JP2007087652A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery Download PDF

Info

Publication number
JP2007087652A
JP2007087652A JP2005272458A JP2005272458A JP2007087652A JP 2007087652 A JP2007087652 A JP 2007087652A JP 2005272458 A JP2005272458 A JP 2005272458A JP 2005272458 A JP2005272458 A JP 2005272458A JP 2007087652 A JP2007087652 A JP 2007087652A
Authority
JP
Japan
Prior art keywords
negative electrode
separator
positive electrode
positive
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005272458A
Other languages
Japanese (ja)
Inventor
Soichi Hanabusa
聡一 花房
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP2005272458A priority Critical patent/JP2007087652A/en
Publication of JP2007087652A publication Critical patent/JP2007087652A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte battery suppressing voltage decrease and internal resistance increase when shock is applied from the outside by vibration, falling or the like. <P>SOLUTION: The nonaqueous electrolyte battery is equipped with an outer packaging member 1 made of film, an electrode group containing a positive electrode 7, a negative electrode 10 and a separator 13, a positive terminal electrically connected to the positive electrode, and a negative terminal electrically connected to the negative electrode, the positive terminal and the negative terminal are extended from the same end parts of the electrode group, or the facing end parts and drawn out to the outside of the the outer packaging member 1, and in the electrode group, the separator 13 is stretched out from at least one end part crossing at right angles to an end part to which the positive terminal and the negative terminal are extended, and a stretched out part 14b is fixed to the inner surface of the outer packaging member 1. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、非水電解質電池に係わるものである。   The present invention relates to a non-aqueous electrolyte battery.

近年、電子機器の発展にともない、小型で軽量、かつエネルギー密度が高く、さらに繰り返し充放電が可能な二次電池の開発が要望されている。このような二次電池としてはリチウムまたはリチウム合金を活物質とする負極と、モリブデン、バナジウム、チタンあるいはニオブなどの酸化物、硫化物もしくはセレン化物の活物質を含む懸濁液が塗布された集電体からなる正極と、非水電解液とを具備した非水電解質二次電池が知られている。   In recent years, with the development of electronic devices, there has been a demand for the development of secondary batteries that are small and light, have high energy density, and can be repeatedly charged and discharged. As such a secondary battery, a negative electrode using lithium or a lithium alloy as an active material and a suspension in which a suspension containing an active material of oxide, sulfide or selenide such as molybdenum, vanadium, titanium or niobium is applied. A non-aqueous electrolyte secondary battery including a positive electrode made of an electric body and a non-aqueous electrolyte is known.

また、負極に例えばコークス、黒鉛、炭素繊維、樹脂焼成体、熱分解気相炭素のようなリチウムイオンを吸蔵放出する炭素質材料を含む懸濁液が塗布された集電体を用いた非水電解質二次電池が提案されている。前記二次電池は、デンドライト析出による負極特性の劣化を改善することができるため、電池寿命と安全性を向上することができる。   Also, non-aqueous using a current collector in which a suspension containing a carbonaceous material that occludes and releases lithium ions, such as coke, graphite, carbon fiber, a resin fired body, and pyrolytic vapor phase carbon, is applied to the negative electrode. An electrolyte secondary battery has been proposed. The secondary battery can improve the deterioration of the negative electrode characteristics due to the dendrite precipitation, so that the battery life and safety can be improved.

一方、外装部材は、従来の金属缶の代わりに、より一層の薄形化を目的として例えばナイロンフィルムに代表される外部衝撃保護フィルムを最外層とし、アルミニウム箔に代表される防湿、遮光を目的とした金属層を中間に配し、最内層に電極群並びに電解液を封止するための熱融着性樹脂フィルム配した複合フィルムをフィルム材として用いることが進んでいる。   On the other hand, instead of the conventional metal can, the exterior member has an external impact protection film typified by nylon film as the outermost layer for the purpose of further thinning, for the purpose of moisture and light shielding typified by aluminum foil It is advancing to use as a film material a composite film in which a metal layer is disposed in the middle and a heat-fusible resin film is disposed as an innermost layer for sealing an electrode group and an electrolytic solution.

このようなフィルム材から形成された外装部材を備えた非水電解質二次電池は、従来の金属缶を用いたものと比較して、多種多様な形状展開が比較的安価に可能であり、最近特に電池の高容量化、高出力化が要求される分野では外装部材にフィルム材を用いたものが主流になっている。   A non-aqueous electrolyte secondary battery equipped with an exterior member formed from such a film material can be developed in a wide variety of shapes at a relatively low cost compared to a conventional battery using a metal can. In particular, in the field where high capacity and high output of the battery are required, those using a film material as the exterior member have become mainstream.

しかしながら、一方で電池の安全性を考慮した場合、金属缶と比較して一般的にフィルム材の強度は弱いため、過充電および過放電の発熱やガス発生による内部圧力上昇からの破裂等は起こりにくく有利である半面、振動や落下衝撃では容器内部の電極群の移動により容器自体に変形が生じ、端子の断線による内部抵抗の上昇や局部的短絡が起こりやすい。   However, considering the safety of the battery, on the other hand, the strength of the film material is generally weaker than that of a metal can, so overheating due to overcharge and overdischarge, and explosion from internal pressure increase due to gas generation, etc. On the other hand, it is difficult and advantageous, but in the case of vibration or drop impact, the container itself is deformed by the movement of the electrode group inside the container, and the internal resistance is likely to increase due to the disconnection of the terminal, or a local short-circuit occurs.

この状態は通常に充放電を繰り返した場合でも不具合部分での発熱による電池自体の発火を引き起こす可能性がある。   In this state, even when charging / discharging is repeated normally, there is a possibility that the battery itself may be ignited due to heat generation in the defective portion.

一方、特許文献1は、非水電解質二次電池に関するものであって、フィルム製外装材の内面に電極群の表面を接着層で固定することにより、電解液が電極群と外装材の間に浸透するのを抑えることを開示している。
特開2000−235868号公報
On the other hand, Patent Document 1 relates to a non-aqueous electrolyte secondary battery, and by fixing the surface of an electrode group to the inner surface of a film exterior material with an adhesive layer, the electrolytic solution is interposed between the electrode group and the exterior material. It is disclosed to suppress penetration.
JP 2000-235868 A

本発明は、振動や落下等により外部から衝撃が加わった際の電圧低下と内部抵抗増加が抑制された非水電解質電池を提供するものである。   The present invention provides a non-aqueous electrolyte battery in which a voltage drop and an increase in internal resistance are suppressed when an impact is applied from the outside due to vibration or dropping.

本発明に係る非水電解質電池は、フィルム製外装部材と、前記外装部材内に収納され、正極、負極及びセパレータを含む電極群と、前記正極に電気的に接続された正極端子と、前記負極に電気的に接続された負極端子とを具備する非水電解質電池であって、
前記正極端子及び前記負極端子は前記電極群の同じ端部もしくは互いに対向する端部から延出されて前記外装部材の外部に引き出されており、
前記電極群は、前記正極端子及び前記負極端子が延出されている端部と直交する少なくとも一端部から前記セパレータが張り出しており、その張り出し部が前記外装部材の内面に固定されていることを特徴とするものである。
The non-aqueous electrolyte battery according to the present invention includes a film exterior member, an electrode group that is housed in the exterior member and includes a positive electrode, a negative electrode, and a separator, a positive electrode terminal that is electrically connected to the positive electrode, and the negative electrode A non-aqueous electrolyte battery comprising a negative electrode terminal electrically connected to
The positive electrode terminal and the negative electrode terminal are extended from the same end portion of the electrode group or opposite end portions, and are drawn out of the exterior member,
In the electrode group, the separator protrudes from at least one end perpendicular to the end from which the positive electrode terminal and the negative electrode terminal extend, and the protruding portion is fixed to the inner surface of the exterior member. It is a feature.

本願発明に係る非水電解質電池によれば、外部から衝撃が加わった際の外装部材内での電極群の移動を抑えることが可能である。ここでの外部衝撃は外からの力で外装部材が破れる、もしくは電池自体が変形するようなものではなく、輸送時の振動や、外部機器に組み込まれパック化した後に加わる間接的な力を想定している。   According to the nonaqueous electrolyte battery according to the present invention, it is possible to suppress the movement of the electrode group in the exterior member when an impact is applied from the outside. The external impact here is not the case where the exterior member is broken or the battery itself is deformed by external force, but it assumes vibration during transportation and indirect force applied after packaging into an external device. is doing.

フィルム材から形成された外装部材を備えた非水電解質電池では、正極端子及び負極端子を外装部材から外部に引き出しているため、正極端子及び負極端子がフィルム材の間に挟まれて固定されているものの、電極群は外装部材と接触しているだけで固定されていない。このため、外装部材内部に存在する空隙の方向に衝撃が加わった場合、電極群は衝撃方向に容易に移動し、更に強い衝撃では電極群の衝突により外装部材を変形させることもある。電極群の移動を抑制するためには外装部材内の空隙をできるだけ少なくすればよいと思われるが、正負極端子と電極群との接続スペースや電解液スペースを考慮すると困難であり、仮に特許文献1のように電極群表面を外装部材に密着させたとしても外装部材自体の強度が不足しているため、電極群が外装部材を押し退ける形で移動する恐れがある。   In a nonaqueous electrolyte battery having an exterior member formed of a film material, the positive electrode terminal and the negative electrode terminal are pulled out from the exterior member to the outside, so that the positive electrode terminal and the negative electrode terminal are sandwiched and fixed between the film materials. However, the electrode group is in contact with the exterior member and is not fixed. For this reason, when an impact is applied in the direction of the gap existing inside the exterior member, the electrode group easily moves in the impact direction, and the exterior member may be deformed by the collision of the electrode group in a stronger impact. In order to suppress the movement of the electrode group, it seems necessary to reduce the gap in the exterior member as much as possible. However, it is difficult to consider the connection space between the positive and negative electrode terminals and the electrode group and the electrolyte solution space. Even if the surface of the electrode group is brought into close contact with the exterior member as in 1, the strength of the exterior member itself is insufficient, so that the electrode group may move in such a manner as to push away the exterior member.

これら衝撃により正負極端子と電極群との接続が外れるか、正負極端子もしくは電極群の破損により一時的に断線状態となり、更にその後の衝撃で断線部分が接触した状態になると、局部的に抵抗が高い部分を生ずることになり通常に充放電を繰り返した場合でもこの不具合部分での発熱による電池自体の発火を引き起こす可能性がある。また電極群自体の変形により、局部的短絡を生じ、発熱、発火を引き起こす可能性もある。   When the connection between the positive and negative electrode terminals and the electrode group is disconnected due to these impacts, or when the positive and negative electrode terminals or the electrode group are temporarily disconnected, and the disconnected portion is further contacted by the subsequent impact, the resistance is locally increased. Therefore, even if charging / discharging is repeated normally, there is a possibility that the battery itself may be ignited due to heat generation in the defective portion. In addition, deformation of the electrode group itself may cause a local short circuit, causing heat generation and ignition.

本願発明のように、正極端子及び負極端子が延出されている端部と直交する少なくとも一端部において電極群からセパレータを突出させ、その突出部分を外装部材の内面に固定することによって、外装部材内の空隙の大きさを変えずに外部衝撃に対して電極群の移動を抑制することができる。なお、電極群と外装部材の接合は、例えば、熱融着、電池性能に影響を及ぼさない接着剤やテープの使用等により行うことができるが、方法が簡単で、十分な接合強度が得られ、しかも副反応の恐れが少ないため、熱融着が望ましい。   As in the present invention, an exterior member is formed by projecting a separator from an electrode group at at least one end orthogonal to an end from which a positive electrode terminal and a negative electrode terminal are extended, and fixing the projecting portion to the inner surface of the exterior member. The movement of the electrode group can be suppressed against an external impact without changing the size of the inner space. The bonding of the electrode group and the exterior member can be performed, for example, by heat fusion, using an adhesive or a tape that does not affect the battery performance, but the method is simple and sufficient bonding strength is obtained. Moreover, heat fusion is desirable because there is little risk of side reactions.

この非水電解質電池を、輸送時の振動や、外部機器に組み込まれパック化した後に加わる間接的な力を想定して、電池に直接外力が加わらないように電池表面部を保護し、コンクリート等の上に一定高さから数回落下させたときの電池電圧及び、内部抵抗の変化を確認した結果、後述する実施例に示す通り、従来構造の電池と比較してその変化量を著しく小さくできることが確認でき、耐外部衝撃に効果のある非水電解質電池を実現することができた。   Assuming vibration during transportation and indirect force applied after packaging this non-aqueous electrolyte battery into an external device, the battery surface is protected from direct external force on the battery, concrete, etc. As a result of confirming the change of the battery voltage and the internal resistance when dropped several times from a certain height on the battery, the amount of change can be remarkably reduced as compared with the battery of the conventional structure as shown in the examples described later. As a result, it was possible to realize a nonaqueous electrolyte battery effective for external shock resistance.

本発明に係る非水電解質電池において、電極群は、正極端子及び負極端子が引き出されている端部の長さを1とした際に、セパレータが張り出している端部の長さを0.2以上、10以下にすることが望ましく、このような構成の電極群によると外部衝撃に対して十分な効果を得ることができる。セパレータ張り出し部の長さ比を0.2未満にすると、外部からの衝撃が加わった際に電極群が移動するのを十分に抑制できない恐れがある。一方、セパレータ張り出し部の長さ比が10を超えると、非水電解質電池の体積エネルギーが低下する恐れがある。   In the nonaqueous electrolyte battery according to the present invention, when the length of the end portion from which the positive electrode terminal and the negative electrode terminal are drawn is 1, the length of the end portion where the separator protrudes is 0.2. As mentioned above, it is desirable to set it to 10 or less, and according to the electrode group of such a structure, sufficient effect with respect to external impact can be acquired. If the length ratio of the separator overhanging portion is less than 0.2, it may not be possible to sufficiently suppress the movement of the electrode group when an external impact is applied. On the other hand, if the length ratio of the separator overhanging portion exceeds 10, the volume energy of the nonaqueous electrolyte battery may be reduced.

本願発明によれば、非水電解質電池に振動や落下等により外部から衝撃が加わった際の電圧低下と内部抵抗増加を抑制することができる。   According to the present invention, it is possible to suppress a voltage drop and an increase in internal resistance when an impact is applied from the outside to the nonaqueous electrolyte battery due to vibration or dropping.

まず、外装部材及び電極群について説明する。   First, the exterior member and the electrode group will be described.

1)外装部材
外装部材には、電極群が収納される凹部(カップ部)を備えたものを使用することができる。外装部材には、容器と封口板が一体化されたものを使用しても良いし、封口板と容器とが別々の構成になっているものを使用することも可能である。
1) Exterior member As the exterior member, one having a recess (cup portion) in which an electrode group is accommodated can be used. As the exterior member, a member in which the container and the sealing plate are integrated may be used, or a member in which the sealing plate and the container have different structures may be used.

外装部材を形成するフィルム材は、少なくとも樹脂フィルムを含有するものが好ましい。このようなフィルム材としては、例えば、樹脂製フィルム、樹脂及び金属を含有するラミネートフィルム等を挙げることができる。   The film material forming the exterior member preferably contains at least a resin film. Examples of such a film material include a resin film, a laminate film containing a resin and a metal, and the like.

使用する樹脂の種類は、特に限定されるものではないが、例えば、ナイロンなどのポリアミド樹脂、ポリオレフィン樹脂(ポリエチレンやポリプロピレン等)などの熱可塑性樹脂等を挙げることができる。   Although the kind of resin to be used is not particularly limited, examples thereof include polyamide resins such as nylon and thermoplastic resins such as polyolefin resins (polyethylene, polypropylene, etc.).

ラミネートフィルムとしては、例えば、金属層と、金属層の一方の面に形成された熱可塑性樹脂層と、金属層の反対側の面に形成された保護層とを含むものを使用することができる。金属層は、例えば、アルミニウム、アルミニウム合金から形成することができる。保護層は、例えば、ナイロンなどのポリアミド樹脂、ポリエテレンテレフタレートから形成することができる。   As the laminate film, for example, a film including a metal layer, a thermoplastic resin layer formed on one surface of the metal layer, and a protective layer formed on the opposite surface of the metal layer can be used. . The metal layer can be formed from, for example, aluminum or an aluminum alloy. The protective layer can be formed from, for example, a polyamide resin such as nylon or polyethylene terephthalate.

また、ラミネートフィルムにおいては、外部保護層、金属層及び熱可塑性樹脂層の各層の間に接着剤層やガスバリアー層などを設けても良い。   In the laminate film, an adhesive layer, a gas barrier layer, or the like may be provided between the external protective layer, the metal layer, and the thermoplastic resin layer.

2)電極群
電極群には、扁平形状を有するものを使用することができる。扁平形状の電極群は、例えば、正極と負極とをセパレータを介して渦巻状に捲回するか、あるいは正極と負極とをその間にセパレータを介在させながら交互に積層することにより作製される。
2) Electrode group What has a flat shape can be used for an electrode group. The flat electrode group is produced, for example, by winding the positive electrode and the negative electrode in a spiral shape via a separator, or alternately laminating the positive electrode and the negative electrode with a separator interposed therebetween.

正極は、集電体と、集電体に担持された合剤層とを含む。   The positive electrode includes a current collector and a mixture layer supported on the current collector.

正極活物質としては、種々の酸化物、例えば二酸化マンガン、リチウムマンガン複合酸化物(例えば、LiMn24、LiMnO2)、リチウム含有ニッケル酸化物、リチウム含有コバルト酸化物(例えば、LiCoO2)、リチウム含有ニッケルコバルト酸化物(例えば、LiNi0.8Co0.22)、リチウム含有鉄酸化物、リチウムを含むバナジウム酸化物や、二硫化チタン、二硫化モリブデンなどのカルコゲン化合物などを挙げることができる。なお、使用する正極活物質の種類は、1種類もしくは2種類以上にすることができる。 As the positive electrode active material, various oxides such as manganese dioxide, lithium manganese composite oxide (for example, LiMn 2 O 4 , LiMnO 2 ), lithium-containing nickel oxide, lithium-containing cobalt oxide (for example, LiCoO 2 ), Examples thereof include lithium-containing nickel cobalt oxide (for example, LiNi 0.8 Co 0.2 O 2 ), lithium-containing iron oxide, vanadium oxide containing lithium, and chalcogen compounds such as titanium disulfide and molybdenum disulfide. In addition, the kind of positive electrode active material to be used can be made into 1 type or 2 types or more.

集電体としては、多孔質構造の導電性基板か、あるいは無孔の導電性基板を用いることができる。これら導電性基板は、例えば、アルミニウム、ステンレス、またはニッケルから形成することができる。   As the current collector, a conductive substrate having a porous structure or a nonporous conductive substrate can be used. These conductive substrates can be formed from, for example, aluminum, stainless steel, or nickel.

負極は、集電体と、集電体に担持される合剤層とを含む。   The negative electrode includes a current collector and a mixture layer supported on the current collector.

負極活物質には、リチウムイオンもしくはリチウムを吸蔵放出するものを使用することができ、例えば、黒鉛質材料もしくは炭素質材料(例えば、黒鉛、コークス、炭素繊維、球状炭素、熱分解気相炭素質物、樹脂焼成体など)、カルコゲン化合物(例えば、二硫化チタン、二硫化モリブデン、セレン化ニオブ等)、軽金属(例えば、アルミニウム、アルミニウム合金、マグネシウム合金、リチウム、リチウム合金等)、リチウムチタン酸化物(例えば、スピネル型のチタン酸リチウム)等を挙げることができる。   As the negative electrode active material, lithium ions or materials that occlude and release lithium can be used. For example, a graphite material or a carbonaceous material (for example, graphite, coke, carbon fiber, spherical carbon, pyrolytic gas phase carbonaceous material) , Resin fired bodies, etc.), chalcogen compounds (eg, titanium disulfide, molybdenum disulfide, niobium selenide, etc.), light metals (eg, aluminum, aluminum alloys, magnesium alloys, lithium, lithium alloys, etc.), lithium titanium oxides ( For example, spinel type lithium titanate) can be used.

集電体としては、多孔質構造の導電性基板か、あるいは無孔の導電性基板を用いることができる。これら導電性基板は、例えば、銅、アルミニウム、ステンレス、またはニッケルから形成することができる。   As the current collector, a conductive substrate having a porous structure or a nonporous conductive substrate can be used. These conductive substrates can be formed from, for example, copper, aluminum, stainless steel, or nickel.

セパレータとしては、微多孔性の膜、織布、不織布、これらのうち同一材または異種材の積層物等を用いることができる。セパレータを形成する材料としては、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合ポリマー、エチレン−ブテン共重合ポリマー等を挙げることができる。セパレータの形成材料としては、前述した種類の中から選ばれる1種類または2種類以上を用いることができる。   As the separator, a microporous film, a woven fabric, a non-woven fabric, a laminate of the same material or different materials among these can be used. Examples of the material for forming the separator include polyethylene, polypropylene, ethylene-propylene copolymer, and ethylene-butene copolymer. As a material for forming the separator, one type or two or more types selected from the types described above can be used.

電極群には、非水電解質が保持されている。非水電解質は、非水溶媒と、この非水溶媒に溶解される電解質(例えば、リチウム塩)とを含むものである。この非水電解質の形態は、液体状(非水電解液)やゲル状あるいは固体状にすることができる。   A non-aqueous electrolyte is held in the electrode group. The non-aqueous electrolyte includes a non-aqueous solvent and an electrolyte (for example, lithium salt) dissolved in the non-aqueous solvent. The form of this non-aqueous electrolyte can be liquid (non-aqueous electrolyte), gel or solid.

非水溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、γ−ブチロラクトン(γ−BL)、スルホラン、アセトニトリル、1,2−ジメトキシエタン、1,3−ジメトキシプロパン、ジメチルエーテル、テトラヒドロフラン(THF)、2−メチルテトラヒドロフラン等を挙げることができる。非水溶媒は、単独で使用しても、2種以上混合して使用してもよい。   Examples of the non-aqueous solvent include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), γ-butyrolactone (γ -BL), sulfolane, acetonitrile, 1,2-dimethoxyethane, 1,3-dimethoxypropane, dimethyl ether, tetrahydrofuran (THF), 2-methyltetrahydrofuran and the like. Nonaqueous solvents may be used alone or in combination of two or more.

電解質としては、例えば、過塩素酸リチウム(LiClO4)、六フッ過リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)、六フッ化砒素リチウム(LiAsF6)、トリフルオロメタンスルホン酸リチウム(LiCF3SO3)等のリチウム塩を挙げることができる。電解質は単独で使用しても、2種以上混合して使用してもよい。電解質の非水溶媒に対する溶解量は、0.2mol/l〜3mol/lとすることが望ましい。 Examples of the electrolyte include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoroarsenide (LiAsF 6 ), and trifluoromethanesulfone. Examples thereof include lithium salts such as lithium acid lithium (LiCF 3 SO 3 ). The electrolyte may be used alone or in combination of two or more. The amount of electrolyte dissolved in the non-aqueous solvent is desirably 0.2 mol / l to 3 mol / l.

次いで、本発明の第1の実施形態を図1〜図10を参照して説明する。   Next, a first embodiment of the present invention will be described with reference to FIGS.

図1は本発明の第1の実施形態に係る非水電解質電池で用いられる外装部材の平面図と側面図。図2は図1の外装部材を構成する外装フィルムを模式的に示した断面図。図3は正極を模式的に示した平面図。図4は負極を模式的に示した平面図。図5はセパレータを模式的に示した平面図。図6は正負極のリードとタブの接続方法の一例を示す模式図。図7は正負極のリードとタブの接続方法の別な例を示す模式図。図8は電極群を模式的に示した平面図。図9は図8の電極群を容器内に収納した状態を示す模式的な平面図。図10は第1の実施形態に係る非水電解質電池を模式的に示した斜視図。   FIG. 1 is a plan view and a side view of an exterior member used in the nonaqueous electrolyte battery according to the first embodiment of the present invention. FIG. 2 is a cross-sectional view schematically showing an exterior film constituting the exterior member of FIG. FIG. 3 is a plan view schematically showing the positive electrode. FIG. 4 is a plan view schematically showing the negative electrode. FIG. 5 is a plan view schematically showing the separator. FIG. 6 is a schematic diagram showing an example of a method for connecting positive and negative leads and tabs. FIG. 7 is a schematic diagram showing another example of a method for connecting positive and negative leads and tabs. FIG. 8 is a plan view schematically showing an electrode group. FIG. 9 is a schematic plan view showing a state where the electrode group of FIG. 8 is housed in a container. FIG. 10 is a perspective view schematically showing the nonaqueous electrolyte battery according to the first embodiment.

図1に示すように、外装部材1は、プレス成型もしくは絞り加工により形成された矩形状カップ部2を備えるものである。カップ部2の開口端の四辺には、水平方向に延出された周縁部2aが形成されている。周縁部2aのうち長手方向の一辺に平板部が繋がっており、この平板部は封口板3として機能する。図1の(a)に平面図、(b)に側面図を示す。   As shown in FIG. 1, the exterior member 1 includes a rectangular cup portion 2 formed by press molding or drawing. On the four sides of the opening end of the cup part 2, a peripheral part 2a extending in the horizontal direction is formed. A flat plate portion is connected to one side in the longitudinal direction of the peripheral edge portion 2 a, and this flat plate portion functions as the sealing plate 3. FIG. 1A is a plan view and FIG. 1B is a side view.

外装フィルムは、例えば図2に示すように、金属層4と、金属層4の一方の面に形成された保護層5と、金属層4の反対側の面に形成された熱可塑性樹脂層6とを含むラミネートフィルムから形成される。熱可塑性樹脂層6は、外装部材1の内面に配されている。   For example, as shown in FIG. 2, the exterior film includes a metal layer 4, a protective layer 5 formed on one surface of the metal layer 4, and a thermoplastic resin layer 6 formed on the opposite surface of the metal layer 4. Is formed from a laminate film. The thermoplastic resin layer 6 is disposed on the inner surface of the exterior member 1.

正極7は、図3に示すように、正極集電体と、正極集電体の短辺の中央部が突出して形成された正極リード部8と、正極集電体の両面に形成された正極合剤層9とを含む。一方、負極10は、図4に示すように、負極集電体と、負極集電体の短辺の中央部が突出して形成された負極リード部11と、負極集電体の両面に形成された負極合剤層12とを含む。   As shown in FIG. 3, the positive electrode 7 includes a positive electrode current collector, a positive electrode lead portion 8 formed by projecting the central portion of the short side of the positive electrode current collector, and a positive electrode formed on both surfaces of the positive electrode current collector. And a mixture layer 9. On the other hand, as shown in FIG. 4, the negative electrode 10 is formed on both surfaces of the negative electrode current collector, the negative electrode lead portion 11 formed by projecting the central portion of the short side of the negative electrode current collector, and the negative electrode current collector. Negative electrode mixture layer 12.

セパレータ13は、図5に示すように、袋状で、両方の長辺側が貼り合わされている。片方の貼り合せ部14aが長辺端部よりも内側に位置しており、貼り合せ部14aの外側に張り出し部14bが形成されている。   As shown in FIG. 5, the separator 13 has a bag shape and is bonded to both long sides. One bonding part 14a is located inside the long side end part, and an overhanging part 14b is formed outside the bonding part 14a.

セパレータ13の袋部分に正極7が挿入され、正極リード8がセパレータ13から突出している。この正極7が収納されたセパレータ13と、負極10とが交互に積層されている。この積層物において、図8に示すように、負極リード11は短辺側端部から突出しており、正極リード8は反対側の短辺側端部から突出している。なお、セパレータに収納するのは正極の代わりに負極でも構わない。   The positive electrode 7 is inserted into the bag portion of the separator 13, and the positive electrode lead 8 protrudes from the separator 13. The separators 13 in which the positive electrodes 7 are housed and the negative electrodes 10 are alternately stacked. In this laminate, as shown in FIG. 8, the negative electrode lead 11 protrudes from the short side end, and the positive electrode lead 8 protrudes from the opposite short side end. The separator may be housed in the negative electrode instead of the positive electrode.

複数の正極7各々が有する正極リード8は、例えば図6に示すように、一つに束ねられ、束ねられた先端部が二つ折りにした正極タブ15(例えば、アルミニウム、ニッケル等の金属からなる)で挟まれている。これら正極リード8と正極タブ15は、例えば溶接により固定されている。正極リード8と正極タブ15の接続は、図7に示す方法によって行っても良い。図7では、正極リード8が一つに束ねられ、束ねられた先端部が正極タブ15の先端に例えば溶接などにより固定されている。複数の負極10各々が有する負極リード11と負極タブ16(例えば、銅、ニッケル等の金属からなる)との接続も、図6または図7に示す方法で行われる。金属接着性を有する熱可塑性絶縁フィルム(例えば酸変性ポリエチレンフィルム)18は、正極タブ15及び負極タブ16それぞれの熱融着部に配置され、外装フィルムとタブとの密着性を高めている。   As shown in FIG. 6, for example, the positive electrode lead 8 included in each of the plurality of positive electrodes 7 is bundled into one, and a positive electrode tab 15 (for example, made of metal such as aluminum or nickel) in which the bundled tip is folded in half. ). The positive electrode lead 8 and the positive electrode tab 15 are fixed by welding, for example. The positive electrode lead 8 and the positive electrode tab 15 may be connected by the method shown in FIG. In FIG. 7, the positive electrode leads 8 are bundled together, and the bundled tip portion is fixed to the tip of the positive electrode tab 15 by, for example, welding. Connection between the negative electrode lead 11 and the negative electrode tab 16 (for example, made of metal such as copper or nickel) included in each of the plurality of negative electrodes 10 is also performed by the method shown in FIG. 6 or FIG. A thermoplastic insulating film (for example, acid-modified polyethylene film) 18 having metal adhesion is disposed in each heat-sealed portion of the positive electrode tab 15 and the negative electrode tab 16 to enhance the adhesion between the exterior film and the tab.

本実施形態では、電極群の正負極リードに正負極タブを接続したものを正負極端子として使用しているが、電極群の正負極リードのうちそれぞれ1枚を予め長くしておき、正負極リードを接続後、前述の長いリードをそのまま容器の外部に引き出し、正負極端子として使用することも可能である。   In this embodiment, the positive and negative electrode tabs connected to the positive and negative electrode leads of the electrode group are used as the positive and negative electrode terminals. After connecting the leads, the above-described long leads can be directly pulled out of the container and used as positive and negative terminals.

図8に示すように、電極群のコーナ部に位置する正極7、負極10及びセパレータ13は、絶縁テープ17で固定されている。セパレータ13の張り出し部14bは、電極群の片方の長辺側端部の正極及び負極から突出し、例えば熱融着により一つに接合されている。   As shown in FIG. 8, the positive electrode 7, the negative electrode 10, and the separator 13 located at the corner of the electrode group are fixed with an insulating tape 17. The protruding portion 14b of the separator 13 protrudes from the positive electrode and the negative electrode at one end of the long side of the electrode group, and is joined together by, for example, heat fusion.

このような電極群は、図9に示すように、外装部材1の矩形状カップ部2に収納される。セパレータ13の張り出し部14bは、矩形状カップ部2の長辺側周縁部(封口板3と反対側の長辺側周縁部)に配置されている。また、正極タブ15は、矩形状カップ部2の短辺側周縁部から外部に引き出され、かつ負極タブ16は、矩形状カップ部2の反対側の短辺側周縁部から外部に引き出されている。   Such an electrode group is accommodated in the rectangular cup portion 2 of the exterior member 1 as shown in FIG. The overhanging portion 14 b of the separator 13 is disposed on the long side peripheral portion (the long side peripheral portion on the side opposite to the sealing plate 3) of the rectangular cup portion 2. The positive electrode tab 15 is pulled out from the short side peripheral edge of the rectangular cup portion 2, and the negative electrode tab 16 is pulled out from the short side peripheral edge on the opposite side of the rectangular cup portion 2. Yes.

封口板3を矩形状カップ部2側に折り返し、矩形状カップ部2を封口板3で覆った後、カップ部2の周縁部2aと封口板3の周縁部とを熱可塑性樹脂層6を用いて熱融着させる。セパレータ13の張り出し部14bは、長辺側周縁部とこれと対向する封口板3の間に熱融着され、外装部材1の内面に固定される。   After the sealing plate 3 is folded back to the rectangular cup portion 2 side and the rectangular cup portion 2 is covered with the sealing plate 3, the peripheral portion 2 a of the cup portion 2 and the peripheral portion of the sealing plate 3 are used with the thermoplastic resin layer 6. Heat seal. The overhanging portion 14 b of the separator 13 is heat-sealed between the long-side peripheral portion and the sealing plate 3 facing the long-side peripheral portion, and is fixed to the inner surface of the exterior member 1.

この第1の実施形態に係る非水電解質電池では、正極端子及び負極端子が延出されている短辺側端部と直交する長辺側端部において電極群の正負極からセパレータ13の張り出し部14bを突出させ、外装部材1の内面に固定しているため、落下や振動等の衝撃が加わった際に、電極群が、正負極端子の延出方向にスライドするのを抑えることができる。その結果、正負極端子の断線及び電極群の変形を回避することができるため、衝撃が加わった際の内部抵抗の増加及び電池電圧の低下を抑制することができる。   In the nonaqueous electrolyte battery according to the first embodiment, the protruding portion of the separator 13 from the positive and negative electrodes of the electrode group at the long-side end that is orthogonal to the short-side end extending from the positive electrode terminal and the negative-electrode terminal. Since 14b protrudes and is fixed to the inner surface of the exterior member 1, it is possible to prevent the electrode group from sliding in the extending direction of the positive and negative terminals when an impact such as dropping or vibration is applied. As a result, disconnection of the positive and negative terminals and deformation of the electrode group can be avoided, so that an increase in internal resistance and a decrease in battery voltage when an impact is applied can be suppressed.

(第2の実施形態)
本発明の第2の実施形態を図11〜図16を参照して説明する。なお、前述した第1の実施形態で説明したのと同様な構成は、同符号を付して説明を省略する。
(Second Embodiment)
A second embodiment of the present invention will be described with reference to FIGS. Note that the same configurations as those described in the first embodiment are denoted by the same reference numerals and description thereof is omitted.

図11は本発明の第2の実施形態に係る非水電解質電池で用いられる容器の平面図と側面図。図12は図11の容器の封口板を模式的に示した平面図と側面図。図13はセパレータを模式的に示した平面図。図14は電極群を模式的に示した平面図。図15は図14の電極群を容器内に収納した状態を示す模式的な平面図。図16は第2の実施形態に係る非水電解質電池を模式的に示した斜視図。   FIG. 11 is a plan view and a side view of a container used in a nonaqueous electrolyte battery according to a second embodiment of the present invention. 12 is a plan view and a side view schematically showing a sealing plate of the container of FIG. FIG. 13 is a plan view schematically showing the separator. FIG. 14 is a plan view schematically showing an electrode group. FIG. 15 is a schematic plan view showing a state where the electrode group of FIG. 14 is housed in a container. FIG. 16 is a perspective view schematically showing a nonaqueous electrolyte battery according to the second embodiment.

この第2の実施形態では、容器と封口板がそれぞれ別の構成になっている外装部材を使用すると共に、袋状に加工されたセパレータの長手方向側の両端部に突出部が形成されていること以外は、第1の実施形態と同様である。   In the second embodiment, an exterior member having a container and a sealing plate that are different from each other is used, and protrusions are formed at both end portions on the longitudinal direction side of the bag-shaped separator. Except this, it is the same as the first embodiment.

すなわち、図11に示すように、容器20は、プレス成型もしくは絞り加工により形成された矩形状カップ部21を備えるものである。カップ部21の開口端の四辺には、水平方向に延出された周縁部22が形成されている。図11の(a)に平面図、(b)に側面図を示す。   That is, as shown in FIG. 11, the container 20 includes a rectangular cup portion 21 formed by press molding or drawing. On the four sides of the open end of the cup portion 21, peripheral edge portions 22 extending in the horizontal direction are formed. FIG. 11A is a plan view and FIG. 11B is a side view.

図12に示すように、封口板23は、容器20とは別構成で、矩形状をなしている。容器20及び封口板23は、前述した第1の実施形態で説明したのと同様な外装フィルムから形成されており、容器20及び封口板23の内面は熱可塑性樹脂層から形成されている。   As shown in FIG. 12, the sealing plate 23 is configured differently from the container 20 and has a rectangular shape. The container 20 and the sealing plate 23 are formed from the same exterior film as described in the first embodiment, and the inner surfaces of the container 20 and the sealing plate 23 are formed from a thermoplastic resin layer.

袋状のセパレータ24は、両方の長辺側に張り合わせ部が位置するもので、両方の張り合わせ部25aは端部よりも内側に位置し、それぞれの張り合わせ部25aの外側に張り出し部25bが形成されている。このセパレータ24を使用すること以外は、前述した第1の実施形態で説明したのと同様にして電極群が作製され、作製された電極群の模式的な平面図を図14に示す。   The bag-shaped separator 24 has a bonded portion positioned on both long sides, both the bonded portions 25a are positioned on the inner side of the end portions, and a protruding portion 25b is formed on the outer side of each bonded portion 25a. ing. Except for using this separator 24, an electrode group is produced in the same manner as described in the first embodiment, and a schematic plan view of the produced electrode group is shown in FIG.

図14に示すように、電極群の長辺側両端部の正負極からセパレータ24の張り出し部25bが突き出ている。同じ端部から突き出た張り出し部25b同士は、熱融着により接合されることで一つに束ねられている。   As shown in FIG. 14, the protruding portion 25b of the separator 24 protrudes from the positive and negative electrodes at both ends of the long side of the electrode group. The overhanging portions 25b protruding from the same end portion are bundled together by being joined by thermal fusion.

このような電極群は、図15に示すように、容器20内に収納される。セパレータ24の張り出し部25bは、容器20の周縁部の長辺方向側に配置されている。正極タブ15は、容器20の周縁部の短辺方向側から外部に引き出されている。一方、負極タブ16は、正極タブ15の反対側に位置する周縁部から外部に引き出されている。   Such an electrode group is accommodated in the container 20 as shown in FIG. The overhang portion 25 b of the separator 24 is disposed on the long side direction side of the peripheral portion of the container 20. The positive electrode tab 15 is drawn out from the short side direction side of the peripheral edge of the container 20. On the other hand, the negative electrode tab 16 is drawn to the outside from a peripheral edge located on the opposite side of the positive electrode tab 15.

封口板23を容器20上に配置し、容器20の周縁部22と封口板23の周縁部とを熱可塑性樹脂層を用いて熱融着させることにより、図16に示す非水電解質電池を得る。   The nonaqueous electrolyte battery shown in FIG. 16 is obtained by disposing the sealing plate 23 on the container 20 and thermally fusing the peripheral portion 22 of the container 20 and the peripheral portion of the sealing plate 23 using a thermoplastic resin layer. .

得られた非水電解質電池において、セパレータ24の張り出し部25bは、容器20と封口板23の熱融着部の間に挟まれることによって固定される。第2の実施形態では、正極端子及び負極端子が延出されている短辺側端部と直交する両方の長辺側端部において電極群の正負極からセパレータを突出させ、その突出部分を外装部材の内面に固定しているため、落下や振動等の衝撃が加わった際の電極群の移動を規制する効果をさらに高くすることができる。   In the obtained nonaqueous electrolyte battery, the overhanging portion 25 b of the separator 24 is fixed by being sandwiched between the heat fusion portion of the container 20 and the sealing plate 23. In the second embodiment, the separator is protruded from the positive and negative electrodes of the electrode group at both long side end portions orthogonal to the short side end portion from which the positive electrode terminal and the negative electrode terminal are extended, and the protruding portion is packaged. Since it is fixed to the inner surface of the member, the effect of restricting the movement of the electrode group when an impact such as dropping or vibration is applied can be further enhanced.

(第3の実施形態)
本発明の第3の実施形態を図17〜図22を参照して説明する。なお、前述した第1の実施形態で説明したのと同様な構成は、同符号を付して説明を省略する。
(Third embodiment)
A third embodiment of the present invention will be described with reference to FIGS. Note that the same configurations as those described in the first embodiment are denoted by the same reference numerals and description thereof is omitted.

図17は本発明の第3の実施形態に係る非水電解質電池で用いられる外装部材の平面図と側面図。図18は正極を模式的に示した平面図。図19は負極を模式的に示した平面図。図20は電極群を模式的に示した平面図。図21は図20の電極群を容器内に収納した状態を示す模式的な平面図。図22は第3の実施形態に係る非水電解質電池を模式的に示した斜視図。   FIG. 17 is a plan view and a side view of an exterior member used in a nonaqueous electrolyte battery according to a third embodiment of the present invention. FIG. 18 is a plan view schematically showing the positive electrode. FIG. 19 is a plan view schematically showing the negative electrode. FIG. 20 is a plan view schematically showing an electrode group. FIG. 21 is a schematic plan view showing a state where the electrode group of FIG. 20 is housed in a container. FIG. 22 is a perspective view schematically showing a nonaqueous electrolyte battery according to the third embodiment.

図17に示すように、外装部材30は、プレス成型もしくは絞り加工により形成された矩形状カップ部31を備えるものである。カップ部31の開口端の四辺には、水平方向に延出された周縁部31aが形成されている。周縁部31aのうち短辺方向の一辺に平板部が繋がっており、この平板部は封口板32として機能する。図17の(a)に平面図、(b)に側面図を示す。外装フィルムには、前述した第1の実施形態で説明したのと同様なものを使用することができる。   As shown in FIG. 17, the exterior member 30 includes a rectangular cup portion 31 formed by press molding or drawing. On the four sides of the open end of the cup portion 31, peripheral edge portions 31a extending in the horizontal direction are formed. A flat plate portion is connected to one side of the peripheral edge portion 31 a in the short side direction, and this flat plate portion functions as the sealing plate 32. FIG. 17A is a plan view and FIG. 17B is a side view. As the exterior film, the same film as described in the first embodiment can be used.

正極33は、図18に示すように、正極集電体と、正極集電体の短辺の端の部分(例えば右端)が突出して形成された正極リード部34と、正極集電体の両面に形成された正極合剤層35とを含む。一方、負極36は、図19に示すように、負極集電体と、負極集電体の短辺の端の部分(例えば左端)が突出して形成された負極リード部37と、負極集電体の両面に形成された負極合剤層38とを含む。   As shown in FIG. 18, the positive electrode 33 includes a positive electrode current collector, a positive electrode lead portion 34 formed by protruding a short-side end portion (for example, the right end) of the positive electrode current collector, and both surfaces of the positive electrode current collector. And the positive electrode mixture layer 35 formed in the above. On the other hand, as shown in FIG. 19, the negative electrode 36 includes a negative electrode current collector, a negative electrode lead portion 37 formed by protruding a short side end portion (for example, the left end) of the negative electrode current collector, and a negative electrode current collector. And a negative electrode mixture layer 38 formed on both surfaces thereof.

第2の実施形態で説明したのと同様なセパレータに正極33が挿入され、正極リード34がセパレータから突出している。この正極33が収納されたセパレータと、負極36とが交互に積層されている。この積層物において、図20に示すように、正極リード34と負極リード37は、互いに重ならないように同じ辺から突出している。   The positive electrode 33 is inserted into the same separator as described in the second embodiment, and the positive electrode lead 34 protrudes from the separator. The separator in which the positive electrode 33 is accommodated and the negative electrode 36 are alternately stacked. In this laminate, as shown in FIG. 20, the positive electrode lead 34 and the negative electrode lead 37 protrude from the same side so as not to overlap each other.

複数の正極33各々が有する正極リード34は、図6または図7に示すように一つに束ねられた状態で正極タブ39(例えば、アルミニウム、ニッケル等の金属からなる)と接続されている。一方、複数の負極36各々が有する負極リード37は、図6または図7に示すように一つに束ねられた状態で負極タブ40(例えば、銅、ニッケル等の金属からなる)と接続されている。金属接着性を有する熱可塑性絶縁フィルム18は、正極タブ39及び負極タブ40それぞれの熱融着部に配置され、外装フィルムとタブとの密着性を高めている。   The positive leads 34 included in each of the plurality of positive electrodes 33 are connected to a positive electrode tab 39 (for example, made of a metal such as aluminum or nickel) in a bundled state as shown in FIG. 6 or FIG. On the other hand, the negative electrode lead 37 included in each of the plurality of negative electrodes 36 is connected to the negative electrode tab 40 (for example, made of metal such as copper or nickel) in a bundled state as shown in FIG. 6 or FIG. Yes. The thermoplastic insulating film 18 having metal adhesiveness is disposed at the heat-sealed portion of each of the positive electrode tab 39 and the negative electrode tab 40 to enhance the adhesion between the exterior film and the tab.

本実施形態では、電極群の正負極リードに正負極タブを接続したものを正負極端子として使用しているが、電極群の正負極リードをそのまま容器の外部に引き出し、正負極端子として使用することも可能である。   In this embodiment, the positive and negative electrode tabs connected to the positive and negative electrode leads of the electrode group are used as the positive and negative electrode terminals, but the positive and negative electrode leads of the electrode group are directly pulled out of the container and used as the positive and negative electrode terminals. It is also possible.

図20に示すように、電極群のコーナ部に位置する正極33、負極36及びセパレータ24は、絶縁テープ17で固定されている。セパレータ24の張り出し部25bは、電極群の両方の長辺側端部の正負極から突き出ており、それぞれの端部において例えば熱融着により一つに接合されている。   As shown in FIG. 20, the positive electrode 33, the negative electrode 36, and the separator 24 located at the corner portion of the electrode group are fixed with an insulating tape 17. The protruding portion 25b of the separator 24 protrudes from the positive and negative electrodes at both ends of the long side of the electrode group, and is joined together by, for example, heat sealing at each end.

このような電極群は、図21に示すように、外装部材30の矩形状カップ部31に収納される。セパレータ24の張り出し部25bは、矩形状カップ部31の両方の長辺側周縁部に位置している。また、正極タブ39と負極タブ40は、外装部材30の短辺側から外部に引き出されている。   Such an electrode group is housed in a rectangular cup portion 31 of the exterior member 30 as shown in FIG. The overhanging portion 25 b of the separator 24 is located at both long side peripheral portions of the rectangular cup portion 31. The positive electrode tab 39 and the negative electrode tab 40 are drawn out from the short side of the exterior member 30 to the outside.

封口板32をカップ部31側に折り返し、矩形状カップ部31を封口板32で覆った後、カップ部31の周縁部31aと封口板32の周縁部とを熱可塑性樹脂層6を用いて熱融着させる。セパレータ24の張り出し部25bは、カップ部31の長辺側周縁部と封口板32との間に熱融着され、外装部材30の内面に固定される。   After the sealing plate 32 is folded back to the cup portion 31 side and the rectangular cup portion 31 is covered with the sealing plate 32, the peripheral edge portion 31 a of the cup portion 31 and the peripheral edge portion of the sealing plate 32 are heated using the thermoplastic resin layer 6. Fuse. The protruding portion 25 b of the separator 24 is heat-sealed between the long side peripheral portion of the cup portion 31 and the sealing plate 32 and is fixed to the inner surface of the exterior member 30.

この第3の実施形態に係る非水電解質電池では、正極端子及び負極端子が延出されている短辺側端部と直交する両方の長辺側端部において電極群の正負極からセパレータ24の張り出し部25bを突出させ、外装部材30の内面に固定しているため、落下や振動等の衝撃が加わった際の電極群の移動を抑えることが可能である。   In the nonaqueous electrolyte battery according to the third embodiment, the positive electrode terminal and the negative electrode terminal are connected to the separator 24 from the positive and negative electrodes of the electrode group at both long side end portions orthogonal to the short side end portions. Since the projecting portion 25b is protruded and fixed to the inner surface of the exterior member 30, it is possible to suppress movement of the electrode group when an impact such as dropping or vibration is applied.

(第4の実施形態)
本発明の第4の実施形態を図23〜図27を参照して説明する。なお、前述した第1の実施形態で説明したのと同様な構成は、同符号を付して説明を省略する。
(Fourth embodiment)
A fourth embodiment of the present invention will be described with reference to FIGS. Note that the same configurations as those described in the first embodiment are denoted by the same reference numerals and description thereof is omitted.

図23は本発明の第4の実施形態に係る非水電解質電池で用いられる正極の模式的な平面図。図24は負極を模式的に示した平面図。図25はセパレータを模式的に示した平面図。図26は電極群を模式的に示した平面図。図27は図26の電極群を外装部材内に収納した状態を示す模式的な平面図。図28は第4の実施形態に係る非水電解質電池を模式的に示した斜視図。   FIG. 23 is a schematic plan view of a positive electrode used in a nonaqueous electrolyte battery according to a fourth embodiment of the present invention. FIG. 24 is a plan view schematically showing the negative electrode. FIG. 25 is a plan view schematically showing the separator. FIG. 26 is a plan view schematically showing an electrode group. FIG. 27 is a schematic plan view showing a state where the electrode group of FIG. 26 is housed in an exterior member. FIG. 28 is a perspective view schematically showing a nonaqueous electrolyte battery according to the fourth embodiment.

この第4の実施形態は、捲回型電極群を使用すること以外は、前述した第1の実施形態で説明したのと同様な構成を有するものである。図23に示すように、正極41は、帯状の正極集電体と、正極集電体の長手方向側の一端部42(以下、正極無地部と称す)を除いて形成された正極合剤層43とを備えるものである。   The fourth embodiment has the same configuration as that described in the first embodiment except that a wound electrode group is used. As shown in FIG. 23, the positive electrode 41 is formed by excluding a strip-shaped positive electrode current collector and one end portion 42 (hereinafter referred to as a positive electrode uncoated region) on the longitudinal direction side of the positive electrode current collector. 43.

負極44は、図24に示すように、帯状の負極集電体と、負極集電体の長手方向側の一端部45(以下、負極無地部と称す)を除いて形成された負極合剤層46とを備えるものである。   As shown in FIG. 24, the negative electrode 44 is formed by removing a strip-shaped negative electrode current collector and one end portion 45 (hereinafter referred to as a negative electrode uncoated region) on the longitudinal direction side of the negative electrode current collector. 46.

正極41と負極44は、その間に図25に示す帯状のセパレータ47を介在させながら扁平の渦巻き形状に捲回され、電極群が得られる。この電極群においては、図26に示すように、正極41の無地部42がセパレータの捲回軸方向から突出し、かつ負極44の無地部45がセパレータの反対側の捲回軸方向から突出している。電極群の最外周は、セパレータ47で、その一部48が捲回軸と直交する方向に張り出している。セパレータ47の巻き終わり端部49は、絶縁テープ50で固定されている。短冊状の正極タブ51は、端部が正極41の無地部42に溶接されている。一方、短冊状の負極タブ52は、端部が負極44の無地部45に溶接されている。金属接着性を有する熱可塑性絶縁フィルム18は、正極端子51及び負極端子52それぞれの熱融着箇所に配置され、外装フィルムと端子との密着性を高める役割をなす。   The positive electrode 41 and the negative electrode 44 are wound into a flat spiral shape with a strip-shaped separator 47 shown in FIG. 25 interposed therebetween, and an electrode group is obtained. In this electrode group, as shown in FIG. 26, the plain portion 42 of the positive electrode 41 protrudes from the winding axis direction of the separator, and the plain portion 45 of the negative electrode 44 protrudes from the winding axis direction on the opposite side of the separator. . The outermost periphery of the electrode group is a separator 47, and a part 48 of the separator extends in a direction perpendicular to the winding axis. The winding end end portion 49 of the separator 47 is fixed with an insulating tape 50. The strip-shaped positive electrode tab 51 is welded to the plain portion 42 of the positive electrode 41 at the end. On the other hand, the strip-shaped negative electrode tab 52 is welded to the plain portion 45 of the negative electrode 44 at the end. The thermoplastic insulating film 18 having metal adhesiveness is disposed at each heat-sealed portion of the positive electrode terminal 51 and the negative electrode terminal 52, and plays a role of improving the adhesion between the exterior film and the terminal.

このような電極群は、図27に示すように、外装部材1の矩形状カップ部2内に収納される。セパレータ47の張り出し部48は、封口板3の反対側に位置する長辺側周縁部2aに配置されている。また、正極端子51は、外装部材1の短辺側周縁部から外部に引き出されている。一方、負極端子52は、外装部材1の反対側の短辺側周縁部から外部に引き出されている。   Such an electrode group is accommodated in the rectangular cup portion 2 of the exterior member 1 as shown in FIG. The overhanging portion 48 of the separator 47 is disposed on the long side peripheral edge 2 a located on the opposite side of the sealing plate 3. Further, the positive electrode terminal 51 is drawn out from the peripheral portion on the short side of the exterior member 1 to the outside. On the other hand, the negative electrode terminal 52 is drawn to the outside from the peripheral portion on the short side opposite to the exterior member 1.

封口板3をカップ部2側に折り返し、矩形状カップ部2を封口板3で覆った後、カップ部2の周縁部2aと封口板3の周縁部とを熱可塑性樹脂層を用いて熱融着させる。セパレータ47の張り出し部48は、カップ部2の周縁部2aと封口板3との間に熱融着され、外装部材1の内面に固定される。   After the sealing plate 3 is folded back to the cup portion 2 side and the rectangular cup portion 2 is covered with the sealing plate 3, the peripheral edge portion 2a of the cup portion 2 and the peripheral edge portion of the sealing plate 3 are heat-melted using a thermoplastic resin layer. Put on. The protruding portion 48 of the separator 47 is heat-sealed between the peripheral edge portion 2 a of the cup portion 2 and the sealing plate 3 and is fixed to the inner surface of the exterior member 1.

この第4の実施形態に係る非水電解質電池では、正極端子51及び負極端子52が延出されている短辺側端部と直交する長辺側端部において電極群からセパレータ47を突出させ、その突出部分48を外装部材1の内面に固定しているため、落下や振動等の衝撃が加わった際の電極群の移動を抑えることが可能である。   In the nonaqueous electrolyte battery according to the fourth embodiment, the separator 47 protrudes from the electrode group at the long side end that is orthogonal to the short side end from which the positive electrode terminal 51 and the negative electrode terminal 52 are extended, Since the protruding portion 48 is fixed to the inner surface of the exterior member 1, it is possible to suppress the movement of the electrode group when an impact such as dropping or vibration is applied.

なお、前述した第1〜第3の実施形態においては、複数の正負極それぞれの間から突出した張り出し部全てを一つに束ねた状態で外装部材の内面に固定したが、複数の張り出し部のうち一部のみを一つに束ねて外装部材の内面に固定することが可能である。この場合、積層電極の上下及び中間に位置する張り出し部を外装部材の内面に固定することが望ましい。   In the above-described first to third embodiments, all of the protruding portions protruding from between the plurality of positive and negative electrodes are fixed to the inner surface of the exterior member in a state of being bundled together. Only a part of them can be bundled together and fixed to the inner surface of the exterior member. In this case, it is desirable to fix the overhanging portions located above and below and between the laminated electrodes to the inner surface of the exterior member.

以下、本発明の実施例を前述した図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings described above.

(実施例1)
<容器の形成>
厚さ0.025mmのナイロンフィルム5と厚さ0.04mmのアルミニウム箔4と厚さ0.03mmのポリエチレンフィルム6とで構成される総厚さ0.095mmの外装フィルムに深絞り加工を施して深さ4.0mm、長さ95mm、幅65mmの矩形状カップ部2を形成し、前述した図1に示す外装部材1を得た。得られた外装部材1において、カップ部2の短辺方向2箇所の縁部の幅を5mmにし、長辺方向の1箇所の縁部の幅を10mmにし、この縁部に対向するもう1つの長辺側縁部に設けた平板部(封口板)3の幅を75mmとした。
Example 1
<Formation of container>
A deep drawing process was applied to an outer film having a total thickness of 0.095 mm composed of a nylon film 5 having a thickness of 0.025 mm, an aluminum foil 4 having a thickness of 0.04 mm, and a polyethylene film 6 having a thickness of 0.03 mm. A rectangular cup portion 2 having a depth of 4.0 mm, a length of 95 mm, and a width of 65 mm was formed to obtain the exterior member 1 shown in FIG. In the obtained exterior member 1, the width of two edges in the short side direction of the cup part 2 is set to 5 mm, the width of one edge in the long side direction is set to 10 mm, and another edge facing this edge part is provided. The width of the flat plate portion (sealing plate) 3 provided at the long side edge was 75 mm.

<電極群の作製>
まず、活物質としてのLiCoO2粉末89重量部に導電性フィラーとしてのグラファイト粉末8重量部および結着剤としてポリフッ化ビニリデン樹脂3重量部をN−メチルピロリドン25重量部に混合して正極ペーストを調製した。
<Production of electrode group>
First, 89 parts by weight of LiCoO 2 powder as an active material, 8 parts by weight of graphite powder as a conductive filler and 3 parts by weight of polyvinylidene fluoride resin as a binder are mixed with 25 parts by weight of N-methylpyrrolidone to prepare a positive electrode paste. Prepared.

この正極ペーストを集電体である厚さ0.03mmのアルミニウム箔フープ材の両面へ両サイドに未塗布部分が残るように連続塗布し、乾燥した後、圧延して正極合剤層9を形成した後、塗布部分の外形寸法が80×60mm、正極リードとなる未塗布部分8の寸法が5×20mmになるように切り出して正極7とした。   This positive electrode paste is continuously applied on both sides of a 0.03 mm thick aluminum foil hoop material as a current collector so that uncoated portions remain on both sides, dried, and then rolled to form a positive electrode mixture layer 9 After that, the coated part was cut out so that the outer dimension of the coated part was 80 × 60 mm and the dimension of the uncoated part 8 serving as the positive electrode lead was 5 × 20 mm.

次いで、メソフェーズピッチ系炭素繊維を粉砕した後、熱処理した炭素繊維粉末100重量部をカルボキシメチルセルロースおよびスチレン−ブタジエンの架橋ゴムラテックス粒子2重量部を含む水溶液に混合して負極ペーストを調製した。   Next, after pulverizing the mesophase pitch-based carbon fiber, 100 parts by weight of the heat-treated carbon fiber powder was mixed with an aqueous solution containing 2 parts by weight of crosslinked rubber latex particles of carboxymethyl cellulose and styrene-butadiene to prepare a negative electrode paste.

この負極ペーストを集電体である厚さ0.015mmの銅箔フープ材の両面へ両サイドに未塗布部分が残るように連続塗布し、乾燥した後、圧延して負極合剤層12を形成した後、塗布部分の外形寸法が81×61mm、負極リードとなる未塗布部分11の寸法が5×20mmになるように切り出して負極10とした。   This negative electrode paste was continuously applied on both sides of a copper foil hoop material having a thickness of 0.015 mm as a current collector so that uncoated portions remained on both sides, dried, and then rolled to form a negative electrode mixture layer 12 After that, the coated part was cut out so that the outer dimension of the coated part was 81 × 61 mm and the dimension of the uncoated part 11 to be the negative electrode lead was 5 × 20 mm.

次いで、ポリエチレン製微多孔膜からなるセパレータを168×69mmに切り出した後、長辺を中央で180°折り返し、長辺の片方を幅1mmで熱融着し、長辺のもう片方をサイドから5mm内側部分14aを幅1mmで熱融着することにより袋部分を形成し、外形寸法84×69mm、袋部分内寸84×62mm、張り出し部14bの幅が5mmの袋状セパレータ13を作製した。   Next, after a separator made of polyethylene microporous film was cut out to 168 × 69 mm, the long side was folded 180 ° in the center, one long side was heat-sealed with a width of 1 mm, and the other long side was 5 mm from the side. A bag portion was formed by heat-sealing the inner portion 14a with a width of 1 mm to produce a bag-shaped separator 13 having an outer dimension of 84 × 69 mm, a bag portion inner dimension of 84 × 62 mm, and a width of the overhanging portion 14b of 5 mm.

次いで、セパレータ13の袋部分に正極7を挿入して正極7とセパレータ13を合わせた後、これと負極10とを最下層より負極10、セパレータ13+正極7、負極10、セパレータ13+正極7の順で最上層に負極10が位置するように重ね、最終的に負極21枚と正極+セパレータ20枚を積層させた。正極リード8と負極リード11の位置は、180°対向するようにした。   Next, after the positive electrode 7 is inserted into the bag portion of the separator 13 and the positive electrode 7 and the separator 13 are combined, the negative electrode 10 and the negative electrode 10 are arranged in the order of the negative electrode 10, separator 13 + positive electrode 7, negative electrode 10, separator 13 + positive electrode 7. Then, the negative electrode 10 was stacked on the uppermost layer, and finally 21 negative electrodes and 20 positive electrodes + separators were laminated. The positions of the positive electrode lead 8 and the negative electrode lead 11 were opposed to each other by 180 °.

セパレータ13の袋部分の片側長辺端部に位置する幅5mmの余剰なセパレータ群(張り出し部)14bを熱融着で一体化して固定し、積層電極の4つのコーナー部分を絶縁テープ17で止めることにより正極、負極、セパレータを固定した。   An excess separator group (overhanging portion) 14b having a width of 5 mm located at one end of the long side of the bag portion of the separator 13 is integrated and fixed by heat fusion, and the four corner portions of the laminated electrode are stopped by the insulating tape 17. This fixed the positive electrode, the negative electrode, and the separator.

次に、正極リード8の20枚を超音波溶接により一つにまとめて接合した後、図6に示すように、厚さ0.1mm、外寸30×20mmのアルミニウム板からなる正極タブ15で正極リード8の束の先端を挟み、超音波溶接を施し、正極リード8に正極タブ15を接合した。正極タブ15の先端部から3mmの位置に外形寸法7×30mmの酸変性ポリエチレンフィルム18を両面に熱融着させた。   Next, after 20 positive electrode leads 8 were joined together by ultrasonic welding, as shown in FIG. 6, with a positive electrode tab 15 made of an aluminum plate having a thickness of 0.1 mm and an outer dimension of 30 × 20 mm. The tip of the bundle of the positive electrode lead 8 was sandwiched and ultrasonic welding was performed, and the positive electrode tab 15 was joined to the positive electrode lead 8. An acid-modified polyethylene film 18 having an outer dimension of 7 × 30 mm was heat-sealed on both sides at a position 3 mm from the tip of the positive electrode tab 15.

一方、負極リード11の21枚を超音波溶接により一つにまとめて接合した後、正極の場合と同様に、厚さ0.1mm、外寸30×20mmの銅板からなる負極タブ16で負極リード11の束の先端を挟み、超音波溶接を施し、負極リード11に負極タブ16を接合した。次いで、負極タブ16の先端部から3mmの位置に外形寸法7×30mmの酸変性ポリエチレンフィルム18を両面に熱融着させた。   On the other hand, after 21 negative electrode leads 11 were joined together by ultrasonic welding, the negative electrode lead 16 was made of a negative electrode tab 16 made of a copper plate having a thickness of 0.1 mm and an outer dimension of 30 × 20 mm, as in the case of the positive electrode. 11, the tip of the bundle was sandwiched, ultrasonic welding was performed, and the negative electrode tab 16 was joined to the negative electrode lead 11. Next, an acid-modified polyethylene film 18 having an outer dimension of 7 × 30 mm was heat-sealed on both sides at a position 3 mm from the tip of the negative electrode tab 16.

電極群は、図8に示すように正負極タブ15,16が引き出されている端部の長さL1が64mmで、張り出し部14bが形成されている端部の長さL2が84mmであった。長さL1を1とした際、長さL2は1.31であった。 As shown in FIG. 8, in the electrode group, the length L 1 of the end portion from which the positive and negative electrode tabs 15 and 16 are drawn out is 64 mm, and the length L 2 of the end portion where the protruding portion 14b is formed is 84 mm. there were. When the length L 1 was 1, the length L 2 was 1.31.

<非水電解液の調製>
エチレンカーボネート(EC)とジメチルカーボネート(DMC)が体積比で1:1の割合で混合された非水溶媒に電解質としてLiPF6を1mol/Lの濃度になるように溶解させて非水電解液を調製した。
<Preparation of non-aqueous electrolyte>
LiPF 6 as an electrolyte is dissolved to a concentration of 1 mol / L in a non-aqueous solvent in which ethylene carbonate (EC) and dimethyl carbonate (DMC) are mixed at a volume ratio of 1: 1 to obtain a non-aqueous electrolyte solution. Prepared.

<非水電解質電池の作製>
外装部材1のカップ部2に、図9に示すように、正極タブ15の熱可塑性絶縁フィルム18が短辺側縁部に配置され、負極タブ16の熱可塑性絶縁フィルム18が反対側の短辺側縁部に配置され、かつ張り出し部14bが長辺側縁部に架かるように、電極群を収納した。
<Production of nonaqueous electrolyte battery>
As shown in FIG. 9, the thermoplastic insulating film 18 of the positive electrode tab 15 is disposed on the short side edge portion, and the thermoplastic insulating film 18 of the negative electrode tab 16 is on the opposite short side, as shown in FIG. 9. The electrode group was housed so that it was arranged on the side edge and the overhanging portion 14b was placed on the long side edge.

次に、外装部材1の長辺側にある平板部(封口板)3を180°方向に折り返して対向する長辺側縁部に重ねた後、カップ部が上面になるように外装部材全体を反転させた。つづいて、上下シールバーの表面に幅25mm、深さ0.1mmの凹部が加工され、該凹部が熱融着時に正負極タブの厚みを吸収するようなかたちで対向する熱融着機を用い、短辺側縁部2箇所を温度200℃、加圧力4.0kgf/cm2、加熱時間10sの条件にて熱融着した。 Next, after the flat plate portion (sealing plate) 3 on the long side of the exterior member 1 is folded back in the 180 ° direction and overlapped on the opposite long side edge, the entire exterior member is placed so that the cup portion is on the upper surface. Inverted. Continuing, using a heat-sealing machine facing the surface of the upper and lower seal bars so that a recess having a width of 25 mm and a depth of 0.1 mm is processed, and the recess absorbs the thickness of the positive and negative electrode tabs at the time of heat-sealing. The two edges on the short side were thermally fused under the conditions of a temperature of 200 ° C., a pressure of 4.0 kgf / cm 2 , and a heating time of 10 s.

この後、非水電解液を未融着の長辺側縁部よりカップ部2内に注入して電極群に含浸させた。端面より5mm内側入った部分から更に内側を表面に凹凸のない幅5mmのシールバーが上下にある熱融着機を用い、未融着の長辺側縁部を温度180℃、加圧力1.0kgf/cm2、加熱時間5sの条件で熱融着させ、外装部材1の内面の熱可塑性樹脂フィルム6にセパレータ13の張り出し部14bを熱融着させた。 Thereafter, a non-aqueous electrolyte was injected into the cup portion 2 from the unfused long side edge to impregnate the electrode group. Using a heat-sealing machine in which a seal bar with a width of 5 mm with no unevenness is formed on the inner surface from the portion inside 5 mm from the end face, the unbonded long side edge is set at a temperature of 180 ° C. and the applied pressure is 1. Heat-sealing was performed under the conditions of 0 kgf / cm 2 and a heating time of 5 s, and the protruding portion 14 b of the separator 13 was heat-sealed to the thermoplastic resin film 6 on the inner surface of the exterior member 1.

さらに長辺側縁部の残りの未融着部も同じ熱融着機を用いて温度180℃、加圧力4.0kgf/cm2、加熱時間5sの条件で融着し、最終的に厚さ4mm、幅75mm、長さ105mm(正負極タブ寸法を除く)、容量1500mAhの図10に示す非水電解質電池を100個作製した。 Further, the remaining unfused portion of the long side edge portion is fused using the same heat-sealing machine under the conditions of a temperature of 180 ° C., a pressure of 4.0 kgf / cm 2 , and a heating time of 5 seconds, and finally the thickness 100 nonaqueous electrolyte batteries shown in FIG. 10 having a size of 4 mm, a width of 75 mm, a length of 105 mm (excluding positive and negative electrode tab dimensions) and a capacity of 1500 mAh were produced.

(実施例2)
<外装部材の形成>
図11に示すように、実施例1と同じ外装フィルム材に深絞り加工を施して深さ4.0mm、長さ95mm、幅65mmの矩形状カップ部21と、カップ部21の短辺方向2箇所に幅5mmの縁部と長辺方向の2箇所に幅10mmの縁部を設けた外形寸法105×75mmの容器20を作製した。また、外装フィルム材を絞り加工を行わずに寸法105×85mmに切り出し、図12に示す封口板23を作製した。
(Example 2)
<Formation of exterior member>
As shown in FIG. 11, the same exterior film material as in Example 1 is deep-drawn to obtain a rectangular cup portion 21 having a depth of 4.0 mm, a length of 95 mm, and a width of 65 mm, and a short side direction 2 of the cup portion 21. A container 20 having an outer dimension of 105 × 75 mm, in which an edge portion having a width of 5 mm and an edge portion having a width of 10 mm were provided at two locations in the long side direction, was prepared. Further, the exterior film material was cut out to a size of 105 × 85 mm without performing drawing processing, and a sealing plate 23 shown in FIG. 12 was produced.

<電極群の作製>
ポリエチレン製微多孔膜からなるセパレータを168×74mmに切り出した後、長辺を中央で180°折り返し、長辺を両サイドから5mm内側部分を幅1mmで熱融着することにより袋部分を形成し、外形寸法84×74mm、袋部分内寸84×62mm、各張り出し部25bの幅が5mmの袋状セパレータ24を作製した以外、実施例1とおなじ方法で電極群を形成した。
<Production of electrode group>
After a separator made of polyethylene microporous membrane is cut out to 168 × 74 mm, the long side is folded 180 ° in the center, and the long side is heat-sealed with 5 mm from both sides and the inner part is 1 mm wide to form a bag part. An electrode group was formed in the same manner as in Example 1 except that a bag-shaped separator 24 having an outer dimension of 84 × 74 mm, a bag portion inner dimension of 84 × 62 mm, and a width of each overhang portion 25b of 5 mm was prepared.

電極群は、図14に示すように、正負極タブ15,16が引き出されている端部の長さL1が65mmで、張り出し部25bが形成されている端部の長さL2が84mmであった。長さL1を1とした際、長さL2は1.29であった。 As shown in FIG. 14, in the electrode group, the length L 1 of the end portion from which the positive and negative electrode tabs 15 and 16 are drawn out is 65 mm, and the length L 2 of the end portion where the protruding portion 25b is formed is 84 mm. Met. When the length L 1 was 1, the length L 2 was 1.29.

<非水電解液の調製>
実施例1と同じ方法で作製した。
<Preparation of non-aqueous electrolyte>
The same method as in Example 1 was used.

<非水電解質電池の作製>
容器20のカップ部21に、図15に示すように、正極タブ15の熱可塑性絶縁フィルム18が短辺側縁部に配置され、負極タブ16の熱可塑性絶縁フィルム18が反対側の短辺側縁部に配置され、かつ両方の張り出し部25bが長辺側縁部に架かるように、電極群を収納した。
<Production of nonaqueous electrolyte battery>
As shown in FIG. 15, the thermoplastic insulating film 18 of the positive electrode tab 15 is disposed on the short side edge portion, and the thermoplastic insulating film 18 of the negative electrode tab 16 is on the opposite short side side, as shown in FIG. 15. The electrode group was housed so that both of the overhanging portions 25b were placed on the edge of the long side.

次に、封口板23を熱可塑性樹脂フィルム側が内側になるように重ね合わせた後、カップ部21が上面になるようにこれら(外装部材)を反転させた。   Next, after overlapping the sealing plate 23 so that the thermoplastic resin film side was inside, these (exterior member) were inverted so that the cup part 21 became an upper surface.

続いて、上下シールバーの表面に幅25mm、深さ0.1mmの凹部が加工され、該凹部が熱融着時に正負極タブの厚みを吸収するようなかたちで対向する熱融着機を用い、短辺側縁部2箇所を温度200℃、加圧力4.0kgf/cm2、加熱時間10sの条件にて熱融着した。この後、端面より5mm内側入った部分から更に内側を表面に凹凸のない幅5mmのシールバーが上下にある熱融着機を用い、未融着の長辺側縁部の一方を温度180℃、加圧力1.0kgf/cm2、加熱時間5sの条件で加熱加圧し、容器20の熱可塑性樹脂フィルムと封口板23の熱可塑性樹脂フィルムの間に一方の張り出し部25bを熱融着させた。続いて、非水電解液を未融着の長辺側縁部よりカップ部内に注入して電極群に含浸させた後、未融着の長辺側縁部を先に融着した長辺側縁部と同じ条件で加熱加圧し、容器20の熱可塑性樹脂フィルムと封口板23の熱可塑性樹脂フィルムの間に残りの張り出し部25bを熱融着させた。さらに2つの長辺側縁部の残りの未融着部も同じ熱融着機を用いて温度180℃、加圧力4.0kgf/cm2、加熱時間5sの条件で融着し、最終的に厚さ4mm、幅85mm、長さ105mm(正負極タブ寸法を除く)、容量1500mAhの図16に示す非水電解質電池を100個作製した。 Subsequently, a concave portion having a width of 25 mm and a depth of 0.1 mm is processed on the surface of the upper and lower seal bars, and the concave portion is opposed to the surface in such a manner that the thickness of the positive and negative electrode tabs is absorbed during thermal fusion. The two edges on the short side were thermally fused under the conditions of a temperature of 200 ° C., a pressure of 4.0 kgf / cm 2 , and a heating time of 10 s. After this, using a heat-sealing machine in which a seal bar with a width of 5 mm without any irregularities on the inner surface from the part inside 5 mm from the end face is used, one side of the unfused long side edge is 180 ° C. Then, heating and pressurization were performed under the conditions of a pressure of 1.0 kgf / cm 2 and a heating time of 5 s, and one overhanging portion 25 b was heat-sealed between the thermoplastic resin film of the container 20 and the thermoplastic resin film of the sealing plate 23. . Subsequently, after injecting the non-aqueous electrolyte into the cup part from the unfused long side edge part to impregnate the electrode group, the long side edge part where the unfused long side edge part was fused first Heating and pressing were performed under the same conditions as the edge, and the remaining overhang 25b was thermally fused between the thermoplastic resin film of the container 20 and the thermoplastic resin film of the sealing plate 23. Further, the remaining unfused portions of the two long side edges are fused at the temperature of 180 ° C., the applied pressure of 4.0 kgf / cm 2 , and the heating time of 5 seconds. 100 nonaqueous electrolyte batteries shown in FIG. 16 having a thickness of 4 mm, a width of 85 mm, a length of 105 mm (excluding positive and negative electrode tab dimensions) and a capacity of 1500 mAh were produced.

(実施例3)
<外装部材の形成>
実施例1と同じ外装フィルムに深絞り加工を施し、図17に示すように、深さ4.0mm、長さ95mm、幅65mmの矩形状カップ部31と、カップ部31の長辺方向2箇所に幅10mmの縁部と短辺方向の1箇所に幅5mmの縁部とこの縁部に対向するもう1つの長辺側縁部に幅100mmの平板部(封口板)32を設けた外装部材30を得た。
(Example 3)
<Formation of exterior member>
The same exterior film as in Example 1 was deep-drawn, and as shown in FIG. 17, a rectangular cup part 31 having a depth of 4.0 mm, a length of 95 mm, and a width of 65 mm, and two places in the long side direction of the cup part 31 An exterior member provided with a 10 mm wide edge, a 5 mm wide edge at one location in the short side direction, and a 100 mm wide flat plate portion (sealing plate) 32 at the other long side edge facing this edge. 30 was obtained.

<電極群の作製>
実施例1と同じ方法で正極合剤層35を形成した後、塗布部分の外形寸法が80×60mm、正極リードとしての未塗布部分34の寸法が長辺部右端面より5mm内側の位置で5×10mmになるように切り出して正極33を得た。
<Production of electrode group>
After forming the positive electrode mixture layer 35 by the same method as in Example 1, the outer dimension of the coated part is 80 × 60 mm, and the dimension of the non-coated part 34 as the positive electrode lead is 5 mm inside the long side part right end surface. The positive electrode 33 was obtained by cutting out to be 10 mm.

さらに実施例1と同じ方法で負極合剤層38を形成した後、塗布部分の外形寸法が81×61mm、負極リードとしての未塗布部分37の寸法が長辺部左端面より5mm内側の位置で5×10mmになるように切り出して負極36を得た。   Further, after forming the negative electrode mixture layer 38 by the same method as in Example 1, the outer dimension of the coated part is 81 × 61 mm, and the dimension of the uncoated part 37 as the negative electrode lead is 5 mm inside the long side part left end surface. It cut out so that it might become 5x10 mm, and the negative electrode 36 was obtained.

またセパレータは実施例2と同じ方法で作製し、セパレータの袋部分に正極を挿入して正極とセパレータを合わせた後、正極リード34が右側方向、負極リード37が左側方向に延出され、更に最下層より負極、セパレータ+正極、負極、セパレータ+正極の順で最上層に負極がくるように重ね、最終的に負極21枚と正極+セパレータ20枚を積層させた。ひきつづき、セパレータの袋部分の両サイドにある幅5mmの余剰なセパレータ群(突出部)25bを熱融着で一体化して固定すると共に、積層電極を4つのコーナー部分を絶縁テープ17で止めることにより正極、負極、セパレータを固定した。   The separator was prepared in the same manner as in Example 2. After the positive electrode was inserted into the bag portion of the separator and the positive electrode and the separator were combined, the positive electrode lead 34 was extended in the right direction and the negative electrode lead 37 was extended in the left direction. The negative electrode, separator + positive electrode, negative electrode, separator + positive electrode were stacked in this order from the bottom layer so that the negative electrode was in the uppermost layer, and finally 21 negative electrodes and 20 positive electrodes + separators were laminated. Next, by fixing and fixing the excess separator group (projection part) 25b having a width of 5 mm on both sides of the bag part of the separator by heat fusion, and fixing the laminated electrode with the insulating tape 17 at the four corners. A positive electrode, a negative electrode, and a separator were fixed.

次に、正極リード34の20枚を超音波溶接により一つにまとめて接合した後、図6に示すように、厚さ0.1mm、外寸30×10mmのアルミニウム板からなる正極タブ39で正極リード34の束の先端を挟み、超音波溶接を施し、正極リード34に正極タブ39を接合した。正極タブ39の先端部から3mmの位置に外形寸法7×20mmの酸変性ポリエチレンフィルム18を両面に熱融着させた。   Next, 20 positive electrode leads 34 are joined together by ultrasonic welding, and then, as shown in FIG. 6, with a positive electrode tab 39 made of an aluminum plate having a thickness of 0.1 mm and an outer dimension of 30 × 10 mm. The tip of the bundle of positive electrode leads 34 was sandwiched and ultrasonic welding was performed, and a positive electrode tab 39 was joined to the positive electrode lead 34. An acid-modified polyethylene film 18 having an outer dimension of 7 × 20 mm was heat-sealed on both sides at a position 3 mm from the tip of the positive electrode tab 39.

一方、負極リード37の21枚を超音波溶接により一つにまとめて接合した後、正極の場合と同様に、厚さ0.1mm、外寸30×10mmの銅板からなる負極タブ40で負極リード37の束の先端を挟み、超音波溶接を施し、負極リード37に負極タブ40を接合した。次いで、負極タブ40の先端部から3mmの位置に外形寸法7×20mmの酸変性ポリエチレンフィルム18を両面に熱融着させた。   On the other hand, after 21 negative electrode leads 37 are joined together by ultrasonic welding, the negative electrode lead 40 is made of a negative electrode tab 40 made of a copper plate having a thickness of 0.1 mm and an outer dimension of 30 × 10 mm, as in the case of the positive electrode. The tip of the bundle of 37 was pinched, ultrasonic welding was performed, and the negative electrode tab 40 was joined to the negative electrode lead 37. Next, an acid-modified polyethylene film 18 having an outer dimension of 7 × 20 mm was heat-sealed on both sides at a position 3 mm from the tip of the negative electrode tab 40.

電極群は、図20に示すように、正負極タブ39,40が引き出されている端部の長さL1が65mmで、張り出し部25bが形成されている端部の長さL2が84mmであった。また、長さL1を1とした際、長さL2は1.29であった。 As shown in FIG. 20, in the electrode group, the length L 1 of the end portion from which the positive and negative electrode tabs 39 and 40 are drawn is 65 mm, and the length L 2 of the end portion where the protruding portion 25b is formed is 84 mm. Met. Further, when the length L 1 was 1, the length L 2 was 1.29.

<非水電解液の調製>
実施例1と同じ方法で作製した。
<Preparation of non-aqueous electrolyte>
The same method as in Example 1 was used.

<非水電解質電池の作製>
外装部材のカップ部に、図21に示すように、正極タブ39及び負極タブ40の熱可塑性絶縁フィルム18が短辺側縁部に配置され、かつ両方の張り出し部25bが長辺側縁部に架かるように、電極群を収納した。
<Production of nonaqueous electrolyte battery>
As shown in FIG. 21, the thermoplastic insulating film 18 of the positive electrode tab 39 and the negative electrode tab 40 is disposed on the short side edge portion, and both the overhang portions 25 b are on the long side edge portion. The electrode group was housed so as to hang.

次に、外装部材の短辺側にある平板部(封口板)を180°方向に折り返して対向する短辺側縁部に重ねた後、カップ部が上面になるように外装部材全体を反転させた。   Next, after the flat plate portion (sealing plate) on the short side of the exterior member is folded back in the 180 ° direction and overlapped with the opposing short side edge, the entire exterior member is inverted so that the cup portion is on the upper surface. It was.

つづいて、上下シールバーの表面に幅15mm、深さ0.1mmの凹部が2箇所加工され、該凹部が熱融着時に正負極タブの厚みを吸収するようなかたちで対向する熱融着機を用い、正極タブ39及び負極タブ40が延出する短辺側縁部に温度200℃、加圧力4.0kgf/cm2、加熱時間10sの条件にて加熱加圧を施した。 Subsequently, two heat sinks having a width of 15 mm and a depth of 0.1 mm are processed on the surface of the upper and lower seal bars, and the recesses are opposed to each other so as to absorb the thickness of the positive and negative electrode tabs at the time of heat fusion. Was applied to the short side edge where the positive electrode tab 39 and the negative electrode tab 40 extended under the conditions of a temperature of 200 ° C., a pressure of 4.0 kgf / cm 2 , and a heating time of 10 s.

この後、端面より5mm内側入った部分から更に内側を表面に凹凸のない幅5mmのシールバーが上下にある熱融着機を用い、温度180℃、加圧力1.0kgf/cm2、加熱時間5sの条件で未融着の長辺側縁部の一方に加熱加圧を施し、カップ部31の周縁部31aの熱可塑性樹脂フィルムと封口板32の熱可塑性樹脂フィルムの間に一方の張り出し部25bを熱融着させた。続いて、非水電解液を未融着の長辺側縁部よりカップ部内に注入して電極群に含浸させた後、未融着の長辺側縁部を先に融着した長辺側縁部と同じ条件で加熱加圧し、カップ部31の周縁部31aの熱可塑性樹脂フィルムと封口板32の熱可塑性樹脂フィルムの間に残りの張り出し部25bを熱融着させた。さらに2つの長辺側縁部の残りの未融着部も同じ熱融着機を用いて温度180℃、加圧力4.0kgf/cm2、加熱時間5sの条件で融着し、最終的に厚さ4mm、幅85mm、長さ100mm(正負極タブ寸法を除く)、容量1500mAhの図22に示す非水電解質電池を100個作製した。 After that, using a heat-sealing machine in which a seal bar with a width of 5 mm without any unevenness is formed on the inner surface from the portion 5 mm inside from the end face, the temperature is 180 ° C., the applied pressure is 1.0 kgf / cm 2 , the heating time One overhanging part is applied between the thermoplastic resin film of the peripheral part 31a of the cup part 31 and the thermoplastic resin film of the sealing plate 32 by applying heat and pressure to one of the unfused long side edge parts under the condition of 5s. 25b was heat-sealed. Subsequently, after injecting the non-aqueous electrolyte into the cup part from the unfused long side edge part to impregnate the electrode group, the long side edge part where the unfused long side edge part was fused first Heating and pressing were performed under the same conditions as the edge portion, and the remaining overhang portion 25 b was thermally fused between the thermoplastic resin film on the peripheral edge portion 31 a of the cup portion 31 and the thermoplastic resin film on the sealing plate 32. Further, the remaining unfused portions of the two long side edges are fused at the temperature of 180 ° C., the applied pressure of 4.0 kgf / cm 2 , and the heating time of 5 seconds. 100 nonaqueous electrolyte batteries shown in FIG. 22 having a thickness of 4 mm, a width of 85 mm, a length of 100 mm (excluding positive and negative electrode tab dimensions) and a capacity of 1500 mAh were produced.

(実施例4)
<外装部材の形成>
実施例1と同じ方法で外装部材を作製した。
Example 4
<Formation of exterior member>
The exterior member was produced by the same method as Example 1.

<電極群の作製>
実施例1と同じ正極ペーストを集電体である厚さ0.03mmのアルミニウム箔フープ材の両面へ片サイドに未塗布部分42が5mm残るように連続塗布し、乾燥した後、圧延して正極合剤層43を形成した。そして外形寸法が85×1200mm、合剤塗布部分43の寸法が80×1200mmになるように未塗布部分42を幅5mm残して切り出し、正極41とした。
<Production of electrode group>
The same positive electrode paste as in Example 1 was continuously applied to both sides of a 0.03 mm thick aluminum foil hoop material, which is a current collector, so that an uncoated portion 42 remains on one side, dried, rolled, and then positive electrode A mixture layer 43 was formed. Then, the uncoated portion 42 was cut out with a width of 5 mm so that the outer dimensions were 85 × 1200 mm and the size of the mixture application portion 43 was 80 × 1200 mm.

次いで、実施例1と同じ負極ペーストを集電体である厚さ0.015mmの銅箔フープ材の両面へ片サイドに未塗布部分45が5mm残るように連続塗布し、乾燥した後、圧延して負極合剤層46を形成した。そして外形寸法が86×1300mm、合剤塗布部分46の寸法が81×1300mmになるように未塗布部分45を幅5mm残して切り出し、負極44とした。   Next, the same negative electrode paste as in Example 1 was continuously applied to both sides of a 0.015 mm thick copper foil hoop material, which is a current collector, so that an uncoated part 45 remains on one side, dried, and then rolled. Thus, a negative electrode mixture layer 46 was formed. Then, the uncoated portion 45 was cut out with a width of 5 mm so that the outer dimensions were 86 × 1300 mm and the size of the mixture application portion 46 was 81 × 1300 mm.

次いで、正極41および負極44の合剤部分をそれぞれの未塗布部分42,45が反対方向に延出するようにして対向させ、正極41及び負極44の中間に83mm×1500mmのポリエチレン製微多孔膜からなるセパレータ47を配置した後、捲回機により負極44が巻き終わるまで捲回し、更にセパレータ47で外周を1周巻いて負極44を覆った。つづいて、この円筒状物を室温で圧力10〜30kg/cm2の条件の下で加熱加圧成形して扁平状にした後、未捲回部分のセパレータを扁平状電極群の1つの長辺側に4〜5mm張り出した形で巻き付け、巻き終わり部分49を絶縁テープ50で固定した。 Next, the mixture portion of the positive electrode 41 and the negative electrode 44 is made to face each other so that the uncoated portions 42 and 45 extend in opposite directions, and a polyethylene microporous film of 83 mm × 1500 mm is interposed between the positive electrode 41 and the negative electrode 44. Then, the separator 47 was wound by a winding machine until the negative electrode 44 was wound, and the separator 47 was wound once around the outer periphery to cover the negative electrode 44. Subsequently, this cylindrical object was heated and pressed at room temperature under a pressure of 10 to 30 kg / cm 2 to form a flat shape, and then the unwound portion of the separator was connected to one long side of the flat electrode group. Winding was carried out in a form protruding 4 to 5 mm on the side, and the winding end portion 49 was fixed with an insulating tape 50.

次に、セパレータ47から延出された正極未塗布部分42のアルミニウム箔を超音波溶接にて接合した後、実施例1と同じ正極タブ51を超音波溶接した。同様にセパレータ47から延出された負極未塗布部分45の銅箔を超音波溶接にて接合した後、実施例1と同じ負極タブ52を超音波溶接して最終形状の電極群とした。   Next, after joining the aluminum foil of the positive electrode non-application part 42 extended from the separator 47 by ultrasonic welding, the same positive electrode tab 51 as Example 1 was ultrasonically welded. Similarly, the copper foil of the negative electrode uncoated portion 45 extending from the separator 47 was joined by ultrasonic welding, and then the same negative electrode tab 52 as in Example 1 was ultrasonically welded to obtain a final-shaped electrode group.

電極群は、図26に示すように、正負極タブ51,52が引き出されている端部の長さL1が64mmで、張り出し部48が形成されている端部の長さL2が86mmであった。長さL1を1とした際、長さL2は1.34であった。 As shown in FIG. 26, in the electrode group, the length L 1 of the end portion from which the positive and negative electrode tabs 51 and 52 are drawn out is 64 mm, and the length L 2 of the end portion where the overhang portion 48 is formed is 86 mm. Met. When the length L 1 was 1, the length L 2 was 1.34.

<非水電解液の調製>
実施例1と同じ方法で作製した。
<Preparation of non-aqueous electrolyte>
The same method as in Example 1 was used.

<非水電解質電池の作製>
実施例1と同じ方法で作製し、最終的に厚さ4mm、幅75mm、長さ105mm(正負極タブの寸法を除く)、容量1500mAhの図28に示す非水電解質電池を100個作製した。
<Production of nonaqueous electrolyte battery>
100 non-aqueous electrolyte batteries shown in FIG. 28 having a thickness of 4 mm, a width of 75 mm, a length of 105 mm (excluding the dimensions of the positive and negative electrode tabs), and a capacity of 1500 mAh were manufactured in the same manner as in Example 1.

(比較例1)
<外装部材の形成>
前述した図1に示すように、実施例1と同じ外装フィルムに深絞り加工を施して深さ4.0mm、長さ95mm、幅65mmの矩形状カップ部2と、カップ部2の短辺方向2箇所に幅5mmの縁部と長辺方向の1箇所に幅5mmの縁部とこの縁部に対向するもう1つの長辺側縁部に幅70mmの平板部(封口板)3を設けた外装部材1を形成した。
(Comparative Example 1)
<Formation of exterior member>
As shown in FIG. 1 described above, the same exterior film as in Example 1 is deep-drawn to form a rectangular cup part 2 having a depth of 4.0 mm, a length of 95 mm, and a width of 65 mm, and the short side direction of the cup part 2 An edge having a width of 5 mm was provided at two locations, an edge having a width of 5 mm at one location in the long side direction, and a flat plate portion (sealing plate) 3 having a width of 70 mm provided at another edge on the long side facing the edge. The exterior member 1 was formed.

<電極群の作製>
図29に示すように、ポリエチレン製微多孔膜からなるセパレータを168×64mmに切り出した後、長辺を中央で180°折り返し、長辺の両端部61を幅1mmで熱融着し、外形寸法84×64mm、袋部分内寸84×62mmの袋状セパレータ60を作製した。これ以外は、実施例1と同じ方法で図30に示す電極群を作製した。得られた電極群は、長辺側の両端部にセパレータの突出部が形成されていないものである。
<Production of electrode group>
As shown in FIG. 29, after a separator made of a polyethylene microporous film was cut out to 168 × 64 mm, the long side was folded back 180 ° in the center, and both end portions 61 of the long side were heat-sealed with a width of 1 mm, A bag-shaped separator 60 having a size of 84 × 64 mm and a bag portion inner size of 84 × 62 mm was produced. Other than this, the electrode group shown in FIG. 30 was produced in the same manner as in Example 1. In the obtained electrode group, the protruding portions of the separator are not formed at both end portions on the long side.

<非水電解液の調製>
実施例1と同じ方法で作製した。
<Preparation of non-aqueous electrolyte>
The same method as in Example 1 was used.

<非水電解質電池の作製>
外装部材1のカップ部2内に電極群を、図31に示すように、正極タブ15の熱可塑性絶縁フィルム18が短辺側周縁部に架かり、負極タブ16の熱可塑性絶縁フィルム18が反対側の短辺側周縁部に架かるように、収納した。次に、外装部材1の長辺側にある平板部3を180°方向に折り返して対向する長辺側縁部に重ねた後、カップ部が上面になるように外装部材1全体を反転させた。
<Production of nonaqueous electrolyte battery>
As shown in FIG. 31, the thermoplastic insulating film 18 of the positive electrode tab 15 spans the short side peripheral portion and the thermoplastic insulating film 18 of the negative electrode tab 16 is opposite to the electrode group in the cup portion 2 of the exterior member 1. It was stored so that it might span the short side peripheral part of the side. Next, after the flat plate portion 3 on the long side of the exterior member 1 was folded back in the 180 ° direction and overlapped on the opposing long side edge, the entire exterior member 1 was inverted so that the cup portion became the upper surface. .

つづいて、上下シールバーの表面に幅25mm、深さ0.1mmの凹部が加工され、該凹部が熱融着時に正負極タブの厚みを吸収するようなかたちで対向する熱融着機を用い、短辺側縁部2箇所に温度200℃、加圧力4.0kgf/cm2、加熱時間10sの条件にて加熱加圧を施した。この後、非水電解液を未融着の長辺側縁部よりカップ部2内に注入して電極群に含浸させた後、長辺側縁部を熱融着機を用いて温度180℃、加圧力4.0kgf/cm2、加熱時間5sの条件で融着し、最終的に厚さ4mm、幅70mm、長さ105mm(正負極タブ寸法を除く)、容量1500mAhの図32に示す非水電解質電池を100個作製した。 Continuing, using a heat-sealing machine facing the surface of the upper and lower seal bars so that a recess having a width of 25 mm and a depth of 0.1 mm is processed, and the recess absorbs the thickness of the positive and negative electrode tabs at the time of heat-sealing. The two sides of the short side edge were heated and pressurized under the conditions of a temperature of 200 ° C., a pressure of 4.0 kgf / cm 2 , and a heating time of 10 s. Thereafter, the nonaqueous electrolyte is injected into the cup portion 2 from the unfused long side edge and impregnated in the electrode group, and then the long side edge is heated at a temperature of 180 ° C. using a heat fusion machine. 32, having a pressure of 4.0 kgf / cm 2 and a heating time of 5 s, and finally having a thickness of 4 mm, a width of 70 mm, a length of 105 mm (excluding positive and negative electrode tab dimensions), and a capacity of 1500 mAh. 100 water electrolyte batteries were produced.

(比較例2)
セパレータに張り出し部を設けないこと以外は、前述した実施例4で説明したのと同様にして扁平形状の渦巻き電極群を作製した。得られた電極群を実施例4で説明したのと同様な容器内に収納した後、ポリフッ化ビニリデン(PVdF)をジメチルフォルムアミドに0.3重量%溶解させた溶液を注入し、溶液を電極群の内部に浸透させると共に、電極群の表面全体に付着させた。
(Comparative Example 2)
A flat spiral electrode group was produced in the same manner as described in Example 4 except that the protruding portion was not provided on the separator. The obtained electrode group was housed in the same container as described in Example 4, and then a solution of polyvinylidene fluoride (PVdF) dissolved in 0.3% by weight in dimethylformamide was injected. While penetrating the inside of the group, it was adhered to the entire surface of the electrode group.

次いで、容器内の電極群に真空乾燥を施した後、実施例1で説明したのと同様な非水電解液を注入し、封口処理を行って、最終的に厚さ4mm、幅75mm、長さ105mm(正負極タブの寸法を除く)、容量1500mAhの非水電解質電池を100個作製した。   Next, after vacuum-drying the electrode group in the container, a non-aqueous electrolyte similar to that described in Example 1 was injected, sealing treatment was performed, and finally the thickness was 4 mm, the width was 75 mm, and the length was long. 100 nonaqueous electrolyte batteries having a thickness of 105 mm (excluding the dimensions of the positive and negative electrode tabs) and a capacity of 1500 mAh were produced.

これら作製した電池を充電し、輸送時の振動や、外部機器に組み込まれパック化した後に加わる間接的な力を想定して以下の衝撃試験を行った。   These fabricated batteries were charged, and the following impact tests were conducted assuming vibration during transportation and indirect force applied after being assembled into a pack by external equipment.

まず、厚さ3mm、外寸250×150mmの塩化ビニル板中央に正負極タブが延出する辺と塩化ビニル板短辺部が平行になるよう電池をテープで固定した後、更に塩化ビニル板と同寸法の塩化ビニル板を電池に被せ、対向する塩化ビニル板周辺部をテープで固定した。   First, after fixing the battery with a tape so that the side where the positive and negative electrode tabs extend parallel to the center of the vinyl chloride plate having a thickness of 3 mm and an outer dimension of 250 × 150 mm and the short side of the vinyl chloride plate are parallel, A vinyl chloride plate of the same size was placed on the battery, and the opposing vinyl chloride plate periphery was fixed with tape.

次に正極タブを下にした場合を+方向、負極タブを下にした場合を−方向として、塩化ビニル板に固定された電池をコンクリート平面上に100cmの高さから+方向から10回、−方向から10回、落下させた。   Next, assuming that the positive electrode tab is on the + direction and the negative electrode tab is on the − direction, the battery fixed on the vinyl chloride plate is 10 times from the + direction from the height of 100 cm on the concrete plane, − It was dropped 10 times from the direction.

試験前後の電池電圧の平均と、試験後に電池電圧が0.1mV以上変化した電池数と、試験前後の内部抵抗の平均と、試験後に内部抵抗が5mΩ以上変化した電池数とを下記表1に示す。

Figure 2007087652
Table 1 below shows the average battery voltage before and after the test, the number of batteries whose battery voltage changed by 0.1 mV or more after the test, the average of the internal resistance before and after the test, and the number of batteries whose internal resistance changed by 5 mΩ or more after the test. Show.
Figure 2007087652

表1から明らかなように、電極群の正負極端子が延出されている辺部と直交する辺部において正負極からセパレータを突出させ、セパレータの突出部を容器内面に熱融着させた実施例1〜4の非水電解質電池では、落下試験後の電池電圧の低下が見られず、また、落下試験により内部抵抗が5mΩ以上変化した電池数も皆無であった。   As is clear from Table 1, the separator was protruded from the positive and negative electrodes at the side perpendicular to the side where the positive and negative terminals of the electrode group were extended, and the protruding part of the separator was thermally fused to the inner surface of the container. In the nonaqueous electrolyte batteries of Examples 1 to 4, there was no decrease in battery voltage after the drop test, and there was no battery whose internal resistance changed by 5 mΩ or more by the drop test.

実施例1〜4において、内部抵抗の増加幅を比較すると、実施例1〜3の二次電池の内部抵抗増加幅が0.5mΩと小さかった。これは、実施例2,3の二次電池では、電極群の両端部にセパレータの突出部を設けたからである。また、実施例1の二次電池では、電極群の片側のみにセパレータの突出部を設けているが、積層型電極群を使用しているために内部抵抗の増加幅を小さくすることができた。積層型電極群では、電極群表面だけでなく内部からもセパレータが突出しており、これら多数の突出部が外装部材の内面に固定されているからであると考えられる。   In Examples 1-4, when the increase width of the internal resistance was compared, the increase width of the internal resistance of the secondary batteries of Examples 1-3 was as small as 0.5 mΩ. This is because in the secondary batteries of Examples 2 and 3, the separator protrusions were provided at both ends of the electrode group. Further, in the secondary battery of Example 1, the protruding portion of the separator was provided only on one side of the electrode group. However, since the stacked electrode group was used, the increase in internal resistance could be reduced. . In the laminated electrode group, the separator protrudes not only from the surface of the electrode group but also from the inside, and it is considered that these many protruding parts are fixed to the inner surface of the exterior member.

これに対し、正負極タブがフィルム材の間に熱融着されているだけで外装部材に電極群が固定されていない比較例1の電池によると、落下試験時に電極群が移動して端子が破断し、電池電圧の低下及び内部抵抗の増加に至った。また、特許文献1のように電極群を接着層で容器に固定した比較例2の電池では、落下試験時、電極群の表面付近の横滑りを抑えることができるものの、中心付近が変形し、内部抵抗が増大した。さらに、比較例2の電池では、接着剤であるPVdFにより非水電解液の含浸が阻害され、放電容量及び充放電サイクル寿命も劣っていた。   On the other hand, according to the battery of Comparative Example 1 in which the positive and negative electrode tabs are merely heat-sealed between the film materials and the electrode group is not fixed to the exterior member, the electrode group is moved during the drop test, and the terminal is It broke, leading to a decrease in battery voltage and an increase in internal resistance. Further, in the battery of Comparative Example 2 in which the electrode group is fixed to the container with an adhesive layer as in Patent Document 1, the side slip near the surface of the electrode group can be suppressed during the drop test, but the vicinity of the center is deformed, Resistance increased. Furthermore, in the battery of Comparative Example 2, impregnation with the non-aqueous electrolyte was inhibited by PVdF as the adhesive, and the discharge capacity and the charge / discharge cycle life were also inferior.

本発明は実施例で記した電極活物質に限定されるものではない。また、固体電解質を用いたポリマー電池やリチウム金属を用いた非水一次電池等にも適応が可能である。   The present invention is not limited to the electrode active materials described in the examples. Further, it can be applied to a polymer battery using a solid electrolyte, a non-aqueous primary battery using lithium metal, and the like.

なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the components without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.

本発明の第1の実施形態に係る非水電解質電池で用いられる外装部材の平面図と側面図。The top view and side view of an exterior member used with the nonaqueous electrolyte battery which concerns on the 1st Embodiment of this invention. 図2は図1の外装部材を構成する外装フィルムを模式的に示した断面図。FIG. 2 is a cross-sectional view schematically showing an exterior film constituting the exterior member of FIG. 正極を模式的に示した平面図。The top view which showed the positive electrode typically. 負極を模式的に示した平面図。The top view which showed the negative electrode typically. セパレータを模式的に示した平面図。The top view which showed the separator typically. 正負極のリードとタブの接続方法の一例を示す模式図。The schematic diagram which shows an example of the connection method of the lead | read | reed and tab of positive / negative electrode. 正負極のリードとタブの接続方法の別な例を示す模式図。The schematic diagram which shows another example of the connection method of the lead | read | reed and tab of positive / negative electrode. 電極群を模式的に示した平面図。The top view which showed the electrode group typically. 図8の電極群を外装部材内に収納した状態を示す模式的な平面図。The typical top view which shows the state which accommodated the electrode group of FIG. 8 in the exterior member. 第1の実施形態に係る非水電解質電池を模式的に示した斜視図。1 is a perspective view schematically showing a nonaqueous electrolyte battery according to a first embodiment. 本発明の第2の実施形態に係る非水電解質電池で用いられる容器の平面図と側面図。The top view and side view of a container which are used with the nonaqueous electrolyte battery which concerns on the 2nd Embodiment of this invention. 図11の容器の封口板を模式的に示した平面図と側面図。The top view and side view which showed typically the sealing board of the container of FIG. セパレータを模式的に示した平面図。The top view which showed the separator typically. 電極群を模式的に示した平面図。The top view which showed the electrode group typically. 図14の電極群を容器内に収納した状態を示す模式的な平面図。The typical top view which shows the state which accommodated the electrode group of FIG. 14 in the container. 第2の実施形態に係る非水電解質電池を模式的に示した斜視図。The perspective view which showed typically the nonaqueous electrolyte battery which concerns on 2nd Embodiment. 本発明の第3の実施形態に係る非水電解質電池で用いられる外装部材の平面図と側面図。The top view and side view of an exterior member used with the nonaqueous electrolyte battery which concerns on the 3rd Embodiment of this invention. 正極を模式的に示した平面図。The top view which showed the positive electrode typically. 負極を模式的に示した平面図。The top view which showed the negative electrode typically. 電極群を模式的に示した平面図。The top view which showed the electrode group typically. 図20の電極群を外装部材内に収納した状態を示す模式的な平面図。The typical top view which shows the state which accommodated the electrode group of FIG. 20 in the exterior member. 第3の実施形態に係る非水電解質電池を模式的に示した斜視図。The perspective view which showed typically the nonaqueous electrolyte battery which concerns on 3rd Embodiment. 本発明の第4の実施形態に係る非水電解質電池で用いられる正極の模式的な平面図。The typical top view of the positive electrode used with the nonaqueous electrolyte battery which concerns on the 4th Embodiment of this invention. 負極を模式的に示した平面図。The top view which showed the negative electrode typically. セパレータを模式的に示した平面図。The top view which showed the separator typically. 電極群を模式的に示した平面図。The top view which showed the electrode group typically. 図26の電極群を外装部材内に収納した状態を示す模式的な平面図。The typical top view which shows the state which accommodated the electrode group of FIG. 26 in the exterior member. 第4の実施形態に係る非水電解質電池を模式的に示した斜視図。The perspective view which showed typically the nonaqueous electrolyte battery which concerns on 4th Embodiment. 比較例2の非水電解質電池で使用するセパレータを模式的に示した平面図。The top view which showed typically the separator used with the nonaqueous electrolyte battery of the comparative example 2. FIG. 比較例2の非水電解質電池で使用する電極群を模式的に示した平面図。The top view which showed typically the electrode group used with the nonaqueous electrolyte battery of the comparative example 2. FIG. 図30の電極群を外装部材内に収納した状態を模式的に示した平面図。The top view which showed typically the state which accommodated the electrode group of FIG. 30 in the exterior member. 比較例2の非水電解質電池を模式的に示した斜視図。The perspective view which showed typically the nonaqueous electrolyte battery of the comparative example 2. FIG.

符号の説明Explanation of symbols

1,30…外装部材、2,21,31…カップ部、3,23,32…封口板、4…金属層、5…保護層、6…熱可塑性樹脂層、7,33,41…正極、8,34…正極リード、9,35,43…正極合剤層、10,36,44…負極、11,37…負極リード、12,38,46…負極合剤層、13,24,47…セパレータ、14b,25b,48…張り出し部、15,39,51…正極タブ、16,40,52…負極タブ、18…金属接着性を有する熱可塑性絶縁フィルム、20…容器、42,45…合剤層非形成部。   DESCRIPTION OF SYMBOLS 1,30 ... Exterior member, 2, 21, 31 ... Cup part, 3, 23, 32 ... Sealing plate, 4 ... Metal layer, 5 ... Protective layer, 6 ... Thermoplastic resin layer, 7, 33, 41 ... Positive electrode, 8, 34 ... positive electrode lead, 9, 35, 43 ... positive electrode mixture layer, 10, 36, 44 ... negative electrode, 11, 37 ... negative electrode lead, 12, 38, 46 ... negative electrode mixture layer, 13, 24, 47 ... Separator, 14b, 25b, 48 ... overhang, 15, 39, 51 ... positive electrode tab, 16, 40, 52 ... negative electrode tab, 18 ... thermoplastic insulating film having metal adhesion, 20 ... container, 42, 45 ... combination Agent layer non-formation part.

Claims (4)

フィルム製外装部材と、前記外装部材内に収納され、正極、負極及びセパレータを含む電極群と、前記正極に電気的に接続された正極端子と、前記負極に電気的に接続された負極端子とを具備する非水電解質電池であって、
前記正極端子及び前記負極端子は前記電極群の同じ端部もしくは互いに対向する端部から延出されて前記外装部材の外部に引き出されており、
前記電極群は、前記正極端子及び前記負極端子が延出されている端部と直交する少なくとも一端部から前記セパレータが張り出しており、その張り出し部が前記外装部材の内面に固定されていることを特徴とする非水電解質電池。
A film exterior member; an electrode group that is housed in the exterior member and includes a positive electrode, a negative electrode, and a separator; a positive electrode terminal that is electrically connected to the positive electrode; and a negative electrode terminal that is electrically connected to the negative electrode A non-aqueous electrolyte battery comprising:
The positive electrode terminal and the negative electrode terminal are extended from the same end portion of the electrode group or opposite end portions, and are drawn out of the exterior member,
In the electrode group, the separator protrudes from at least one end perpendicular to the end from which the positive electrode terminal and the negative electrode terminal extend, and the protruding portion is fixed to the inner surface of the exterior member. Non-aqueous electrolyte battery characterized.
前記セパレータの張り出し部は、前記電極群の長手方向側端部に形成されていることを特徴とする請求項1記載の非水電解質電池。   The nonaqueous electrolyte battery according to claim 1, wherein the protruding portion of the separator is formed at an end portion on the longitudinal direction side of the electrode group. 前記セパレータの張り出し部は、前記外装部材の内面に熱融着により固定されていることを特徴とする請求項1または2記載の非水電解質電池。   The nonaqueous electrolyte battery according to claim 1, wherein the protruding portion of the separator is fixed to the inner surface of the exterior member by heat fusion. 前記正極端子及び前記負極端子が延出されている端部の長さを1とした際に、前記セパレータが張り出している端部の長さを0.2以上、10以下にすることを特徴とする請求項1〜3いずれか1項記載の非水電解質電池。   When the length of the end portion from which the positive electrode terminal and the negative electrode terminal are extended is 1, the length of the end portion from which the separator projects is 0.2 or more and 10 or less. The nonaqueous electrolyte battery according to any one of claims 1 to 3.
JP2005272458A 2005-09-20 2005-09-20 Nonaqueous electrolyte battery Withdrawn JP2007087652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005272458A JP2007087652A (en) 2005-09-20 2005-09-20 Nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005272458A JP2007087652A (en) 2005-09-20 2005-09-20 Nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JP2007087652A true JP2007087652A (en) 2007-04-05

Family

ID=37974436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005272458A Withdrawn JP2007087652A (en) 2005-09-20 2005-09-20 Nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP2007087652A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008047397A (en) * 2006-08-14 2008-02-28 Sony Corp Nonaqueous electrolyte secondary battery
JP2010277925A (en) * 2009-05-29 2010-12-09 Sanyo Electric Co Ltd Paper battery and its manufacturing method
JP2011119262A (en) * 2009-12-07 2011-06-16 Samsung Sdi Co Ltd Secondary battery
WO2013031937A1 (en) * 2011-08-31 2013-03-07 Necエナジーデバイス株式会社 Lithium-ion secondary battery
WO2015151580A1 (en) * 2014-03-31 2015-10-08 Necエナジーデバイス株式会社 Secondary battery
WO2018003260A1 (en) * 2016-07-01 2018-01-04 Necエナジーデバイス株式会社 Battery
CN107851742A (en) * 2015-09-15 2018-03-27 Nec能源元器件株式会社 Battery
US9947959B2 (en) 2010-11-17 2018-04-17 Murata Manufacturing Co., Ltd. Non-aqueous electrolyte battery having porous polymer layer between laminate film and battery device
JPWO2017033514A1 (en) * 2015-08-25 2018-08-02 Necエナジーデバイス株式会社 Electrochemical devices
CN110620257A (en) * 2019-09-19 2019-12-27 新余英泰能科技有限公司 Manufacturing method for preventing positive ear from being broken of battery of Bluetooth headset
WO2022014091A1 (en) * 2020-07-17 2022-01-20 株式会社村田製作所 Secondary battery

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008047397A (en) * 2006-08-14 2008-02-28 Sony Corp Nonaqueous electrolyte secondary battery
JP2010277925A (en) * 2009-05-29 2010-12-09 Sanyo Electric Co Ltd Paper battery and its manufacturing method
JP2011119262A (en) * 2009-12-07 2011-06-16 Samsung Sdi Co Ltd Secondary battery
US8557417B2 (en) 2009-12-07 2013-10-15 Samsung Sdi Co., Ltd. Secondary battery
US9947959B2 (en) 2010-11-17 2018-04-17 Murata Manufacturing Co., Ltd. Non-aqueous electrolyte battery having porous polymer layer between laminate film and battery device
US9786896B2 (en) 2011-08-31 2017-10-10 Nec Energy Devices, Ltd. Lithium-ion secondary battery
JPWO2013031937A1 (en) * 2011-08-31 2015-03-23 Necエナジーデバイス株式会社 Lithium ion secondary battery
WO2013031937A1 (en) * 2011-08-31 2013-03-07 Necエナジーデバイス株式会社 Lithium-ion secondary battery
WO2015151580A1 (en) * 2014-03-31 2015-10-08 Necエナジーデバイス株式会社 Secondary battery
CN106463650A (en) * 2014-03-31 2017-02-22 Nec 能源元器件株式会社 Secondary battery
JPWO2015151580A1 (en) * 2014-03-31 2017-04-13 Necエナジーデバイス株式会社 Secondary battery
CN106463650B (en) * 2014-03-31 2019-08-20 远景Aesc能源元器件有限公司 Secondary cell
US10454129B2 (en) 2014-03-31 2019-10-22 Envision Aesc Energy Devices Ltd. Secondary battery
JPWO2017033514A1 (en) * 2015-08-25 2018-08-02 Necエナジーデバイス株式会社 Electrochemical devices
CN107851742A (en) * 2015-09-15 2018-03-27 Nec能源元器件株式会社 Battery
WO2018003260A1 (en) * 2016-07-01 2018-01-04 Necエナジーデバイス株式会社 Battery
JPWO2018003260A1 (en) * 2016-07-01 2019-04-25 Necエナジーデバイス株式会社 battery
CN109314217A (en) * 2016-07-01 2019-02-05 Nec能源元器件株式会社 Battery
CN110620257A (en) * 2019-09-19 2019-12-27 新余英泰能科技有限公司 Manufacturing method for preventing positive ear from being broken of battery of Bluetooth headset
WO2022014091A1 (en) * 2020-07-17 2022-01-20 株式会社村田製作所 Secondary battery

Similar Documents

Publication Publication Date Title
JP5537094B2 (en) battery
JP2007087652A (en) Nonaqueous electrolyte battery
JP3964521B2 (en) Assembled battery
JP6250921B2 (en) battery
CN105576281B (en) non-aqueous electrolyte secondary battery and its manufacturing method
JP2011181485A (en) Square battery, method of manufacturing the sane, and battery pack using the same
JP2011049065A (en) Nonaqueous electrolyte battery and method of manufacturing the same
JP5329890B2 (en) Non-aqueous electrolyte battery
JP5953549B2 (en) Lithium ion battery
JP5161421B2 (en) Non-aqueous electrolyte battery
JP2011070917A (en) Battery and manufacturing method of the same
JP2002245988A (en) Thin battery
JP2008262788A (en) Nonaqueous electrolyte battery
JP6055983B2 (en) Battery current collector and lithium ion battery
JP5214364B2 (en) Lithium ion secondary battery
JP2008257922A (en) Manufacturing method of non-aqueous electrolyte battery
JP2011129446A (en) Laminated type battery
JP6862919B2 (en) Square lithium ion secondary battery
JP5472941B2 (en) Non-aqueous electrolyte battery
JP5334109B2 (en) Laminated battery
JP5025277B2 (en) Battery manufacturing method
JP5119615B2 (en) Secondary battery and assembled battery
JP2018142483A (en) Secondary battery
JP2010244865A (en) Laminated battery
JP2012195122A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080306

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081202