JP2007115478A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery Download PDF

Info

Publication number
JP2007115478A
JP2007115478A JP2005304557A JP2005304557A JP2007115478A JP 2007115478 A JP2007115478 A JP 2007115478A JP 2005304557 A JP2005304557 A JP 2005304557A JP 2005304557 A JP2005304557 A JP 2005304557A JP 2007115478 A JP2007115478 A JP 2007115478A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
electrode terminal
electrolyte battery
exterior member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005304557A
Other languages
Japanese (ja)
Other versions
JP5161421B2 (en
Inventor
Yoshikazu Kobayashi
義和 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP2005304557A priority Critical patent/JP5161421B2/en
Publication of JP2007115478A publication Critical patent/JP2007115478A/en
Application granted granted Critical
Publication of JP5161421B2 publication Critical patent/JP5161421B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte battery capable of suppressing voltage drop when the shock is applied from the outside by vibration, falling down or the like. <P>SOLUTION: The nonaqueous electrolyte battery is equipped with a film outer packaging member having a flat shape and formed by joining a first surface and a second surface on the opposite side by heat sealing; an electrode group housed in the film outer packaging member and containing a positive electrode, a negative electrode, and a separator; a positive terminal 11 electrically connected to the positive electrode; and a negative terminal 13 electrically connected to the negative electrode. The positive terminal 11 and the negative terminal 13 are drawn out of the same heat sealing parts of the outer packaging member or the heat sealing parts facing each other, and the first surface and the second surface are joined on the inner surfaces in a region facing to a space positioned between the heat sealing part from which at least one of the positive terminal and the negative terminal is drawn out and the electrode group. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、非水電解質電池に係わるものである。   The present invention relates to a non-aqueous electrolyte battery.

近年、電子機器の発展にともない、小型で軽量、かつエネルギー密度が高く、さらに繰り返し充放電が可能な二次電池の開発が要望されている。このような二次電池としてはリチウムまたはリチウム合金を活物質とする負極と、モリブデン、バナジウム、チタンあるいはニオブなどの酸化物、硫化物もしくはセレン化物の活物質を含む懸濁液が塗布された集電体からなる正極と、非水電解液とを具備した非水電解質二次電池が知られている。   In recent years, with the development of electronic devices, there has been a demand for the development of secondary batteries that are small and light, have high energy density, and can be repeatedly charged and discharged. As such a secondary battery, a negative electrode using lithium or a lithium alloy as an active material and a suspension in which a suspension containing an active material of oxide, sulfide or selenide such as molybdenum, vanadium, titanium or niobium is applied. A non-aqueous electrolyte secondary battery including a positive electrode made of an electric body and a non-aqueous electrolyte is known.

また、負極に例えばコークス、黒鉛、炭素繊維、樹脂焼成体、熱分解気相炭素のようなリチウムイオンを吸蔵放出する炭素質材料を含む懸濁液が塗布された集電体を用いた非水電解質二次電池が提案されている。前記二次電池は、デンドライト析出による負極特性の劣化を改善することができるため、電池寿命と安全性を向上することができる。   Also, non-aqueous using a current collector in which a suspension containing a carbonaceous material that occludes and releases lithium ions, such as coke, graphite, carbon fiber, a resin fired body, and pyrolytic vapor phase carbon, is applied to the negative electrode. An electrolyte secondary battery has been proposed. The secondary battery can improve the deterioration of the negative electrode characteristics due to the dendrite precipitation, so that the battery life and safety can be improved.

一方、外装部材は、従来の金属缶の代わりに、より一層の薄形化を目的として例えばナイロンフィルムに代表される外部衝撃保護フィルムを最外層とし、アルミニウム箔に代表される防湿、遮光を目的とした金属層を中間に配し、最内層に電極群並びに電解液を封止するための熱融着性樹脂フィルム配した複合フィルムから形成されたものを用いることが進んでいる。   On the other hand, instead of the conventional metal can, the exterior member has an external impact protection film typified by nylon film as the outermost layer for the purpose of further thinning, for the purpose of moisture and light shielding typified by aluminum foil It is advancing to use what was formed from the composite film which arrange | positioned the metal layer mentioned above in the middle, and arranged the electrode group and the heat-fusible resin film for sealing electrolyte solution in the innermost layer.

このようなフィルム材から形成された外装部材を備えた非水電解質二次電池は、従来の金属缶を用いたものと比較して、多種多様な形状展開が比較的安価で可能であり、最近特に電池の高容量化、高出力化が要求される分野では外装部材にフィルム材を用いたものが主流になっている。   A non-aqueous electrolyte secondary battery equipped with an exterior member formed from such a film material can be developed in a wide variety of shapes at a relatively low cost compared to those using conventional metal cans. In particular, in the field where high capacity and high output of the battery are required, those using a film material as the exterior member have become mainstream.

しかしながら、一方で電池の安全性を考慮した場合、金属缶と比較して一般的にフィルム材の強度は弱いため、過充電および過放電の発熱やガス発生による内部圧力上昇からの破裂等は起こりにくく有利である半面、振動や落下衝撃では容器内部の電極群の移動により容器自体に変形が生じ、端子の断線による内部抵抗の上昇や局部的短絡が起こりやすい。   However, considering the safety of the battery, on the other hand, the strength of the film material is generally weaker than that of a metal can, so overheating due to overcharge and overdischarge, and explosion from internal pressure increase due to gas generation, etc. On the other hand, it is difficult and advantageous, but in the case of vibration or drop impact, the container itself is deformed by the movement of the electrode group inside the container, and the internal resistance is likely to increase due to the disconnection of the terminal, or a local short-circuit occurs.

この状態は通常に充放電を繰り返した場合でも不具合部分での発熱による電池自体の発火を引き起こす可能性がある。   In this state, even when charging / discharging is repeated normally, there is a possibility that the battery itself may be ignited due to heat generation in the defective portion.

落下衝撃時の電池信頼性の低下を防止するために、特許文献1では、電池コア40が収納される第1の凹部10hの第1の側面10sに、電極端子6が延在する方向に沿って電池コア40に近づくように第1の凹部10hの内側に突出する第1の突出部11tを形成している。
特開2003−77426号公報
In order to prevent a decrease in battery reliability during a drop impact, in Patent Document 1, along the direction in which the electrode terminal 6 extends to the first side surface 10s of the first recess 10h in which the battery core 40 is accommodated. Thus, a first projecting portion 11t projecting inside the first recess 10h is formed so as to approach the battery core 40.
JP 2003-77426 A

本発明は、振動や落下等により外部から衝撃が加わった際の電圧低下が抑制された非水電解質電池を提供するものである。   The present invention provides a nonaqueous electrolyte battery in which a voltage drop when an impact is applied from the outside due to vibration, dropping, or the like is suppressed.

本発明に係る非水電解質電池は、扁平形状をなし、第1の面と反対側の第2の面とが熱融着により接合されたフィルム製外装部材と、前記外装部材内に収納され、正極、負極及びセパレータを含む電極群と、前記正極に電気的に接続された正極端子と、前記負極に電気的に接続された負極端子とを具備する非水電解質電池であって、
前記正極端子及び前記負極端子は前記外装部材の同じ熱融着部もしくは互いに対向する熱融着部から外部に引き出されており、
前記第1の面と前記第2の面は、前記正極端子及び前記負極端子のうち少なくとも一方が引き出されている熱融着部と前記電極群との間に位置する空間と対向する領域において、内面同士が接合されていることを特徴とするものである。
The nonaqueous electrolyte battery according to the present invention has a flat shape, and is housed in the exterior member made of a film, in which the first surface and the second surface opposite to the first surface are joined by thermal fusion, A non-aqueous electrolyte battery comprising an electrode group including a positive electrode, a negative electrode, and a separator, a positive electrode terminal electrically connected to the positive electrode, and a negative electrode terminal electrically connected to the negative electrode,
The positive electrode terminal and the negative electrode terminal are drawn to the outside from the same heat fusion part of the exterior member or the heat fusion parts opposite to each other,
In the region where the first surface and the second surface are opposed to a space located between the heat fusion part from which at least one of the positive electrode terminal and the negative electrode terminal is drawn out and the electrode group, The inner surfaces are joined to each other.

また、本発明に係る非水電解質電池は、扁平形状をなし、第1の面と反対側の第2の面とが熱融着により接合されたフィルム製外装部材と、前記外装部材内に収納され、正極、負極及びセパレータを含む電極群と、前記正極に電気的に接続された正極端子と、前記負極に電気的に接続された負極端子とを具備する非水電解質電池であって、
前記正極端子及び前記負極端子は前記外装部材の同じ熱融着部もしくは互いに対向する熱融着部から外部に引き出されており、
前記第1の面と前記第2の面は、前記正極端子及び前記負極端子のうち少なくとも一方が引き出されている熱融着部と前記電極群との間に位置する空間と対向する領域において、絶縁性スペーサが介装されていることを特徴とするものである。
In addition, the nonaqueous electrolyte battery according to the present invention has a flat shape, and is housed in the exterior member made of a film in which the first surface and the second surface opposite to the first surface are bonded by thermal fusion. A non-aqueous electrolyte battery comprising an electrode group including a positive electrode, a negative electrode, and a separator, a positive electrode terminal electrically connected to the positive electrode, and a negative electrode terminal electrically connected to the negative electrode,
The positive electrode terminal and the negative electrode terminal are drawn to the outside from the same heat fusion part of the exterior member or the heat fusion parts opposite to each other,
In the region where the first surface and the second surface are opposed to a space located between the heat fusion part from which at least one of the positive electrode terminal and the negative electrode terminal is drawn out and the electrode group, Insulating spacers are interposed.

本願発明によれば、非水電解質電池に振動や落下等により外部から衝撃が加わった際の電圧低下を抑制することができる。   According to the present invention, it is possible to suppress a voltage drop when an external impact is applied to the nonaqueous electrolyte battery due to vibration or dropping.

本願発明に係る非水電解質電池によれば、外部から衝撃が加わった際の外装部材内での電極群の移動を抑えることが可能であり、電極群及び外装部材に加わる衝撃を緩和することができる。ここでの外部衝撃は外からの力で外装部材が破れる、もしくは電池自体が変形するようなものではなく、輸送時の振動や、外部機器に組み込まれパック化した後に加わる間接的な力を想定している。   According to the nonaqueous electrolyte battery according to the present invention, it is possible to suppress the movement of the electrode group in the exterior member when an impact is applied from the outside, and to reduce the impact applied to the electrode group and the exterior member. it can. The external impact here is not the case where the exterior member is broken or the battery itself is deformed by external force, but it assumes vibration during transportation and indirect force applied after packaging into an external device. is doing.

フィルム材から形成された外装部材を備えた非水電解質電池では、正極端子及び負極端子を外装部材から外部に引き出しているため、正極端子及び負極端子がフィルム材の間に挟まれて固定されているものの、電極群は外装部材と接触しているだけで固定されていない。このため、外装部材内部に存在する空隙の方向に衝撃が加わった場合、電極群は衝撃方向に容易に移動し、更に強い衝撃では電極群の衝突により外装部材を変形させることもある。   In a nonaqueous electrolyte battery having an exterior member formed of a film material, the positive electrode terminal and the negative electrode terminal are pulled out from the exterior member to the outside, so that the positive electrode terminal and the negative electrode terminal are sandwiched and fixed between the film materials. However, the electrode group is in contact with the exterior member and is not fixed. For this reason, when an impact is applied in the direction of the gap existing inside the exterior member, the electrode group easily moves in the impact direction, and the exterior member may be deformed by the collision of the electrode group in a stronger impact.

この衝撃により正負極端子と電極群との接続が外れるか、正負極端子もしくは電極群の破損により一時的に断線状態となり、更にその後の衝撃で断線部分が接触した状態になると、局部的に抵抗が高い部分を生ずることになり通常に充放電を繰り返した場合でもこの不具合部分での発熱による電池自体の発火を引き起こす可能性がある。また電極群自体の変形により、局部的短絡を生じ、発熱、発火を引き起こす可能性もある。   If the connection between the positive and negative electrode terminals and the electrode group is disconnected due to this impact, or if the positive or negative electrode terminal or electrode group is temporarily broken and then the disconnected part is in contact with the impact, the resistance is locally increased. Therefore, even if charging / discharging is repeated normally, there is a possibility that the battery itself may be ignited due to heat generation in the defective portion. In addition, deformation of the electrode group itself may cause a local short circuit, causing heat generation and ignition.

本願発明のように、正極端子及び負極端子のうち少なくとも一方が引き出されている熱融着部と電極群との間に位置する空間と対向する第1の面及び第2の面において、内面同士を接合するか、あるいは絶縁性スペーサを介在させることによって、外部衝撃が加わった際、電極群の移動を接合部あるいは絶縁スペーサで規制することができる。その結果、正負極端子の接続不良及び電極群の変形を抑制することができるため、外部衝撃が加わった際の内部短絡による電圧低下を抑制することができる。なお、接合部の形成や、外装部材への絶縁性スペーサの固定は、例えば、熱融着、電池性能に影響を及ぼさない接着剤やテープの使用等により行うことができるが、方法が簡単で、十分な接合強度が得られ、しかも副反応の恐れが少ないため、熱融着が望ましい。   As in the present invention, in the first surface and the second surface facing the space located between the heat fusion part from which at least one of the positive electrode terminal and the negative electrode terminal is drawn out and the electrode group, the inner surfaces are When an external impact is applied, the movement of the electrode group can be restricted by the joint or the insulating spacer. As a result, the connection failure between the positive and negative terminals and the deformation of the electrode group can be suppressed, so that a voltage drop due to an internal short circuit when an external impact is applied can be suppressed. In addition, the formation of the joint portion and the fixing of the insulating spacer to the exterior member can be performed by, for example, heat sealing, use of an adhesive or a tape that does not affect the battery performance, but the method is simple. Heat bonding is desirable because sufficient bonding strength can be obtained and there is little risk of side reactions.

まず、接合部について説明する。   First, the joint portion will be described.

接合部の面積は、正極端子及び負極端子のうち少なくとも一方が引き出されている熱融着部と電極群との間に位置する空間と対向する領域面積(片面)の10%以上、60%以下にすることが望ましい。これは以下に説明する理由によるものである。接合部の面積を 10%未満にすると、電極群の衝突で接合部が剥離する恐れがある。一方、接合部の面積が60%を超えると、電池内部の空間が減少することにより、電解液の保持スペ−スが減少する。このため、注液性が悪化して生産性が低下する恐れがある。また、出力特性・充放電サイクル特性などの電池特性が低下する可能性がある。   The area of the joint is 10% or more and 60% or less of the area (one side) facing the space located between the heat-sealed part from which at least one of the positive electrode terminal and the negative electrode terminal is drawn out and the electrode group. It is desirable to make it. This is due to the reason explained below. If the area of the bonded portion is less than 10%, the bonded portion may be peeled off by the collision of the electrode group. On the other hand, if the area of the joint exceeds 60%, the space inside the battery is reduced, and the holding space for the electrolyte is reduced. For this reason, there exists a possibility that liquid injection property may deteriorate and productivity may fall. In addition, battery characteristics such as output characteristics and charge / discharge cycle characteristics may deteriorate.

接合部は、例えば、第1の面または第2の面に凹部を形成し、凹部内面と他方の面の内面とを接合することにより形成することができる。凹部の形状は、特に限定されるものではないが、例えば、円柱形状、楕円柱形状、三角柱形状、四角柱形状、多角柱形状等の様々な形状にすることができる。加工しやすいのは円柱形で、接合強度がより向上されるのは四角柱形である。   The joining portion can be formed, for example, by forming a recess on the first surface or the second surface and joining the inner surface of the recess and the inner surface of the other surface. The shape of the recess is not particularly limited, but can be various shapes such as a cylindrical shape, an elliptical column shape, a triangular column shape, a quadrangular column shape, a polygonal column shape, and the like. It is easy to work with a cylindrical shape, and it is a quadrangular prism shape that improves the bonding strength.

また、凹部はテーパ形状を有していることが望ましい。これにより、フィルム材に凹部を形成する際の加工皺を少なくすることができる。さらに、電極群と凹部との衝突面積を大きくすることができるため、電極群の移動を規制する効果をより高くすることができる。   Moreover, it is desirable that the recess has a tapered shape. Thereby, the processing wrinkle at the time of forming a recessed part in a film material can be decreased. Furthermore, since the collision area of an electrode group and a recessed part can be enlarged, the effect which regulates the movement of an electrode group can be made higher.

凹部内の空隙を埋めるための充填部材を備えることによって、接合部を外側から加圧して接合部の接合強度をより向上することができる。また、凹部内に異物が入るのを回避することができると共に、電池強度の補強も可能である。   By providing the filling member for filling the gap in the recess, the joint can be pressurized from the outside to further improve the joint strength of the joint. In addition, it is possible to avoid the entry of foreign matter into the recess and to reinforce the battery strength.

充填部材には、正極端子及び前記負極端子のうち少なくとも一方が引き出されている熱融着部上に固定される平板部と、平板部に形成され、凹部内の空隙に充填される突起部とを具備するものを使用可能である。このような充填部材は、接合部の接合強度をより向上することができる。また、凹部内に異物が入るのを回避することができると共に、電池強度の補強も可能である。さらに、充填部材と外装部材の接合強度も向上することができる。   The filling member includes a flat plate portion fixed on the heat fusion portion from which at least one of the positive electrode terminal and the negative electrode terminal is drawn, and a projection portion formed in the flat plate portion and filled in the gap in the concave portion. Can be used. Such a filling member can further improve the joint strength of the joint. In addition, it is possible to avoid the entry of foreign matter into the recess and to reinforce the battery strength. Furthermore, the bonding strength between the filling member and the exterior member can also be improved.

充填部材が衝撃吸収性を有することによって、落下時の耐衝撃性をより高くすることができる。衝撃吸収性を有する材料としては、例えば、シリコンゴム、ウレタン樹脂、二トリルブタジエンゴム(NBR)などを挙げることができる。   When the filling member has shock absorption, the impact resistance at the time of dropping can be further increased. Examples of the material having shock absorption include silicon rubber, urethane resin, nitrile butadiene rubber (NBR), and the like.

次いで、絶縁性スペーサについて説明する。   Next, the insulating spacer will be described.

絶縁性スペーサは、電池性能に影響を及ぼさない材料から形成されていれば特に限定されるものではないが、例えば、ポリオレフィン(ポリエチレン、ポリプロピレン)のような熱可塑性樹脂から形成することができる。   The insulating spacer is not particularly limited as long as it is made of a material that does not affect the battery performance. For example, the insulating spacer can be made of a thermoplastic resin such as polyolefin (polyethylene, polypropylene).

絶縁性スペーサと外装部材との接着面積(片面)は、接合部で説明したのと同様な理由により、領域面積(片面)の10%以上、60%以下にすることが望ましい。   The bonding area (one side) between the insulating spacer and the exterior member is desirably 10% or more and 60% or less of the area of the region (single side) for the same reason as described for the joint portion.

特に、第1の面または第2の面に凹部を形成し、凹部が形成された面と他方の面との間に絶縁性スペーサを固定することによって、簡単な方法で、より高い衝撃吸収効果を得ることができる。   In particular, by forming a concave portion on the first surface or the second surface and fixing an insulating spacer between the surface on which the concave portion is formed and the other surface, a higher impact absorbing effect can be obtained in a simple manner. Can be obtained.

本願発明の非水電解質電池を、輸送時の振動や、外部機器に組み込まれパック化した後に加わる間接的な力を想定して、電池に直接外力が加わらないように電池表面部を保護し、コンクリート等の上に一定高さから数回落下させたときの電池電圧の変化を確認した結果、後述する実施例に示す通り、従来構造の電池と比較してその変化量を著しく小さくできることが確認でき、耐外部衝撃に効果のある非水電解質電池を実現することができた。   Assuming the non-aqueous electrolyte battery of the present invention, vibration during transportation, and indirect force applied after being packed into an external device and protecting the battery surface portion so that external force is not directly applied to the battery, As a result of confirming the change in battery voltage when dropped several times from a certain height on concrete etc., it was confirmed that the amount of change can be remarkably reduced as compared with the battery of the conventional structure as shown in the examples described later. And a non-aqueous electrolyte battery effective for external impact resistance could be realized.

外装部材及び電極群について説明する。   The exterior member and the electrode group will be described.

1)外装部材
外装部材には、電極群が収納される凹部(カップ部)を備えたものを使用することができる。外装部材には、容器と封口板が一体化されたものを使用しても良いし、封口板と容器とが別々の構成になっているものを使用することも可能である。
1) Exterior member As the exterior member, one having a recess (cup portion) in which an electrode group is accommodated can be used. As the exterior member, a member in which the container and the sealing plate are integrated may be used, or a member in which the sealing plate and the container have different structures may be used.

外装部材を形成するフィルム材は、少なくとも樹脂フィルムを含有するものが好ましい。このようなフィルム材としては、例えば、樹脂製フィルム、樹脂及び金属を含有するラミネートフィルム等を挙げることができる。   The film material forming the exterior member preferably contains at least a resin film. Examples of such a film material include a resin film, a laminate film containing a resin and a metal, and the like.

使用する樹脂の種類は、特に限定されるものではないが、例えば、ナイロンなどのポリアミド樹脂、ポリオレフィン樹脂(ポリエチレンやポリプロピレン等)などの熱可塑性樹脂等を挙げることができる。   Although the kind of resin to be used is not particularly limited, examples thereof include polyamide resins such as nylon and thermoplastic resins such as polyolefin resins (polyethylene, polypropylene, etc.).

ラミネートフィルムとしては、例えば、金属層と、金属層の一方の面に形成された熱可塑性樹脂層と、金属層の反対側の面に形成された保護層とを含むものを使用することができる。金属層は、例えば、アルミニウム、アルミニウム合金から形成することができる。保護層は、例えば、ナイロンなどのポリアミド樹脂、ポリエテレンテレフタレートから形成することができる。接合部は、ラミネートフィルムの熱可塑性樹脂層同士を熱融着させることにより形成することができる。   As the laminate film, for example, a film including a metal layer, a thermoplastic resin layer formed on one surface of the metal layer, and a protective layer formed on the opposite surface of the metal layer can be used. . The metal layer can be formed from, for example, aluminum or an aluminum alloy. The protective layer can be formed from, for example, a polyamide resin such as nylon or polyethylene terephthalate. The joining portion can be formed by thermally fusing the thermoplastic resin layers of the laminate film.

また、ラミネートフィルムにおいては、外部保護層、金属層及び熱可塑性樹脂層の各層の間に接着剤層やガスバリアー層などを設けても良い。   In the laminate film, an adhesive layer, a gas barrier layer, or the like may be provided between the external protective layer, the metal layer, and the thermoplastic resin layer.

2)電極群
電極群には、扁平形状を有するものを使用することができる。扁平形状の電極群は、例えば、正極と負極とをセパレータを介して渦巻状に捲回するか、あるいは正極と負極とをその間にセパレータを介在させながら交互に積層することにより作製される。
2) Electrode group What has a flat shape can be used for an electrode group. The flat electrode group is produced, for example, by winding the positive electrode and the negative electrode in a spiral shape via a separator, or alternately laminating the positive electrode and the negative electrode with a separator interposed therebetween.

正極は、集電体と、集電体に担持された合剤層とを含む。   The positive electrode includes a current collector and a mixture layer supported on the current collector.

正極活物質としては、種々の酸化物、例えば二酸化マンガン、リチウムマンガン複合酸化物(例えば、LiMn24、LiMnO2)、リチウム含有ニッケル酸化物、リチウム含有コバルト酸化物(例えば、LiCoO2)、リチウム含有ニッケルコバルト酸化物(例えば、LiNi0.8Co0.22)、リチウム含有鉄酸化物、リチウムを含むバナジウム酸化物や、二硫化チタン、二硫化モリブデンなどのカルコゲン化合物などを挙げることができる。なお、使用する正極活物質の種類は、1種類もしくは2種類以上にすることができる。 As the positive electrode active material, various oxides such as manganese dioxide, lithium manganese composite oxide (for example, LiMn 2 O 4 , LiMnO 2 ), lithium-containing nickel oxide, lithium-containing cobalt oxide (for example, LiCoO 2 ), Examples thereof include lithium-containing nickel cobalt oxide (for example, LiNi 0.8 Co 0.2 O 2 ), lithium-containing iron oxide, vanadium oxide containing lithium, and chalcogen compounds such as titanium disulfide and molybdenum disulfide. In addition, the kind of positive electrode active material to be used can be made into 1 type or 2 types or more.

集電体としては、多孔質構造の導電性基板か、あるいは無孔の導電性基板を用いることができる。これら導電性基板は、例えば、アルミニウム、ステンレス、またはニッケルから形成することができる。   As the current collector, a conductive substrate having a porous structure or a nonporous conductive substrate can be used. These conductive substrates can be formed from, for example, aluminum, stainless steel, or nickel.

負極は、集電体と、集電体に担持される合剤層とを含む。   The negative electrode includes a current collector and a mixture layer supported on the current collector.

負極活物質には、リチウムイオンもしくはリチウムを吸蔵放出するものを使用することができ、例えば、黒鉛質材料もしくは炭素質材料(例えば、黒鉛、コークス、炭素繊維、球状炭素、熱分解気相炭素質物、樹脂焼成体など)、カルコゲン化合物(例えば、二硫化チタン、二硫化モリブデン、セレン化ニオブ等)、軽金属(例えば、アルミニウム、アルミニウム合金、マグネシウム合金、リチウム、リチウム合金等)、リチウムチタン酸化物(例えば、スピネル型のチタン酸リチウム)等を挙げることができる。   As the negative electrode active material, lithium ions or materials that occlude and release lithium can be used. For example, a graphite material or a carbonaceous material (for example, graphite, coke, carbon fiber, spherical carbon, pyrolytic gas phase carbonaceous material) , Resin fired bodies, etc.), chalcogen compounds (eg, titanium disulfide, molybdenum disulfide, niobium selenide, etc.), light metals (eg, aluminum, aluminum alloys, magnesium alloys, lithium, lithium alloys, etc.), lithium titanium oxides ( For example, spinel type lithium titanate) can be used.

集電体としては、多孔質構造の導電性基板か、あるいは無孔の導電性基板を用いることができる。これら導電性基板は、例えば、銅、アルミニウム、ステンレス、またはニッケルから形成することができる。   As the current collector, a conductive substrate having a porous structure or a nonporous conductive substrate can be used. These conductive substrates can be formed from, for example, copper, aluminum, stainless steel, or nickel.

セパレータとしては、微多孔性の膜、織布、不織布、これらのうち同一材または異種材の積層物等を用いることができる。セパレータを形成する材料としては、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合ポリマー、エチレン−ブテン共重合ポリマー等を挙げることができる。セパレータの形成材料としては、前述した種類の中から選ばれる1種類または2種類以上を用いることができる。   As the separator, a microporous film, a woven fabric, a non-woven fabric, a laminate of the same material or different materials among these can be used. Examples of the material for forming the separator include polyethylene, polypropylene, ethylene-propylene copolymer, and ethylene-butene copolymer. As a material for forming the separator, one type or two or more types selected from the types described above can be used.

電極群には、非水電解質が保持されている。非水電解質は、非水溶媒と、この非水溶媒に溶解される電解質(例えば、リチウム塩)とを含むものである。この非水電解質の形態は、液体状(非水電解液)やゲル状あるいは固体状にすることができる。   A non-aqueous electrolyte is held in the electrode group. The non-aqueous electrolyte includes a non-aqueous solvent and an electrolyte (for example, lithium salt) dissolved in the non-aqueous solvent. The form of this non-aqueous electrolyte can be liquid (non-aqueous electrolyte), gel or solid.

非水溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、γ−ブチロラクトン(γ−BL)、スルホラン、アセトニトリル、1,2−ジメトキシエタン、1,3−ジメトキシプロパン、ジメチルエーテル、テトラヒドロフラン(THF)、2−メチルテトラヒドロフラン等を挙げることができる。非水溶媒は、単独で使用しても、2種以上混合して使用してもよい。   Examples of the non-aqueous solvent include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), γ-butyrolactone (γ -BL), sulfolane, acetonitrile, 1,2-dimethoxyethane, 1,3-dimethoxypropane, dimethyl ether, tetrahydrofuran (THF), 2-methyltetrahydrofuran and the like. Nonaqueous solvents may be used alone or in combination of two or more.

電解質としては、例えば、過塩素酸リチウム(LiClO4)、六フッ過リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)、六フッ化砒素リチウム(LiAsF6)、トリフルオロメタンスルホン酸リチウム(LiCF3SO3)等のリチウム塩を挙げることができる。電解質は単独で使用しても、2種以上混合して使用してもよい。電解質の非水溶媒に対する溶解量は、0.2mol/l〜2mol/lとすることが望ましい。 Examples of the electrolyte include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoroarsenide (LiAsF 6 ), and trifluoromethanesulfone. Examples thereof include lithium salts such as lithium acid lithium (LiCF 3 SO 3 ). The electrolyte may be used alone or in combination of two or more. The amount of the electrolyte dissolved in the non-aqueous solvent is preferably 0.2 mol / l to 2 mol / l.

[実施例]
以下、本発明の実施例を前述した図面を参照して詳細に説明する。
[Example]
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings described above.

(実施例1)
<外装部材の形成>
厚さ0.025mmのナイロンフィルム/厚さ0.04mmのアルミニウム箔/厚さ0.03mmのポリエチレンフィルムで構成される総厚さ0.095mmの外装フィルムに絞り加工を施し、図1に示すように、短辺側の一端部の3箇所に深さ3.5mmの円柱状の凹部1a〜1cを設け、外寸法105×75mmに切り出し、封口板2を得た。円柱状の凹部1a〜1cはナイロンフィルム側(保護層側)からポリエチレンフィルム側(熱可塑性樹脂層側)に突き出すように加工した。また、凹部1a〜1cには、突き出し側に向かって径が小さくなるようにテーパ3が設けられている。
Example 1
<Formation of exterior member>
Drawing was performed on a 0.095 mm thick exterior film composed of 0.025 mm thick nylon film / 0.04 mm thick aluminum foil / 0.03 mm thick polyethylene film, as shown in FIG. In addition, cylindrical recesses 1a to 1c having a depth of 3.5 mm were provided at three locations on one end portion on the short side, and cut into outer dimensions of 105 × 75 mm to obtain a sealing plate 2. The cylindrical recesses 1a to 1c were processed so as to protrude from the nylon film side (protective layer side) to the polyethylene film side (thermoplastic resin layer side). Further, the recesses 1a to 1c are provided with a taper 3 so that the diameter becomes smaller toward the protruding side.

同様な外装フィルムに深絞り加工を施して深さ4.0mm、長さ95mm、幅65mmの矩形状カップ部4と、カップ部4の短辺方向2箇所4a,4bと長辺方向2箇所4c,4dに幅5mmの縁部を設けた外形寸法105×75mmの容器5を作製した。カップ部4はナイロンフィルムが外側になるように加工した。   A similar exterior film is subjected to deep drawing to form a rectangular cup portion 4 having a depth of 4.0 mm, a length of 95 mm, and a width of 65 mm, and two short side direction locations 4 a and 4 b and two long side direction locations 4 c of the cup portion 4. , 4d, and a container 5 having an outer dimension of 105 × 75 mm provided with a 5 mm wide edge. The cup part 4 was processed so that the nylon film was on the outside.

<電極群の作製>
まず、活物質としてのLiCoO2粉末89重量部に導電性フィラーとしてのグラファイト粉末8重量部および結着剤としてポリフッ化ビニリデン樹脂3重量部をN−メチルピロリドン25重量部に混合して正極ペーストを調製した。この正極ペーストを集電体である厚さ0.03mmのアルミニウム箔フープ材の両面へ両サイドに未塗布部分が残るように連続塗布し、乾燥した後、圧延して正極合剤層を形成した後、塗布部分の外形寸法が80×60mm、未塗布部分6の寸法が長辺部右端面より10mm内側の位置で5×10mmになるように切り出して正極とした。
<Production of electrode group>
First, 89 parts by weight of LiCoO 2 powder as an active material, 8 parts by weight of graphite powder as a conductive filler and 3 parts by weight of polyvinylidene fluoride resin as a binder are mixed with 25 parts by weight of N-methylpyrrolidone to prepare a positive electrode paste. Prepared. This positive electrode paste was continuously applied to both sides of an aluminum foil hoop material having a thickness of 0.03 mm as a current collector so that uncoated portions remained on both sides, dried, and then rolled to form a positive electrode mixture layer. Thereafter, the coated part was cut out so that the outer dimension of the coated part was 80 × 60 mm and the dimension of the uncoated part 6 was 5 × 10 mm at a position 10 mm inside from the right end surface of the long side part.

次いで、メソフェーズピッチ系炭素繊維を粉砕した後、熱処理した炭素繊維粉末100重量部をカルボキシメチルセルロースおよびスチレン−ブタジエンの架橋ゴムラテックス粒子2重量部を含む水溶液に混合して負極ペーストを調製した。この負極ペーストを集電体である厚さ0.015mmの銅箔フープ材の両面へ両サイドに未塗布部分が残るように連続塗布し、乾燥した後、圧延して負極合剤層7を形成した後、塗布部分の外形寸法が81×61mm、未塗布部分8の寸法が長辺部左端面より10mm内側の位置で5×10mmになるように切り出して負極とした。   Next, after pulverizing the mesophase pitch-based carbon fiber, 100 parts by weight of the heat-treated carbon fiber powder was mixed with an aqueous solution containing 2 parts by weight of crosslinked rubber latex particles of carboxymethyl cellulose and styrene-butadiene to prepare a negative electrode paste. This negative electrode paste was continuously applied on both sides of a copper foil hoop material having a thickness of 0.015 mm as a current collector so that uncoated portions remained on both sides, dried, and then rolled to form a negative electrode mixture layer 7 After that, the outer dimensions of the coated portion were 81 × 61 mm, and the uncoated portion 8 was cut out to have a size of 5 × 10 mm at a position 10 mm inside from the left end surface of the long side portion, thereby forming a negative electrode.

次いで、ポリエチレン製微多孔膜からなるセパレータを168×64mmに切り出した後、長辺を中央で180°折り返し、長辺両サイド端9を幅1mmで熱融着することにより袋部分を形成し、外形寸法84×64mm、袋部分内寸84×62mmの袋状セパレータを作製した。   Next, after cutting a separator made of polyethylene microporous film into 168 × 64 mm, the long side is folded 180 ° in the center, and the long side both side ends 9 are heat-sealed with a width of 1 mm to form a bag part, A bag-shaped separator having an outer dimension of 84 × 64 mm and a bag portion inner dimension of 84 × 62 mm was produced.

次いで、セパレータの袋部分に正極を挿入して正極とセパレータを合わせた後、正極未塗布部分6が右側方向、負極未塗布部分8が左側方向に延出され、更に最下層より負極、セパレータ+正極、負極、セパレータ+正極の順で最上層に負極がくるように重ね、最終的に負極21枚と正極+セパレータ20枚を積層させた後、積層電極の4つのコーナー部分を絶縁テープ10で止めることにより正極、負極、セパレータを固定した。   Next, after the positive electrode is inserted into the separator bag portion and the positive electrode and the separator are combined, the positive electrode uncoated portion 6 is extended to the right side, the negative electrode uncoated portion 8 is extended to the left side, and the negative electrode, separator + After stacking the negative electrode in the order of positive electrode, negative electrode, separator + positive electrode, and finally laminating 21 negative electrodes and 20 positive electrodes + separators, the insulating tape 10 By stopping, the positive electrode, the negative electrode, and the separator were fixed.

次に、正極未塗布部分6のアルミニウム箔20枚を超音波溶接にて接合した後、その先端部分を、図4に示すように、厚さ0.1mm、外寸30×10mmのアルミニウム板11を二つに折り曲げたもので挟み、超音波溶接により固定した。アルミニウム板11の先端を正極未塗布部分6とは反対側に引き出し、正極タブ11(正極端子)とした。負極未塗布部分8の銅箔21枚を超音波溶接にて接合した後、この先端部に、厚さ0.1mm、外寸30×10mmの銅板からなる負極タブ13(負極端子)を正極の場合と同様にして接合した。   Next, after joining the 20 aluminum foils of the positive electrode uncoated part 6 by ultrasonic welding, as shown in FIG. 4, the aluminum plate 11 with a thickness of 0.1 mm and an outer dimension of 30 × 10 mm is attached to the tip part. Was clamped in two and fixed by ultrasonic welding. The tip of the aluminum plate 11 was pulled out to the side opposite to the positive electrode uncoated portion 6 to form a positive electrode tab 11 (positive electrode terminal). After 21 copper foils of the negative electrode uncoated portion 8 were joined by ultrasonic welding, a negative electrode tab 13 (negative electrode terminal) made of a copper plate having a thickness of 0.1 mm and an outer dimension of 30 × 10 mm was attached to the tip of the positive electrode. Bonding was performed in the same manner as in the case.

金属接着性を有する熱可塑性樹脂フィルムとして、外形寸法7×20mmの酸変性ポリエチレンフィルム12を用意し、正極タブ11及び負極タブ13の短辺側先端部より3mmの位置の両面に熱融着し、図3に示す構造の電極群を得た。   An acid-modified polyethylene film 12 having an outer dimension of 7 × 20 mm is prepared as a thermoplastic resin film having metal adhesion, and is heat-sealed to both sides of the positive tab 11 and the negative tab 13 at a position 3 mm from the short side tip. The electrode group having the structure shown in FIG. 3 was obtained.

<電解液の調製>
エチレンカーボネート(EC)とジメチルカーボネート(DMC)が体積比で1:1の割合で混合された非水溶媒に電解質としてLiPF6を1mol/lの濃度になるように溶解させて非水電解液を調製した。
<Preparation of electrolyte>
LiPF 6 as an electrolyte is dissolved in a non-aqueous solvent in which ethylene carbonate (EC) and dimethyl carbonate (DMC) are mixed at a volume ratio of 1: 1 so as to have a concentration of 1 mol / l. Prepared.

<非水電解質電池の作製>
図5に示すように、容器5のカップ部4に、正極タブ11および負極タブ13が短辺側縁部4aから外部に引き出され、酸変性ポリエチレンフィルム12が容器5の短辺側縁部4aに架かるように電極群を収納した。
<Production of nonaqueous electrolyte battery>
As shown in FIG. 5, the positive electrode tab 11 and the negative electrode tab 13 are drawn out from the short side edge 4 a to the cup 4 of the container 5, and the acid-modified polyethylene film 12 is short side edge 4 a of the container 5. The electrode group was housed so as to hang over.

次に、封口板2をポリエチレンフィルム側が内側になるように容器5に重ね合わせた。この重ね合わせの際、カップ部4内の電極群と短辺側縁部4aとの間の空間部において、正極タブ11の右側に凹部1aを配置し、正極タブ11と負極タブ13の間に凹部1bを配置し、負極タブ13の左側に凹部1cを配置した。次いで、カップ部4が上面に位置するように外装部材全体を反転させた。   Next, the sealing plate 2 was superposed on the container 5 so that the polyethylene film side was inside. At the time of this superposition, in the space between the electrode group in the cup portion 4 and the short side edge portion 4a, the concave portion 1a is disposed on the right side of the positive electrode tab 11, and between the positive electrode tab 11 and the negative electrode tab 13. The concave portion 1 b was disposed, and the concave portion 1 c was disposed on the left side of the negative electrode tab 13. Next, the entire exterior member was inverted so that the cup portion 4 was positioned on the upper surface.

続いて、短辺側縁部2箇所4a,4bを熱融着機にて、温度200℃、加圧力4.0kgf/cm2、加熱時間10sの条件にて熱融着した。この後、未融着の長辺側縁部の一方を熱融着機にて、温度180℃、加圧力4.0kgf/cm2、加熱時間5sの条件にて熱融着した。 Subsequently, the two short side edge portions 4a and 4b were heat-sealed with a heat-sealing machine under the conditions of a temperature of 200 ° C., a pressure of 4.0 kgf / cm 2 , and a heating time of 10 s. Thereafter, one of the unfused long side edges was heat-sealed with a heat-sealing machine under the conditions of a temperature of 180 ° C., a pressure of 4.0 kgf / cm 2 , and a heating time of 5 s.

続いて、封口板2(第1の面)の3箇所の凹部1a〜1cの内面と、それぞれの凹部に相対しているカップ部4の底部内面(第2の面)とを熱融着機にて、温度180℃、加圧力4.0kgf/cm2、加熱時間5sの条件にて熱融着した。凹部3箇所についての熱融着部の合計面積は、電極群と短辺側縁部4aとの間に位置するカップ部4底部内面積の21%であった。 Subsequently, the inner surface of the three concave portions 1a to 1c of the sealing plate 2 (first surface) and the inner bottom surface (second surface) of the cup portion 4 facing each concave portion are heat-sealed. Then, heat fusion was performed under the conditions of a temperature of 180 ° C., a pressure of 4.0 kgf / cm 2 , and a heating time of 5 s. The total area of the heat-sealed portion at the three concave portions was 21% of the area within the bottom of the cup portion 4 located between the electrode group and the short side edge portion 4a.

続いて、非水電解液を未融着の長辺側縁部よりカップ部4内に注入して電極群に含浸させた後、未融着の長辺側縁部を先に融着した長辺側縁部と同じ条件で熱融着し、図6に示す構造を有し、厚さ4mm、幅75mm、長さ105mm(正負極タブ寸法を除く)、容量1500mAhの非水電解質電池を100個作製した。   Subsequently, after injecting the non-aqueous electrolyte into the cup part 4 from the unfused long side edge and impregnating the electrode group, the unfused long side edge is first fused. A nonaqueous electrolyte battery having the structure shown in FIG. 6 and having a thickness of 4 mm, a width of 75 mm, a length of 105 mm (excluding positive and negative electrode tab dimensions), and a capacity of 1500 mAh is 100. Individually produced.

(実施例2)
<外装部材の形成>
実施例1で説明したのと同様な外装フィルムを絞り加工により、図7に示すように、短辺側端部の3箇所に深さ3.5mmの直方体状の凹部14a〜14cを設け、外寸法105×75mmに切り出した封口板15を作製した。直方体状の凹部14a〜14cはナイロンフィルム側(保護層側)からポリエチレンフィルム側(熱可塑性樹脂層側)に突き出すように加工した。また、凹部14a〜14cには、突き出し側に向かって面積が小さくなるようにテーパ16が設けられている。一方、実施例1と同じ方法で図8に示す構造の容器5を作製した。
(Example 2)
<Formation of exterior member>
The exterior film similar to that described in Example 1 is drawn, and as shown in FIG. 7, three rectangular parallelepiped concave portions 14a to 14c having a depth of 3.5 mm are provided at three positions on the short side, A sealing plate 15 cut out to a size of 105 × 75 mm was produced. The rectangular parallelepiped recesses 14a to 14c were processed so as to protrude from the nylon film side (protective layer side) to the polyethylene film side (thermoplastic resin layer side). Further, the recesses 14a to 14c are provided with a taper 16 so that the area decreases toward the protruding side. On the other hand, the container 5 having the structure shown in FIG.

以上説明した外装部材を用いること以外は、実施例1と同じ方法で、図9に示す構造を有し、厚さ4mm、幅75mm、長さ105mm(正負極タブ寸法を除く)、容量1500mAhの非水電解質電池を100個作製した。   Except for using the exterior member described above, the structure shown in FIG. 9 is used in the same manner as in Example 1, with a thickness of 4 mm, a width of 75 mm, a length of 105 mm (excluding positive and negative electrode tab dimensions), and a capacity of 1500 mAh. 100 non-aqueous electrolyte batteries were produced.

すなわち、図9に示すように、正極タブ11および負極タブ13は、容器5の短辺側縁部4aと封口板15の短辺側端部との間から外部に引き出されている。カップ部4内の電極群と短辺側縁部4aとの間の空間部において、正極タブ11の右側に凹部14aが配置され、正極タブ11と負極タブ13の間に凹部14bが配置され、負極タブ13の左側に凹部14cが配置されている。凹部14a〜14cの内面(第1の面)と、それぞれの凹部に相対しているカップ部4の底部内面(第2の面)とは、熱融着により接合されている。凹部3箇所についての熱融着部の合計面積は、電極群と短辺側縁部4aとの間に位置するカップ部4底部内面積の27%であった。   That is, as shown in FIG. 9, the positive electrode tab 11 and the negative electrode tab 13 are drawn out from between the short side edge 4 a of the container 5 and the short side end of the sealing plate 15. In the space between the electrode group in the cup portion 4 and the short side edge portion 4a, a concave portion 14a is arranged on the right side of the positive electrode tab 11, and a concave portion 14b is arranged between the positive electrode tab 11 and the negative electrode tab 13, A recess 14 c is arranged on the left side of the negative electrode tab 13. The inner surfaces (first surface) of the recesses 14a to 14c and the bottom inner surface (second surface) of the cup portion 4 facing the respective recesses are joined by thermal fusion. The total area of the heat-sealed portion at the three concave portions was 27% of the area within the bottom of the cup portion 4 located between the electrode group and the short side edge portion 4a.

(実施例3)
<外装部材の形成>
実施例1で説明したのと同様な外装フィルムを絞り加工により、図10に示すように、短辺側の両端部に深さ3.5mmの直方体状の凹部17a〜17dを2箇所ずつ計4箇所設け、外寸法115×75mmに切り出した封口板18を作製した。直方体状の凹部17a〜17dはナイロンフィルム側(保護層側)からポリエチレンフィルム側(熱可塑性樹脂層側)に突き出すように加工した。また、凹部17a〜17dには、突き出し側に向かって面積が小さくなるようにテーパ19が設けられている。
(Example 3)
<Formation of exterior member>
As shown in FIG. 10, an exterior film similar to that described in Example 1 is drawn into two rectangular parallelepiped recesses 17a to 17d each having a depth of 3.5 mm as shown in FIG. The sealing board 18 cut out in the location and the outer dimension 115x75mm was produced. The rectangular parallelepiped recesses 17a to 17d were processed so as to protrude from the nylon film side (protective layer side) to the polyethylene film side (thermoplastic resin layer side). Further, the recesses 17a to 17d are provided with a taper 19 so that the area decreases toward the protruding side.

実施例1と同じ外装フィルムを深絞り加工を施し、図11に示すように、深さ4.0mm、長さ105mm、幅65mmの矩形状カップ部20と、カップ部20の短辺方向2箇所20a,20bと長辺方向2箇所20c,20dに幅5mmの縁部を設けた外形寸法115×75mmの容器21を作製した。カップ部20はナイロンフィルムが外側になるように加工した。   The same exterior film as Example 1 was deep-drawn, and as shown in FIG. 11, a rectangular cup part 20 having a depth of 4.0 mm, a length of 105 mm, and a width of 65 mm, and two places in the short side direction of the cup part 20 A container 21 having an outer dimension of 115 × 75 mm in which an edge portion having a width of 5 mm was provided at 20 a and 20 b and two locations 20 c and 20 d in the long side direction was produced. The cup part 20 was processed so that the nylon film was on the outside.

<電極群の作製>
実施例1と同じ方法で正極合剤層を形成した後、塗布部分の外形寸法が80×60mm、未塗布部分22の寸法が5×20mmになるように切り出して正極とした。
<Production of electrode group>
After forming the positive electrode mixture layer in the same manner as in Example 1, the positive electrode was cut out so that the outer dimension of the coated portion was 80 × 60 mm and the uncoated portion 22 was 5 × 20 mm.

さらに実施例1と同じ方法で負極合剤層7を形成した後、塗布部分の外形寸法が81×61mm、未塗布部分23の寸法が5×20mmになるように切り出して負極とした。   Furthermore, after the negative electrode mixture layer 7 was formed by the same method as in Example 1, the negative electrode was cut out so that the outer dimension of the coated portion was 81 × 61 mm and the uncoated portion 23 was 5 × 20 mm.

また、実施例1と同じ方法で袋状セパレータを作製し、セパレータの袋部分に正極を挿入して正極とセパレータを合わせた後、最下層より負極、セパレータ+正極、負極、セパレータ+正極の順で最上層に負極が位置するように重ね、最終的に負極21枚と正極+セパレータ20枚を積層させた後、前記積層電極を4つのコーナー部分を絶縁テープ10で止めることにより正極、負極、セパレータを固定した。正極未塗布部分22は、積層電極の短辺側端部から突出させた。また、負極未塗布部分23は、積層電極の反対側の短辺側端部から突出させた。   In addition, a bag-shaped separator was prepared in the same manner as in Example 1, and after the positive electrode was inserted into the bag portion of the separator and the positive electrode and the separator were combined, the negative electrode, the separator + positive electrode, the negative electrode, and the separator + positive electrode in this order from the bottom layer. After stacking 21 sheets of negative electrodes and 20 sheets of positive electrodes + separators in the final layer, the stacked electrodes are clamped with insulating tape 10 at the four corners to form positive electrodes, negative electrodes, The separator was fixed. The positive electrode uncoated portion 22 was projected from the end portion on the short side of the laminated electrode. Moreover, the negative electrode non-application part 23 was made to protrude from the short side edge part on the opposite side of a laminated electrode.

次に、正極未塗布部分22のアルミニウム箔20枚を超音波溶接にて接合した後、その先端部分を、前述した図4に示すように、厚さ0.1mm、外寸30×20mmのアルミニウム板24を二つに折り曲げたもので挟み、超音波溶接により固定した。アルミニウム板24の先端を正極未塗布部分22とは反対側に引き出し、正極タブ24(正極端子)とした。負極未塗布部分23の銅箔21枚を超音波溶接にて接合した後、この先端部に、厚さ0.1mm、外寸30×20mmの銅板からなる負極タブ25(負極端子)を正極の場合と同様にして接合した。   Next, 20 aluminum foils of the positive electrode uncoated portion 22 were joined by ultrasonic welding, and the tip portion was made of aluminum having a thickness of 0.1 mm and an outer dimension of 30 × 20 mm as shown in FIG. The plate 24 was sandwiched between two folded pieces and fixed by ultrasonic welding. The tip of the aluminum plate 24 was drawn out to the side opposite to the positive electrode uncoated portion 22 to form a positive electrode tab 24 (positive electrode terminal). After 21 copper foils of the negative electrode uncoated portion 23 were joined by ultrasonic welding, a negative electrode tab 25 (negative electrode terminal) made of a copper plate having a thickness of 0.1 mm and an outer dimension of 30 × 20 mm was attached to the tip portion of the positive electrode. Bonding was performed in the same manner as in the case.

金属接着性を有する熱可塑性樹脂フィルムとして、外形寸法7×30mmの酸変性ポリエチレンフィルム26を用意し、正極タブ24及び負極タブ25の短辺側先端部より3mmの位置の両面に熱融着し、図12に示す構造の電極群を得た。   An acid-modified polyethylene film 26 having an outer dimension of 7 × 30 mm is prepared as a thermoplastic resin film having metal adhesion, and is heat-sealed to both sides at a position 3 mm from the short-side ends of the positive electrode tab 24 and the negative electrode tab 25. The electrode group having the structure shown in FIG. 12 was obtained.

<非水電解液の調製>
実施例1と同じ方法で調製した。
<Preparation of non-aqueous electrolyte>
Prepared in the same manner as in Example 1.

<非水電解質電池の作製>
図13に示すように、容器21のカップ部20に、正極タブ24が短辺側縁部20aから外部に引き出され、負極タブ25が短辺側縁部20bから外部に引き出され、酸変性ポリエチレンフィルム26が容器21の短辺側縁部20a、20bに架かるように電極群を収納した。
<Production of nonaqueous electrolyte battery>
As shown in FIG. 13, a positive electrode tab 24 is drawn out from the short side edge 20a and a negative electrode tab 25 is drawn out from the short side edge 20b to the cup 20 of the container 21, and acid-modified polyethylene. The electrode group was accommodated so that the film 26 spans the short side edges 20a and 20b of the container 21.

次に、封口板18をポリエチレンフィルム側が内側になるように容器21に重ね合わせた。この重ね合わせの際、カップ部20内の電極群と短辺側縁部20aとの間の空間部において、正極タブ24の両側に凹部17a,17bを配置した。また、カップ部20内の電極群と短辺側縁部20bとの間の空間部において、負極タブ25の両側に凹部17c、17dを配置した。次いで、カップ部20が上面に位置するように外装部材全体を反転させた。   Next, the sealing plate 18 was superposed on the container 21 so that the polyethylene film side was inside. During the superposition, the concave portions 17a and 17b were disposed on both sides of the positive electrode tab 24 in the space between the electrode group in the cup portion 20 and the short side edge portion 20a. Further, in the space between the electrode group in the cup portion 20 and the short side edge portion 20b, the concave portions 17c and 17d are arranged on both sides of the negative electrode tab 25. Next, the entire exterior member was inverted so that the cup portion 20 was positioned on the upper surface.

続いて、短辺側縁部2箇所20a,20bを熱融着機にて、温度200℃、加圧力4.0kgf/cm2、加熱時間10sの条件にて熱融着した。この後、未融着の長辺側縁部の一方を熱融着機にて、温度180℃、加圧力4.0kgf/cm2、加熱時間5sの条件にて熱融着した。 Subsequently, the two short side edge portions 20a and 20b were heat-sealed with a heat-sealing machine under the conditions of a temperature of 200 ° C., a pressure of 4.0 kgf / cm 2 , and a heating time of 10 s. Thereafter, one of the unfused long side edges was heat-sealed with a heat-sealing machine under the conditions of a temperature of 180 ° C., a pressure of 4.0 kgf / cm 2 , and a heating time of 5 s.

続いて、封口板18(第1の面)の4箇所の凹部17a〜17dの内面と、それぞれの凹部に相対しているカップ部20の底部内面(第2の面)とを熱融着機にて、温度180℃、加圧力4.0kgf/cm2、加熱時間5sの条件にて熱融着した。凹部17a,17bの2箇所についての熱融着部の合計面積は、電極群と短辺側縁部20aとの間に位置するカップ部20底部内面積の18%であった。一方、凹部17c,17dの2箇所についての熱融着部の合計面積は、電極群と短辺側縁部20bとの間に位置するカップ部20底部内面積の18%であった。 Subsequently, the inner surface of the four concave portions 17a to 17d of the sealing plate 18 (first surface) and the inner bottom surface (second surface) of the cup portion 20 facing the respective concave portions are heat fusion machines. Then, heat fusion was performed under the conditions of a temperature of 180 ° C., a pressure of 4.0 kgf / cm 2 and a heating time of 5 s. The total area of the heat-sealed portions at the two locations of the recesses 17a and 17b was 18% of the area within the bottom of the cup portion 20 located between the electrode group and the short side edge 20a. On the other hand, the total area of the heat-sealed portion at the two locations of the recesses 17c and 17d was 18% of the area inside the bottom of the cup portion 20 located between the electrode group and the short side edge portion 20b.

続いて、非水電解液を未融着の長辺側縁部よりカップ部20内に注入して電極群に含浸させた後、未融着の長辺側縁部を先に融着した長辺側縁部と同じ条件で熱融着し、図14に示す構造を有し、厚さ4mm、幅75mm、長さ115mm(正負極タブ寸法を除く)、容量1500mAhの非水電解質電池を100個作製した。   Subsequently, after injecting the non-aqueous electrolyte into the cup part 20 from the unfused long side edge and impregnating the electrode group, the unfused long side edge is first fused. A nonaqueous electrolyte battery having a structure shown in FIG. 14 and having a structure of 4 mm in thickness, 75 mm in width, 115 mm in length (excluding positive and negative electrode tab dimensions), and a capacity of 1500 mAh is 100. Individually produced.

(実施例4)
<外装部材の形成>
実施例1で説明したのと同様な外装フィルムを絞り加工により、図15に示すように、短辺側端部の3箇所に深さ0.5mmの直方体状の凹部27a〜27cを設け、外寸法105×75mmに切り出した封口板28を作製した。直方体状の凹部27a〜27cはナイロンフィルム側(保護層側)からポリエチレンフィルム側(熱可塑性樹脂層側)に突き出すように加工した。また、凹部27a〜27cには、突き出し側に向かって断面積が小さくなるようにテーパが設けられている。一方、実施例1と同じ方法で図16に示す構造の容器5を作製した。
Example 4
<Formation of exterior member>
As shown in FIG. 15, a rectangular parallelepiped concave portion 27 a to 27 c having a depth of 0.5 mm is provided at three locations on the short side end portion by drawing a similar exterior film as described in Example 1, and A sealing plate 28 cut out to a size of 105 × 75 mm was produced. The rectangular parallelepiped concave portions 27a to 27c were processed so as to protrude from the nylon film side (protective layer side) to the polyethylene film side (thermoplastic resin layer side). Further, the recesses 27a to 27c are provided with a taper so that the cross-sectional area decreases toward the protruding side. On the other hand, the container 5 having the structure shown in FIG.

<電極群の作製>
実施例1と同じ方法で図19に示す電極群を作製した。
<Production of electrode group>
The electrode group shown in FIG. 19 was produced by the same method as in Example 1.

<非水電解液の調製>
実施例1と同じ方法で調製した。
<Preparation of non-aqueous electrolyte>
Prepared in the same manner as in Example 1.

<非水電解質電池の作製>
図17に示すように、外寸法3.0mm×8.0mm×60.0mmとなる直方体のポリエチレン製絶縁体29(絶縁性スペーサ)を作製した。図18に示すように、絶縁体29を容器5のカップ部4内の短辺4a側に配置した。
<Production of nonaqueous electrolyte battery>
As shown in FIG. 17, a rectangular parallelepiped polyethylene insulator 29 (insulating spacer) having an outer dimension of 3.0 mm × 8.0 mm × 60.0 mm was produced. As shown in FIG. 18, the insulator 29 is arranged on the short side 4 a side in the cup portion 4 of the container 5.

次いで、図20に示すように、容器5のカップ部4に電極群を、正極タブ11および負極タブ13が絶縁体29上を横切って短辺側縁部4aから外部に引き出され、かつ酸変性ポリエチレンフィルム12が短辺側縁部4aに架かるように収納した。   Next, as shown in FIG. 20, the electrode group is drawn to the cup portion 4 of the container 5, the positive electrode tab 11 and the negative electrode tab 13 are drawn out from the short side edge 4 a across the insulator 29, and acid-modified. The polyethylene film 12 was stored so as to hang over the short side edge 4a.

次に、封口板28をポリエチレンフィルム側を内側にして容器5に重ね合わせた。この重ね合わせの際、絶縁体29上の正極未塗布部分6の右側に凹部27aを配置し、絶縁体29上の負極未塗布部分8の左側に凹部27cを配置し、絶縁体29上の正極未塗布部分6と負極未塗布部分8の間に凹部27cを配置した。次いで、カップ部4が上面になるように外装部材全体を反転させた。   Next, the sealing plate 28 was superposed on the container 5 with the polyethylene film side inside. At the time of this superposition, the concave portion 27 a is disposed on the right side of the positive electrode uncoated portion 6 on the insulator 29, and the concave portion 27 c is disposed on the left side of the negative electrode uncoated portion 8 on the insulator 29. A concave portion 27 c was disposed between the uncoated portion 6 and the negative electrode uncoated portion 8. Subsequently, the whole exterior member was inverted so that the cup part 4 became an upper surface.

続いて、実施例1と同じ方法で短辺側縁部2箇所と長辺側縁部の一方を熱融着した。   Subsequently, one of the two short side edges and the long side edge was heat-sealed in the same manner as in Example 1.

続いて、封口板28(第1の面)の凹部27a〜27cの底部内面と、カップ部4の底部内面(第2の面)のうち凹部27a〜27cと相対している箇所とを、温度200℃、加圧力4.0kgf/cm2、加熱時間5sの条件にて加熱加圧し、凹部27a〜27cの底部内面と凹部27a〜27cと相対しているカップ部4底部内面との間に絶縁体29を熱融着させた。封口板28と絶縁体29との熱融着面積およびカップ部4と絶縁体29との熱融着面積は、それぞれ、電極群と短辺側縁部4aとの間に位置するカップ部4底部内面積の27%であった。 Subsequently, the bottom inner surface of the concave portions 27a to 27c of the sealing plate 28 (first surface) and the portion of the bottom inner surface (second surface) of the cup portion 4 facing the concave portions 27a to 27c are Heating and pressing is performed under the conditions of 200 ° C., pressure force of 4.0 kgf / cm 2 , and heating time of 5 s, and insulation is provided between the bottom inner surfaces of the recesses 27a to 27c and the cup portion 4 bottom inner surface facing the recesses 27a to 27c. The body 29 was heat-sealed. The heat fusion area between the sealing plate 28 and the insulator 29 and the heat fusion area between the cup portion 4 and the insulator 29 are respectively the bottom of the cup portion 4 located between the electrode group and the short side edge 4a. It was 27% of the inner area.

続いて、非水電解液を未融着の長辺側縁部よりカップ部4内に注入して電極群に含浸させた後、未融着の長辺側縁部を先に融着した長辺側縁部と同じ条件で熱融着し、図21に示す構造を有し、厚さ4mm、幅75mm、長さ105mm(正負極タブの寸法を除く)、容量1500mAhの非水電解質電池を100個作製した。   Subsequently, after injecting the non-aqueous electrolyte into the cup part 4 from the unfused long side edge and impregnating the electrode group, the unfused long side edge is first fused. A non-aqueous electrolyte battery having the structure shown in FIG. 21 and having a thickness of 4 mm, a width of 75 mm, a length of 105 mm (excluding the dimensions of the positive and negative electrode tabs), and a capacity of 1500 mAh is heat-sealed under the same conditions as the side edge. 100 were produced.

(実施例5)
図22に示すように、凹部14a〜14cの空隙にシリコンゴムからなる充填部材30を充填すること以外は、実施例2で説明したのと同様な方法で非水電解質電池を100個作製した。
(Example 5)
As shown in FIG. 22, 100 nonaqueous electrolyte batteries were produced in the same manner as described in Example 2 except that the gaps of the recesses 14a to 14c were filled with the filling member 30 made of silicon rubber.

(実施例6)
凹部14a〜14cの空隙にウレタン樹脂からなる充填部材を充填すること以外は、実施例2で説明したのと同様な方法で非水電解質電池を100個作製した。
(Example 6)
100 nonaqueous electrolyte batteries were produced in the same manner as described in Example 2 except that the gaps of the recesses 14a to 14c were filled with a filling member made of urethane resin.

(実施例7)
実施例2と同じ方法で、図23(b)に示す構造を有し、厚さ4mm、幅75mm、長さ105mm(正負極タブ寸法を除く)、容量1500mAhの非水電解質電池を作製した。
(Example 7)
A nonaqueous electrolyte battery having the structure shown in FIG. 23B, a thickness of 4 mm, a width of 75 mm, a length of 105 mm (excluding positive and negative electrode tab dimensions), and a capacity of 1500 mAh was produced in the same manner as in Example 2.

また、図23(a)に示すように、凹部14a〜14cに嵌合する形状の突起部31a〜31cを有するNBR製充填部材32を作製した。充填部材32の平板部33は、端部が正負極タブが引き出されている熱融着部と重なるように、ここでは、面積外寸65×30mmの矩形状とした。   Moreover, as shown to Fig.23 (a), the NBR filling member 32 which has the projection parts 31a-31c of the shape fitted to the recessed parts 14a-14c was produced. Here, the flat plate portion 33 of the filling member 32 has a rectangular shape with an outside dimension of 65 × 30 mm so that the end portion overlaps the heat fusion portion from which the positive and negative electrode tabs are drawn.

充填部材32の突起部31a〜31cを凹部14a〜14cに嵌めこみ、また、平板部33が熱融着部にかかるように配置し、これらを接着剤で接合することにより、図24に示す構造を有する非水電解質電池を100個作製した。   The protrusions 31a to 31c of the filling member 32 are fitted into the recesses 14a to 14c, and the flat plate portion 33 is disposed so as to cover the heat fusion portion, and these are joined with an adhesive, whereby the structure shown in FIG. 100 non-aqueous electrolyte batteries having the above were manufactured.

(実施例8)
実施例3の非水電解質電池において、封口板とカップ部の内面を接合する代わりに、カップ部20内の短辺側縁部20a,20b側に外寸法3.0mm×8.0mm×60.0mmとなる直方体のポリエチレン製絶縁体(絶縁性スペーサ)を配置し、絶縁体と外装部材とを実施例4で説明したのと同様な条件で熱融着した。このような構成の非水電解質電池を100個用意した。封口板と絶縁体との熱融着面積(片側)およびカップ部と絶縁体との熱融着面積(片側)は、それぞれ、電極群と短辺側縁部との間に位置するカップ部底部内面積(片側)の18%であった。
(Example 8)
In the non-aqueous electrolyte battery of Example 3, instead of joining the sealing plate and the inner surface of the cup part, the outer dimensions are 3.0 mm × 8.0 mm × 60. A rectangular parallelepiped polyethylene insulator (insulating spacer) of 0 mm was placed, and the insulator and the exterior member were heat-sealed under the same conditions as described in Example 4. 100 non-aqueous electrolyte batteries having such a configuration were prepared. The heat fusion area (one side) between the sealing plate and the insulator and the heat fusion area (one side) between the cup portion and the insulator are the bottom of the cup part located between the electrode group and the short side edge, respectively. It was 18% of the inner area (one side).

(実施例9)
凹部17a〜17dの空隙にシリコンゴムからなる充填部材を充填すること以外は、実施例3で説明したのと同様な方法で非水電解質電池を100個作製した。
Example 9
100 nonaqueous electrolyte batteries were produced in the same manner as described in Example 3 except that the gaps of the recesses 17a to 17d were filled with a filling member made of silicon rubber.

(実施例10)
実施例3と同じ方法で非水電解質電池を作製した。
(Example 10)
A nonaqueous electrolyte battery was produced in the same manner as in Example 3.

また、4つの凹部に嵌合する形状の突起部を有するNBR製充填部材を作製した。充填部材の平板部は、端部が正負極タブが引き出されている熱融着部と重なるように、ここでは、面積外寸65×30mmの矩形状とした。   Moreover, the NBR filling member which has the projection part of the shape fitted to four recessed parts was produced. Here, the flat plate portion of the filling member has a rectangular shape with an outer dimension of 65 × 30 mm so that the end portion overlaps with the heat fusion portion from which the positive and negative electrode tabs are drawn.

充填部材の突起部を凹部に嵌めこみ、また、平板部が熱融着部にかかるように配置し、これらを接着剤で接合することにより、非水電解質電池を100個作製した。   100 protrusions of the non-aqueous electrolyte battery were produced by fitting the protrusions of the filling member into the recesses and arranging the flat plate portion so as to cover the heat-sealed portion and bonding them with an adhesive.

(比較例1)
<外装部材の形成>
実施例1と同じ種類の外装フィルムを絞り加工を行わずに図25に示すように寸法105×75mmに切り出し、矩形板状の封口板34を作製した。また、実施例1と同じ方法で図26に示す構造の外形寸法105×75mmの容器5を作製した。
(Comparative Example 1)
<Formation of exterior member>
An exterior film of the same type as in Example 1 was cut out to a size of 105 × 75 mm as shown in FIG. 25 without drawing, and a rectangular plate-shaped sealing plate 34 was produced. Further, a container 5 having an outer dimension of 105 × 75 mm having the structure shown in FIG.

<電極群の作製>
実施例1と同じ方法で電極群を作製した。
<Production of electrode group>
An electrode group was produced in the same manner as in Example 1.

<非水電解液の調製>
実施例1と同じ方法で調製した。
<Preparation of non-aqueous electrolyte>
Prepared in the same manner as in Example 1.

<非水電解質電池の作製>
正負極タブが外部に延出している熱融着部と電極群間の空間と対向するカップ部と封口板を電池内部にて熱融着しないこと以外は実施例1と同じ方法で、図27に示す構造を有し、厚さ4mm、幅75mm、長さ105mm(正負極タブ寸法を除く)、容量1500mAhの非水電解質電池を100個作製した。
<Production of nonaqueous electrolyte battery>
27, except that the heat-sealing portion where the positive and negative electrode tabs extend to the outside, the cup portion facing the space between the electrode groups, and the sealing plate are not heat-sealed inside the battery. 100 non-aqueous electrolyte batteries having the structure shown in FIG. 4, a thickness of 4 mm, a width of 75 mm, a length of 105 mm (excluding positive and negative electrode tab dimensions), and a capacity of 1500 mAh were produced.

(比較例2)
<外装部材の形成>
実施例1と同じ種類の外装フィルムを絞り加工を行わずに寸法115×75mmに切り出し、矩形板状の封口板を作製した。また、実施例3と同じ方法で外形寸法115×75mmの容器を作製した。
(Comparative Example 2)
<Formation of exterior member>
An exterior film of the same type as in Example 1 was cut out to a size of 115 × 75 mm without performing a drawing process to produce a rectangular plate-shaped sealing plate. Further, a container having an outer dimension of 115 × 75 mm was produced in the same manner as in Example 3.

<電極群の作製>
実施例3と同じ方法で電極群を作製した。
<Production of electrode group>
An electrode group was prepared in the same manner as in Example 3.

<非水電解液の調製>
実施例1と同じ方法で調製した。
<Preparation of non-aqueous electrolyte>
Prepared in the same manner as in Example 1.

<非水電解質電池の作製>
正負極タブが外部に延出している熱融着部と電極群間の空間と対向するカップ部と封口板を電池内部にて熱融着しないこと以外は実施例3と同じ方法で、図28に示す構造を有し、厚さ4mm、幅75mm、長さ115mm(正負極タブ寸法を除く)、容量1500mAhの非水電解質電池を100個作製した。
<Production of nonaqueous electrolyte battery>
28, except that the heat-sealing portion where the positive and negative electrode tabs extend to the outside, the cup portion facing the space between the electrode groups, and the sealing plate are not heat-sealed inside the battery. 100 non-aqueous electrolyte batteries having the structure shown in FIG. 4, a thickness of 4 mm, a width of 75 mm, a length of 115 mm (excluding positive and negative electrode tab dimensions), and a capacity of 1500 mAh were produced.

(実施例11)
比較例1の非水電解質電池において、カップ部4の側面に内側に突出する突出部(面積外寸8.0×8.0mm)を、正極タブ11と負極タブ13の間に位置するように形成した。この突出部の内面は、封口板の内面に熱融着させた。熱融着部の面積は、電極群と短辺側縁部との間に位置するカップ部底部内面積の9%であった。
(Example 11)
In the nonaqueous electrolyte battery of Comparative Example 1, a protruding portion (outside area size 8.0 × 8.0 mm) protruding inward on the side surface of the cup portion 4 is positioned between the positive electrode tab 11 and the negative electrode tab 13. Formed. The inner surface of the protruding portion was thermally fused to the inner surface of the sealing plate. The area of the heat fusion part was 9% of the area in the bottom part of the cup part located between the electrode group and the short side edge part.

これら作製した電池を充電し、輸送時の振動や、外部機器に組み込まれパック化した後に加わる間接的な力を想定して以下の衝撃試験を行った。   These fabricated batteries were charged, and the following impact tests were conducted assuming vibration during transportation and indirect force applied after being assembled into a pack by external equipment.

まず、厚さ3mm、外寸250×150mmの塩化ビニル板中央に正負極タブが延出する辺と塩化ビニル板短辺部が平行になるよう電池をテープで固定した後、更に塩化ビニル板と同寸法の塩化ビニル板を電池に被せ、対向する塩化ビニル板周辺部をテープで固定した。   First, after fixing the battery with a tape so that the side where the positive and negative electrode tabs extend parallel to the center of the vinyl chloride plate having a thickness of 3 mm and an outer dimension of 250 × 150 mm and the short side of the vinyl chloride plate are parallel, A vinyl chloride plate of the same size was placed on the battery, and the opposing vinyl chloride plate periphery was fixed with tape.

次に、実施例1、2、4〜7、比較例1、実施例11においては正極・負極タブを下にした場合を+方向、タブのない短辺側を下にした場合を−方向とし、実施例3、8〜10及び比較例2においては正極タブを下にした場合を+方向、負極タブを下にした場合を−方向として、塩化ビニル板に固定された電池をコンクリート平面上に100cmの高さから+方向から10回、−方向から10回、落下させた。試験後に電池電圧が0.1mV以上変化した電池数を下記表1に示す。

Figure 2007115478
Next, in Examples 1, 2, 4 to 7, Comparative Example 1, and Example 11, the case where the positive electrode / negative electrode tab is down is defined as the + direction, and the case where the short side without the tab is defined as the − direction. In Examples 3, 8 to 10 and Comparative Example 2, the case where the positive electrode tab is down is defined as the + direction, and the case where the negative electrode tab is defined as the − direction, the battery fixed to the vinyl chloride plate is placed on the concrete plane. It was dropped 10 times from the + direction and 10 times from the-direction from a height of 100 cm. The number of batteries whose battery voltage changed by 0.1 mV or more after the test is shown in Table 1 below.
Figure 2007115478

表1の結果から、正負極タブが外部に延出されている熱融着部と電極群間に位置する空間部と対応するカップ部と封口板を電池内部において接合した実施例1〜11の非水電解質電池は、比較例1〜2の電池と比較して電池電圧の変化量が著しく小さいことが確認でき、耐外部衝撃に効果のあることが明らかになった。   From the result of Table 1, the cup part and sealing plate corresponding to the space part located between the heat-fusion part by which the positive / negative electrode tab is extended outside and the electrode group, and the sealing board were joined in the inside of a battery. It was confirmed that the non-aqueous electrolyte battery had a remarkably small change in battery voltage as compared with the batteries of Comparative Examples 1 and 2, and was found to be effective for external shock resistance.

凹部の形状について検討する。実施例1,2を比較すると、電池電圧が0.1mV以上変化した電池数が実施例2の方が少なく、耐衝撃性を向上させるには凹部の形状を四角柱にすることが望ましいことがわかる。   Consider the shape of the recess. Comparing Examples 1 and 2, the number of batteries in which the battery voltage changed by 0.1 mV or more was smaller in Example 2, and it is desirable that the shape of the recess be a square column in order to improve impact resistance. Recognize.

凹部の配置については、実施例2,3を比較すると、電池電圧が0.1mV以上変化した電池数が実施例3の方が少なくなっている。よって、耐衝撃性を向上させるには、正極タブと負極タブを180°対向させて配置し、正極タブが引き出されている熱融着部と電極群の間及び負極タブが引き出されている熱融着部と電極群の間それぞれに凹部を形成することが望ましい。   As for the arrangement of the recesses, when Example 2 and 3 are compared, the number of batteries whose battery voltage has changed by 0.1 mV or more is smaller in Example 3. Therefore, in order to improve the impact resistance, the positive electrode tab and the negative electrode tab are arranged so as to face each other by 180 °, and the heat between the heat fusion part from which the positive electrode tab is drawn out and the electrode group and the heat from which the negative electrode tab is drawn out. It is desirable to form a recess between each fused portion and the electrode group.

凹部の形成と併せてスペーサあるいは充填部材を使用した実施例4〜7では、いずれも、電池電圧が0.1mV以上変化した電池数が皆無となっており、耐衝撃性が実施例1,2に比して改善されている。封口板(第1の面)とカップ部の底部内面(第2の面)との接合強度を比較すると、絶縁性スペーサを使用した実施例4が最も高かった。また、作製方法の簡便さの点からも実施例4が最も優れていた。さらに、電池厚さに影響を及ぼさない点では、実施例4〜6が優れていた。正極タブと負極タブが180°対向している実施例8〜10においても、同様な傾向が得られた。   In Examples 4 to 7 in which spacers or filling members were used in combination with the formation of the recesses, the number of batteries in which the battery voltage changed by 0.1 mV or more was completely eliminated, and the impact resistance was in Examples 1 and 2. Compared to When the bonding strength between the sealing plate (first surface) and the bottom inner surface (second surface) of the cup portion was compared, Example 4 using an insulating spacer was the highest. In addition, Example 4 was most excellent in terms of the simplicity of the manufacturing method. Furthermore, Examples 4-6 were excellent in the point which does not affect battery thickness. The same tendency was obtained in Examples 8 to 10 in which the positive electrode tab and the negative electrode tab face each other by 180 °.

これに対し、比較例1〜2の電池では、電極群及び正負極端子の変形で内部短絡を生じて電池電圧が低下した電池数が多かった。   On the other hand, in the batteries of Comparative Examples 1 and 2, there were a large number of batteries in which the battery voltage was lowered due to an internal short circuit caused by the deformation of the electrode group and the positive and negative terminals.

前述した実施例では、集電体の未塗布部分(合剤層非形成部)を二つ折りにしたタブで挟み、これらを溶接したが、集電体とタブの接続方法はこれに限らず、例えば図29に示すように、正負極集電体の未塗布部分6,8を溶接により一つに接合し、接合部の先端を正負極タブ11,13の先端に溶接しても良い。   In the embodiment described above, the uncoated portion of the current collector (mixture layer non-formed part) was sandwiched between the folded tabs and these were welded, but the connection method of the current collector and the tab is not limited to this, For example, as shown in FIG. 29, the uncoated portions 6 and 8 of the positive and negative electrode current collectors may be joined together by welding, and the tips of the joined portions may be welded to the tips of the positive and negative electrode tabs 11 and 13.

本実施形態では、集電体の未塗布部分に電極タブを接続したものを電極端子として使用しているが、集電体の未塗布部分のうち一枚を長くし、これに残りの未塗布部分を溶接し、前述の長い未塗布部を外装部材の外部に引き出し、電極端子として使用することも可能である。   In this embodiment, the electrode tab connected to the uncoated portion of the current collector is used as the electrode terminal, but one of the uncoated portions of the current collector is lengthened, and the remaining uncoated It is also possible to weld the portion and draw out the long uncoated portion described above to the outside of the exterior member and use it as an electrode terminal.

なお、本発明は実施例で記した電極活物質に限定されるものではない。また、非水電解質に非水溶媒を用いた非水溶媒二次電池を用いて説明したが、ポリマー電解質を用いたポリマー電池や固体電解質を用いた固体電解質電池についても当然、適用可能であり、樹脂製セパレータの変わりにポリマー薄膜や固体電解質膜を用いることも可能である。また、外装部材にフィルムを用いた一次電池に適用することも可能である。   In addition, this invention is not limited to the electrode active material described in the Example. Moreover, although it demonstrated using the nonaqueous solvent secondary battery using the nonaqueous solvent for the nonaqueous electrolyte, it is naturally applicable to the polymer battery using the polymer electrolyte and the solid electrolyte battery using the solid electrolyte. It is also possible to use a polymer thin film or a solid electrolyte membrane instead of the resin separator. Further, it can be applied to a primary battery using a film as an exterior member.

以上説明したとおり、本発明によれば、従来の電池に対して耐外部衝撃が格段に優れたフィルム製外装部材を備えた非水電解質電池を提供することができる。よって、その工業的価値は非常に大きなものである。   As described above, according to the present invention, it is possible to provide a non-aqueous electrolyte battery including a film exterior member that has an excellent external impact resistance compared to a conventional battery. Therefore, its industrial value is very large.

なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the components without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.

実施例1の非水電解質電池で用いられる外装部材の封口板を模式的に示す斜視図。3 is a perspective view schematically showing a sealing plate of an exterior member used in the nonaqueous electrolyte battery of Example 1. FIG. 図1の外装部材の容器を模式的に示す斜視図。The perspective view which shows typically the container of the exterior member of FIG. 実施例1の電極群を模式的に示した平面図。FIG. 3 is a plan view schematically showing an electrode group of Example 1. 実施例1の正極集電体の未塗布部分と正極タブとの接続状態を模式的に示した断面図。Sectional drawing which showed typically the connection state of the non-application part of the positive electrode collector of Example 1, and a positive electrode tab. 図3の電極群を容器内に収納した状態を模式的に示した平面図。The top view which showed typically the state which accommodated the electrode group of FIG. 3 in the container. 実施例1の非水電解質電池を模式的に示した斜視図。1 is a perspective view schematically showing a nonaqueous electrolyte battery of Example 1. FIG. 実施例2の非水電解質電池で用いられる外装部材の封口板を模式的に示す斜視図。The perspective view which shows typically the sealing board of the exterior member used with the nonaqueous electrolyte battery of Example 2. FIG. 図7の外装部材の容器を模式的に示す斜視図。The perspective view which shows typically the container of the exterior member of FIG. 実施例2の非水電解質電池を模式的に示した斜視図。The perspective view which showed the nonaqueous electrolyte battery of Example 2 typically. 実施例3の非水電解質電池で用いられる外装部材の封口板を模式的に示す斜視図。4 is a perspective view schematically showing a sealing plate of an exterior member used in the nonaqueous electrolyte battery of Example 3. FIG. 図11の外装部材の容器を模式的に示す斜視図。The perspective view which shows typically the container of the exterior member of FIG. 実施例3の電極群を模式的に示した平面図。FIG. 6 is a plan view schematically showing an electrode group of Example 3. 図12の電極群を容器内に収納した状態を模式的に示した平面図。The top view which showed typically the state which accommodated the electrode group of FIG. 12 in the container. 実施例3の非水電解質電池を模式的に示した斜視図。The perspective view which showed the nonaqueous electrolyte battery of Example 3 typically. 実施例4の非水電解質電池で用いられる外装部材の封口板を模式的に示す斜視図。The perspective view which shows typically the sealing board of the exterior member used with the nonaqueous electrolyte battery of Example 4. FIG. 図15の外装部材の容器を模式的に示す斜視図。The perspective view which shows the container of the exterior member of FIG. 15 typically. 実施例4で使用する絶縁性スペーサを模式的に示した斜視図。FIG. 6 is a perspective view schematically showing an insulating spacer used in Example 4. 図17の絶縁性スペーサを図15の容器内に収容した状態を模式的に示した斜視図。The perspective view which showed typically the state which accommodated the insulating spacer of FIG. 17 in the container of FIG. 実施例4の電極群を模式的に示した平面図。FIG. 6 is a plan view schematically showing an electrode group of Example 4. 図19の電極群を容器内に収納した状態を模式的に示した平面図。The top view which showed typically the state which accommodated the electrode group of FIG. 19 in the container. 実施例4の非水電解質電池を模式的に示した斜視図。The perspective view which showed the nonaqueous electrolyte battery of Example 4 typically. 実施例5の非水電解質電池を模式的に示した斜視図。FIG. 6 is a perspective view schematically showing a nonaqueous electrolyte battery of Example 5. 実施例7の非水電解質電池の部分分解斜視図。FIG. 12 is a partially exploded perspective view of the nonaqueous electrolyte battery according to Example 7. 実施例7の非水電解質電池を模式的に示した斜視図。The perspective view which showed the nonaqueous electrolyte battery of Example 7 typically. 比較例1の非水電解質電池で用いられる外装部材の封口板を模式的に示す斜視図。The perspective view which shows typically the sealing board of the exterior member used with the nonaqueous electrolyte battery of the comparative example 1. FIG. 図25の外装部材の容器を模式的に示す斜視図。The perspective view which shows typically the container of the exterior member of FIG. 比較例1の非水電解質電池を模式的に示した斜視図。The perspective view which showed typically the nonaqueous electrolyte battery of the comparative example 1. FIG. 比較例2の非水電解質電池を模式的に示した斜視図。The perspective view which showed typically the nonaqueous electrolyte battery of the comparative example 2. FIG. 正負極集電体の未塗布部分と正負極タブとの別な接続方法を模式的に示した断面図。Sectional drawing which showed typically the another connection method of the non-application part of a positive / negative electrode electrical power collector, and a positive / negative electrode tab.

符号の説明Explanation of symbols

1a〜1c,14a〜14c,17a〜17d,27a〜27c…凹部、2,15,18,28…封口板、3,16,19…テーパ部、4,20…カップ部、4a〜4d,20a〜20d…縁部、5,21…容器、6,22…正極集電体の未塗布部分(正極合剤層非形成部)、8,23…負極集電体の未塗布部分(負極合剤層非形成部)、11,24…正極タブ、12,26…金属接着性を有する熱可塑性絶縁フィルム、13,25…負極タブ、29…絶縁性スペーサ、30,32…充填部材、31a〜31c…突起部、33…平板部。   1a to 1c, 14a to 14c, 17a to 17d, 27a to 27c ... concave portion, 2, 15, 18, 28 ... sealing plate, 3, 16, 19 ... tapered portion, 4, 20 ... cup portion, 4a to 4d, 20a ˜20d ... edge, 5,21 ... container, 6,22 ... non-applied portion of positive electrode current collector (positive electrode mixture layer non-forming portion), 8,23 ... non-applied portion of negative electrode current collector (negative electrode mixture) (Layer non-formation part), 11, 24 ... positive electrode tab, 12, 26 ... thermoplastic insulating film having metal adhesion, 13, 25 ... negative electrode tab, 29 ... insulating spacer, 30, 32 ... filling member, 31a to 31c ... projection part, 33 ... flat plate part.

Claims (5)

扁平形状をなし、第1の面と反対側の第2の面とが熱融着により接合されたフィルム製外装部材と、前記外装部材内に収納され、正極、負極及びセパレータを含む電極群と、前記正極に電気的に接続された正極端子と、前記負極に電気的に接続された負極端子とを具備する非水電解質電池であって、
前記正極端子及び前記負極端子は前記外装部材の同じ熱融着部もしくは互いに対向する熱融着部から外部に引き出されており、
前記第1の面と前記第2の面は、前記正極端子及び前記負極端子のうち少なくとも一方が引き出されている熱融着部と前記電極群との間に位置する空間と対向する領域において、内面同士が接合されていることを特徴とする非水電解質電池。
A film-shaped exterior member having a flat shape and bonded to the second surface opposite to the first surface by thermal fusion; an electrode group housed in the exterior member and including a positive electrode, a negative electrode, and a separator; A non-aqueous electrolyte battery comprising a positive electrode terminal electrically connected to the positive electrode and a negative electrode terminal electrically connected to the negative electrode,
The positive electrode terminal and the negative electrode terminal are drawn to the outside from the same heat fusion part of the exterior member or the heat fusion parts opposite to each other,
In the region where the first surface and the second surface are opposed to a space located between the heat fusion part from which at least one of the positive electrode terminal and the negative electrode terminal is drawn out and the electrode group, A nonaqueous electrolyte battery characterized in that inner surfaces are joined to each other.
前記接合部は、前記第1の面または前記第2の面に形成された凹部の内面と残りの面の内面とを接合したものであり、前記非水電解質電池は、前記凹部内の空隙を埋めるための充填部材を備えることを特徴とする請求項1記載の非水電解質電池。   The joining portion is obtained by joining the inner surface of the concave portion formed on the first surface or the second surface and the inner surface of the remaining surface, and the nonaqueous electrolyte battery has a gap in the concave portion. The nonaqueous electrolyte battery according to claim 1, further comprising a filling member for filling. 前記充填部材は、前記正極端子及び前記負極端子のうち少なくとも一方が引き出されている熱融着部上に固定される平板部と、前記平板部に形成され、前記凹部内の空隙に充填される突起部とを具備することを特徴とする請求項2記載の電池。   The filling member is formed on the flat plate portion fixed on the heat fusion portion from which at least one of the positive electrode terminal and the negative electrode terminal is drawn, and is filled in the gap in the concave portion. The battery according to claim 2, further comprising a protrusion. 前記充填部材は、衝撃吸収性を有することを特徴とする請求項2または3記載の非水電解質電池。   The non-aqueous electrolyte battery according to claim 2, wherein the filling member has shock absorption. 扁平形状をなし、第1の面と反対側の第2の面とが熱融着により接合されたフィルム製外装部材と、前記外装部材内に収納され、正極、負極及びセパレータを含む電極群と、前記正極に電気的に接続された正極端子と、前記負極に電気的に接続された負極端子とを具備する非水電解質電池であって、
前記正極端子及び前記負極端子は前記外装部材の同じ熱融着部もしくは互いに対向する熱融着部から外部に引き出されており、
前記第1の面と前記第2の面は、前記正極端子及び前記負極端子のうち少なくとも一方が引き出されている熱融着部と前記電極群との間に位置する空間と対向する領域において、絶縁性スペーサが介装されていることを特徴とする非水電解質電池。
A film-shaped exterior member having a flat shape and bonded to the second surface opposite to the first surface by thermal fusion; an electrode group housed in the exterior member and including a positive electrode, a negative electrode, and a separator; A non-aqueous electrolyte battery comprising a positive electrode terminal electrically connected to the positive electrode and a negative electrode terminal electrically connected to the negative electrode,
The positive electrode terminal and the negative electrode terminal are drawn to the outside from the same heat fusion part of the exterior member or the heat fusion parts opposite to each other,
In the region where the first surface and the second surface are opposed to a space located between the heat fusion part from which at least one of the positive electrode terminal and the negative electrode terminal is drawn out and the electrode group, A non-aqueous electrolyte battery characterized in that an insulating spacer is interposed.
JP2005304557A 2005-10-19 2005-10-19 Non-aqueous electrolyte battery Expired - Fee Related JP5161421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005304557A JP5161421B2 (en) 2005-10-19 2005-10-19 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005304557A JP5161421B2 (en) 2005-10-19 2005-10-19 Non-aqueous electrolyte battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011219615A Division JP5472941B2 (en) 2011-10-03 2011-10-03 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JP2007115478A true JP2007115478A (en) 2007-05-10
JP5161421B2 JP5161421B2 (en) 2013-03-13

Family

ID=38097482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005304557A Expired - Fee Related JP5161421B2 (en) 2005-10-19 2005-10-19 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP5161421B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007141523A (en) * 2005-11-15 2007-06-07 Furukawa Battery Co Ltd:The Lithium ion battery
JP2009532824A (en) * 2006-03-30 2009-09-10 エルジー・ケム・リミテッド Secondary battery with improved safety
JP2013537691A (en) * 2010-08-09 2013-10-03 エルジー・ケム・リミテッド Secondary battery with improved safety
JP2013539586A (en) * 2011-06-30 2013-10-24 エルジー・ケム・リミテッド Secondary battery with improved contact resistance
WO2014049933A1 (en) * 2012-09-26 2014-04-03 トヨタ自動車株式会社 Sealed battery manufacturing method and sealed battery inspecting apparatus
JP2018006124A (en) * 2016-06-30 2018-01-11 旭化成株式会社 Power storage element and power storage module
JP2019003842A (en) * 2017-06-16 2019-01-10 日産自動車株式会社 Film sheathing battery and manufacturing method therefor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000067846A (en) * 1998-08-20 2000-03-03 Dainippon Printing Co Ltd Battery case having safety valve
JP2000200584A (en) * 1999-01-04 2000-07-18 Mitsubishi Electric Corp Rectangular battery
WO2000059063A1 (en) * 1999-03-26 2000-10-05 Matsushita Electric Industrial Co., Ltd. Laminate sheath type battery
WO2001056093A1 (en) * 2000-01-24 2001-08-02 Mitsubishi Denki Kabushiki Kaisha Package for material containing nonaqueous solvent and cell comprising the same
JP2003092132A (en) * 2001-09-14 2003-03-28 Mitsubishi Electric Corp Battery
JP2003109557A (en) * 2001-09-28 2003-04-11 Mitsubishi Electric Corp Non-aqueous electrolyte battery and its manufacturing method
JP2005093825A (en) * 2003-09-18 2005-04-07 Sii Micro Parts Ltd Flat plate type electrochemical cell
WO2005086258A1 (en) * 2004-03-09 2005-09-15 Nec Lamilion Energy, Ltd. Film enclosed electric device and collector covering member for the film enclosed electric device
WO2006016535A1 (en) * 2004-08-11 2006-02-16 Nec Corporation Film-enclosed electric device and production method therefor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000067846A (en) * 1998-08-20 2000-03-03 Dainippon Printing Co Ltd Battery case having safety valve
JP2000200584A (en) * 1999-01-04 2000-07-18 Mitsubishi Electric Corp Rectangular battery
WO2000059063A1 (en) * 1999-03-26 2000-10-05 Matsushita Electric Industrial Co., Ltd. Laminate sheath type battery
WO2001056093A1 (en) * 2000-01-24 2001-08-02 Mitsubishi Denki Kabushiki Kaisha Package for material containing nonaqueous solvent and cell comprising the same
JP2003092132A (en) * 2001-09-14 2003-03-28 Mitsubishi Electric Corp Battery
JP2003109557A (en) * 2001-09-28 2003-04-11 Mitsubishi Electric Corp Non-aqueous electrolyte battery and its manufacturing method
JP2005093825A (en) * 2003-09-18 2005-04-07 Sii Micro Parts Ltd Flat plate type electrochemical cell
WO2005086258A1 (en) * 2004-03-09 2005-09-15 Nec Lamilion Energy, Ltd. Film enclosed electric device and collector covering member for the film enclosed electric device
WO2006016535A1 (en) * 2004-08-11 2006-02-16 Nec Corporation Film-enclosed electric device and production method therefor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007141523A (en) * 2005-11-15 2007-06-07 Furukawa Battery Co Ltd:The Lithium ion battery
JP2009532824A (en) * 2006-03-30 2009-09-10 エルジー・ケム・リミテッド Secondary battery with improved safety
JP2013537691A (en) * 2010-08-09 2013-10-03 エルジー・ケム・リミテッド Secondary battery with improved safety
JP2013539586A (en) * 2011-06-30 2013-10-24 エルジー・ケム・リミテッド Secondary battery with improved contact resistance
US9136508B2 (en) 2011-06-30 2015-09-15 Lg Chem, Ltd. Secondary battery with enhanced contact resistance
WO2014049933A1 (en) * 2012-09-26 2014-04-03 トヨタ自動車株式会社 Sealed battery manufacturing method and sealed battery inspecting apparatus
US9372239B2 (en) 2012-09-26 2016-06-21 Toyota Jidosha Kabushiki Kaisha Sealed battery manufacturing method and inspection device
JP2018006124A (en) * 2016-06-30 2018-01-11 旭化成株式会社 Power storage element and power storage module
JP2019003842A (en) * 2017-06-16 2019-01-10 日産自動車株式会社 Film sheathing battery and manufacturing method therefor

Also Published As

Publication number Publication date
JP5161421B2 (en) 2013-03-13

Similar Documents

Publication Publication Date Title
US10115937B2 (en) Battery including branched current collector sections
JP6250921B2 (en) battery
JP5537094B2 (en) battery
JP4659861B2 (en) Flat secondary battery and manufacturing method thereof
JP3964521B2 (en) Assembled battery
US20110244304A1 (en) Stack type battery
JP6058400B2 (en) Non-aqueous electrolyte secondary battery
US20110070477A1 (en) Stack type battery
JP2007087652A (en) Nonaqueous electrolyte battery
EP3279976A1 (en) Sealed battery and battery pack
JP5100082B2 (en) Flat battery
WO2011002064A1 (en) Laminated battery
JP2011049065A (en) Nonaqueous electrolyte battery and method of manufacturing the same
JP5329890B2 (en) Non-aqueous electrolyte battery
JP5953549B2 (en) Lithium ion battery
JP5161421B2 (en) Non-aqueous electrolyte battery
US20110076544A1 (en) Stack type battery
KR20140033585A (en) Secondary battery
WO2014141640A1 (en) Laminate exterior cell
JP2008262788A (en) Nonaqueous electrolyte battery
JP6055983B2 (en) Battery current collector and lithium ion battery
JP2004158344A (en) Laminate secondary battery, battery pack modules composed of two or more laminate secondary batteries, battery pack composed of two or more battery pack modules as well as electric automobile equipped with either of these batteries
JP2011129446A (en) Laminated type battery
JP5472941B2 (en) Non-aqueous electrolyte battery
JP2008257922A (en) Manufacturing method of non-aqueous electrolyte battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080306

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111003

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121024

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121214

R151 Written notification of patent or utility model registration

Ref document number: 5161421

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees