。   The present invention relates to a chemical battery such as an alkaline battery, a lithium battery or a lithium ion battery, and an electrochemical cell such as an electric double layer capacitor, and in particular, an external lead for electrically connecting the electrochemical cell and an external circuit. The present invention relates to the structure of the terminal and its peripheral part.

近年、携帯電子機器の小型高密度実装化に対応し、それらに用いられる電源素子としての電池や電気二重層キャパシタ等の電気化学セルに対しても小型・薄型・軽量且つ高エネルギー密度化が求められている。この様な電気化学セルの小型・薄型・軽量化を実現する方法として、樹脂フィルムまたは金属箔と樹脂フィルムとのラミネートフィルムからなる袋状の外装体内に、発電要素または蓄電要素からなる電気化学セル素子を収納し、外装体の周縁部の開口部をヒートシールまたは接着剤等により密封封止した構造の平板型電気化学セルが提案され、一部実用化されている。   In recent years, in response to the miniaturization and high-density mounting of portable electronic devices, there has been a demand for small, thin, light, and high energy density for electrochemical cells such as batteries and electric double layer capacitors as power supply elements used in them. It has been. As a method for realizing a reduction in size, thickness and weight of such an electrochemical cell, an electrochemical cell comprising a power generation element or a storage element in a bag-like outer package made of a resin film or a laminate film of a metal foil and a resin film. A flat plate electrochemical cell having a structure in which an element is housed and an opening at a peripheral edge of an outer package is hermetically sealed with heat seal or an adhesive has been proposed and partially put into practical use.

従来、この種の平板型電気化学セルは図6に示す構成で作られていた。正極1と負極2からなる電極は、それぞれ電極活物質と導電性を付与するための炭素等の導電剤と樹脂等の結着剤からなり、金属製の箔、ネット、エキスパンドメタルやパンチドメタルまたは炭素等の導電性フィラーを含有する導電性高分子フィルム等からなる正極集電体3、負極金属集電体4上に載置もしく一体に積層形成されている。平板型電気化学セル組み立て後、セル内の電極と外部回路を電気的に接続するために、正極集電体及び負極金属集電体には、それぞれ正極金属リード5、負極金属リード6が溶接またはハトメによるカシメ等により、接続されている(例えば、特許文献1及び2参照)。この一対の電極を高分子多孔質フィルムや不織布もしくは抄紙等からなるセパレータ7を間に介して積層したもの、またはこの様に積層した帯状の一対の電極とセパレータを偏平状もしくは円筒状に捲回しプレスして平板状にした電極体8が外装体9に収納される。この電極体8には外装体9に収納後または収納前にイオン導電性の電解液が含浸吸蔵され、電気化学セルが構成されている。電解質としてゲル状電解質、高分子固体電解質や無機固体電解質等の固体状電解質が用いられる場合には、これらの固体状電解質が単独もしくはセパレータと併用して用いられる。外装体9は、樹脂フィルムまたは樹脂フィルム9a、9cと金属箔9bとのラミネートフィルムからなり、このフィルムを袋状に重ねた内側に、上記の電極体及び電解質からなる電気化学セル素子が収納され、周縁部がヒートシール、圧着または接着剤等により密封封止される。この電極体の収納に際し、金属製の外部リード端子は、外装体の周縁部の封止部を横断し一端が引き出された状態で収納され、封止される(例えば、特許文献2参照)。
特開平9−283100号公報(第1−4頁、図2、3) 特開平11−345599号公報(第2−5頁、図1)
Conventionally, this type of flat plate electrochemical cell has been made with the configuration shown in FIG. The electrode composed of the positive electrode 1 and the negative electrode 2 is composed of an electrode active material, a conductive agent such as carbon for imparting conductivity, and a binder such as a resin, and is made of metal foil, net, expanded metal or punched metal. Alternatively, they are placed on or integrally laminated on the positive electrode current collector 3 and the negative electrode metal current collector 4 made of a conductive polymer film containing a conductive filler such as carbon. After the flat electrochemical cell is assembled, the positive electrode metal lead 5 and the negative electrode metal lead 6 are welded to the positive electrode current collector and the negative electrode metal current collector, respectively, in order to electrically connect the electrodes in the cell and the external circuit. They are connected by caulking or the like by eyelets (see, for example, Patent Documents 1 and 2). A pair of electrodes laminated with a separator 7 made of a polymer porous film, nonwoven fabric or papermaking, or a pair of striped electrodes and separators laminated in this manner are wound into a flat shape or a cylindrical shape. The electrode body 8 that has been pressed into a flat plate shape is accommodated in the exterior body 9. The electrode body 8 is impregnated and occluded with an ionic conductive electrolyte after or before being housed in the exterior body 9 to constitute an electrochemical cell. When a solid electrolyte such as a gel electrolyte, a polymer solid electrolyte, or an inorganic solid electrolyte is used as the electrolyte, these solid electrolytes are used alone or in combination with a separator. The exterior body 9 is made of a resin film or a laminate film of the resin films 9a and 9c and the metal foil 9b, and an electrochemical cell element made of the electrode body and the electrolyte is housed inside the bag in a bag shape. The peripheral portion is hermetically sealed by heat sealing, pressure bonding, adhesive, or the like. When the electrode body is housed, the metal external lead terminal is housed and sealed in a state where one end is drawn out across the sealing portion at the peripheral edge of the exterior body (see, for example, Patent Document 2).
JP-A-9-283100 (page 1-4, FIGS. 2, 3) Japanese Patent Application Laid-Open No. 11-345599 (page 2-5, FIG. 1)

従来の平板型電気化学セルにおいては、外装体内に収納される電極体(電気化学セル素子)と外部回路とを電気的に接続する外部リード端子は、一対の金属リードが外装体の周縁部の封止部から引き出されただけの構造であるため、セルの組み立て後の検査工程や搬送、梱包、機器への組み込み、実装等の過程でリード部に人手や冶工具、搬送ベルト、測定機端子、容器、基盤上部品等が当たりリード部が形状変形し、折れ曲がったり、甚だしい場合には破損する等により機器への組み込み不能やリード不良を発生する等の問題があった。特に、平板型電気化学セルにおいてはセル本体同様に外部リード端子も薄くする必要があり、薄板もしくは箔状の金属を用いるため、強度が不足し上記のような検査工程や搬送、梱包、機器への組み込み、実装等の過程での形状変形や破損発生の問題が大きく、更に、機器への実装後も振動や衝撃等でリード部に切れや破損が生じリード不良を発生しやすい等の問題があった。   In a conventional flat type electrochemical cell, an external lead terminal that electrically connects an electrode body (electrochemical cell element) housed in an exterior body and an external circuit has a pair of metal leads at the periphery of the exterior body. Because it is a structure that is just pulled out from the sealing part, it is necessary to place a manual, tool, conveyor belt, measuring machine terminal in the lead part during the inspection process after cell assembly, transportation, packaging, installation in equipment, mounting, etc. However, there are problems that the lead part is deformed, bent or bent when it comes into contact with a container, parts on the substrate, etc., and is damaged due to damage or the like. In particular, in the flat type electrochemical cell, it is necessary to make the external lead terminal thin as well as the cell body, and since it uses a thin plate or foil-like metal, the strength is insufficient and the above inspection process, transportation, packing, equipment etc. There is a large problem of shape deformation and breakage in the process of mounting, mounting, etc., and even after mounting on equipment, the lead part is broken or damaged due to vibration or impact, etc. there were.

また、外部リード端子として、集電体とは別に板状、棒状または線状の金属製のリード部材を準備し、これを(I)集電体の電極材が配設されていない部分に溶接、固着または接着する。または(II)電極材の配設された部分にハトメ等を貫通させてカシメる等により接続固定していた。これらの方法では、集電体と金属リード端子を別々に製造できるので、集電体への電極の一体形成等、それぞれの部品製造自体は効率的であるが、(A)リード端子と集電体とを溶接等により接続する余分な工程が必要となり製造工程全体としての効率は低い、(B)製造された平板型電気化学セルの厚さが、リード端子及びハトメ等の厚さ分と接続部の反りや歪により厚くなり、小型・薄型化及び高エネルギー密度化を実現する上で不利、(C)リード端子と集電体の接続部の接触不良やリード端子の集電体からの外れ等に起因する不良が発生する等の問題があった。   Also, as the external lead terminal, a plate-like, rod-like or wire-like metal lead member is prepared separately from the current collector, and this is welded to the part where the electrode material of the current collector is not disposed (I) , Stick or glue. Alternatively, (II) connection and fixing are performed by, for example, caulking by passing a grommet or the like through a portion where the electrode material is disposed. In these methods, since the current collector and the metal lead terminal can be manufactured separately, each part manufacturing itself, such as the integral formation of the electrode on the current collector, is efficient, but (A) the lead terminal and the current collector The extra manufacturing process is required to connect the body by welding, etc., and the efficiency of the entire manufacturing process is low. (B) The thickness of the manufactured flat plate electrochemical cell is connected to the thickness of lead terminals and eyelets, etc. It becomes thick due to warping and distortion of the part, which is disadvantageous in realizing a small size, thinning, and high energy density. (C) Contact failure between the lead terminal and the current collector and the lead terminal coming off the current collector There has been a problem such as the occurrence of defects due to the above.

本発明の平板型電気化学セルは上記の様な問題点を解決するため、外装体の封止部から引き出される外部リード端子を保護する保護枠を設ける構造とした。即ち、金属集電体と、前記金属集電体に担持され正極又は負極として機能する一対の電極と、イオン導電性の電解質と、金属集電体と電極と電解質とを内部に収納し密封封止する外装体と、電極と外部回路とを電気的に接続する金属リードとを有し、金属リードが外装体と保護枠部によって保持される構造となっている。   In order to solve the above-described problems, the flat plate electrochemical cell of the present invention has a structure in which a protective frame for protecting the external lead terminal drawn out from the sealing portion of the outer package is provided. That is, a metal current collector, a pair of electrodes supported on the metal current collector and functioning as a positive electrode or a negative electrode, an ion conductive electrolyte, a metal current collector, an electrode, and an electrolyte are housed inside and hermetically sealed. An exterior body to be stopped and a metal lead for electrically connecting the electrode and the external circuit are provided, and the metal lead is held by the exterior body and the protective frame portion.

この構造により、外部リード端子となる金属リードの露出部の周囲が、外装体の封止部と保護枠部により囲まれるため、金属リード及び金属集電体の厚さを薄くしても十分な機械的強度と電気的接続リードが得られ、金属リードの形状変形、折れ曲がり、切れや破れ等による不良発生が起こらず、より薄型で信頼性の高い平板型電気化学セルが容易に得られる。   With this structure, the periphery of the exposed portion of the metal lead serving as the external lead terminal is surrounded by the sealing portion and the protective frame portion of the exterior body, so it is sufficient even if the thickness of the metal lead and the metal current collector is reduced. Mechanical strength and electrical connection leads can be obtained, and defects due to deformation, bending, breakage, breakage, etc. of metal leads do not occur, and a flat and thin flat electrochemical cell can be easily obtained.

また、電気化学セルの組み立て工程、および電気化学セルの使用機器への実装工程において、保護枠部及び外装体の封止部から引き出された金属リードの先端部が、外装体の封止部または封止部周辺の保護枠部または保護枠の内側線部付近の所定部で切断され、除去された構造としたことを特徴とする。これにより、使用機器への組み込み実装の直前まで金属リードが保護枠部で保護され、固定されるので、上記のセルの組み立て工程や組み立て後の検査工程、搬送、梱包、輸送、機器への組み込み、実装等の過程での金属リードの形状変形や破損等による不良発生が起こらず、より小型且つ薄型で信頼性の高い平板型電気化学セルがより容易に得られるという利点がある。   Further, in the assembly process of the electrochemical cell and the mounting process of the electrochemical cell to the device used, the leading end of the metal lead drawn out from the protective frame part and the sealing part of the exterior body is the sealing part of the exterior body or The structure is characterized in that it is cut and removed at a protective frame portion around the sealing portion or a predetermined portion near the inner line portion of the protective frame. As a result, the metal lead is protected and fixed by the protective frame until immediately before mounting and mounting on the equipment to be used, so the above-mentioned cell assembly process and post-assembly inspection process, transport, packing, transportation, and mounting to the equipment There is an advantage that a flat electrochemical cell that is smaller, thin, and highly reliable can be obtained more easily without occurrence of defects due to deformation or breakage of the metal lead in the process of mounting or the like.

更に、集電体として金属を用い、この金属集電体の一部を延長し、これを外装体の封止部から直接引き出したものを外部リード端子とする構成とした。即ち、金属集電体と、金属集電体に担持され正極又は負極として機能する一対の電極と、イオン導電性の電解質と、金属集電体と電極と電解質とを内部に収納し密封封止する外装体を有し、金属集電体が外装体と保護枠部によって保持されており金属集電体により外部回路と電気的に接続することを特徴とする平板型電気化学セルである。
金属リードの厚さは、集電体と同じ厚さのままでもよく、封止部及び外装体外部のリード部が厚く又は薄くなっていてもよい。この構成とすることにより、リード端子と集電体を接続する工程が不要となり、(A)〜(B)の問題が解決され、小型・薄型化が容易で、信頼性の高い平板型電気化学セルの製造が容易となる。
Further, a metal was used as the current collector, and a part of the metal current collector was extended and the one directly drawn out from the sealing portion of the outer package was used as an external lead terminal. That is, a metal current collector, a pair of electrodes supported on the metal current collector and functioning as a positive electrode or a negative electrode, an ion conductive electrolyte, a metal current collector, an electrode, and an electrolyte are housed and hermetically sealed. And a metal current collector that is held by the exterior body and a protective frame, and is electrically connected to an external circuit by the metal current collector.
The thickness of the metal lead may be the same as that of the current collector, and the lead part outside the sealing part and the outer package may be thick or thin. With this configuration, the step of connecting the lead terminal and the current collector becomes unnecessary, the problems (A) to (B) are solved, and it is easy to reduce the size and thickness, and the highly reliable flat plate electrochemical The cell can be easily manufactured.

本発明により、外部リード端子となる金属リードの露出部の周囲が、外装体フィルムの封止部と封止部が延長された保護枠部により囲まれる構造となり、金属リード及び金属集電体の厚さを薄くしても十分な機械的強度と電気的接続リードが得られ、金属リードの形状変形、折れ曲がり、切れや破れ等による不良発生が起こらず、より薄型で信頼性の高い平板型電気化学セルが容易に得られる。   According to the present invention, the periphery of the exposed portion of the metal lead serving as the external lead terminal is surrounded by the sealing portion of the exterior body film and the protective frame portion in which the sealing portion is extended. Even if the thickness is reduced, sufficient mechanical strength and electrical connection leads can be obtained, and metal leads can be deformed, bent, broken, broken, etc., and not flattened. A chemical cell is easily obtained.

また、電気化学セルの組み立て工程、および電気化学セルの使用機器への実装工程において、保護枠部及び外装体の封止部から引き出された金属リードの先端部が、外装体の封止部または封止部周辺の保護枠部または保護枠の内側線部付近の所定部で切断され、除去された構造とした。これにより、使用機器への組み込み実装の直前まで金属リードが保護枠部で保護され、固定されるので、上記のセルの組み立て工程や組み立て後の検査工程、搬送、梱包、輸送、機器への組み込み、実装等の過程での金属リードの形状変形や破損等による不良発生が起こらず、より小型且つ薄型で信頼性の高い平板型電気化学セルがより容易に得られる。   Further, in the assembly process of the electrochemical cell and the mounting process of the electrochemical cell to the device used, the leading end of the metal lead drawn out from the protective frame part and the sealing part of the exterior body is the sealing part of the exterior body or The structure was cut and removed at a protective frame portion around the sealing portion or a predetermined portion near the inner line portion of the protective frame. As a result, the metal lead is protected and fixed by the protective frame until immediately before mounting and mounting on the equipment to be used, so the above-mentioned cell assembly process and post-assembly inspection process, transport, packing, transportation, and mounting to the equipment In addition, there is no occurrence of defects due to deformation or breakage of the metal lead in the process of mounting or the like, and a smaller, thinner and more reliable flat plate electrochemical cell can be obtained more easily.

更に、金属集電体の一部を延長し、これを外装体の封止部から直接引き出したものを外部リード端子とする構成とした。これにより、(A)金属リードと集電体とを溶接等により接続する余分な工程が不要となるので、生産効率が高く、(B)リード端子及びハトメ等の厚さや接続部の反りや歪によりセルの厚さの増加が無く、セルの小型・薄型化が容易で、より高エネルギー密度で、(C)金属リードと集電体の接続部の接触不良や金属リード部の外れ等に起因する不良の発生を低減されることが出来、より信頼性の高い平板型電気化学セルを得ることが出来る等々優れた効果を有する。   Further, a part of the metal current collector is extended, and the one directly drawn out from the sealing portion of the outer package is used as the external lead terminal. This eliminates the need for (A) an extra step of connecting the metal lead and the current collector by welding or the like, so that the production efficiency is high, and (B) the thickness of the lead terminal and the eyelet and the warp or distortion of the connecting portion. Due to this, there is no increase in cell thickness, the cell can be made small and thin easily, and it has a higher energy density. (C) Due to poor contact between the metal lead and current collector connection or disconnection of the metal lead. The occurrence of such defects can be reduced, and a more reliable flat plate electrochemical cell can be obtained.

以下、本発明を実施するための最良の形態を図面に基づいて説明する。   Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.

図1は本発明を用いた平板型電気化学セルの断面図である。正極1と負極2からなる電極は、それぞれ電極活物質と必要により導電性を付与するための炭素等の導電剤と樹脂等の結着剤を混合した混合物からなり、金属製の箔、板、ネット、エキスパンドメタルやパンチドメタル等からなる正極金属集電体3、負極金属集電体4上に載置もしくは一体に積層形成されている。この正極金属集電体3と負極金属集電体4には、セル内電極と外部回路とを電気的に接続するための正極金属リード5と負極金属リード6をそれぞれ設けている。この金属リードは、金属集電体への電極層の形成に際し、電極を形成しない金属集電体の露出部分を残し、そこに予め所定のリード形状に打ち抜きプレス等により作製した金属の箔、板、ネットまたは線等からなるリードを溶接等により固着して形成される。   FIG. 1 is a cross-sectional view of a flat plate electrochemical cell using the present invention. The electrodes composed of the positive electrode 1 and the negative electrode 2 are each composed of a mixture of an electrode active material and a conductive agent such as carbon and a binder such as a resin for imparting conductivity, if necessary, a metal foil, a plate, The positive electrode metal current collector 3 and negative electrode metal current collector 4 made of a net, an expanded metal, a punched metal, or the like are placed or integrally laminated. The positive electrode metal current collector 3 and the negative electrode metal current collector 4 are respectively provided with a positive electrode metal lead 5 and a negative electrode metal lead 6 for electrically connecting the in-cell electrode and an external circuit. This metal lead leaves an exposed portion of a metal current collector that does not form an electrode when forming an electrode layer on the metal current collector, and is a metal foil or plate prepared by punching in a predetermined lead shape in advance there. A lead made of a net or wire is fixed by welding or the like.

金属集電体及び金属リードの材質としては、後述の電解質及び電極物質に対し化学的に安定で、充電や過放電等に対し電気化学的に安定で、耐食性のあるものであればよく、アルミニウム、銅、及びニッケル、ステンレス等がよい。正極1と負極2の間にセパレータ7を介して積層した帯状の積層体を偏平状または円筒状に捲回し、プレスして平板状に成形して電極体8が得られる。この電極体8は、必要により所定の温度で乾燥処理され、外装体9に収納される。外装体9は、樹脂フィルムまたは樹脂と金属箔とのラミネートフィルムからなり、このフィルムを袋状に重ねた内側に、上記の電極体8及び後述の電解質が収納され金属リードが外装体9と保護枠部11に挟まれるように位置決めする。外装体フィルムの周縁部がヒートシール、圧着または接着剤による接着等により密封封止される。この電極体の収納に際し、正極金属リード5、負極金属リード6は、外装体9の周縁部の封止部12を横断し、一端が引き出された状態で収納され封止される。図4、図5は本発明を用いた平板型電気化学セルの平面図である。外装体周縁の封止部12の金属リードが引き出される側に、保護枠部11を設けておき、外装体の周縁部の封止に際し、封止部から引き出された金属リードの先端がこの保護枠部の上下のフィルム間に挟まれ保護または保持される。保護枠部の外装体フィルムによる金属リード先端の保護は、上下の保護枠部フィルム間に挟んで保護するだけでもよいが、金属リードの先端部を保護枠部のフィルムに接着固定することにより金属リードのずれや変形、破損がより確実に防止されるので、接着固定することが好ましい。また、保護枠部のフィルムは上面もしくは下面だけでもよいが、上下の両面の方がより確実に保護されるので好ましい。この接着固定部13は、封止部と同様に熱圧着(ヒートシール)や圧着または接着剤による接着等が可能であるが、外装体フィルムの内側の樹脂としてポリオレフィン樹脂等の熱可塑性樹脂を用いた場合には、封止部のヒートシールと同様に熱圧着により接着固定が可能であり、効率が良く、高い接着強度が得られるので、特に好ましい。
使用機器内にスペースがあり、平板電気化学セルが保護枠付きのまま使用機器に実装可能であれば、封止部12と保護枠部11の間の金属リードを外部リード端子として用いることにより、保護枠付きのまま用いることが出来る。また、使用機器の実装スペースの制約から保護枠が許容されない場合には、セルの上記組み立て工程内から検査、梱包、出荷後の使用機器への実装組み込みの直前まで又は組み込み後の適当な時機において、保護枠部11を切断除去することにより、セルの製造から機器への組み込みまでの間での金属リードへの機械的損傷を最小にし、且つ、保護枠部11の無いより小型のセルとして機器への実装、搭載が可能である。この保護枠部11の除去は、図4及び5に示すように、保護枠部11及び金属リードの先端部を、切断線14で、打ち抜きプレスやカッティング等により切断することにより可能である。また、保護枠部11の形状は矩形、長円形、半円、半長円等任意の多角形や円形やその他の形状が可能である。
The material of the metal current collector and the metal lead may be any material that is chemically stable with respect to the electrolyte and electrode material described later, electrochemically stable with respect to charging and overdischarge, and has corrosion resistance. Copper, nickel, stainless steel and the like are preferable. A belt-like laminate laminated between the positive electrode 1 and the negative electrode 2 via the separator 7 is wound into a flat shape or a cylindrical shape, and pressed to be formed into a flat plate shape, whereby an electrode body 8 is obtained. The electrode body 8 is dried at a predetermined temperature if necessary, and is stored in the exterior body 9. The exterior body 9 is made of a resin film or a laminate film of a resin and a metal foil, and the electrode body 8 and an electrolyte described later are housed inside the film in a bag shape so that the metal lead protects the exterior body 9 Positioning is performed so as to be sandwiched between the frame portions 11. The peripheral part of the exterior body film is hermetically sealed by heat sealing, pressure bonding, bonding with an adhesive, or the like. When the electrode body is stored, the positive electrode metal lead 5 and the negative electrode metal lead 6 are stored and sealed in a state where one end is pulled out across the sealing portion 12 at the peripheral edge of the exterior body 9. 4 and 5 are plan views of a flat plate electrochemical cell using the present invention. A protective frame 11 is provided on the outer peripheral edge of the sealing portion 12 on the side from which the metal lead is drawn, and the tip of the metal lead drawn from the sealing portion is protected when the outer peripheral edge of the outer body is sealed. It is sandwiched between the upper and lower films of the frame portion to be protected or held. Protection of the metal lead tip by the outer frame film of the protective frame part may be protected by sandwiching it between the upper and lower protective frame part films, but the metal lead is adhered and fixed to the film of the protective frame part. Adhesive fixing is preferable because lead misalignment, deformation, and breakage are more reliably prevented. Moreover, although the film of a protective frame part may be only an upper surface or a lower surface, since both upper and lower surfaces are protected more reliably, it is preferable. This adhesive fixing part 13 can be thermocompression-bonded (heat-seal), pressure-bonded, or bonded by an adhesive as with the sealing part, but a thermoplastic resin such as a polyolefin resin is used as the resin inside the exterior body film. In this case, it is particularly preferable because it can be bonded and fixed by thermocompression bonding in the same manner as the heat seal of the sealing portion, is efficient, and high adhesive strength can be obtained.
If there is a space in the equipment used and the plate electrochemical cell can be mounted on the equipment used with a protective frame, by using the metal lead between the sealing part 12 and the protective frame part 11 as an external lead terminal, Can be used with a protective frame. Also, if the protective frame is not allowed due to restrictions on the mounting space of the equipment used, from the above assembly process of the cell to immediately before mounting / installing into the equipment after inspection, packing, and shipping, or at an appropriate time after installation. By cutting and removing the protective frame 11, the mechanical damage to the metal lead is minimized between the manufacturing of the cell and the incorporation into the device, and the device is a smaller cell without the protective frame 11. Can be mounted on and mounted on. As shown in FIGS. 4 and 5, the protection frame portion 11 can be removed by cutting the protection frame portion 11 and the tip of the metal lead with a cutting line 14 by a punching press or cutting. The shape of the protective frame 11 can be any polygonal shape such as a rectangle, an oval, a semicircle, and a semi-oval, a circle, and other shapes.

保護枠部11の設置は、図5に示すように、外装体周縁の封止部の少なくとも金属リードを引き出す辺に設ける必要があり、これにより、セルの組み立て途上から使用機器への実装までの間、金属リードを保護できる構造となる。更に、図4に示すように、外装体封止部周縁の全周囲4辺または3辺に設けることにより、小型のセル等においても保護枠部のサイズと強度を十分にとり易い構造となり金属リードの保護がより完全となる。また、一対の金属リードの引き出しは、必ずしも封止部の同一辺である必要は無く、一方のリードと他方のリードが別の封止部辺から引き出されても良い。この場合には、保護枠部は少なくとも一対の各リードの各々に設置されることが好ましい。また、リードの一方が、セル本体の背部や腹部に設けたリード窓に設置され、他の一方のみが封止部から引き出される構造も可能であり、本発明に含まれる。   As shown in FIG. 5, it is necessary to provide the protective frame portion 11 at least on the side where the metal lead is pulled out of the sealing portion on the outer periphery of the exterior body. In the meantime, the metal lead can be protected. Furthermore, as shown in FIG. 4, by providing it on all four sides or three sides of the periphery of the outer package sealing part, the structure and the strength of the protective frame part can be easily obtained even in a small cell or the like. Protection is more complete. The lead of the pair of metal leads does not necessarily have to be on the same side of the sealing portion, and one lead and the other lead may be drawn from the other sealing portion side. In this case, it is preferable that the protective frame portion be installed on each of at least a pair of leads. In addition, a structure in which one of the leads is installed in a lead window provided on the back or abdomen of the cell body and only the other one is pulled out from the sealing portion is also possible and included in the present invention.

図2は、本発明を用いた平板型電気化学セルの断面図である。電極体8は、正極1と負極2からなる電極が、正極金属集電体3と負極金属集電体4にシート状に一体に積層形成され、この正極負極間にセパレータ7を配して平板状に積層されている。図2は、電極と金属集電体とセパレータの積層体が、平板状に積層されるのみで捲回されていない例であり、特にセルの厚さが1mm以下の薄型電気化学セルの場合に適する。この様な一対の電極−金属集電体とセパレータの積層体をユニットとして複数個積層し同極同士を接続した多積層電極セルとすることも出来る。   FIG. 2 is a cross-sectional view of a flat plate electrochemical cell using the present invention. The electrode body 8 is composed of a positive electrode 1 and a negative electrode 2 that are integrally laminated in the form of a sheet on a positive electrode metal current collector 3 and a negative electrode metal current collector 4. Are layered. FIG. 2 is an example in which a laminate of an electrode, a metal current collector, and a separator is merely laminated in a flat plate shape and is not wound, particularly in the case of a thin electrochemical cell having a cell thickness of 1 mm or less. Suitable. A multi-layer electrode cell in which a plurality of such stacked bodies of a pair of electrode-metal current collector and separator are stacked as a unit and the same polarity is connected can also be obtained.

図2では、一対の金属集電体の一部が延長され外装体の封止部からセル外部に引き出されており金属リードとして用いられる。即ち、正極金属集電体3、負極金属集電体4は、セル内電極と外部回路とを電気的に接続するための外部リード端子となるように、金属集電体への電極層の積層形成に際し電極を形成しない露出部分を残し、この露出部を所定のリード形状に打ち抜きプレスやカッティング等により形成し外部リード端子として用いている。   In FIG. 2, a part of the pair of metal current collectors is extended and drawn out of the cell from the sealing portion of the exterior body, and used as a metal lead. That is, the positive electrode metal current collector 3 and the negative electrode metal current collector 4 are stacked on the metal current collector so as to serve as external lead terminals for electrically connecting the in-cell electrode and the external circuit. At the time of formation, an exposed portion where an electrode is not formed is left, and this exposed portion is formed into a predetermined lead shape by punching or cutting, and used as an external lead terminal.

金属リード部の厚さは、金属集電体の電極層形成部と同じにするほうが、製造工程が容易であり好ましいが、予め電極層形成部とリード形成部の厚さを変えた金属箔もしくは板を用いることにより、金属集電体部と金属リード部の厚さを異なるようにすることも可能である。特に、厚さ1mm以下の様な薄型の平板型電気化学セルの場合には、集電体の厚さを数μm〜数十μmの薄さにする必要があり、セルの製造工程や使用時に金属リード部の切れや破れ等の不良や故障が発生しないように、金属リード部の十分な機械的強度を得るため、金属リード部の厚さを集電体部(電極形成部)よりも厚くすることが有効である。その結果、特にセル本体の厚さを増やすことなく金属リード部の強度を高めることが出来る効果を有する。また、平板型電気化学セルとしてリチウムイオン電池や電気二重層キャパシタ等を構成する場合には、非水電解質中での充電時の耐食性が高い材料として、集電体に一般に用いられているアルミニウム箔や銅箔のような機械的強度の低い金属を用いる場合には、特に有効である。   The thickness of the metal lead part is preferably the same as that of the electrode layer forming part of the metal current collector because the manufacturing process is easier, but the thickness of the electrode layer forming part and the lead forming part is changed in advance. By using a plate, the thickness of the metal current collector portion and the metal lead portion can be made different. In particular, in the case of a thin flat plate type electrochemical cell having a thickness of 1 mm or less, it is necessary to reduce the thickness of the current collector to several μm to several tens of μm. The thickness of the metal lead part is thicker than the current collector part (electrode forming part) in order to obtain sufficient mechanical strength of the metal lead part so that the metal lead part is not broken or broken, and the failure does not occur. It is effective to do. As a result, the strength of the metal lead portion can be increased without increasing the thickness of the cell body. In addition, when a lithium ion battery, an electric double layer capacitor or the like is configured as a flat electrochemical cell, an aluminum foil generally used for a current collector as a material having high corrosion resistance during charging in a nonaqueous electrolyte. This is particularly effective when a metal with low mechanical strength such as copper foil is used.

この電極体8と電解質が外装体9に収納され、外装体周縁部がヒートシール、圧着または接着剤による接着等により密封封止されている。この電極体の収納に際し、金属リードは、外装体9の周縁部の封止部を横断し一端が引き出された状態で収納され、封止される。同様に、この外装体には、予め外装体周縁の封止部となる部分の金属リードが引き出される側に、予め外装体フィルムの端部を外枠状に延長した保護枠部を設けておき、外装体の周縁部の封止に際し、封止部から引き出された金属リードの先端がこの保護枠部のフィルム間に挟まれ保持される。この保持において、金属リードを保護枠部のフィルムと接着固定することにより、金属リードの形状変形、折れ曲がり、切れや破れ等による不良発生がより確実に抑制されるのでより好ましい。保護枠部の設置は、図5に示すように、外装体周縁の封止部の少なくとも金属リードを引き出す辺に設ける必要があり、これにより、セルの組み立て途上から使用機器への実装までの間、金属リードを保護できる構造となる。また、図4に示すように、外装体封止部周縁の3辺または全周囲4辺に設けることにより、小型、薄型のセル等においても保護枠部のサイズと強度を十分にとり易い構造となり金属リードの保護がより完全となる。   The electrode body 8 and the electrolyte are housed in the exterior body 9, and the outer periphery of the exterior body is hermetically sealed by heat sealing, pressure bonding, adhesion with an adhesive, or the like. When the electrode body is housed, the metal lead is housed and sealed in a state where one end is drawn out across the sealing portion at the peripheral edge of the exterior body 9. Similarly, this exterior body is previously provided with a protective frame portion in which the end portion of the exterior body film is extended in the form of an outer frame on the side where the metal lead of the portion that becomes the sealing portion on the periphery of the exterior body is drawn out in advance. When sealing the peripheral portion of the exterior body, the tip of the metal lead drawn out from the sealing portion is held between the films of the protective frame portion. In this holding, it is more preferable that the metal lead is bonded and fixed to the film of the protective frame portion, so that the occurrence of defects due to deformation, bending, breakage, tearing, or the like of the metal lead is more reliably suppressed. As shown in FIG. 5, it is necessary to provide the protective frame part at least on the side where the metal lead is pulled out of the sealing part on the outer periphery of the outer package. The metal lead can be protected. Also, as shown in FIG. 4, by providing it on three sides or all four sides of the periphery of the outer package sealing part, it becomes a structure that can easily take the size and strength of the protective frame part even in small and thin cells, etc. Lead protection is more complete.

以下、実施例について図面を参照して説明する。
(実施例1)
本実施例は、本発明による平板型電気化学セルとして、図1及び図5の基本構造による電気二重層キャパシタを構成した例である。
Hereinafter, embodiments will be described with reference to the drawings.
(Example 1)
In this example, an electric double layer capacitor having the basic structure shown in FIGS. 1 and 5 is configured as a flat plate electrochemical cell according to the present invention.

活性炭粉末と導電性付与剤としてカーボンブラックを結着剤としてポリテトラフロロエチレン(PTFE)を混合混錬し、圧延成形して厚さ100μm、幅50mmの帯状電極シートを作製した。この電極シートを炭素を導電性フィラーとする導電性接着剤により厚さ40μmの硬質アルミニウム箔からなる正極金属集電体3、負極金属集電体4の片面に、サイドに28mmづつの露出部分を残して接着し積層一体化した後、露出部に厚さ70μm、幅4mmのアルミニウム板からなる金属リードを超音波溶接により接合した。次に電極積層部が幅50mm、長さ90mmになるように切断して、正極1と負極2からなる一対の電極と正極金属集電体3、負極金属集電体4の積層体を作製した。この一対の電極と集電体の積層体を、電極形成面を対向させて、間にセパレータを介して積層したものを幅28mm、厚さ2mmの平板状の巻芯を用いて捲回した後、荷重4kg/cm2でプレスして電極体8とした。 A strip electrode sheet having a thickness of 100 μm and a width of 50 mm was prepared by mixing and kneading polytetrafluoroethylene (PTFE) using activated carbon powder and carbon black as a conductivity-imparting agent and binder. This electrode sheet is exposed to a 28 mm side exposed portion on one side of a positive electrode metal current collector 3 and a negative electrode metal current collector 4 made of a hard aluminum foil having a thickness of 40 μm by a conductive adhesive using carbon as a conductive filler. After being adhered and laminated and integrated, a metal lead made of an aluminum plate having a thickness of 70 μm and a width of 4 mm was joined to the exposed portion by ultrasonic welding. Next, the electrode laminate was cut to have a width of 50 mm and a length of 90 mm to produce a laminate of a pair of electrodes consisting of positive electrode 1 and negative electrode 2, positive electrode metal current collector 3, and negative electrode metal current collector 4. . After winding the laminated body of the pair of electrodes and the current collector with the electrode formation surfaces facing each other with a separator interposed therebetween, using a flat core having a width of 28 mm and a thickness of 2 mm The electrode body 8 was pressed with a load of 4 kg / cm 2 .

外装体9はアルミニウム箔の外側面にナイロン、内側面にポリプロピレンを接着ラミネートした厚さ約110μmの絶縁性ラミネートフィルムを用い、ポリプロピレン層を内側面として袋状に折り重ねた。この外装フィルムの折り返し辺に対向する辺(金属リード取り出し辺側)には、封止部から延長された保護枠部11が打ち抜きプレスにより形成されており、保護枠部11の大きさは側面部の幅5mm、封止部に対向する保護枠部11の幅7mmとした。次に、上記の電極体8をその正極金属リード5、負極金属リード6が外装フィルムの折り返し辺に対向する側になるように収納し、折り返し辺に対向する開口辺の封止部から金属リードを引き出し、その先端が保護枠部内に収まるよう載置して収納した。先ず外装体周縁3辺の開口部のうち正極金属リード5、負極金属リード6を引き出した辺とそれに直交する辺の周縁部をヒートシール(加圧熱融着)した。その際に、封止部12のヒートシールと同時に保護枠部11の金属リード設置部分も同様に加熱加圧し熱融着した。次に、外装フィルムの折り返し辺に直交するもう一方の開口部辺から、プロピレンカーボネートに1mol/lのテトラエチルアンモニウムテトラフルオロボレートを溶解した電解液を注入し、減圧して電解液を電極及びセパレータに含浸した後、開口部周縁部をヒートシールして密封封止し、本実施例の電気化学セルを30個作製した。尚、正極金属リード5、負極金属リード6には、上記のヒートシールに際して外装体の封止部に該当する部分に、外装体に収納する前に予め、金属リードと接する側が酸変性処理されたポリプロピレンであり外装体フィルムと接する側がポリプロピレンである厚さ100μ、幅5mmの樹脂を熱接着してあり、ヒートシールにおいて金属リードと外装体内側面のポリプロピレンフィルム層の間に酸変性ポリプロリレンを介在させた。
このようにして作製した本実施例の平板型電気化学セルにおいては、製造時及び製造後の検査や特性測定、搬送等の全過程でのリード部の変形がほとんど無く、外れや切れ等の不良発生が無かった。また、セルの厚さの平均値は2.23mm 静電容量の平均値は14.2Fであった。また、図3は本発明を用いた平板型電気化学セルの電極体の一例を示している。金属集電体に対する金属リードの取り付け角度が、垂直のものである。
(比較例1)
実施例1と同様な電極体を用い、外装体に保護枠を設けず金属リードを封止部から引き出すのみの構造とした他は、実施例1と同様にして、従来法による比較例1の電気化学セルを30個作製した。この様にして作製したセルの厚さの平均値は2.24mm、静電容量は14.2Fであり、セルの製造時にリード端子の金属集電体との溶接部からの外れが1個発生した。また、静電容量や内部抵抗測定時の測定機端子の加圧や搬送時の加圧により、金属リード部に全てのセルで曲げや変形が生じた。
(実施例2)
本実施例は、図2及び図4の基本構造による電気二重層キャパシタを構成した例である。正極1と負極2として実施例1と同様な混練合剤を厚さ80μmに圧延成形したものを用い、炭素を導電性フィラーとする導電性接着剤により厚さ30μm、の硬質アルミニウム箔からなる正極金属集電体3と負極金属集電体4の片面にリード部となる露出部分を残して接着し積層一体化し、打ち抜きプレスにより、電極積層部が幅10mm、長さ20mm、電極の形成されていないリード部が長さ15mm、幅6mmになるように切断して、正極1と負極2からなる一対の電極と正極金属集電体3、負極金属集電体4の積層体を作製した。この一対の電極と集電体の積層体を、電極形成面を対向させて、間にセパレータ7を介して積層しただけで、捲回していない平板状のものを電極体8とした。金属集電体の一部を延長し金属リード部として用いることにより、別部材の金属リードを用いることなく外部回路との接続が可能となっている。外装体9には、実施例1と同様なラミネートフィルムを用い、幅40mm、長さ45mmに裁断した2枚のフィルムの幅40mm側の1辺の封止部の金属リードを引き出す部分に、図4のように封止部から延長された保護枠部11を打ち抜きプレスにより形成した。保護枠部11の大きさは側面部の幅4mm、封止部に対向する保護枠部の幅6mm、封止部辺と保護枠部辺の距離7mmとした。この外装体内に、金属リードとして作用する金属集電体の金属リード部を位置合わせして収納し、外装体周縁部の金属リードの引き出し辺及びそれに直交する2辺をヒートシールした。その際に、封止部のヒートシールと同時に保護枠部の金属リード設置部分も同様に加熱加圧し熱融着した。その後、実施例1と同様な方法で電解液注入、減圧−電解液含浸、開口部のヒートシールを行い幅30mm(保護枠部各辺5mmを除く)、長さ20mm(保護枠部除く)、厚さ約0.5mmの平板型電気化学セルを作製した。本実施例の平板型電気化学セルにおいては、金属集電体への外部リード端子の溶接等の工程が不要で生産効率が高く、且つ、外部リード端子として厚さが僅か30μmのアルミニウム箔からなる金属集電体の一部を引き出した金属リードを用いているにもかかわらず、金属リードの露出部がラミネートフィルムの保護枠部に接着固定されて保護されており、製造時及びその後の充放電試験、内部抵抗測定等の評価検査の過程でリードの切れや破れ等の不良の発生は無かった。また静電容量は平均値0.5F、セルの厚さは平均値0.46mmであった。
外装体を構成する樹脂は、使用環境での湿度や温度による劣化のない耐候性樹脂であり機械的強度があるものであればよく、例えばナイロン等のポリアミド樹脂、ポリイミド、ポリエステル、ポリオレフィン樹脂等を用いることが出来る。特に内側面に配設する樹脂は、加熱により溶融軟化し、相互に熱接着できる熱可塑性の樹脂であれば、工程が簡便で信頼性が高いヒートシールによる密封封止が可能であり好ましく、例えばポリプロピレンやポリエリレン等のポリオレフィン樹脂や酸変性ポリオレフィンが好適である。特に、電気化学セルとしてリチウム電池、リチウムイオン電池や電気二重層キャパシタ等の非水電解質を使用するセルを構成する場合には、外装体から外部の湿気(水分)がセル内に侵入するとセルの著しい性能低下や充電時に浸入した水分及び電解質の分解を引き起こし、セルの膨張や甚だしい場合には破裂を引起すので、外側面にナイロン等のポリアミド樹脂、ポリイミド、ポリエステル、ポリオレフィン樹脂等の上記のような耐候性の樹脂を配すると共に、アルミニウム等の水分不透過性の金属箔と内側面にポリプロピレンやポリエリレン等のポリオレフィン樹脂やその共重合体等のヒートシールが可能な熱可塑性樹脂が積層一体化されたラミネートフィルを用い、外装体周縁部の封口をヒートシールにより接着封止する方法が、工程が簡便でより信頼性が高い密封封止が可能であり特に好ましい。また、上記の電極体を外装体内に収納し、金属リードを外装体フィルム間に挟んでヒートシールにより接着封止するために、外装体フィルムの内側の樹脂と金属リードとの間に、金属との接着性が高い酸変性ポリオレフィン樹脂又は金属リードと接する側が酸変性ポリオレフィンであり外装体フィルムに接する側がポリオレフィンである樹脂等からなる封止剤10を介在させることが特に好ましい。この封止剤10の介在は外装体フィルムの最内面の樹脂層に表面を酸変性したポリオレフィン樹脂を配置するか、金属リードに予め酸変性ポリオレフィン又はOLE_LINK3少なくとも金属リードと接する側が酸変性ポリオレフィンであり外装体フィルムに接する側がポリオレフィンである樹脂OLE_LINK3を配置又は接着したものを用いてヒートシールする等により可能である。
The exterior body 9 was made of an insulating laminate film having a thickness of about 110 μm, in which nylon was bonded to the outer surface of an aluminum foil and polypropylene was bonded to the inner surface, and the polypropylene layer was folded into a bag shape with the inner surface as the inner surface. A protective frame portion 11 extended from the sealing portion is formed by a punching press on the side (the metal lead take-out side) opposite to the folded side of the exterior film. The width of the protective frame portion 11 facing the sealing portion was 5 mm. Next, the electrode body 8 is accommodated so that the positive electrode metal lead 5 and the negative electrode metal lead 6 are on the side facing the folded side of the exterior film, and the metal lead is opened from the sealing portion on the opening side facing the folded side. Was pulled out and placed and housed so that its tip was within the protective frame. First, of the openings at the three peripheral edges of the outer package body, the side from which the positive electrode metal lead 5 and the negative electrode metal lead 6 were drawn and the peripheral part of the side perpendicular thereto were heat-sealed (pressurized heat fusion). At that time, simultaneously with heat sealing of the sealing part 12, the metal lead installation part of the protective frame part 11 was also heated and pressurized in the same manner and thermally fused. Next, an electrolyte solution in which 1 mol / l tetraethylammonium tetrafluoroborate is dissolved in propylene carbonate is injected from the other opening side perpendicular to the folded side of the exterior film, and the pressure is reduced to apply the electrolyte to the electrode and separator. After impregnation, the peripheral edge of the opening was heat sealed and hermetically sealed to produce 30 electrochemical cells of this example. In addition, the positive electrode metal lead 5 and the negative electrode metal lead 6 were subjected to acid modification treatment in advance in the portion corresponding to the sealing portion of the outer package during the above heat sealing before being stored in the outer package. A resin having a thickness of 100 μm and a width of 5 mm, which is polypropylene and is in contact with the exterior body film, is thermally bonded, and acid-modified polypropylene is interposed between the metal lead and the polypropylene film layer on the side surface of the exterior body in heat sealing. .
In the flat plate electrochemical cell of this example produced in this way, there is almost no deformation of the lead part in the entire process such as inspection, characteristic measurement, and transport during and after manufacture, and defects such as disconnection and breakage There was no outbreak. The average value of the cell thickness was 2.23 mm, and the average value of the capacitance was 14.2F. FIG. 3 shows an example of an electrode body of a flat plate electrochemical cell using the present invention. The attachment angle of the metal lead to the metal current collector is vertical.
(Comparative Example 1)
Similar to Example 1, except that the electrode body similar to that in Example 1 is used and the metal lead is merely pulled out from the sealing portion without providing a protective frame on the exterior body, Comparative Example 1 according to the conventional method is used. Thirty electrochemical cells were produced. The average thickness of the cell produced in this way is 2.24 mm, the capacitance is 14.2 F, and one detachment of the lead terminal from the weld with the metal current collector occurs during the manufacture of the cell. did. In addition, the metal lead part was bent or deformed in all the cells due to the pressurization of the measuring device terminal during the measurement of the capacitance and internal resistance and the pressurization during the conveyance.
(Example 2)
In this embodiment, an electric double layer capacitor having the basic structure shown in FIGS. 2 and 4 is configured. A positive electrode made of a hard aluminum foil having a thickness of 30 μm using a conductive adhesive having carbon as a conductive filler, which is obtained by rolling a kneading mixture similar to that of Example 1 to a thickness of 80 μm as the positive electrode 1 and the negative electrode 2. The metal current collector 3 and the negative electrode metal current collector 4 are bonded and laminated together with an exposed portion serving as a lead portion on one side, and the electrode laminated portion is formed with a width of 10 mm, a length of 20 mm, and an electrode by punching press. A non-lead portion was cut so as to have a length of 15 mm and a width of 6 mm to produce a laminate of a pair of electrodes consisting of a positive electrode 1 and a negative electrode 2, a positive electrode metal current collector 3, and a negative electrode metal current collector 4. The laminated body of the pair of electrodes and the current collector was formed as an electrode body 8 having a flat plate shape that was not laminated by simply laminating the separator 7 with the electrode forming surface facing each other. By extending a part of the metal current collector and using it as a metal lead portion, it is possible to connect to an external circuit without using a separate metal lead. For the exterior body 9, a laminate film similar to that of Example 1 was used, and the metal lead of the sealing portion on one side on the width 40 mm side of the two films cut into a width of 40 mm and a length of 45 mm was drawn to the portion. The protective frame part 11 extended from the sealing part as in 4 was formed by punching press. The size of the protective frame portion 11 was set such that the width of the side surface portion was 4 mm, the width of the protective frame portion facing the sealing portion was 6 mm, and the distance between the sealing portion side and the protective frame portion side was 7 mm. The metal lead portion of the metal current collector that acts as a metal lead was positioned and accommodated in the exterior body, and the lead-out side of the metal lead at the peripheral portion of the exterior body and two sides perpendicular to the metal lead were heat sealed. At that time, simultaneously with heat sealing of the sealing portion, the metal lead installation portion of the protective frame portion was also heated and pressurized in the same manner and thermally fused. Thereafter, electrolyte injection, reduced pressure-electrolyte impregnation, and heat sealing of the opening were performed in the same manner as in Example 1, and the width was 30 mm (excluding 5 mm on each side of the protective frame), the length was 20 mm (excluding the protective frame), A flat plate electrochemical cell having a thickness of about 0.5 mm was produced. In the flat plate electrochemical cell of this embodiment, a process such as welding of an external lead terminal to a metal current collector is not required, the production efficiency is high, and the external lead terminal is made of an aluminum foil having a thickness of only 30 μm. Despite the use of a metal lead from which a part of the metal current collector is pulled out, the exposed part of the metal lead is protected by being bonded and fixed to the protective frame part of the laminate film. There were no defects such as lead breakage or breakage in the course of evaluation tests such as testing and internal resistance measurement. The electrostatic capacity had an average value of 0.5 F, and the cell thickness had an average value of 0.46 mm.
The resin constituting the exterior body may be any weather-resistant resin that does not deteriorate due to humidity or temperature in the use environment and has mechanical strength. For example, polyamide resin such as nylon, polyimide, polyester, polyolefin resin, etc. Can be used. In particular, the resin disposed on the inner surface is preferably a thermoplastic resin that can be melted and softened by heating and heat-bonded to each other, and can be hermetically sealed by heat sealing with a simple process and high reliability. Polyolefin resins such as polypropylene and polyerylene and acid-modified polyolefins are suitable. In particular, when a cell using a non-aqueous electrolyte such as a lithium battery, a lithium ion battery, or an electric double layer capacitor is configured as an electrochemical cell, if external moisture (moisture) enters the cell from the exterior body, It causes significant performance degradation and decomposition of moisture and electrolytes that have entered during charging, and if the cell expands or is severe, it ruptures. As described above, polyamide resin such as nylon, polyimide, polyester, polyolefin resin, etc. A highly weather resistant resin and a moisture-impermeable metal foil such as aluminum and a thermoplastic resin that can be heat-sealed such as a polyolefin resin such as polypropylene and polyerylene and its copolymer on the inner surface are laminated and integrated. The method of bonding and sealing the sealing of the outer periphery of the outer package by heat sealing using the laminated laminate Convenient particularly preferred are possible more reliable hermetic seal. Further, in order to house the above electrode body in the exterior body and sandwich and seal the metal lead between the exterior body films by heat sealing, between the resin inside the exterior body film and the metal lead, It is particularly preferable to interpose a sealant 10 made of a resin having a high adhesiveness, such as a resin that is acid-modified polyolefin on the side in contact with the metal lead and the side in contact with the outer package film. The sealant 10 is interposed by placing an acid-modified polyolefin resin on the resin layer on the innermost surface of the exterior body film, or the metal lead is previously acid-modified polyolefin or OLE_LINK3 and at least the side in contact with the metal lead is acid-modified polyolefin. This is possible by heat sealing using a resin OLE_LINK3, which is made of polyolefin, on the side in contact with the outer package film.

本発明に用いられるセパレータ7としては、通常電気化学セルに用いられるものが適用出来る。即ち、リチウム電池やリチウムイオン電池等の非水電解質電池を構成する場合には、ポリプロピレンやポリエチレン等のポリオレフィン系の高分子多孔質フィルムや不織布あるいはガラス繊維との混抄紙等、アルカリ電池ではセロファンやレーヨン抄紙、グラフト重合したポリエチレン等、電気二重層キャパシタではセルロース、ポリエステル、ポリオレフィン系樹脂やガラス等の繊維からなる不織布や抄紙あるいはポリオレフィンの多孔質フィルム等を好適に用いることが出来る。   As the separator 7 used in the present invention, those usually used in electrochemical cells can be applied. That is, when configuring a non-aqueous electrolyte battery such as a lithium battery or a lithium ion battery, a polyolefin-based polymer porous film such as polypropylene or polyethylene, a mixed paper with a nonwoven fabric or glass fiber, etc. For electric double layer capacitors, such as rayon paper making, graft polymerized polyethylene, etc., non-woven fabrics made from fibers such as cellulose, polyester, polyolefin resin and glass, paper making or polyolefin porous films can be suitably used.

一般に、電極活物質と後述の電解質によりその発電素子又は蓄電素子としての電気化学システムの動作電圧や最大理論容量等の基本的な電気化学特性が規定される。本発明の平板型電気化学セルにおいて、リチウム電池やリチウムイオン二次電池等の非水電解質電池を構成する場合には、負極活物質としてリチウム金属、リチウムとアルミニウムや錫等の他の金属の合金、ケイ素や錫、タングステン、チタン、鉄等の酸化物、窒化物、硫化物や黒鉛または有機物を焼成して得られる炭素質材料、ポリアセンやポリアセチレン等の導電性高分子等々のリチウムイオンを吸蔵放出可能な物質を用い、アルカリ電池を構成する場合には、亜鉛、カドミウム、水素吸蔵合金等の金属を用いることが出来る。正極活物質としては、リチウム電池またはリチウムイオン二次電池の場合には、CFやTiS,MoS,NbSe等の金属カルコゲン化物、MnO,MoO,V,LiCoO,LiNiO,LiNiCo1−y,LiMn等の金属酸化物、ポリアニリン、ポリピロール、ポリパラフェニレン等の導電性高分子の様なリチウムイオンと反応もしくはリチウムイオンを吸蔵放出可能な物質を用いることが出来、アルカリ電池の場合には酸化銀、二酸化マンガン、水酸化ニッケルやオキシ水酸化ニッケル等の酸化物、水酸化物等が用いられる。また、電気二重層キャパシタの場合には正電極、負電極共に、電極活物質として、活性炭やカーボンブラック等の炭素材料、金属やその他の酸化物等の比表面積の大きい物質を用いることが出来る。電極活物質としてリチウムや亜鉛等の上記の様な金属を用いる場合には、それらを集電体上に直接所定形状に一体に成形した板や箔を用いることにより、導電剤や結着剤は不要である。また、本発明はこれらの電極活物質の例に限定されず、その他の電極活物質を用いた化学電池、電気二重層キャパシタやこれらを複合した発電素子または蓄電素子からなる電気化学セルに適用することが出来る。電極体には外装体に収納後または予め収納前にイオン導電性の電解液が含浸吸蔵され、電気化学セル素子が構成される。電解質としては、例えば有機電解質電池の場合、γ−ブチロラクトン、プロピレンカ−ボネ−ト、エチレンカ−ボネ−ト、ブチレンカ−ボネ−ト、ジメチルカーボネート、OLE_LINK2ジエチルカーボネート、OLE_LINK2エチルメチルカーボネート、メチルフォーメイト、1,2−ジメトキシエタン、テトラヒドロフラン、ジオキソラン、ジメチルフォルムアミド、スルホラン、アセトニトリル等の有機溶媒の単独又は混合溶媒に支持電解質としてLiClO,LiPF,LiBF,LiCFSO等のリチウムイオン解離性塩を溶解した非水(有機)電解液、ポリエチレンオキシドやポリフォスファゼン架橋体等の高分子にリチウム塩を固溶させた高分子固体電解質あるいはLiN,LiI等の無機固体電解質等々のリチウムイオン導電性の非水電解質を用いることが出来る。また、電気二重層キャパシタの場合には、上記の支持電解質の代りに、またはそれに加えて(C254NBF4、(C254NPF4、(C254NClO4、(C253CHNBF4、(CH4NBF4等のアンモニウム塩やホスフォニウム塩等が用いられる。電解質としてゲル状電解質、高分子固体電解質や無機固体電解質等の固体状電解質が用いられる場合には、セパレータの代わりにこれらの固体状電解質を単独もしくはセパレータと併用して用いることが出来る。
(比較例2)
別体の金属リード端子として幅4mm、厚さ70μmのアルミニウム板を金属集電体の電極が形成されていない面に溶接したものを用い、外装体フィルムに保護枠部を設けず、外部リード端子を外装体周縁の封止部から引出す構造として従来法による比較例2の電気化学セルを30個作製した。この様にして作製したセルの厚さは0.63mm、静電容量は0.5Fであり、セルの製造時にリード端子の金属集電体との溶接部からの外れが4個発生した。また、製造後の静電容量や内部抵抗の測定時の測定機端子の加圧や搬送時の加圧により、金属リード部に全てのセルで曲げや変形が生じた。
(比較例3)
実施例2と同様に集電体金属の一部を延長した金属リードを有する同様な電極体を用い、外装体フィルムに保護枠部を設けず、外部リード端子を外装体周縁の封止部から引出す構造として従来法による比較例3の電気化学セルを30個作製した。この様にして作製したセルの厚さは0.46mm、静電容量は0.5Fであり、セルの製造時及びその後の検査や搬送時にリード端子の封止部付近での切れが12個発生した。また、製造後の静電容量や内部抵抗の測定時の測定機端子の加圧や搬送時の加圧により、金属リード部に全てのセルで曲げや変形が生じた。
In general, basic electrochemical characteristics such as operating voltage and maximum theoretical capacity of an electrochemical system as a power generation element or a storage element are defined by an electrode active material and an electrolyte described later. In the case of constituting a nonaqueous electrolyte battery such as a lithium battery or a lithium ion secondary battery in the flat electrochemical cell of the present invention, lithium metal, an alloy of lithium and other metals such as aluminum and tin as the negative electrode active material Occlusion and release of lithium ions such as carbonaceous materials obtained by firing oxides, nitrides, sulfides, graphite or organic substances such as silicon, tin, tungsten, titanium, iron, and conductive polymers such as polyacene and polyacetylene In the case where an alkaline battery is formed using a possible substance, a metal such as zinc, cadmium, or a hydrogen storage alloy can be used. As the positive electrode active material, in the case of lithium batteries or lithium ion secondary battery, CF X and TiS 2, MoS 2, NbSe 3, etc. of metal chalcogenide, MnO 2, MoO 3, V 2 O 5, Li X CoO 2 , Li X NiO 2 , Li X Ni y Co 1-y O 2 , Li x Mn 2 O 4 and other metal oxides, reaction with lithium ions such as conductive polymers such as polyaniline, polypyrrole and polyparaphenylene Alternatively, a substance capable of occluding and releasing lithium ions can be used. In the case of an alkaline battery, oxides such as silver oxide, manganese dioxide, nickel hydroxide and nickel oxyhydroxide, hydroxides and the like are used. In the case of an electric double layer capacitor, a material having a large specific surface area such as a carbon material such as activated carbon or carbon black, a metal or another oxide can be used as an electrode active material for both the positive electrode and the negative electrode. When using the above metals such as lithium and zinc as the electrode active material, the conductive agent and the binder can be obtained by using a plate or foil that is integrally formed in a predetermined shape directly on the current collector. It is unnecessary. The present invention is not limited to these examples of electrode active materials, but can be applied to chemical cells using other electrode active materials, electric double layer capacitors, and electrochemical cells composed of power generating elements or power storage elements that combine these. I can do it. The electrode body is impregnated and occluded with an ion conductive electrolyte solution after being stored in the exterior body or before being stored in advance, thereby forming an electrochemical cell element. As an electrolyte, for example, in the case of an organic electrolyte battery, γ-butyrolactone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, OLE_LINK2 diethyl carbonate, OLE_LINK2 ethyl methyl carbonate, methyl formate, Lithium ion dissociation properties such as LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 as a supporting electrolyte in an organic solvent such as 1,2-dimethoxyethane, tetrahydrofuran, dioxolane, dimethylformamide, sulfolane, and acetonitrile alone or in a mixed solvent Lithium such as non-aqueous (organic) electrolytes in which salts are dissolved, solid polymer electrolytes in which lithium salts are dissolved in polymers such as polyethylene oxide and crosslinked polyphosphazene, or inorganic solid electrolytes such as Li 3 N and LiI ion A conductive non-aqueous electrolyte can be used. In the case of an electric double layer capacitor, (C 2 H 5 ) 4 NBF 4 , (C 2 H 5 ) 4 NPF 4 , (C 2 H 5 ) 4 instead of or in addition to the above supporting electrolyte. Ammonium salts such as NClO 4 , (C 2 H 5 ) 3 CH 3 NBF 4 , and (CH 3 ) 4 NBF 4 , phosphonium salts, and the like are used. When a solid electrolyte such as a gel electrolyte, a polymer solid electrolyte, or an inorganic solid electrolyte is used as the electrolyte, these solid electrolytes can be used alone or in combination with a separator instead of the separator.
(Comparative Example 2)
As a separate metal lead terminal, an aluminum plate having a width of 4 mm and a thickness of 70 μm is welded to the surface on which the electrode of the metal current collector is not formed. Thirty electrochemical cells of Comparative Example 2 according to a conventional method were produced as a structure for drawing out from the sealing portion at the periphery of the outer package. The cell thus produced had a thickness of 0.63 mm and an electrostatic capacity of 0.5 F, and four detachment of the lead terminal from the welded portion with the metal current collector occurred during the production of the cell. In addition, bending and deformation of the metal lead portion occurred in all cells due to pressurization of the measuring machine terminal during measurement of the capacitance and internal resistance after manufacture and pressurization during conveyance.
(Comparative Example 3)
Similar to Example 2, a similar electrode body having a metal lead obtained by extending a part of the current collector metal was used, the protective frame portion was not provided on the outer film, and the external lead terminal was connected to the outer peripheral edge sealing portion. Thirty electrochemical cells of Comparative Example 3 according to a conventional method were produced as a drawing structure. The cell thus fabricated has a thickness of 0.46 mm and an electrostatic capacity of 0.5 F, and 12 breaks occur near the sealing portion of the lead terminal during the manufacture of the cell and subsequent inspection and transportation. did. In addition, bending and deformation of the metal lead portion occurred in all cells due to pressurization of the measuring machine terminal during measurement of the capacitance and internal resistance after manufacture and pressurization during conveyance.

以上の様に、本発明による実施例1、2は、従来法による比較例に比べ、セルの厚さが薄く且つ、金属リードの溶接が不要で生産効率が高く、且つ外部リード端子の外れや接触不良及び曲げや変形等の発生が少ない平板型電気化学セルが得られることが分かる。   As described above, in Examples 1 and 2 according to the present invention, the thickness of the cell is thin, the metal lead is not required to be welded and the production efficiency is high as compared with the comparative example by the conventional method. It can be seen that a flat electrochemical cell with less contact failure and less occurrence of bending or deformation can be obtained.

本発明の平板型電気化学セルの断面図である。It is sectional drawing of the flat type electrochemical cell of this invention. 本発明の平板型電気化学セルの断面図である。It is sectional drawing of the flat type electrochemical cell of this invention. 本発明の平板型電気化学セルで用いる電極と集電体及び金属リードを示す平面図である。It is a top view which shows the electrode, electrical power collector, and metal lead which are used with the flat type electrochemical cell of this invention. 本発明の平板型電気化学セルの平面図である。It is a top view of the plate type electrochemical cell of the present invention. 本発明の平板型電気化学セルの平面図である。It is a top view of the plate type electrochemical cell of the present invention. 従来の平板型電気化学セルの断面図である。It is sectional drawing of the conventional flat type electrochemical cell.

符号の説明Explanation of symbols

1 正極
2 負極
3 正極金属集電体
4 負極金属集電体
5 正極金属リード
6 負極金属リード
7 セパレータ
8 電極体
9 外装体
9a 樹脂フィルム
9b 金属箔
9c 熱可塑性樹脂フィルム
10 封止剤
11 保護枠部
12 封止部
13 接着固定部
14 切断線
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Positive electrode metal collector 4 Negative electrode metal current collector 5 Positive electrode metal lead 6 Negative electrode metal lead 7 Separator 8 Electrode body 9 Exterior body 9a Resin film 9b Metal foil 9c Thermoplastic resin film 10 Sealant 11 Protective frame Part 12 Sealing part 13 Adhesive fixing part 14 Cutting line

Claims (6)

金属集電体と、前記金属集電体に担持され正極又は負極として機能する一対の電極と、イオン導電性の電解質と、前記金属集電体と前記電極と前記電解質とを内部に収納し密封封止する外装体と、前記電極と外部回路とを電気的に接続する金属リードとを有し、前記金属リードが外装体と保護枠部によって保持されることを特徴とする平板型電気化学セル。 A metal current collector, a pair of electrodes supported on the metal current collector and functioning as a positive electrode or a negative electrode, an ion conductive electrolyte, the metal current collector, the electrode, and the electrolyte are housed and sealed. A flat plate electrochemical cell comprising: an outer package to be sealed; and a metal lead for electrically connecting the electrode and an external circuit, wherein the metal lead is held by the outer package and a protective frame. . 金属集電体と、前記金属集電体に担持され正極又は負極として機能する一対の電極と、イオン導電性の電解質と、前記金属集電体と前記電極と前記電解質とを内部に収納し密封封止する外装体を有し、前記金属集電体が外装体と保護枠部によって保持されており前記金属集電体により外部回路と電気的に接続することを特徴とする平板型電気化学セル。 A metal current collector, a pair of electrodes supported on the metal current collector and functioning as a positive electrode or a negative electrode, an ion conductive electrolyte, the metal current collector, the electrode, and the electrolyte are housed and sealed. A flat plate electrochemical cell having an outer package to be sealed, wherein the metal current collector is held by the outer package and a protective frame, and is electrically connected to an external circuit by the metal current collector . 金属リードが外装体と保護枠部に挟まれるように位置決めする位置決め工程と、金属集電体と金属集電体に担持された電極とイオン導電性の電解質とを内部に収納し外装体を密封封止する封止工程と、前記金属リードを保護枠部に固定する固定工程とを含む平板型電気化学セルの製造方法。 Positioning process for positioning the metal lead so that it is sandwiched between the outer package and the protective frame, the metal current collector, the electrode carried on the metal current collector and the ion conductive electrolyte are housed inside, and the outer package is sealed The manufacturing method of the flat type electrochemical cell including the sealing process which seals, and the fixing process which fixes the said metal lead to a protection frame part. 前記保護枠部を除去する除去工程を含む請求項3に記載の平板型電気化学セルの製造方法。 The manufacturing method of the flat type electrochemical cell of Claim 3 including the removal process which removes the said protective frame part. 前記外装体が金属箔とその外側に耐候性樹脂層、内側に熱可塑性樹脂層を有する3層以上の多層ラミネートフィルムからなり、外装体の開口部の密封封止が、加熱加圧による熱可塑性樹脂層の熱融着(ヒートシール)によってなされることを特徴とする請求項1または請求項2に記載の平板型電気化学セル。 The outer package comprises a metal foil, a multilayer laminate film of three or more layers having a weather resistant resin layer on the outer side and a thermoplastic resin layer on the inner side, and hermetically sealing the opening of the outer package is thermoplastic by heat and pressure. 3. The flat plate electrochemical cell according to claim 1, wherein the flat plate electrochemical cell is formed by heat sealing (heat sealing) of a resin layer. 前記外装体のラミネートフィルムを構成する金属箔がアルミニウム又はアルミニウム合金の箔であり、外側に配する耐候性樹脂がポリアミドまたはポリエステル、内側に配する熱可塑性樹脂がポリオレフィン樹脂であり、前記電気化学セル素子の金属集電体が厚さ5〜100μmのアルミニウム、チタン、銅、ニッケルまたはこれらの合金またはステンレスの箔または板からなることを特徴とする請求項5に記載の平板型電気化学セル。 The metal foil constituting the laminate film of the exterior body is an aluminum or aluminum alloy foil, the weather resistant resin disposed on the outside is polyamide or polyester, the thermoplastic resin disposed on the inside is a polyolefin resin, and the electrochemical cell 6. The flat plate electrochemical cell according to claim 5, wherein the metal current collector of the device is made of aluminum, titanium, copper, nickel, an alloy thereof, or a stainless steel foil or plate having a thickness of 5 to 100 μm.
JP2003326772A 2003-09-18 2003-09-18 Flat plate type electrochemical cell Pending JP2005093825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003326772A JP2005093825A (en) 2003-09-18 2003-09-18 Flat plate type electrochemical cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003326772A JP2005093825A (en) 2003-09-18 2003-09-18 Flat plate type electrochemical cell

Publications (1)

Publication Number Publication Date
JP2005093825A true JP2005093825A (en) 2005-04-07

Family

ID=34456857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003326772A Pending JP2005093825A (en) 2003-09-18 2003-09-18 Flat plate type electrochemical cell

Country Status (1)

Country Link
JP (1) JP2005093825A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007115478A (en) * 2005-10-19 2007-05-10 Toshiba Battery Co Ltd Nonaqueous electrolyte battery
JP2007141864A (en) * 2007-01-30 2007-06-07 Sony Corp Solid electrolyte battery and its manufacturing method
JP2017126422A (en) * 2016-01-12 2017-07-20 トヨタ自動車株式会社 Method for manufacturing all-solid battery
US20230327093A1 (en) * 2022-04-07 2023-10-12 Lin-Shu Du Lithium alloy based anode for non-aqueous ammonia primary and reserve batteries

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007115478A (en) * 2005-10-19 2007-05-10 Toshiba Battery Co Ltd Nonaqueous electrolyte battery
JP2007141864A (en) * 2007-01-30 2007-06-07 Sony Corp Solid electrolyte battery and its manufacturing method
JP2017126422A (en) * 2016-01-12 2017-07-20 トヨタ自動車株式会社 Method for manufacturing all-solid battery
US20230327093A1 (en) * 2022-04-07 2023-10-12 Lin-Shu Du Lithium alloy based anode for non-aqueous ammonia primary and reserve batteries

Similar Documents

Publication Publication Date Title
US10115937B2 (en) Battery including branched current collector sections
US6797429B1 (en) Non-aqueous electrolytic secondary cell
KR100483994B1 (en) Method for treating eletcrode tab of crude cell for lithium secondary battery &amp; crude cell according to the method &amp; lithium secondary battery therefrom
JP5254332B2 (en) Large capacity battery pack
KR101106428B1 (en) Secondary battery
US20080070111A1 (en) Sheet-type secondary battery and manufacturing method therefor
CN101478033B (en) Squeeze pin and secondary battery using the same
EP3316349B1 (en) Method for manufacturing electrochemical device
JP5408691B2 (en) Sealed secondary battery
KR101962886B1 (en) Secondary battery
CN102097611A (en) Secondary battery
KR101306190B1 (en) Secondary Battery of Improved Insulating Property
JP5229440B2 (en) Electrochemical devices
KR101261243B1 (en) Battery Cell Containing Protection Type of Modified Structure And Battery Module Employed with the Same
KR20220092101A (en) Secondary battery and manufacturing method of the same
JP2005149882A (en) Electrochemical cell and its manufacturing method
KR100601549B1 (en) Pouch type lithium secondary battery
JP2004319097A (en) Electrochemical cell
JP2005093825A (en) Flat plate type electrochemical cell
JP2019029642A (en) Electrochemical cell module and manufacturing method of electrochemical cell module
KR200289707Y1 (en) Crude cell for lithium secondary battery &amp; lithium secondary battery therefrom
JP2019145724A (en) Electrochemical cell
JP2019057473A (en) Electrochemical cell
JP2005183556A (en) Plate-type electrochemical cell
JP2002141030A (en) Cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060824

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090929