JP5025277B2 - Battery manufacturing method - Google Patents

Battery manufacturing method Download PDF

Info

Publication number
JP5025277B2
JP5025277B2 JP2007032394A JP2007032394A JP5025277B2 JP 5025277 B2 JP5025277 B2 JP 5025277B2 JP 2007032394 A JP2007032394 A JP 2007032394A JP 2007032394 A JP2007032394 A JP 2007032394A JP 5025277 B2 JP5025277 B2 JP 5025277B2
Authority
JP
Japan
Prior art keywords
heat
electrode terminal
negative electrode
thickness
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007032394A
Other languages
Japanese (ja)
Other versions
JP2008198484A (en
Inventor
道雄 渡部
隆 加藤
祐一 菊間
勉 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007032394A priority Critical patent/JP5025277B2/en
Publication of JP2008198484A publication Critical patent/JP2008198484A/en
Application granted granted Critical
Publication of JP5025277B2 publication Critical patent/JP5025277B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

本発明は、電池及びその製造方法に関するものである。   The present invention relates to a battery and a manufacturing method thereof.

携帯電話やパーソナルコンピュータなどの電子機器の進歩に伴い、これら機器に使用される二次電池は、小型化、軽量化、薄型化および大容量化と共にコストダウンが絶えず求められている。エネルギー密度の高い扁平型二次電池として、リチウムイオン二次電池があげられ、正極活物質や負極活物質などの電極材料をよりエネルギー密度の高いものに変更したり、容器を形成する材料も鉄からアルミニウムに代えるなどの改善が図られてきている。   With the progress of electronic devices such as mobile phones and personal computers, secondary batteries used in these devices are constantly required to be reduced in cost as well as to be reduced in size, weight, thickness and capacity. As a flat secondary battery having a high energy density, a lithium ion secondary battery can be mentioned. The electrode material such as the positive electrode active material or the negative electrode active material is changed to one having a higher energy density, or the material for forming the container is iron. Improvements such as replacing aluminum with aluminum have been attempted.

最近では、アルミニウムシートの面に保護層やシーラント層(熱融着層)を形成した積層フィルムからなる容器を使用することで、液状、ゲル状または固体という様々な形態の非水電解質を用いた扁平型非水電解質電池において、小型化、軽量化および薄型化が図られている。   Recently, by using a container made of a laminated film in which a protective layer or a sealant layer (heat fusion layer) is formed on the surface of an aluminum sheet, non-aqueous electrolytes in various forms such as liquid, gel or solid have been used. In a flat type nonaqueous electrolyte battery, size reduction, weight reduction, and thickness reduction are achieved.

扁平型非水電解質電池では、電極体として、正極および負極の間にセパレータを介在させたものが用いられている。正負極端子は、電極体の正極及び負極にそれぞれ接続されている。非水電解質は、例えば液状のものが使用され、電極体に含浸されている。電極体を積層フィルム製容器内に封止するには、まず、容器内に電極体を収納し、容器の開放されている部分をヒータ金具で加熱・加圧して、シーラント層同士を熱融着して封止する。正負極端子は、容器の開放されている部分から外部に引き出されており、シーラント層が正負極端子に熱融着することで封止されている。   In a flat type nonaqueous electrolyte battery, an electrode body in which a separator is interposed between a positive electrode and a negative electrode is used. The positive and negative terminals are respectively connected to the positive electrode and the negative electrode of the electrode body. For example, a liquid non-aqueous electrolyte is used, and the electrode body is impregnated. In order to seal the electrode body in the laminated film container, first, the electrode body is housed in the container, and the open part of the container is heated and pressurized with a heater fitting, and the sealant layers are heat-sealed. And seal. The positive and negative electrode terminals are drawn out from the open part of the container, and are sealed by heat sealing the sealant layer to the positive and negative terminals.

正負極端子の金属材料と容器のシーラント層は、通常、密着性や接着性に劣るため、正負極端子とシーラント層との間に熱融着性フィルムを介在させてこれらを熱融着により一体化することにより封止する方法が用いられることが多い。   Since the metal material of the positive and negative electrode terminals and the sealant layer of the container are usually inferior in adhesion and adhesiveness, they are integrated by heat fusion by interposing a heat-fusible film between the positive and negative electrode terminals and the sealant layer. In many cases, a sealing method is used.

しかしながら、上述の封止方法では、封止される部分の厚みがばらつく。具体的には、正極または負極端子とシーラント層と熱融着性フィルムとが重なる部分が最も厚く、次いで、正負極端子を介在せずにシーラント層と熱融着性フィルムとが重なる部分、最も薄いのがシーラント層同士が直接重なる部分である。   However, in the above-described sealing method, the thickness of the portion to be sealed varies. Specifically, the portion where the positive or negative electrode terminal, the sealant layer and the heat-fusible film overlap is the thickest, and then the portion where the sealant layer and the heat-fusible film overlap without any positive and negative electrode terminals, The thin part is the part where the sealant layers directly overlap.

上記3箇所を同時に熱融着するためには、加える熱量、圧力が不十分であると密着せず、融着部の厚みが異なる境界、あるいは融着部の厚みが一番薄い箇所で隙間が発生して密封性が低下する。隙間の発生を防ぐために、加える熱量、圧力を上げ過ぎると、正負極端子の周辺部の密着性を上げるための熱融着性フィルムが極端に薄くなり、密封性が低下する。さらに、容器を構成する積層フィルムの金属シート部分と正負極端子の絶縁距離が極端に短くなり、正負極端子の融着部に衝撃、荷重などが加わることにより正負極それぞれの端子が同時に金属シートと接すると、短絡状態に陥る。   In order to heat-seal the three locations at the same time, if the amount of heat and pressure applied are not sufficient, they will not adhere to each other, and there will be no gap at the boundary where the thickness of the fused portion is different, or where the thickness of the fused portion is the smallest. Occurs and sealability decreases. If the amount of heat applied and the pressure are increased excessively in order to prevent the generation of gaps, the heat-fusible film for improving the adhesion of the peripheral portions of the positive and negative electrode terminals becomes extremely thin, and the sealing performance is lowered. In addition, the insulation distance between the metal sheet portion of the laminated film constituting the container and the positive and negative electrode terminals becomes extremely short, and impact and load are applied to the fused portion of the positive and negative electrode terminals, so that each terminal of the positive and negative electrodes is simultaneously metal sheet If it touches, it will fall into a short circuit state.

そこで、融着部の厚みが異なる部分を熱融着する場合、特許文献1に示すように、少なくとも一方のヒータ金具の表面に、凹部を設け、融着部の凹凸を吸収する方法が用いられている。   Therefore, when heat-sealing portions having different thicknesses of the fusion part, as shown in Patent Document 1, a method is used in which a concave portion is provided on the surface of at least one heater fitting to absorb unevenness of the fusion part. ing.

図12は、特許文献1に例示されるようなヒータ金具の表面に凹を設けた封止方法の説明図である。正極端子31及び負極端子32それぞれの両面に、熱融着性フィルム33が配置されている。容器を構成する積層フィルム34は、保護層35、アルミニウムシート36及びシーラント層37から構成されている。ヒータ金具38の凹部39は、熱融着性フィルム33と対応する位置に設けられている。   FIG. 12 is an explanatory diagram of a sealing method in which a recess is provided on the surface of a heater fitting as exemplified in Patent Document 1. A heat-fusible film 33 is disposed on both surfaces of the positive electrode terminal 31 and the negative electrode terminal 32. The laminated film 34 constituting the container is composed of a protective layer 35, an aluminum sheet 36 and a sealant layer 37. The recess 39 of the heater fitting 38 is provided at a position corresponding to the heat-fusible film 33.

図12に例示されるヒータ金具を用いての封止を連続的に行うと、融着温度が下がったまま熱融着を行うことになり、封止される部分の厚さが変化する箇所付近X,Y(図13に示す)で隙間が発生して密封性が確保されない。   When sealing is performed continuously using the heater metal fittings illustrated in FIG. 12, heat sealing is performed while the welding temperature is lowered, and the vicinity of the portion where the thickness of the sealed portion changes A gap is generated between X and Y (shown in FIG. 13), and sealing performance is not ensured.

そのため、融着温度をさらに上げるか、融着時間を長くするか、あるいは融着圧力を大きくする必要があるが、それらは、生産効率の低下、生産設備の劣化を早め、定期的な取り換えなどの管理にも注意しなければならない。   Therefore, it is necessary to further increase the fusing temperature, lengthen the fusing time, or increase the fusing pressure, but these may lead to a decrease in production efficiency, deterioration of production equipment, periodic replacement, etc. You must also pay attention to the management.

さらに、容器を構成する積層フィルムのアルミニウムあるいはアルミニウム合金等の金属シート層と正極端子あるいは負極端子との絶縁距離が安定せず、電池の短絡などの危険性を増すことになり好ましくない。
特開2002−190283
Furthermore, the insulation distance between the metal sheet layer such as aluminum or aluminum alloy of the laminated film constituting the container and the positive electrode terminal or the negative electrode terminal is not stable, which increases the risk of a short circuit of the battery.
JP 2002-190283 A

本発明は、これらの事情にもとづいてなされたもので、密封性を向上させた扁平型電池の製造方法とそれによる扁平型電池を提供することを目的としている。   The present invention has been made based on these circumstances, and an object of the present invention is to provide a method of manufacturing a flat battery with improved sealing performance and a flat battery.

本発明に係る扁平型電池は、周縁の少なくとも一辺に、フィルム端部同士が熱融着された熱融着部が形成されているフィルム製容器と、
前記容器内に収納され、正極及び負極を含む扁平形状の電極体と、
前記電極体に接続され、先端が前記容器の前記熱融着部を通して引き出された正極端子と、
前記電極体に接続され、先端が前記容器の前記熱融着部を通して引き出された負極端子と
を具備する扁平型電池であって、
前記熱融着部の前記正極端子及び前記負極端子が介在されている部分に、加圧による筋状凹部が形成されており、前記筋状凹部は前記正極端子及び前記負極端子の引き出し方向に対して垂直に延びていることを特徴とする。
The flat battery according to the present invention has a film container in which a heat-sealed part in which film end parts are heat-sealed is formed on at least one side of the periphery;
A flat electrode body that is housed in the container and includes a positive electrode and a negative electrode;
A positive electrode terminal connected to the electrode body, the tip of which is drawn out through the thermal fusion part of the container;
A flat battery comprising a negative electrode terminal connected to the electrode body and having a tip drawn out through the thermal fusion part of the container,
A streak-like recess formed by pressurization is formed in a portion where the positive electrode terminal and the negative electrode terminal of the heat-sealed part are interposed, and the streak-like recess is formed with respect to a drawing direction of the positive electrode terminal and the negative electrode terminal. It is characterized by extending vertically.

本発明に係る扁平型電池の製造方法は、正極及び負極を含む扁平形状の電極体に正極端子及び負極端子が接続されたものを、周縁の少なくとも一辺が未熱融着のフィルム製容器内に収納し、前記正極端子及び前記負極端子を前記未熱融着の一辺から引き出す工程と、
前記未熱融着の一辺に平行な筋状の凸部をシール面に有する一対のヒータ金具で、前記未熱融着の一辺を挟み、前記未熱融着の一辺を加熱加圧により熱融着させる工程と
を具備することを特徴とする。
In the flat battery manufacturing method according to the present invention, a flat electrode body including a positive electrode and a negative electrode is connected to a positive electrode terminal and a negative electrode terminal in a film container in which at least one side of the periphery is unheat-sealed. Storing and pulling out the positive electrode terminal and the negative electrode terminal from one side of the non-thermal fusion,
A pair of heater metal fittings having a streaky projection parallel to one side of the non-thermal fusion on the sealing surface, sandwiching one side of the non-thermal fusion, and thermally fusing one side of the non-thermal fusion by heating and pressing. And a step of attaching.

本発明によれば、密封性を向上させた扁平型電池の製造方法とそれによる扁平型電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the flat type battery which improved the sealing performance, and the flat type battery by it can be provided.

以下、本発明に係わる実施形態を図1〜図8を参照して説明する。本実施形態に係わる方法で製造される扁平型二次電池を示す斜視図を図1に示す。   Embodiments according to the present invention will be described below with reference to FIGS. FIG. 1 is a perspective view showing a flat secondary battery manufactured by the method according to this embodiment.

図1に示すように、扁平型二次電池は、フィルム製容器1と、容器1内に収納され、図2に示す扁平形状の電極体2とを備えている。電極体2は、正極と、負極と、正極および負極の間に介在されるセパレータとから構成されている(図示しない)。電極体は、例えば、正極と負極とをセパレータを介して扁平渦巻状に捲回するか、あるいは正極と負極とをその間にセパレータを介在させながら交互に積層することにより作製される。非水電解質(図示しない)は、電極体2に保持されている。非水電解質としては、例えば、液状非水電解質、ゲル状非水電解質、固体非水電解質などが挙げられる。帯状の正極端子3は、一端が正極と電気的に接続されている。また、帯状の負極端子4は、一端が負極と電気的に接続されている。正極端子3は、例えば、アルミニウムあるいはアルミニウム合金から形成される。一方、負極端子4は、例えば、ニッケルあるいは銅などから形成される。   As shown in FIG. 1, the flat secondary battery includes a film container 1 and a flat electrode body 2 shown in FIG. The electrode body 2 is comprised from the positive electrode, the negative electrode, and the separator interposed between a positive electrode and a negative electrode (not shown). The electrode body is produced, for example, by winding the positive electrode and the negative electrode in a flat spiral shape via a separator, or alternately laminating the positive electrode and the negative electrode with a separator interposed therebetween. A non-aqueous electrolyte (not shown) is held by the electrode body 2. Examples of the non-aqueous electrolyte include a liquid non-aqueous electrolyte, a gel-like non-aqueous electrolyte, and a solid non-aqueous electrolyte. One end of the strip-like positive electrode terminal 3 is electrically connected to the positive electrode. One end of the strip-like negative electrode terminal 4 is electrically connected to the negative electrode. The positive electrode terminal 3 is made of, for example, aluminum or an aluminum alloy. On the other hand, the negative electrode terminal 4 is made of, for example, nickel or copper.

容器1の封止される前の状態を図3に示す。容器1は、電極体2が収納される矩形状のカップ部5を有する。カップ部5の開口端には縁部5a〜5dが形成されている。そのうち一方の短辺側開口端に形成された縁部5dは、幅広で、封口板として機能する(以下、封口板5dと称す)。電極体2は、容器1のカップ部5内に正極端子3及び負極端子4が縁部5aから引き出されるように収納される。容器1は、封口板5dによりカップ部5が覆われ、かつ封口板5dの三辺が縁部5a〜5cと接するように二つ折りにされる。封口板5dと縁部5a〜5cが熱融着により張り合わされることで容器1内に電極体2が密封される。   A state before the container 1 is sealed is shown in FIG. The container 1 has a rectangular cup portion 5 in which the electrode body 2 is accommodated. Edge portions 5 a to 5 d are formed at the opening end of the cup portion 5. Of these, the edge 5d formed at one short side opening end is wide and functions as a sealing plate (hereinafter referred to as sealing plate 5d). The electrode body 2 is accommodated in the cup portion 5 of the container 1 such that the positive electrode terminal 3 and the negative electrode terminal 4 are pulled out from the edge portion 5a. The container 1 is folded in half so that the cup portion 5 is covered with the sealing plate 5d and the three sides of the sealing plate 5d are in contact with the edges 5a to 5c. The electrode body 2 is sealed in the container 1 by the sealing plate 5d and the edges 5a to 5c being bonded together by heat sealing.

容器1を構成するフィルム6は、例えば図4に示すように、水分及びガスの透過を防ぐバリア層7と、バリア層7の一方の面に形成された保護層8と、バリア層7の他方の面に形成されたシーラント層9とから形成されたラミネートフィルムからなる。バリア層7は、例えば、アルミニウムあるいはアルミニウム合金などの比重の小さい金属から形成されていることが望ましい。保護層8には、機械的強度を有するフィルムが好ましく、代表的にはポリエチレンテレフタレート(PET)フィルムあるいはナイロンフィルムなどが挙げられる。シーラント層9には、熱融着性を有するフィルムが望ましく、電解質や含有溶媒への耐溶解性に優れるポリオレフィン系フィルム(ポリプロピレン、ポリエチレンなど)が用いられる。シーラント層9は、容器1の内面、すなわち、カップ部5の内面と縁部5a〜5cの表面と封口板5dの内面とに位置する。   For example, as shown in FIG. 4, the film 6 constituting the container 1 includes a barrier layer 7 that prevents permeation of moisture and gas, a protective layer 8 formed on one surface of the barrier layer 7, and the other of the barrier layer 7. And a laminate film formed from the sealant layer 9 formed on the surface. The barrier layer 7 is preferably made of a metal having a small specific gravity such as aluminum or an aluminum alloy. The protective layer 8 is preferably a film having mechanical strength, and typically includes a polyethylene terephthalate (PET) film or a nylon film. The sealant layer 9 is preferably a film having heat fusion properties, and a polyolefin film (polypropylene, polyethylene, etc.) having excellent resistance to dissolution in an electrolyte or a contained solvent is used. The sealant layer 9 is located on the inner surface of the container 1, that is, the inner surface of the cup portion 5, the surfaces of the edges 5a to 5c, and the inner surface of the sealing plate 5d.

正負極端子3、4は、金属材料から形成されているため、容器1のシーラント層9との密着性や接着性がやや劣る。よって、封止強度を高めるため、正負極端子3、4のうちシーラント層9と対向する箇所を熱融着性フィルム10で被覆することが望ましい。熱融着性フィルム10としては、例えば、酸変性ポリプロピレン、酸変性ポリエチレンなどの酸変性ポリオレフィンのフィルムがあげられる。単層構造の熱融着性フィルム10を用いても良いが、それに限らず、多層構造のものを用いてもよい。その場合、少なくとも、正負極端子に接する樹脂層が、金属との接着性が良好な酸変性ポリプロピレン、酸変性ポリエチレンなどの酸変性ポリオレフィン系のフィルムであれば、他の部分の熱融着性フィルムの構成は問わない。また、図2に示すように正負極端子3、4を個別に熱融着性フィルム10で被覆しても良いが、1枚の熱融着性フィルムで正負極端子3、4を跨ぐように被覆しても良い。   Since the positive and negative terminals 3 and 4 are made of a metal material, the adhesion and adhesiveness with the sealant layer 9 of the container 1 are slightly inferior. Therefore, in order to increase the sealing strength, it is desirable to cover the portions of the positive and negative electrode terminals 3 and 4 facing the sealant layer 9 with the heat-fusible film 10. Examples of the heat-fusible film 10 include films of acid-modified polyolefins such as acid-modified polypropylene and acid-modified polyethylene. The heat-fusible film 10 having a single layer structure may be used, but not limited thereto, and a film having a multilayer structure may be used. In that case, if at least the resin layer in contact with the positive and negative electrode terminals is an acid-modified polyolefin film such as acid-modified polypropylene or acid-modified polyethylene having good adhesion to the metal, the other part of the heat-fusible film The structure of is not ask | required. Further, as shown in FIG. 2, the positive and negative terminals 3 and 4 may be individually covered with the heat-fusible film 10, but the positive and negative terminals 3 and 4 are straddled with a single heat-fusible film. It may be covered.

封口板5dと縁部5a〜5cとを熱融着する方法について以下に説明する。   A method for heat-sealing the sealing plate 5d and the edges 5a to 5c will be described below.

封口板5dと縁部5aとを熱融着する方法を図5〜図8を参照して説明する。まず、封口板5dと縁部5aとの間に配置された正負極端子3,4及び熱融着性フィルム10の位置決めを行う。次いで、カップ部5内に非水電解質を収容する。   A method for heat-sealing the sealing plate 5d and the edge portion 5a will be described with reference to FIGS. First, the positive and negative terminals 3 and 4 and the heat-fusible film 10 disposed between the sealing plate 5d and the edge 5a are positioned. Next, the nonaqueous electrolyte is accommodated in the cup portion 5.

一対のヒータ金具11a,11bのシール面には、図5及び図6に示すように、凹部12が形成されている。凹部12は、封口板5dと正極端子3と縁部5aとが重なった部分から、封口板5dと負極端子4と縁部5aとが重なった部分までと対向している。凹部12の深さは、正極端子3または負極端子4の厚さと、正極端子3または負極端子4の一方の面に形成された熱融着性フィルム10の厚さとの和よりも小さくする。凹部12には、容器1の短辺と平行に(正負極端子3,4の引き出し方向Aと垂直に)筋状の凸部13a、13bが形成されている。凸部13a、13bの位置は、封口板5dと縁部5aとの間に介在されている正負極端子3,4の位置と重なれば、特に限定されるものではない。また、凸部も2本に限定されるものではなく、1本または3本以上にすることができる。   As shown in FIGS. 5 and 6, a recess 12 is formed on the seal surfaces of the pair of heater fittings 11 a and 11 b. The concave portion 12 is opposed to a portion where the sealing plate 5d, the positive electrode terminal 3, and the edge portion 5a overlap to a portion where the sealing plate 5d, the negative electrode terminal 4, and the edge portion 5a overlap. The depth of the recess 12 is made smaller than the sum of the thickness of the positive electrode terminal 3 or the negative electrode terminal 4 and the thickness of the heat-fusible film 10 formed on one surface of the positive electrode terminal 3 or the negative electrode terminal 4. In the concave portion 12, streaky convex portions 13 a and 13 b are formed in parallel with the short side of the container 1 (perpendicular to the pulling direction A of the positive and negative terminals 3 and 4). The positions of the protrusions 13a and 13b are not particularly limited as long as they overlap with the positions of the positive and negative terminals 3 and 4 interposed between the sealing plate 5d and the edge 5a. Further, the number of convex portions is not limited to two, and can be one or three or more.

凸部13a、13bの高さは、熱融着される部材の合計厚さ(正極端子3または負極端子4の厚さと容器1の厚さと熱融着性フィルム10の厚さとの和)の30%以上、80%以下にすることが望ましい。ここで、容器1の厚さとは、封口板5dの厚さと縁部5aの厚さの合計である。また、熱融着性フィルム10は、正負極端子3,4の両面に形成されているため、熱融着性フィルム10の厚さの2倍の値を使用する。凸部13a、13bの高さを、熱融着される部材の合計厚さの30%以上にすることによって、高温貯蔵の際の漏液を防止することができる。凸部13a、13bが高い方が漏液を防止する効果が大きくなるものの、凸部13a、13bの高さが、熱融着される部材の合計厚さの80%を超えると、凸部13a、13bで加圧した箇所のみ熱融着されて封止性が低下する恐れがあることから、凸部13a、13bの高さは、熱融着される部材の合計厚さの30%以上、80%以下にすることが望ましい。   The height of the convex portions 13a and 13b is 30 of the total thickness of the members to be heat-sealed (the sum of the thickness of the positive electrode terminal 3 or the negative electrode terminal 4, the thickness of the container 1 and the thickness of the heat-fusible film 10). % Or more and 80% or less is desirable. Here, the thickness of the container 1 is the sum of the thickness of the sealing plate 5d and the thickness of the edge portion 5a. Moreover, since the heat-fusible film 10 is formed on both surfaces of the positive and negative electrode terminals 3 and 4, a value twice the thickness of the heat-fusible film 10 is used. By setting the height of the convex portions 13a and 13b to 30% or more of the total thickness of the members to be heat-sealed, leakage during high temperature storage can be prevented. The higher the convex portions 13a and 13b, the greater the effect of preventing leakage. However, when the height of the convex portions 13a and 13b exceeds 80% of the total thickness of the members to be heat-sealed, the convex portion 13a. The height of the convex portions 13a and 13b is 30% or more of the total thickness of the members to be heat-sealed because there is a risk that only the portion pressurized by 13b is heat-sealed and the sealing performance is lowered. It is desirable to make it 80% or less.

封口板5dと縁部5aとが重なった部分を下側のヒータ金具11bの上に配置し、上側のヒータ金具11aを下降させ、封口板5dと縁部5aとが重なった部分をヒータ金具11a,11bで挟み、加熱加圧を施すと、ヒータ金具11a,11bの凹部12の両側に位置する平坦なシール面では、封口板5dのシーラント層9と縁部5aのシーラント層9とが熱融着される。一方、ヒータ金具11a,11bの凹部12で加熱加圧される箇所では、凹部12の深さが正極端子3または負極端子4の厚さと熱融着性フィルム10の厚さとの和よりも小さく、かつ凸部13a、13bが形成されているため、溶融した熱融着性フィルム10が押しつぶされ、ヒータ金具11a,11bで加圧されている部分よりも外側に一部がはみだす(図7、図8参照)。それにより、封口板5dと縁部5aと正負極端子3,4との隙間に熱融着性フィルム10がまんべんなく充填される。   The portion where the sealing plate 5d and the edge portion 5a overlap is arranged on the lower heater metal fitting 11b, the upper heater metal fitting 11a is lowered, and the portion where the sealing plate 5d and the edge portion 5a overlap is heated the heater metal fitting 11a. 11b, and when heat and pressure are applied, the sealant layer 9 of the sealing plate 5d and the sealant layer 9 of the edge 5a are thermally fused on the flat sealing surfaces located on both sides of the recess 12 of the heater metal parts 11a and 11b. Worn. On the other hand, at the place where the heater metal fittings 11a and 11b are heated and pressed by the concave portion 12, the depth of the concave portion 12 is smaller than the sum of the thickness of the positive electrode terminal 3 or the negative electrode terminal 4 and the thickness of the heat-fusible film 10, And since the convex parts 13a and 13b are formed, the molten heat-fusible film 10 is crushed and a part protrudes outside the part currently pressed with the heater metal fittings 11a and 11b (FIG. 7, FIG. 8). Thereby, the heat-fusible film 10 is filled evenly in the gaps between the sealing plate 5d, the edge 5a, and the positive and negative terminals 3 and 4.

また、凸部13a、13bで加圧された箇所には、正負極端子3,4の引き出し方向Aと垂直な方向に沿って筋状の凹部14が形成されるため、封口板5dと正負極端子3,4と縁部5aとの接合強度をより高めることができる。ヒータ金具11a,11bの加熱温度は、160℃以上、200℃以下にすることができる。また、加圧力は0.1MPa以上、0.5MPa以上にすることができ、所要時間は、5秒程度である。   Further, since a streak-like concave portion 14 is formed along the direction perpendicular to the pulling direction A of the positive and negative electrode terminals 3 and 4 at the locations pressurized by the convex portions 13a and 13b, the sealing plate 5d and the positive and negative electrode ends The joint strength between the child 3 and 4 and the edge 5a can be further increased. The heating temperature of the heater fittings 11a and 11b can be 160 ° C. or more and 200 ° C. or less. The applied pressure can be 0.1 MPa or more and 0.5 MPa or more, and the required time is about 5 seconds.

その他の縁部5b、5cと封口板5dとをこれらの内面に位置するシーラント層9を用いて熱融着することにより、ヒートシール部分に厚みが異なる箇所が存在していても密閉性が高く、高温貯蔵時においても漏液の発生しない安全な扁平型二次電池を提供することができる。なお、縁部5a、5b、5cを封口板5dに熱融着させる順序は、特に限定されるものではなく、いずれかの縁部を先に封口板5dに熱融着させることも可能であるし、全ての縁部を同時に封口板5dに熱融着させても良い。   The other edge portions 5b and 5c and the sealing plate 5d are heat-sealed by using the sealant layer 9 located on the inner surfaces thereof, so that the sealing performance is high even if there are portions having different thicknesses in the heat seal portion. It is possible to provide a safe flat secondary battery that does not cause leakage even during high-temperature storage. The order in which the edge portions 5a, 5b, and 5c are heat-sealed to the sealing plate 5d is not particularly limited, and any edge portion can be heat-sealed to the sealing plate 5d first. Then, all the edges may be heat-sealed to the sealing plate 5d at the same time.

以下、二次電池に使用される正極、負極、セパレータ及び非水電解質について説明する。   Hereinafter, a positive electrode, a negative electrode, a separator, and a nonaqueous electrolyte used for the secondary battery will be described.

正極に含まれる正極活物質としては、種々の酸化物、例えば二酸化マンガン、リチウムマンガン複合酸化物(例えば、LiMn24、LiMnO2)、リチウム含有ニッケル酸化物、リチウム含有コバルト酸化物(例えば、LiCoO2)、リチウム含有ニッケルコバルト酸化物(例えば、LiNi0.8Co0.22)、リチウム含有鉄酸化物、リチウムを含むバナジウム酸化物や、二硫化チタン、二硫化モリブデンなどのカルコゲン化合物などを挙げることができる。なお、使用する正極活物質の種類は、1種類もしくは2種類以上にすることができる。 As the positive electrode active material contained in the positive electrode, various oxides such as manganese dioxide, lithium manganese composite oxide (for example, LiMn 2 O 4 , LiMnO 2 ), lithium-containing nickel oxide, lithium-containing cobalt oxide (for example, LiCoO 2 ), lithium-containing nickel cobalt oxide (for example, LiNi 0.8 Co 0.2 O 2 ), lithium-containing iron oxide, vanadium oxide containing lithium, chalcogen compounds such as titanium disulfide and molybdenum disulfide Can do. In addition, the kind of positive electrode active material to be used can be made into 1 type or 2 types or more.

正極活物質が担持される正極集電体としては、多孔質構造の導電性基板か、あるいは無孔の導電性基板を用いることができる。これら導電性基板は、例えば、アルミニウム、ステンレス、またはニッケルから形成することができる。   As the positive electrode current collector carrying the positive electrode active material, a conductive substrate having a porous structure or a nonporous conductive substrate can be used. These conductive substrates can be formed from, for example, aluminum, stainless steel, or nickel.

負極に含まれる負極活物質には、リチウムイオンもしくはリチウムを吸蔵放出するものを使用することができ、例えば、黒鉛質材料もしくは炭素質材料(例えば、黒鉛、コークス、炭素繊維、球状炭素、熱分解気相炭素質物、樹脂焼成体など)、カルコゲン化合物(例えば、二硫化チタン、二硫化モリブデン、セレン化ニオブ等)、軽金属(例えば、アルミニウム、アルミニウム合金、マグネシウム合金、リチウム、リチウム合金等)、リチウムチタン酸化物(例えば、スピネル型のチタン酸リチウム)等を挙げることができる。   As the negative electrode active material included in the negative electrode, lithium ions or a material that absorbs and releases lithium can be used. For example, a graphite material or a carbonaceous material (for example, graphite, coke, carbon fiber, spherical carbon, thermal decomposition) Gas phase carbonaceous material, resin fired body, etc.), chalcogen compound (eg, titanium disulfide, molybdenum disulfide, niobium selenide, etc.), light metal (eg, aluminum, aluminum alloy, magnesium alloy, lithium, lithium alloy, etc.), lithium Examples thereof include titanium oxide (for example, spinel type lithium titanate).

負極活物質が担持される負極集電体としては、多孔質構造の導電性基板か、あるいは無孔の導電性基板を用いることができる。これら導電性基板は、例えば、銅、アルミニウム、ステンレス、またはニッケルから形成することができる。   As the negative electrode current collector carrying the negative electrode active material, a conductive substrate having a porous structure or a non-porous conductive substrate can be used. These conductive substrates can be formed from, for example, copper, aluminum, stainless steel, or nickel.

セパレータとしては、微多孔性の膜、織布、不織布、これらのうち同一材または異種材の積層物等を用いることができる。セパレータを形成する材料としては、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合ポリマー、エチレン−ブテン共重合ポリマー等を挙げることができる。セパレータの形成材料としては、前述した種類の中から選ばれる1種類または2種類以上を用いることができる。   As the separator, a microporous film, a woven fabric, a non-woven fabric, a laminate of the same material or different materials among these can be used. Examples of the material for forming the separator include polyethylene, polypropylene, ethylene-propylene copolymer, and ethylene-butene copolymer. As a material for forming the separator, one type or two or more types selected from the types described above can be used.

非水電解質は、非水溶媒と、この非水溶媒に溶解される電解質(例えば、リチウム塩)とを含むものである。この非水電解質の形態は、液体状(非水電解液)やゲル状あるいは固体状にすることができる。   The non-aqueous electrolyte includes a non-aqueous solvent and an electrolyte (for example, lithium salt) dissolved in the non-aqueous solvent. The form of this non-aqueous electrolyte can be liquid (non-aqueous electrolyte), gel or solid.

非水溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、γ−ブチロラクトン(γ−BL)、スルホラン、アセトニトリル、1,2−ジメトキシエタン、1,3−ジメトキシプロパン、ジメチルエーテル、テトラヒドロフラン(THF)、2−メチルテトラヒドロフラン等を挙げることができる。非水溶媒は、単独で使用しても、2種以上混合して使用してもよい。   Examples of the non-aqueous solvent include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), γ-butyrolactone (γ -BL), sulfolane, acetonitrile, 1,2-dimethoxyethane, 1,3-dimethoxypropane, dimethyl ether, tetrahydrofuran (THF), 2-methyltetrahydrofuran and the like. Nonaqueous solvents may be used alone or in combination of two or more.

電解質としては、例えば、過塩素酸リチウム(LiClO4)、六フッ過リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)、六フッ化砒素リチウム(LiAsF6)、トリフルオロメタンスルホン酸リチウム(LiCF3SO3)等のリチウム塩を挙げることができる。電解質は単独で使用しても、2種以上混合して使用してもよい。電解質の非水溶媒に対する溶解量は、0.2mol/L〜3mol/Lとすることが望ましい。 Examples of the electrolyte include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoroarsenide (LiAsF 6 ), and trifluoromethanesulfone. Examples thereof include lithium salts such as lithium acid lithium (LiCF 3 SO 3 ). The electrolyte may be used alone or in combination of two or more. The amount of electrolyte dissolved in the non-aqueous solvent is desirably 0.2 mol / L to 3 mol / L.

[実施例]
以下、本発明の実施例を前述した図面を参照して詳細に説明する。
[Example]
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings described above.

(実施例1)
厚さ40μmのアルミニウムシートからなるバリア層7の一方の面に厚さ25μmのナイロン製保護層8が積層され、かつバリア層7の他方の面に厚さ30μmのポリエチレン製シーラント層9(融点120℃程度)が積層された厚さ95μmのラミネートフィルム6に、深絞り加工により矩形状カップ部5を形成し、容器1を得た。
Example 1
A nylon protective layer 8 having a thickness of 25 μm is laminated on one surface of a barrier layer 7 made of an aluminum sheet having a thickness of 40 μm, and a polyethylene sealant layer 9 having a thickness of 30 μm (melting point 120) on the other surface of the barrier layer 7. A rectangular cup portion 5 was formed by deep drawing on a laminate film 6 having a thickness of 95 μm laminated with a temperature of about 0 ° C. to obtain a container 1.

前述した図2に示す扁平形状の電極体2を用意した。正極端子3には、厚さ200μmのアルミニウム箔を使用した。負極端子4には、厚さ200μmの銅箔を使用した。また、熱融着性フィルム10には、厚さ200μmの酸変性ポリエチレンフィルムを使用した。   The flat electrode body 2 shown in FIG. 2 was prepared. For the positive electrode terminal 3, an aluminum foil having a thickness of 200 μm was used. For the negative electrode terminal 4, a copper foil having a thickness of 200 μm was used. The heat-fusible film 10 was an acid-modified polyethylene film having a thickness of 200 μm.

得られた容器1のカップ部5に電極体2を収納し、容器1を二つに折り曲げることでカップ部5を封口板5dで被覆し、正負極端子3,4を縁部5aと封口板5dの間から引き出した。非水電解質として、エチレンカーボネート(EC)とジメチルカーボネート(DMC)が体積比で1:1の割合で混合された非水溶媒に電解質としてLiPF6を1mol/Lの濃度になるように溶解させた非水電解液を用意した。この非水電解液を容器1のカップ部5内に注入した。 The electrode body 2 is accommodated in the cup part 5 of the container 1 obtained, the container 1 is folded in two to cover the cup part 5 with the sealing plate 5d, and the positive and negative terminals 3 and 4 are connected to the edge part 5a and the sealing plate. It was pulled out from between 5d. As a non-aqueous electrolyte, LiPF 6 was dissolved in a non-aqueous solvent in which ethylene carbonate (EC) and dimethyl carbonate (DMC) were mixed at a volume ratio of 1: 1 so as to have a concentration of 1 mol / L as an electrolyte. A non-aqueous electrolyte was prepared. This nonaqueous electrolytic solution was injected into the cup portion 5 of the container 1.

一対のヒータ金具11a,11bのシール面の凹部12の深さを0.16mmに、凸部13a、13bの高さを0.16mmに設定した。熱融着される部材の合計厚さ(正極端子3または負極端子4の厚さと、ラミネートフィルム6の厚さの2倍の値と、熱融着性フィルム10の厚さの2倍の値との和)が0.79mmのため、熱融着される部材の合計厚さに対する凸部13a、13bの高さの割合は20%であった。   The depth of the concave portion 12 on the seal surface of the pair of heater fittings 11a and 11b was set to 0.16 mm, and the height of the convex portions 13a and 13b was set to 0.16 mm. The total thickness of the members to be heat-sealed (the thickness of the positive electrode terminal 3 or the negative electrode terminal 4, the value twice the thickness of the laminate film 6 and the value twice the thickness of the heat-fusible film 10) ) Is 0.79 mm, the ratio of the height of the protrusions 13a and 13b to the total thickness of the members to be heat-sealed was 20%.

このヒータ金具11a,11bを用いて前述した図5〜図8に示す方法により、縁部5aと封口板5dとを熱融着させた。また、凹部の形成されていない平坦なシール面を持つヒータ金具により、縁部5b、5cと封口板5dとを熱融着させた。ヒータ金具の加熱温度は195℃に、加圧力は0.2MPaに設定した。縁部5a〜5cそれぞれを熱融着させるのに要した時間は、5秒程度であった。   By using the heater fittings 11a and 11b, the edge portion 5a and the sealing plate 5d were heat-sealed by the method shown in FIGS. Moreover, the edge parts 5b and 5c and the sealing board 5d were heat-seal | fused with the heater metal fitting with the flat sealing surface in which the recessed part was not formed. The heating temperature of the heater metal fitting was set to 195 ° C., and the applied pressure was set to 0.2 MPa. The time required for heat-sealing each of the edges 5a to 5c was about 5 seconds.

以上の方法で扁平型非水電解質二次電池を製造した。   A flat type nonaqueous electrolyte secondary battery was manufactured by the above method.

(実施例2〜5)
熱融着される部材の合計厚さに対する凸部13a、13bの高さの割合を下記表1に示すように変更すること以外は、前述した実施例1で説明したのと同様にして扁平型非水電解質二次電池を製造した。
(Examples 2 to 5)
The flat type is the same as that described in Example 1 except that the ratio of the height of the convex portions 13a and 13b to the total thickness of the members to be heat-sealed is changed as shown in Table 1 below. A non-aqueous electrolyte secondary battery was manufactured.

(比較例)
縁部5aと封口板5dとを熱融着させる方法を変更すること以外は、実施例1で説明したのと同様にして扁平型非水電解質二次電池を製造した。以下に熱融着方法を説明する。
(Comparative example)
A flat type nonaqueous electrolyte secondary battery was manufactured in the same manner as described in Example 1 except that the method of heat-sealing the edge 5a and the sealing plate 5d was changed. The heat fusion method will be described below.

図9及び図10に示すように、凸部を設けないヒータ金具21a、21bを用意した。ヒータ金具21a、21bに形成する凹部22の深さは、実施例1と同様にした。   As shown in FIGS. 9 and 10, heater metal fittings 21 a and 21 b not provided with convex portions were prepared. The depth of the recess 22 formed in the heater fittings 21a and 21b was the same as in Example 1.

このヒータ金具21a,21bを用いて図9〜図11に示す方法により、縁部5aと封口板5dとを熱融着させた。図11に示すように、ヒータ金具21a,21bで加圧されている箇所よりも外側に熱融着性フィルム10がはみ出しているものの、筋状の凸部は形成されなかった。なお、ヒータ金具の加熱温度、加圧力及び熱融着時間は、実施例1と同様にした。   The edge 5a and the sealing plate 5d were thermally fused by the method shown in FIGS. 9 to 11 using the heater fittings 21a and 21b. As shown in FIG. 11, although the heat-fusible film 10 protrudes outside the portion pressed by the heater fittings 21a and 21b, no streak-like convex portion was formed. In addition, the heating temperature of the heater metal fitting, the applied pressure, and the heat fusion time were the same as those in Example 1.

得られた二次電池について、温度が60℃で、相対湿度が93%の環境下に800日間貯蔵した際の漏液数(母数が10個)を測定し、その結果を下記表1に示す。   With respect to the obtained secondary battery, the number of leaks (the number of parameters was 10) was measured when stored for 800 days in an environment where the temperature was 60 ° C. and the relative humidity was 93%, and the results are shown in Table 1 below. Show.

Figure 0005025277
Figure 0005025277

表1から明らかな通りに、シール面に凸部を形成したヒータ金具を用いて製造された実施例1〜5の二次電池は、ヒータ金具のシール面に凸部を形成していない比較例の二次電池に比して、800日貯蔵後の漏液数が少ないことがわかる。特に、凸部の高さを30%以上、80%以下に設定した実施例2〜4の二次電池は、800日貯蔵後の漏液数が皆無であり、高い密封性を得るためには凸部の高さを30%以上、80%以下にすることが望ましい。   As is apparent from Table 1, the secondary batteries of Examples 1 to 5 manufactured using the heater metal fittings having the convex portions formed on the seal surface are comparative examples in which the convex portions are not formed on the seal surface of the heater metal fittings. It can be seen that the number of leaks after storage for 800 days is smaller than that of the secondary battery. In particular, in the secondary batteries of Examples 2 to 4 in which the height of the convex portion is set to 30% or more and 80% or less, there is no number of leaks after storage for 800 days, and in order to obtain high sealing performance It is desirable that the height of the convex portion is 30% or more and 80% or less.

本発明によれば、アルミニウム又はその合金の積層フィルムの外装材で形成した密閉体の内部に電極体を封止した、密封性、安全性および生産性のすぐれた扁平型二次電池の製造方法とそれによる扁平型二次電池が得られる。   According to the present invention, a method for manufacturing a flat secondary battery having excellent sealing performance, safety, and productivity, in which an electrode body is sealed inside a sealed body formed of an exterior material of a laminated film of aluminum or an alloy thereof. Thus, a flat secondary battery can be obtained.

また、前述した実施例では非水電解液を用いた電池を例に説明したが、電解液の代わりに固体電解質やポリマー電解質を用いた電池についても当然適応可能である。さらに正負極活物質に関してもこの限りでなく、他の活物質を用いることができる。さらに、実施例では、容器の三辺に熱融着部を形成したが、容器の四辺全てに熱融着部を形成することも可能である。   In the above-described embodiments, a battery using a nonaqueous electrolytic solution has been described as an example. However, a battery using a solid electrolyte or a polymer electrolyte instead of the electrolytic solution is naturally applicable. Furthermore, the positive and negative electrode active materials are not limited to this, and other active materials can be used. Further, in the embodiment, the heat fusion part is formed on the three sides of the container, but it is also possible to form the heat fusion part on all four sides of the container.

なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.

本発明の実施の形態に係わる扁平型非水電解質二次電池を示す斜視図。The perspective view which shows the flat type non-aqueous electrolyte secondary battery concerning embodiment of this invention. 図1の扁平型非水電解質二次電池に用いられる電極群を示す斜視図。The perspective view which shows the electrode group used for the flat type nonaqueous electrolyte secondary battery of FIG. 図1の扁平型非水電解質二次電池に用いられる容器を示す斜視図。The perspective view which shows the container used for the flat type nonaqueous electrolyte secondary battery of FIG. 図3の容器を構成するラミネートフィルムの断面図。Sectional drawing of the laminate film which comprises the container of FIG. 図1の扁平型非水電解質二次電池の封止工程を説明するための斜視図。The perspective view for demonstrating the sealing process of the flat type nonaqueous electrolyte secondary battery of FIG. 図5に示す封止工程で用いられるヒータ金具を短辺方向に切断した際に得られる断面図。Sectional drawing obtained when the heater metal fitting used at the sealing process shown in FIG. 5 is cut | disconnected in the short side direction. 封止工程における扁平型非水電解質二次電池を正負極端子の引き出し方向に沿って切断した際に得られる断面図。Sectional drawing obtained when the flat type non-aqueous electrolyte secondary battery in a sealing process is cut | disconnected along the extraction direction of a positive / negative electrode terminal. 図7の要部を拡大した断面図。Sectional drawing which expanded the principal part of FIG. 比較例の扁平型非水電解質二次電池の封止工程を説明するための斜視図。The perspective view for demonstrating the sealing process of the flat type nonaqueous electrolyte secondary battery of a comparative example. 図9に示す封止工程で用いられるヒータ金具を短辺方向に切断した際に得られる断面図。Sectional drawing obtained when the heater metal fitting used at the sealing process shown in FIG. 9 is cut | disconnected in the short side direction. 封止工程における扁平型非水電解質二次電池を正負極端子の引き出し方向に沿って切断した際に得られる断面図。Sectional drawing obtained when the flat type non-aqueous electrolyte secondary battery in a sealing process is cut | disconnected along the extraction direction of a positive / negative electrode terminal. 扁平型非水電解質電池の従来の封止工程を説明するための断面図。Sectional drawing for demonstrating the conventional sealing process of a flat type nonaqueous electrolyte battery. 従来の封止工程を経て製造された扁平型非水電解質電池を示す断面図。Sectional drawing which shows the flat type nonaqueous electrolyte battery manufactured through the conventional sealing process.

符号の説明Explanation of symbols

1…容器、2…電極体、3…正極端子、4…負極端子、5…カップ部、5a〜5c…縁部、5d…封口板、6…ラミネートフィルム、7…金属層、8…保護層、9…シーラント層、10…熱融着性フィルム、11a,11b…ヒータ金具、12…凹部、13a,13b…筋状凸部、14…筋状凹部、21a,21b…ヒータ金具、22…凹部。   DESCRIPTION OF SYMBOLS 1 ... Container, 2 ... Electrode body, 3 ... Positive electrode terminal, 4 ... Negative electrode terminal, 5 ... Cup part, 5a-5c ... Edge, 5d ... Sealing plate, 6 ... Laminate film, 7 ... Metal layer, 8 ... Protective layer , 9 ... Sealant layer, 10 ... Heat-sealable film, 11a, 11b ... Heater fitting, 12 ... Recess, 13a, 13b ... Streaky convex, 14 ... Streaky recess, 21a, 21b ... Heater fitting, 22 ... Recess .

Claims (4)

正極及び負極を含む扁平形状の電極体に正極端子及び負極端子が接続されたものを、周縁の少なくとも一辺が未熱融着のフィルム製容器内に収納し、前記正極端子及び前記負極端子を前記未熱融着の一辺から引き出す工程と、
前記未熱融着の一辺と前記正極端子とが重なった部分から、前記未熱融着の一辺と前記負極端子とが重なった部分までと対向する凹部をシール面に有し、前記未熱融着の一辺に平行な筋状の凸部を前記凹部の両端に有する一対のヒータ金具で、前記未熱融着の一辺を挟み、前記未熱融着の一辺を加熱加圧により熱融着させる工程と
を具備することを特徴とする扁平型電池の製造方法。
A flat electrode body including a positive electrode and a negative electrode, to which a positive electrode terminal and a negative electrode terminal are connected, is housed in a film container having at least one peripheral edge unheat-sealed, and the positive electrode terminal and the negative electrode terminal are A process of drawing out from one side of the non-heat fusion,
The seal surface has a concave portion facing from the portion where one side of the non-thermal fusion and the positive electrode terminal overlaps to the portion where the one side of the non-thermal fusion and the negative electrode terminal overlaps, A pair of heater fittings having streak-like convex portions parallel to one side of the wear at both ends of the recess, sandwiching one side of the non-thermal fusion, and thermally fusing one side of the non-heat fusion by heating and pressing And a process for producing a flat battery.
前記正極端子及び前記負極端子は、前記未熱融着の一辺と対向する箇所が熱融着性フィルムで被覆されていることを特徴とする請求項記載の扁平型電池の製造方法。 The positive terminal and the negative terminal, the manufacturing method of the flat-type battery according to claim 1, wherein the portion facing the one side of the non-heat-sealed is coated with the heat-welding film. 記凹部の深さは前記正極端子または前記負極端子の厚さと前記熱融着性フィルムの厚さとの和より小さいことを特徴とする請求項1または2記載の扁平型電池の製造方法。 Method for manufacturing a flat battery of the depth of the pre-Symbol recess claim 1 or 2, wherein the smaller than the sum of the thickness of the thickness of the positive electrode terminal or the negative terminal the heat-fusible film. 前記一対のヒータ金具の前記凸部の高さは、前記正極端子または前記負極端子の厚さと前記容器の厚さと前記熱融着性フィルムの厚さとの和の30〜80%に相当することを特徴とする請求項1〜3いずれか1項記載の扁平型電池の製造方法。 The height of the convex portion of the pair of heater metal fittings corresponds to 30 to 80% of the sum of the thickness of the positive electrode terminal or the negative electrode terminal, the thickness of the container, and the thickness of the heat-fusible film. The method for manufacturing a flat battery according to any one of claims 1 to 3 .
JP2007032394A 2007-02-13 2007-02-13 Battery manufacturing method Expired - Fee Related JP5025277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007032394A JP5025277B2 (en) 2007-02-13 2007-02-13 Battery manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007032394A JP5025277B2 (en) 2007-02-13 2007-02-13 Battery manufacturing method

Publications (2)

Publication Number Publication Date
JP2008198484A JP2008198484A (en) 2008-08-28
JP5025277B2 true JP5025277B2 (en) 2012-09-12

Family

ID=39757224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007032394A Expired - Fee Related JP5025277B2 (en) 2007-02-13 2007-02-13 Battery manufacturing method

Country Status (1)

Country Link
JP (1) JP5025277B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5565178B2 (en) * 2010-08-03 2014-08-06 大日本印刷株式会社 Packaging container for electrochemical cell
KR101428458B1 (en) 2012-01-04 2014-08-11 주식회사 엘지화학 Secondary Battery of Structure Having Raised Portion at Sealing Part and Manufacturing Method thereof
KR101940150B1 (en) * 2015-12-11 2019-01-18 주식회사 엘지화학 Sealing apparatus for secondary battery
KR102341465B1 (en) * 2018-05-10 2021-12-22 주식회사 엘지에너지솔루션 The Apparatus For Venting And The Method For Manufacturing Thereof
JP7471737B2 (en) 2020-09-07 2024-04-22 エルジー エナジー ソリューション リミテッド Secondary battery, secondary battery manufacturing apparatus and manufacturing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4702969B2 (en) * 1999-10-04 2011-06-15 株式会社東芝 Thin battery manufacturing method
JP4498514B2 (en) * 2000-01-18 2010-07-07 大日本印刷株式会社 Battery container
JP3696028B2 (en) * 2000-02-14 2005-09-14 トヨタ自動車株式会社 Battery having film sealing structure and manufacturing method thereof
JP2004103409A (en) * 2002-09-10 2004-04-02 Nissan Motor Co Ltd Battery, its manufacturing method, battery pack, and battery pack module
JP4443178B2 (en) * 2003-09-29 2010-03-31 三洋電機株式会社 Laminate battery manufacturing method and laminate battery manufacturing mold
JP4182856B2 (en) * 2003-10-23 2008-11-19 日産自動車株式会社 Secondary battery, assembled battery, composite assembled battery, vehicle, and manufacturing method of secondary battery

Also Published As

Publication number Publication date
JP2008198484A (en) 2008-08-28

Similar Documents

Publication Publication Date Title
JP6250921B2 (en) battery
JP4857742B2 (en) Battery pack
JP4458145B2 (en) Battery pack and manufacturing method thereof
JP5100082B2 (en) Flat battery
JP2007115678A (en) Nonaqueous electrolyte battery and its manufacturing method
JP2007087652A (en) Nonaqueous electrolyte battery
JP2004119205A (en) Laminate sheet and laminate battery using the same
JP2013206699A (en) Electrochemical device
JP4720186B2 (en) Battery pack
JP5025277B2 (en) Battery manufacturing method
JP2002245988A (en) Thin battery
JP5161421B2 (en) Non-aqueous electrolyte battery
JP2006202629A (en) Battery pack
KR101925982B1 (en) Pouch type secondary battery and method of making the same
JP2008262788A (en) Nonaqueous electrolyte battery
JP2008257922A (en) Manufacturing method of non-aqueous electrolyte battery
JP2004039651A (en) Battery
JP6682203B2 (en) Secondary battery manufacturing method
JPH11144691A (en) Thin battery and manufacture thereof
JP3869668B2 (en) Electrochemical device and manufacturing method thereof
JP4639818B2 (en) Battery pack
JP5472941B2 (en) Non-aqueous electrolyte battery
JP2000294286A (en) Polymer lithium secondary battery
JP2004319098A (en) Electrochemical cell and its manufacturing method
JP2007073437A (en) Secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120619

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees