JP2005183556A - Plate-type electrochemical cell - Google Patents
Plate-type electrochemical cell Download PDFInfo
- Publication number
- JP2005183556A JP2005183556A JP2003420255A JP2003420255A JP2005183556A JP 2005183556 A JP2005183556 A JP 2005183556A JP 2003420255 A JP2003420255 A JP 2003420255A JP 2003420255 A JP2003420255 A JP 2003420255A JP 2005183556 A JP2005183556 A JP 2005183556A
- Authority
- JP
- Japan
- Prior art keywords
- electrochemical cell
- external lead
- sealing
- electrode
- electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
Description
本発明は、アルカリ電池やリチウム電池またはリチウムイオン電池等の化学電池や電気二重層キャパシタ等の電気化学セルに関するものであり、特に袋状の外装体フィルム内に、電気化学セル素子を収納し、外装体の周縁部の開口部を密封封止した構造の平板型電気化学セルに関するものである。 The present invention relates to an electrochemical cell such as a chemical battery such as an alkaline battery, a lithium battery or a lithium ion battery, and an electric double layer capacitor, and in particular, an electrochemical cell element is housed in a bag-shaped outer package film, The present invention relates to a flat plate electrochemical cell having a structure in which an opening at a peripheral edge of an exterior body is hermetically sealed.
近年、携帯電子機器の小型高密度実装化に対応し、それらに用いられる電源素子としての電池や電気二重層キャパシタ等の電気化学セルに対しても小型・薄型・軽量且つ高エネルギー密度化が求められている。この様な電気化学セルの小型・薄型・軽量化を実現する方法として、樹脂フィルムまたは金属箔と樹脂フィルムとのラミネートフィルムからなる袋状の外装体内に、発電要素または蓄電要素からなる電気化学セル素子を収納し、外装体の周縁部の開口部をヒートシールまたは接着剤等により密封封止した構造の平板型電気化学セルが提案され、一部実用化されている。 In recent years, in response to the miniaturization and high-density mounting of portable electronic devices, there has been a demand for small, thin, light, and high energy density for electrochemical cells such as batteries and electric double layer capacitors as power supply elements used in them. It has been. As a method for realizing a reduction in size, thickness and weight of such an electrochemical cell, an electrochemical cell comprising a power generation element or a storage element in a bag-like outer package made of a resin film or a laminate film of a metal foil and a resin film. A flat plate electrochemical cell having a structure in which an element is housed and an opening at a peripheral edge of an outer package is hermetically sealed with heat seal or an adhesive has been proposed and partially put into practical use.
従来、この種の平板型電気化学セルは例えば図7に示す構成で作られていた。正極1または負極2として作用する電極は、それぞれ電極活物質と導電性を付与するための炭素等の導電剤と樹脂等の結着剤からなり、金属製の箔、ネット、エキスパンドメタルやパンチドメタルまたは炭素等の導電性フィラーを含有する導電性高分子フィルム等からなる集電体3、集電体4上に載置もしく一体に積層形成されている。この集電体3、集電体4には、セル組み立て後セル内の電極と外部回路を電気的に接続するための外部リード端子5と外部リード端子6がそれぞれ溶接またはハトメによるカシメ等により接続されている(例えば、特許文献1及び2参照)。
Conventionally, this type of flat plate electrochemical cell has been made, for example, with the structure shown in FIG. The electrode acting as the
この一対の電極を高分子多孔質フィルムや不織布もしくは抄紙等からなるセパレータ7を間に介して積層したもの、またはこの様に積層した帯状の一対の電極とセパレータ7を偏平状もしくは円筒状に捲回しプレスして平板状にした電極体が外装体8に収納される。この電極体には外装体に収納後または収納前にイオン導電性の電解液が含浸吸蔵され、電気化学セルが構成されている。電解質としてゲル状電解質、高分子固体電解質や無機固体電解質等の固体状電解質が用いられる場合には、これらの固体状電解質が単独もしくはセパレータと併用して用いられる。外装体8は、樹脂フィルムまたは樹脂フィルム8a、8cと金属箔8bとのラミネートフィルムからなり、このフィルムを袋状に重ねた内側に、上記の電極体及び電解質からなる電気化学セル素子が収納され、周縁部がヒートシール、圧着または接着剤等により密封封止される。この電極体の収納に際し、金属製の外部リード端子は、外装体の周縁部の封止部を横断し一端が引き出された状態で収納され、封止される(例えば、特許文献2参照)。
従来の平板型電気化学セルにおいては、図5、図6の平面図に示すように、外装体8に電極体と電解質からなる発電要素10を収容し封止部をヒートシール等で封止する際に、外部リード端子5、外部リード端子6が封止される部分(封止部B)と、その他の封止部(封止部C)の封止幅は、同一方法で実質的に同じ幅で行われていた。
In the conventional flat type electrochemical cell, as shown in the plan views of FIGS. 5 and 6, a
そのため、外部リード端子の引き出されていない封止部Cでは同一樹脂同士の熱融着等により均一で十分な接着力と封止性が得られるが、外部リード端子の引き出される封止部Bでは、外部リード端子の金属と外装体の内側の樹脂との異種接合となり、接着力や封止性が不十分でセル作製後の保存中または使用中に、この外部リード端子と外装体の接合部から電解液が漏出したり、外部環境から水分や酸素等がセル中に浸入しセルの内部抵抗の増加や充放電性能の著しい低下を引起す等の問題があった。特に、電気化学セルの発電要素として、電極活物質に活性炭を、電解質に非水系の電解質を用いる非水系電気二重層キャパシタの場合には、セル内に水分が浸入すると充電の電圧印加時に電解液の分解と活性炭電極との反応を促進し、セルの著しい性能劣化と耐電圧の低下を引起すのでこの封止性の不足は重要な問題であった。 Therefore, in the sealing part C from which the external lead terminal is not drawn out, uniform and sufficient adhesive force and sealing performance can be obtained by heat fusion of the same resin, but in the sealing part B from which the external lead terminal is drawn out, The external lead terminal metal and the resin inside the exterior body are joined differently, and the adhesion and sealing properties are insufficient, so the joint between this external lead terminal and the exterior body during storage after cell fabrication or during use Therefore, there are problems such as leakage of the electrolyte from the outside, moisture, oxygen, and the like from the external environment entering the cell, causing an increase in the internal resistance of the cell and a significant decrease in charge / discharge performance. In particular, in the case of a non-aqueous electric double layer capacitor that uses activated carbon as an electrode active material and a non-aqueous electrolyte as an electrolyte as a power generation element of an electrochemical cell, if water enters the cell, the electrolyte solution is applied when a charging voltage is applied. This lack of sealing was an important problem because it promoted the decomposition of the catalyst and the reaction with the activated carbon electrode, leading to significant cell performance degradation and a reduction in withstand voltage.
一方、封止性を高めるため封止幅を広げると、一定のサイズの電気化学セルを得るにはその分発電要素の大きさが小さくなり、セル体積当たりのエネルギー密度が低下してしまうという問題があった。 On the other hand, if the sealing width is increased in order to improve the sealing performance, the size of the power generation element is reduced correspondingly to obtain an electrochemical cell of a certain size, and the energy density per cell volume is reduced. was there.
本発明の平板型電気化学セルは上記の様な問題点を解決するため、外部リード端子が封止される封止部が、他の封止部より幅が広い構造とした。 In order to solve the above-described problems, the flat type electrochemical cell of the present invention has a structure in which the sealing portion where the external lead terminal is sealed is wider than the other sealing portions.
本発明に係る平板型電気化学セルは、正極または負極として機能する一対の電極と、イオン導電性の電解質と、前記電極と前記電解質を収納し密封封止する外装体と、前記電極と外部回路とを電気的に接続するための外部リード端子とを有し、前記外部リード端子が封止される封止部が、他の封止部より幅が広い構造を有している。 A flat plate electrochemical cell according to the present invention includes a pair of electrodes functioning as a positive electrode or a negative electrode, an ion conductive electrolyte, an exterior body that houses and seals the electrode and the electrolyte, the electrode, and an external circuit And an external lead terminal for electrically connecting the external lead terminal, and a sealing portion in which the external lead terminal is sealed has a structure that is wider than other sealing portions.
好ましくは、前記外装体が金属箔とその外側に耐候性樹脂層、内側に熱可塑性樹脂層を有する3層以上の多層ラミネートフィルムからなり、外装体の密封封止が熱融着によって行われる。 Preferably, the outer package is made of a metal foil, a multilayer laminate film of three or more layers having a weather resistant resin layer on the outer side and a thermoplastic resin layer on the inner side, and the outer package is hermetically sealed by thermal fusion.
特に好ましくは、前記多層ラミネートフィルムを構成する前記金属箔がアルミニウム又はアルミニウム合金の箔であり、外側に配する前記耐候性樹脂がポリアミドまたはポリエステル、内側に配する前記熱可塑性樹脂がポリオレフィン樹脂からなる。 Particularly preferably, the metal foil constituting the multilayer laminate film is an aluminum or aluminum alloy foil, the weather-resistant resin disposed on the outside is polyamide or polyester, and the thermoplastic resin disposed on the inside is a polyolefin resin. .
また、前記平板型電気化学セルが非水系電気二重層キャパシタであることも好ましい。 The flat plate electrochemical cell is preferably a non-aqueous electric double layer capacitor.
本発明の平板型電気化学セルは、外部リード端子が封止される封止部が他の封止部より幅が広い構造とした。この構造により、外装体周縁部の外部リード端子が引き出されない大半の封止部は封止幅を大きくすることなく、必要な封止性能が得られる最小幅まで抑えることが出来る。一方、外部リード端子の引き出される封止部は外部リード端子と外装体の内面の樹脂との接合面積を十分大きく取れるので、電気化学セル全体として十分な接着力と封止性が確保され、且つ発電要素の収納スペースが大きくとれるので、小型で高エネルギー密度且つ漏液発生が無く信頼性の高い平板型電気化学セルが得られる効果を奏する。 The flat plate electrochemical cell of the present invention has a structure in which the sealing portion where the external lead terminal is sealed is wider than the other sealing portions. With this structure, most of the sealing portions from which the external lead terminals on the outer periphery of the exterior body are not pulled out can be suppressed to the minimum width at which necessary sealing performance can be obtained without increasing the sealing width. On the other hand, since the sealing portion from which the external lead terminal is drawn out can take a sufficiently large bonding area between the external lead terminal and the resin on the inner surface of the exterior body, a sufficient adhesive force and sealing performance as a whole electrochemical cell is ensured, and Since the storage space for the power generation element can be increased, there is an effect that a flat electrochemical cell having a small size, a high energy density, no leakage, and high reliability can be obtained.
以下、本発明を実施するための最良の形態を図面に基づいて説明する。 Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.
図1は本発明による平板型電気化学セルの断面図である。 FIG. 1 is a cross-sectional view of a flat plate electrochemical cell according to the present invention.
正極1または負極2として作用する電極は、それぞれ電極活物質と必要により導電性を付与するための炭素等の導電剤と樹脂等の結着剤からなり、金属製の箔、ネット、エキスパンドメタルやパンチドメタルまたは炭素等の導電性フィラーを含有する導電性高分子フィルム等からなる集電体3と集電体4上にそれぞれ載置もしく一体に積層形成されている。これらの集電体には、セル組み立て後セル内の電極と外部回路を電気的に接続するための外部リード端子5と外部リード端子6がそれぞれ溶接またはハトメによるカシメ等により接続されている。
Each of the electrodes acting as the
外部リード端子は、集電体への電極層の形成に際し、その端部等に電極を形成しない集電体の露出部分を残し、そこに、予め所定のリード形状に打ち抜きプレスやカッティング等により作製した金属の箔、板、ネットまたは線等からなるリードを溶接等により固着して形成される。また、集電体の露出部を所定のリード形状に打ち抜きプレスやカッティング等により形成した金属集電体の一部分が延長された外部リード端子部とすることも出来、特に薄型のセルに好適である。 The external lead terminal is formed by punching or cutting into a predetermined lead shape in advance, leaving an exposed portion of the current collector that does not form an electrode at its end when forming the electrode layer on the current collector. A lead made of a metal foil, a plate, a net or a wire is fixed by welding or the like. Further, the exposed portion of the current collector can be formed into an external lead terminal portion in which a part of the metal current collector formed by punching or cutting into a predetermined lead shape is extended, and is particularly suitable for a thin cell. .
集電体及び外部リード端子の材質としては、電解質及び電極物質に対し化学的に安定で、充電や過放電等に対し電気化学的に安定で、耐食性のあるものであればよく、アルミニウム、銅、及びニッケル、ステンレス等がよい。この一対の電極を高分子多孔質フィルムや不織布もしくは抄紙等からなるセパレータ7を間に介して積層したもの、またはこの様に積層した帯状の一対の電極とセパレータ7を偏平状もしくは円筒状に捲回しプレスして平板状にした電極体が外装体8に収納される。
The material of the current collector and the external lead terminal may be any material that is chemically stable with respect to the electrolyte and the electrode material, electrochemically stable with respect to charging and overdischarge, and has corrosion resistance. Nickel, stainless steel and the like are preferable. This pair of electrodes is laminated with a
この電極体には外装体に収納後または収納前にイオン導電性の電解液が含浸吸蔵され、電気化学セルが構成されている。電解質としてゲル状電解質、高分子固体電解質や無機固体電解質等の固体状電解質が用いられる場合には、これらの固体状電解質が単独もしくはセパレータと併用して用いられる。外装体8は、樹脂フィルム8a、8cと金属箔8bとのラミネートフィルムからなり、このフィルムを袋状に重ねた内側に、上記の電極体及び電解質からなる電気化学セル素子が収納され、周縁部がヒートシール、圧着または接着剤等により密封封止される。この電極体の収納に際し、金属製の外部リード端子は、外装体の周縁部の封止部を横断し一端が引き出された状態で収納され、封止される。本発明の平板型電気化学セルは、外部リード端子が封止される封止部Aが、封止部Cより幅が広くなっている。
The electrode body is impregnated and occluded with an ionic conductive electrolyte after or before being housed in the exterior body to constitute an electrochemical cell. When a solid electrolyte such as a gel electrolyte, a polymer solid electrolyte, or an inorganic solid electrolyte is used as the electrolyte, these solid electrolytes are used alone or in combination with a separator. The
外装体を構成する樹脂は、使用環境での湿度や温度による劣化のない耐候性樹脂であり機械的強度があるものであればよく、例えばナイロン等のポリアミド樹脂、ポリイミド、ポリエステル、ポリオレフィン樹脂等を用いることが出来る。特に内側面に配設する樹脂は、加熱により溶融軟化し、相互に熱接着できる熱可塑性の樹脂であれば、工程が簡便で信頼性が高いヒートシールによる密封封止が可能であり好ましく、例えばポリプロピレンやポリエリレン等のポリオレフィン樹脂や酸変性ポリオレフィンが好適である。 The resin constituting the exterior body may be any weather-resistant resin that does not deteriorate due to humidity or temperature in the use environment and has mechanical strength. For example, polyamide resin such as nylon, polyimide, polyester, polyolefin resin, etc. Can be used. In particular, the resin disposed on the inner surface is preferably a thermoplastic resin that can be melted and softened by heating and heat-bonded to each other, and can be hermetically sealed by heat sealing with a simple process and high reliability. Polyolefin resins such as polypropylene and polyerylene and acid-modified polyolefins are suitable.
特に、電気化学セルとしてリチウム電池、リチウムイオン電池や電気二重層キャパシタ等の非水電解質を使用するセルを構成する場合には、外装体から外部の湿気(水分)がセル内に侵入するとセルの著しい性能低下や充電時に浸入した水分及び電解質の分解を引き起こし、セルの膨張や甚だしい場合には破裂を引起すので、外側面にナイロン等のポリアミド樹脂、ポリイミド、ポリエステル、ポリオレフィン樹脂等の上記のような耐候性の樹脂を配すると共に、アルミニウム等の水分不透過性の金属箔と内側面にポリプロピレンやポリエリレン等のポリオレフィン樹脂やその共重合体等のヒートシールが可能な熱可塑性樹脂が積層一体化されたラミネートフィルムを用い、外装体周縁部の封口をヒートシールにより接着封止する方法が、工程が簡便でより信頼性が高い密封封止が可能であり特に好ましい。 In particular, when a cell using a non-aqueous electrolyte such as a lithium battery, a lithium ion battery, or an electric double layer capacitor is configured as an electrochemical cell, if external moisture (moisture) enters the cell from the exterior body, It causes significant performance degradation and decomposition of moisture and electrolytes that have entered during charging, and causes cell expansion and rupture in severe cases. As described above, polyamide resin such as nylon, polyimide, polyester, polyolefin resin, etc. A highly weather resistant resin and a moisture-impermeable metal foil such as aluminum and a thermoplastic resin that can be heat-sealed such as a polyolefin resin such as polypropylene and polyerylene and its copolymer on the inner surface are laminated and integrated. Using the laminated film, the method of bonding and sealing the outer peripheral edge of the exterior body by heat sealing is Particularly preferred are possible more reliable hermetic seal is simple.
また、上記の電極体を外装体内に収納し、外部リード端子を外装体フィルム間に挟んでヒートシールにより接着封止するために、外装体フィルムの内側の樹脂と外部リード端子との間に、金属との接着性が高い酸変性ポリオレフィン樹脂又は外部リード端子と接する側が酸変性ポリオレフィンであり外装体フィルムに接する側がポリオレフィンである樹脂等からなる封止剤9を介在させることが特に好ましい。この封止剤9の介在は外装体フィルムの最内面の樹脂層に表面を酸変性したポリオレフィン樹脂を配置するか、外部リード端子に予め酸変性ポリオレフィン又は少なくとも外部リード端子と接する側が酸変性ポリオレフィンであり外装体フィルムに接する側がポリオレフィンである樹脂を配置又は接着したものを用いてヒートシールする等により可能である。 Further, in order to house the above electrode body in the exterior body and sandwich and seal the external lead terminal between the exterior body films by heat sealing, between the resin inside the exterior body film and the external lead terminal, It is particularly preferable to interpose a sealing agent 9 made of an acid-modified polyolefin resin having high adhesiveness to a metal or an acid-modified polyolefin on the side in contact with the external lead terminal and a resin in which the side in contact with the exterior body film is polyolefin. The sealing agent 9 is interposed by placing an acid-modified polyolefin resin on the resin layer on the innermost surface of the outer package film, or using an acid-modified polyolefin on the external lead terminal in advance or an acid-modified polyolefin on the side in contact with at least the external lead terminal. It is possible by heat-sealing using a resin having a polyolefin resin on the side in contact with the outer packaging film.
図3は本発明を用いた平板型電気化学セルの平面図である。外装体8を折り返し袋状にして、発電要素10を収納し封止している。外装体8の封止部のうち、外部リード端子が引き出される封止部Aの封止幅を外部リード端子5、外部リード端子6の引き出されない他の封止部Cの封止幅より広くし、外部リード端子と外装体の内側面の樹脂との接着力と封止性を確保すると共に、封止部Cの封止幅は必要最小限に留め封止部全体のスペースを最小にする。外部リード端子が引き出されない封止部Cの封止幅としては、漏液や外部環境からの水分浸入によるセルの劣化を抑制するためには2mm以上が必要であり、より好ましくは2.5mm以上がよい。外部リード端子が引き出される封止部Aの封止幅は外部リード端子の材質や大きさと外装体内側面の樹脂材質にも依るが、通常3mm以上が必要であり、好ましくは5mm以上である。図4は、本発明を用いた平板型電気化学セルの平面図であり、四方を封止した例である。
FIG. 3 is a plan view of a flat plate electrochemical cell using the present invention. The
また、本発明に用いられるセパレータとしては、通常電気化学セルに用いられるものが適用出来る。即ち、リチウム電池やリチウムイオン電池等の非水電解質電池を構成する場合には、ポリプロピレンやポリエチレン等のポリオレフィン系の高分子多孔質フィルムや不織布あるいはガラス繊維との混抄紙等、アルカリ電池ではセロファンやレーヨン抄紙、グラフト重合したポリエチレン等、電気二重層キャパシタではセルロース、ポリエステル、ポリオレフィン系樹脂やガラス等の繊維からなる不織布や抄紙あるいはポリオレフィンの多孔質フィルム等を好適に用いることが出来る。 Moreover, as a separator used for this invention, what is normally used for an electrochemical cell is applicable. That is, when configuring a non-aqueous electrolyte battery such as a lithium battery or a lithium ion battery, a polyolefin-based polymer porous film such as polypropylene or polyethylene, a mixed paper with a nonwoven fabric or glass fiber, etc. For electric double layer capacitors, such as rayon paper making, graft polymerized polyethylene, etc., non-woven fabrics made from fibers such as cellulose, polyester, polyolefin resin and glass, paper making or polyolefin porous films can be suitably used.
一般に、電極活物質と後述の電解質によりその発電素子又は蓄電素子としての電気化学システムの動作電圧や最大理論容量等の基本的な電気化学特性が規定される。本発明の平板型電気化学セルにおいて、リチウム電池やリチウムイオン二次電池等の非水電解質電池を構成する場合には、負極活物質としてリチウム金属、リチウムとアルミニウムや錫等の他の金属の合金、ケイ素や錫、タングステン、チタン、鉄等の酸化物、窒化物、硫化物や黒鉛または有機物を焼成して得られる炭素質材料、ポリアセンやポリアセチレン等の導電性高分子等々のリチウムイオンを吸蔵放出可能な物質を用い、アルカリ電池を構成する場合には、亜鉛、カドミウム、水素吸蔵合金等の金属を用いることが出来る。正極活物質としては、リチウム電池またはリチウムイオン二次電池の場合には、CFXやTiS2,MoS2,NbSe3等の金属カルコゲン化物、MnO2,MoO3,V2O5,LiXCoO2,LiXNiO2,LiXNiyCo1−yO2,LixMn2O4等の金属酸化物、ポリアニリン、ポリピロール、ポリパラフェニレン等の導電性高分子の様なリチウムイオンと反応もしくはリチウムイオンを吸蔵放出可能な物質を用いることが出来、アルカリ電池の場合には酸化銀、二酸化マンガン、水酸化ニッケルやオキシ水酸化ニッケル等の酸化物、水酸化物等が用いられる。
In general, basic electrochemical characteristics such as operating voltage and maximum theoretical capacity of an electrochemical system as a power generation element or a storage element are defined by an electrode active material and an electrolyte described later. In the case of constituting a nonaqueous electrolyte battery such as a lithium battery or a lithium ion secondary battery in the flat electrochemical cell of the present invention, lithium metal, an alloy of lithium and other metals such as aluminum and tin as the negative electrode active material Occlusion and release of lithium ions such as carbonaceous materials obtained by firing oxides, nitrides, sulfides, graphite or organic substances such as silicon, tin, tungsten, titanium, iron, and conductive polymers such as polyacene and polyacetylene In the case where an alkaline battery is formed using a possible substance, a metal such as zinc, cadmium, or a hydrogen storage alloy can be used. As the positive electrode active material, in the case of lithium batteries or lithium ion secondary battery, CF X and TiS 2, MoS 2, NbSe 3, etc. of metal chalcogenide, MnO 2, MoO 3, V 2
また、電気二重層キャパシタの場合には正電極、負電極共に、電極活物質として、活性炭やカーボンブラック等の炭素材料、金属やその他の酸化物等の比表面積の大きい物質を用いることが出来る。電極活物質としてリチウムや亜鉛等の上記の様な金属を用いる場合には、それらを集電体上に直接所定形状に一体に成形した板や箔を用いることにより、導電剤や結着剤は不要である。また、本発明はこれらの電極活物質の例に限定されず、その他の電極活物質を用いた化学電池、電気二重層キャパシタやこれらを複合した発電素子または蓄電素子からなる電気化学セルに適用することが出来る。 In the case of an electric double layer capacitor, a material having a large specific surface area such as a carbon material such as activated carbon or carbon black, a metal or another oxide can be used as an electrode active material for both the positive electrode and the negative electrode. When using the above metals such as lithium and zinc as the electrode active material, the conductive agent and the binder can be obtained by using a plate or foil that is integrally formed in a predetermined shape directly on the current collector. It is unnecessary. The present invention is not limited to these examples of electrode active materials, but can be applied to chemical cells using other electrode active materials, electric double layer capacitors, and electrochemical cells composed of power generating elements or power storage elements that combine these. I can do it.
この電極体には外装体に収納後または予め収納前にイオン導電性の電解液が含浸吸蔵され、電気化学セル素子が構成される。電解質としては、例えば有機電解質電池の場合、γ−ブチロラクトン、プロピレンカ−ボネ−ト、エチレンカ−ボネ−ト、ブチレンカ−ボネ−ト、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルフォーメイト、1,2−ジメトキシエタン、テトラヒドロフラン、ジオキソラン、ジメチルフォルムアミド、スルホラン、アセトニトリル等の有機溶媒の単独又は混合溶媒に支持電解質としてLiClO4,LiPF6,LiBF4,LiCF3SO3等のリチウムイオン解離性塩を溶解した非水(有機)電解液、ポリエチレンオキシドやポリフォスファゼン架橋体等の高分子に前記リチウム塩を固溶させた高分子固体電解質あるいはLi3N,LiI等の無機固体電解質等々のリチウムイオン導電性の非水電解質を用いることが出来る。 This electrode body is impregnated and occluded with an ionic conductive electrolyte after being stored in the exterior body or before being stored in advance to constitute an electrochemical cell element. As the electrolyte, for example, in the case of an organic electrolyte battery, γ-butyrolactone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl formate, 1, Lithium ion dissociating salt such as LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 as a supporting electrolyte in an organic solvent such as 2-dimethoxyethane, tetrahydrofuran, dioxolane, dimethylformamide, sulfolane, acetonitrile or a mixed solvent. Lithium ions such as a dissolved non-aqueous (organic) electrolyte, a polymer solid electrolyte in which the lithium salt is dissolved in a polymer such as polyethylene oxide or a crosslinked polyphosphazene, or an inorganic solid electrolyte such as Li 3 N or LiI Conductive A non-aqueous electrolyte can be used.
また、電気二重層キャパシタの場合には、上記の支持電解質の代りに、またはそれに加えて(C2H5)4NBF4、(C2H5)4NPF4、(C2H5)4NClO4、(C2H5)3CH3NBF4、(CH3)4NBF4等のアンモニウム塩やホスフォニウム塩等が用いられる。電解質としてゲル状電解質、高分子固体電解質や無機固体電解質等の固体状電解質が用いられる場合には、セパレータの代わりにこれらの固体状電解質を単独もしくはセパレータと併用して用いることが出来る。 In the case of an electric double layer capacitor, (C 2 H 5 ) 4 NBF 4 , (C 2 H 5 ) 4 NPF 4 , (C 2 H 5 ) 4 instead of or in addition to the above supporting electrolyte. Ammonium salts such as NClO 4 , (C 2 H 5 ) 3 CH 3 NBF 4 , and (CH 3 ) 4 NBF 4 , phosphonium salts, and the like are used. When a solid electrolyte such as a gel electrolyte, a polymer solid electrolyte, or an inorganic solid electrolyte is used as the electrolyte, these solid electrolytes can be used alone or in combination with a separator instead of the separator.
以下、実施例について図面を参照して説明する。
(実施例1)
本実施例は、本発明による平板型電気化学セルとして、図1及び図3の基本構造による電気二重層キャパシタを構成した例である。活性炭粉末と導電性付与剤としてカーボンブラックを結着剤としてポリテトラフロロエチレン(PTFE)を混合混錬し、圧延成形して厚さ100μm、幅50mmの帯状電極シートを作製した。この電極シートを炭素を導電性フィラーとする導電性接着剤により厚さ40μmのアルミニウム箔からなる集電体の片面に、サイドに28mmづつの露出部分を残して接着し積層一体化した後、露出部に厚さ70μm、幅4mmのアルミニウム板からなる外部リード端子を超音波溶接により接合した。次に電極積層部が幅50mm、長さ90mmになるように切断して、一対の電極と集電体の積層体を作製した。この一対の電極と集電体の積層体を、電極形成面を対向させて、間にセパレータを介して積層したものを幅28mm、厚さ2mmの平板状の巻芯を用いて捲回した後、荷重4kg/cm2でプレスして電極体とした。
Hereinafter, embodiments will be described with reference to the drawings.
(Example 1)
In this embodiment, an electric double layer capacitor having the basic structure shown in FIGS. 1 and 3 is configured as a flat plate electrochemical cell according to the present invention. A strip electrode sheet having a thickness of 100 μm and a width of 50 mm was prepared by mixing and kneading polytetrafluoroethylene (PTFE) using activated carbon powder and carbon black as a conductivity-imparting agent and binder. This electrode sheet is bonded and laminated with a conductive adhesive containing carbon as a conductive filler on one side of a current collector made of aluminum foil having a thickness of 40 μm, leaving an exposed portion of 28 mm on each side, and then exposed. An external lead terminal made of an aluminum plate having a thickness of 70 μm and a width of 4 mm was joined to the part by ultrasonic welding. Next, the electrode laminate was cut to have a width of 50 mm and a length of 90 mm to produce a laminate of a pair of electrodes and a current collector. After winding the laminated body of the pair of electrodes and the current collector with the electrode formation surfaces facing each other with a separator interposed therebetween, using a flat core having a width of 28 mm and a thickness of 2 mm The electrode body was pressed at a load of 4 kg / cm 2 .
外装体はアルミニウム箔の外側面にナイロン、内側面にポリプロピレンを接着ラミネートした厚さ約110μmの絶縁性ラミネートフィルムを用い、ポリプロピレン層を内側面として袋状に折り重ねた。次に、上記の電極体をその外部リード端子が外装フィルムの折り返し辺に対向する側になるように載置し、折り返し辺に対向する開口辺の封止部から外部リード端子を引き出して収納した。先ず外装体周縁3辺の開口部のうち外部リード端子を引き出した辺とそれに直交する2辺の内の1辺の周縁部をヒートシール(加圧熱融着)した。 As the outer package, an insulating laminate film having a thickness of about 110 μm in which nylon was bonded to the outer surface of the aluminum foil and polypropylene was bonded and laminated to the inner surface was folded into a bag shape with the polypropylene layer as the inner surface. Next, the electrode body is placed so that the external lead terminal is on the side facing the folded side of the exterior film, and the external lead terminal is drawn out and stored from the sealing portion of the opening side facing the folded side. . First, the peripheral edge of one side of the two sides perpendicular to the side from which the external lead terminal was drawn out of the openings at the three peripheral edge portions was heat-sealed (pressurized heat fusion).
次に、外装フィルムの折り返し辺に直交するもう一方の開口部辺から、プロピレンカーボネートに1mol/lのテトラエチルアンモニウムテトラフルオロボレートを溶解した電解液を注入し、減圧して電解液を電極及びセパレータに含浸した後、開口部周縁部をヒートシールして密封封止した。本実施例では、封止部のヒートシールによる封止幅(外装体フィルムの熱融着幅)として、外部リード端子を引き出さない封止部Cでは2.5mm、外部リード端子を引き出した封止部Aでは5mmとした。このようにして幅40mm、長さ61mm、厚さ2.2mmの本実施例の平板型電気化学セルを30個作製した。 Next, an electrolyte solution in which 1 mol / l tetraethylammonium tetrafluoroborate is dissolved in propylene carbonate is injected from the other opening side perpendicular to the folded side of the exterior film, and the pressure is reduced to apply the electrolyte to the electrode and separator. After impregnation, the periphery of the opening was heat sealed and hermetically sealed. In this example, the sealing width by heat sealing of the sealing portion (thermal fusion width of the outer package film) is 2.5 mm in the sealing portion C where the external lead terminal is not pulled out, and the sealing is performed by pulling out the external lead terminal. In part A, it was 5 mm. In this manner, 30 flat plate electrochemical cells of this example having a width of 40 mm, a length of 61 mm, and a thickness of 2.2 mm were produced.
尚、外部リード端子には、上記のヒートシールに際して外装体の封止部に該当する部分に、外装体に収納する前に予め、外部リード端子と接する側が酸変性処理されたポリプロピレンであり外装体フィルムと接する側がポリプロピレンである厚さ100μ、幅5mmの樹脂を熱接着してあり、ヒートシールにおいて外部リード端子と外装体内側面のポリプロピレンフィルム層の間に酸変性ポリプロリレンを介在させた。 In addition, the external lead terminal is a polypropylene in which the side in contact with the external lead terminal is previously subjected to acid-denaturation treatment in a portion corresponding to the sealing portion of the outer package at the time of heat sealing, before being stored in the outer package. A resin having a thickness of 100 μm and a width of 5 mm, which is polypropylene on the side in contact with the film, was thermally bonded, and acid-modified polypropylene was interposed between the external lead terminal and the polypropylene film layer on the side surface of the exterior body in heat sealing.
このようにして作製した本実施例の平板型電気化学セルの静電容量の平均値は14.2F、単位体積あたりの容量は2.65F/cm3、内部抵抗の平均値は98mΩであった。また、温度60℃、相対湿度90%RHの高温高湿環境下に1000時間保存する加速劣化試験後でも封止部からの電解液の漏出(漏液)の発生は0個であり、内部抵抗は115mΩ、静電容量は14.1Fであり、実質的な劣化はほとんど見られなかった。 The average value of the capacitance of the flat plate electrochemical cell of this example thus produced was 14.2 F, the capacity per unit volume was 2.65 F / cm 3 , and the average value of internal resistance was 98 mΩ. . In addition, even after an accelerated deterioration test that is stored for 1000 hours in a high-temperature and high-humidity environment at a temperature of 60 ° C. and a relative humidity of 90% RH, no electrolyte leakage (leakage) occurred from the sealed portion, and internal resistance Was 115 mΩ and the capacitance was 14.1 F, and substantially no deterioration was observed.
(比較例1)
実施例1と同様な電極体と外装体フィルムを用い、封止部のヒートシールによる封止幅(外装体フィルムの熱融着幅)として、外部リード端子を引き出さない封止部C及び外部リード端子を引き出した封止部B共に3mmとした他は、実施例1と同様にして、従来法による比較例1の電気化学セルを30個作製した。この様にして作製したセルのサイズは幅41mm、長さ59mm、厚さ2.2mmで、製造直後の静電容量の平均値は14.2F、単位体積あたりの容量は2.67F/cm3、内部抵抗の平均値は100mΩであり実施例1とほぼ同等であったが、温度60℃、相対湿度90%RHの高温高湿環境下に1000時間保存する加速劣化試験後では、封止部Bの外部リード端子引き出し部分からの電解液の漏出(漏液)が3個発生した。
(Comparative Example 1)
Using the same electrode body and exterior body film as in Example 1, the sealing portion C and the external lead that do not draw out the external lead terminals as the sealing width by heat sealing of the sealing portion (thermal fusion width of the exterior body film) Thirty electrochemical cells of Comparative Example 1 according to the conventional method were produced in the same manner as in Example 1 except that both the sealing portions B from which the terminals were drawn out were 3 mm. The size of the cell thus produced was 41 mm wide, 59 mm long, and 2.2 mm thick. The average capacitance immediately after production was 14.2 F, and the capacity per unit volume was 2.67 F / cm 3. The average value of the internal resistance was 100 mΩ, which was almost the same as that of Example 1. However, after the accelerated deterioration test that was stored in a high-temperature and high-humidity environment at a temperature of 60 ° C. and a relative humidity of 90% RH, Three leakages (leakage) of the electrolytic solution from the external lead terminal lead portion of B occurred.
(比較例2)
封止部のヒートシールによる封止幅として、外部リード端子を引き出さない封止部C及び外部リード端子を引き出した封止部B共に5mmとした他は、実施例1と同様にして、従来法による比較例2の電気化学セルを30個作製した。この様にして作製したセルのサイズは幅45mm、長さ61mm、厚さ2.2mmであり、製造直後の静電容量の平均値は14.2F、単位体積あたりの容量は2.35F/cm3、内部抵抗の平均値は99mΩであり、実施例1の本発明によるセルに比べ単位体積当たりの容量は12%小さくなった。
(Comparative Example 2)
The conventional method is the same as in Example 1 except that the sealing width by heat sealing of the sealing portion is 5 mm for both the sealing portion C from which the external lead terminal is not pulled out and the sealing portion B from which the external lead terminal is pulled out. 30 electrochemical cells of Comparative Example 2 were prepared. The size of the cell thus produced is 45 mm in width, 61 mm in length, and 2.2 mm in thickness. The average value of capacitance immediately after production is 14.2 F, and the capacity per unit volume is 2.35 F / cm. 3. The average value of the internal resistance was 99 mΩ, and the capacity per unit volume was 12% smaller than that of the cell according to the present invention in Example 1.
但し、温度60℃、相対湿度90%RHの高温高湿環境下に1000時間保存する加速劣化試験後では、封止部Bの外部リード端子引き出し部分からの電解液の漏出(漏液)の発生は0個であり、内部抵抗は113mΩ、静電容量は14.1Fであり、実質的な劣化はほとんど見られなかった。 However, after an accelerated deterioration test that is stored for 1000 hours in a high-temperature and high-humidity environment at a temperature of 60 ° C. and a relative humidity of 90% RH, leakage of the electrolyte from the external lead terminal lead-out portion (leakage) of the sealing portion B occurs. Was 0, the internal resistance was 113 mΩ, and the capacitance was 14.1 F, so that substantial deterioration was hardly observed.
以上の様に、本発明による実施例1は、従来法による比較例に比べ、単位体積当たりの容量を実質的に低下させること無く、外装体の封止部からの漏液の発生や充放電性能の劣化を著しく改善し、長期的な信頼性の高い平板型電気化学セルが得られることが分かる。 As described above, the first embodiment according to the present invention is less likely to cause leakage or charge / discharge from the sealing portion of the exterior body without substantially reducing the capacity per unit volume as compared with the comparative example according to the conventional method. It can be seen that a flat plate electrochemical cell with significantly improved performance degradation and high long-term reliability can be obtained.
1 正極
2 負極
3 集電体
4 集電体
5 外部リード端子
6 外部リード端子
7 セパレータ
8 外装体
8a 樹脂フィルム
8b 金属箔
8c 樹脂フィルム
9 封止剤
10 発電要素
DESCRIPTION OF
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003420255A JP2005183556A (en) | 2003-12-18 | 2003-12-18 | Plate-type electrochemical cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003420255A JP2005183556A (en) | 2003-12-18 | 2003-12-18 | Plate-type electrochemical cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005183556A true JP2005183556A (en) | 2005-07-07 |
Family
ID=34781846
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003420255A Pending JP2005183556A (en) | 2003-12-18 | 2003-12-18 | Plate-type electrochemical cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005183556A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009031470A1 (en) * | 2007-09-06 | 2009-03-12 | Meidensha Corporation | Electric double-layer capacitor |
US8218288B2 (en) | 2007-09-14 | 2012-07-10 | Meidensha Corporation | Bipolar layered type electric double layer capacitor |
US8254085B2 (en) | 2007-09-07 | 2012-08-28 | Meidensha Corporation | Stacked electric double layer capacitor |
JP2014523646A (en) * | 2011-06-27 | 2014-09-11 | シックスポイント マテリアルズ, インコーポレイテッド | Ultracapacitors with electrodes containing transition metal nitrides |
JP2019145755A (en) * | 2018-02-23 | 2019-08-29 | Tdk株式会社 | Electrochemical device |
-
2003
- 2003-12-18 JP JP2003420255A patent/JP2005183556A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009031470A1 (en) * | 2007-09-06 | 2009-03-12 | Meidensha Corporation | Electric double-layer capacitor |
JP2009064946A (en) * | 2007-09-06 | 2009-03-26 | Meidensha Corp | Electric double-layer capacitor |
US8358496B2 (en) | 2007-09-06 | 2013-01-22 | Meidensha Corporation | Electric double-layer capacitor |
US8254085B2 (en) | 2007-09-07 | 2012-08-28 | Meidensha Corporation | Stacked electric double layer capacitor |
US8218288B2 (en) | 2007-09-14 | 2012-07-10 | Meidensha Corporation | Bipolar layered type electric double layer capacitor |
JP2014523646A (en) * | 2011-06-27 | 2014-09-11 | シックスポイント マテリアルズ, インコーポレイテッド | Ultracapacitors with electrodes containing transition metal nitrides |
JP2019145755A (en) * | 2018-02-23 | 2019-08-29 | Tdk株式会社 | Electrochemical device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5537094B2 (en) | battery | |
KR100559363B1 (en) | Flat non-aqueous electrolyte secondary cell | |
EP0996178B1 (en) | Nonaqueous electrolyte battery | |
JP4293501B2 (en) | Electrochemical devices | |
JP2002298825A (en) | Method of producing electrochemical device and the electrochemical device | |
JP2005093242A (en) | Secondary battery | |
JP2001256933A (en) | Battery and battery pack | |
JP2001250515A (en) | Battery | |
JP3968980B2 (en) | Battery pack | |
JP2004273139A (en) | Lithium secondary battery | |
JP2002270239A (en) | Electrochemical device | |
JP4138172B2 (en) | Electrochemical device and manufacturing method thereof | |
KR20010091959A (en) | Solid electrolyte battery and production method thereof | |
JP4316951B2 (en) | Electrode and lithium ion secondary battery | |
JP2001084984A (en) | Battery | |
JP4021592B2 (en) | Electrochemical devices | |
JP4060549B2 (en) | Electrochemical element exterior | |
KR20170095072A (en) | Secondary battery and method for manufacturing the secondary battery | |
JPH11260414A (en) | Nonaqueous system secondary battery | |
JP2005149882A (en) | Electrochemical cell and its manufacturing method | |
JP4055345B2 (en) | Solid electrolyte battery | |
JP2000277176A (en) | Lithium secondary battery and method for using the same | |
JP3869668B2 (en) | Electrochemical device and manufacturing method thereof | |
JP2005183556A (en) | Plate-type electrochemical cell | |
JP2004319097A (en) | Electrochemical cell |