JP4443178B2 - Laminate battery manufacturing method and laminate battery manufacturing mold - Google Patents

Laminate battery manufacturing method and laminate battery manufacturing mold Download PDF

Info

Publication number
JP4443178B2
JP4443178B2 JP2003337088A JP2003337088A JP4443178B2 JP 4443178 B2 JP4443178 B2 JP 4443178B2 JP 2003337088 A JP2003337088 A JP 2003337088A JP 2003337088 A JP2003337088 A JP 2003337088A JP 4443178 B2 JP4443178 B2 JP 4443178B2
Authority
JP
Japan
Prior art keywords
mold
sealing
shaped
electrode tab
bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003337088A
Other languages
Japanese (ja)
Other versions
JP2005108486A5 (en
JP2005108486A (en
Inventor
和博 奥田
康伸 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003337088A priority Critical patent/JP4443178B2/en
Publication of JP2005108486A publication Critical patent/JP2005108486A/en
Publication of JP2005108486A5 publication Critical patent/JP2005108486A5/ja
Application granted granted Critical
Publication of JP4443178B2 publication Critical patent/JP4443178B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3468Batteries, accumulators or fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Description

本発明は、ラミネート電池の製造方法及びラミネート電池製造用金型に関し、特に従来の金型の幅を変えずに、ラミネート電池の封止部の幅を小さくしても従来のラミネート電池と同程度の封止信頼性を有すると共に先端部の厚みが小さいラミネート電池の製造方法及びラミネート電池製造用金型に関する。 The present invention relates to a manufacturing method and a laminate cell manufacturing mold for the laminate batteries, especially without changing the conventional width of the mold, also to reduce the width of the sealing portion of the laminate battery same as the conventional laminate battery the degree of manufacturing methods and laminates cell manufacturing mold for the thickness of the tip is small laminated batteries which has a sealing reliability.

携帯型の電子機器の急速な普及に伴い、それに使用される電池への要求仕様は、年々厳しくなり、特に小型・薄型化され、高容量でサイクル特性が優れ、性能の安定したものが要求されている。そして、二次電池分野では他の電池に比べて高エネルギー密度であるリチウム非水電解質二次電池が注目され、このリチウム非水電解質二次電池の占める割合は二次電池市場において大きな伸びを示している。   With the rapid spread of portable electronic devices, the required specifications for the batteries used for them are becoming stricter year by year, especially those that are smaller and thinner, have high capacity, excellent cycle characteristics, and stable performance. ing. In the field of secondary batteries, lithium non-aqueous electrolyte secondary batteries, which have a higher energy density than other batteries, are attracting attention, and the proportion of lithium non-aqueous electrolyte secondary batteries shows a significant increase in the secondary battery market. ing.

このリチウム非水電解質二次電池は、細長いシート状の銅箔等からなる負極芯体(集電体)の両面にリチウムイオンを吸蔵放出する負極活物質を含む負極合剤を塗布した負極と、細長いシート状のアルミニウム箔等からなる正極芯体の両面にリチウムイオンを吸蔵・放出する正極活物質を含む正極合剤を塗布した正極との間に、微多孔性ポリプロピレンフィルム等からなるセパレータを配置し、負極及び正極をセパレータにより互いに絶縁した状態で円柱状又は楕円形状に巻回した後、角型電池の場合は更に巻回電極体を押し潰して偏平巻回電極体を形成し、負極及び正極の各所定部分にそれぞれ負極タブ及び正極タブを接続し、その外側を外装で被覆することにより製造されている。   The lithium non-aqueous electrolyte secondary battery includes a negative electrode in which a negative electrode mixture containing a negative electrode active material that occludes and releases lithium ions is applied to both surfaces of a negative electrode core (current collector) made of an elongated sheet-like copper foil, and the like. A separator made of a microporous polypropylene film, etc., is placed between the positive electrode core, which contains a positive electrode active material that absorbs and releases lithium ions, on both sides of a positive electrode core made of an elongated sheet-like aluminum foil. Then, after the negative electrode and the positive electrode are wound in a columnar shape or an elliptical shape while being insulated from each other by a separator, in the case of a rectangular battery, the wound electrode body is further crushed to form a flat wound electrode body. It is manufactured by connecting a negative electrode tab and a positive electrode tab to each predetermined part of the positive electrode and covering the outside with an exterior.

この外装としては、強度を与えるために主として金属製の外装缶が使用されているが、近年に至り重量低減、単位体積当たりの電池容量の増大等の目的でラミネートフィルムを使用したラミネート電池が製造されるようになってきた。(特許文献1参照)   As this exterior, metal exterior cans are mainly used to give strength, but in recent years, laminate batteries using laminate films have been manufactured for the purpose of reducing weight and increasing battery capacity per unit volume. It has come to be. (See Patent Document 1)

以下、下記、図6を用いて従来から慣用的に行われているラミネート電池50の製造工程について説明する。まず最初に、前述の従来例と同様にして偏平巻回電極体11を製造する。その際、この偏平巻回電極体11は、負極の金属製芯体箔露出部に負極タブ12を溶接しておくと共に、正極の金属製芯体箔露出部にも正極タブ13を溶接しておく。   Hereinafter, the manufacturing process of the laminated battery 50 conventionally performed conventionally is demonstrated using FIG. First, the flat wound electrode body 11 is manufactured in the same manner as the above-described conventional example. At this time, the flat wound electrode body 11 has the negative electrode tab 12 welded to the negative metal core foil exposed portion and the positive electrode tab 13 welded to the positive metal core foil exposed portion. deep.

続いて、図6(a)に示したように、所定の大きさの周知のラミネートフィルム14、例えばポリエチレンテレフタレート、アルミニウム膜及び無延伸ポリプロピレンの3層構造でなるアルミラミネートフィルム(下記特許文献1の段落[0004]参照)を2つ折り、いわゆるカップ成形し、この内部に前記偏平巻回電極体11を配置し、必要に応じて負極タブ12及び正極タブ13の導出部に両面に薄いシール材15、15'を配置した後、このラミネートフィルム14のトップ部(タブ側)をバー状の金型(図示せず)を用いて定位方式に制御して溶着し、トップ封止部16を形成する。なお、この際、トップ封止部16の外縁には、ラミネートフィルム14から溶けたシーラント層がはみ出して金型に付着しないようにするため、未溶着部16'が設けられている。   Subsequently, as shown in FIG. 6A, a known laminate film 14 having a predetermined size, for example, an aluminum laminate film having a three-layer structure of polyethylene terephthalate, an aluminum film and unstretched polypropylene (see Patent Document 1 below). Paragraph [0004]) is folded in half, so-called cup-shaped, and the flat wound electrode body 11 is disposed therein, and thin sealing material 15 on both sides of the lead-out portions of the negative electrode tab 12 and the positive electrode tab 13 as necessary. , 15 ′ are disposed, and the top portion (tab side) of the laminate film 14 is welded by controlling it in a stereotaxic manner using a bar-shaped mold (not shown) to form the top sealing portion 16. . At this time, an unwelded portion 16 ′ is provided at the outer edge of the top sealing portion 16 in order to prevent the sealant layer melted from the laminate film 14 from protruding and adhering to the mold.

次に、図6(b)に示したように、バー状の金型19を用いて、ラミネートフィルム14の一方のサイド部側を溶着して第1のサイド封止部17を形成する。この場合も第1のサイド封止部17の外縁はラミネートフィルムから溶けたシーラント層がはみ出して金型に付着しないようにするため、未溶着部17'が設けられている。次いで、液状電解質をもう一方のサイド部側18から注入する。そうすると、この液状電解質は、偏平巻回電極体11の内部へ十分に浸透する。その後、図6(c)に示したように、ラミネートフィルム14の他方側をバー状の金型19により仮溶着して仮封止部20を形成する。次いで、予備充電及びエージングした後、図6(d)に示したように、ラミネートフィルム14の他方側をバー状の金型19で定位方式に制御して溶着して第2のサイド封止部21を形成する。そして、前記ラミネートフィルムの不要部を切断して、図6(e)に示したような従来例のラミネート電池50を得るものである。   Next, as shown in FIG. 6B, the first side sealing portion 17 is formed by welding one side portion side of the laminate film 14 using a bar-shaped mold 19. Also in this case, the outer edge of the first side sealing portion 17 is provided with an unwelded portion 17 ′ so that the sealant layer melted from the laminate film does not protrude and adhere to the mold. Next, a liquid electrolyte is injected from the other side portion side 18. Then, the liquid electrolyte sufficiently penetrates into the flat wound electrode body 11. Thereafter, as shown in FIG. 6C, the other side of the laminate film 14 is temporarily welded with a bar-shaped mold 19 to form a temporary sealing portion 20. Next, after precharging and aging, as shown in FIG. 6 (d), the other side of the laminate film 14 is welded by controlling it in a stereotaxic manner with a bar-shaped mold 19. 21 is formed. And the unnecessary part of the said laminate film is cut | disconnected, and the conventional laminated battery 50 as shown in FIG.6 (e) is obtained.

特開2002−42881号公報(段落[0002]〜[0013])JP 2002-42881 A (paragraphs [0002] to [0013])

このような従来例のラミネート電池の製造方法においては、バー状の金型を用いてトップ封止部16、第1のサイド封止部17及び第2のサイド封止部21と3箇所の封止部を形成しているが、電池のトップ封止部16(タブ側部)をヒートシールすると、図6(e)のX−X'線に沿った一部断面図である図7に示したように、溶着した際にラミネートフィルム14のシーラントやタブ保護樹脂がはみ出して、樹脂22が溜まり、先端部分の厚みが大きくなっていた。このようなラミネート電池50は、電池の安全対策のため、トップ封止部表面に保護素子等を配置したプリント配線基板23が具備されるが、ラミネート電池50をパッケージに収納する際、先端部が厚いと保護素子等を配置したプリント配線基板23の配置が困難であり、電池がパッケージ内に収まり難いという不具合があった。   In such a conventional laminated battery manufacturing method, a bar-shaped mold is used to seal the top sealing portion 16, the first side sealing portion 17, and the second side sealing portion 21 with three locations. 7 is a partial cross-sectional view taken along the line XX ′ of FIG. 6 (e) when the top sealing portion 16 (tab side portion) of the battery is heat sealed. As described above, the sealant and the tab protection resin of the laminate film 14 protruded when the films were welded, and the resin 22 was accumulated, and the thickness of the tip portion was increased. Such a laminated battery 50 is provided with a printed wiring board 23 in which a protective element or the like is disposed on the surface of the top sealing portion for battery safety measures. If it is thick, it is difficult to dispose the printed wiring board 23 on which a protective element or the like is disposed, and there is a problem that the battery is difficult to fit in the package.

更に、このはみ出した樹脂22の量を少なく抑えるために、電池のトップ封止部16よりも大きい幅の金型を用いて溶着すると、タブ12、13とラミネートフィルム端面に露出したアルミ層との短絡や、樹脂22がヒータヘッドに付着して工程歩留まりの低下や溶着不良が起きるという不具合があった。   Further, in order to suppress the amount of the protruding resin 22 to a small amount, when welding is performed using a mold having a width larger than the top sealing portion 16 of the battery, the tabs 12 and 13 and the aluminum layer exposed on the end face of the laminate film There is a short circuit or a problem that the resin 22 adheres to the heater head, resulting in a decrease in process yield or poor welding.

加えて、一度、溶着した後で、樹脂22が溜まった部分をホットプレスし、トップ封止部厚みを低減させると、ショートの発生、タブ切れ、工程数の増加やタクトダウン等の不具合が生じた。   In addition, after welding, once the portion where the resin 22 has accumulated is hot-pressed to reduce the thickness of the top sealing portion, problems such as shorts, tab breaks, an increase in the number of processes and tact-down will occur. It was.

本発明者等は、このようなラミネート電池の製造に際し、従来の金型の幅を変えずに、トップ封止部厚みを小さくしても従来のラミネート電池と同程度の封止信頼性が得られるラミネート電池を得るべく種々検討を重ねた結果、トップシール用金型に段差を設けると共にこのトップシール用金型の幅をトップ封止部の幅よりも小さくすることにより、上述の従来金型を用いた場合の問題点を全て解決することができることを見出し、本発明を完成するに至ったのである。   In manufacturing such a laminated battery, the present inventors have obtained the same sealing reliability as that of a conventional laminated battery even if the top sealing part thickness is reduced without changing the width of the conventional mold. As a result of various studies to obtain a laminated battery, the above-described conventional mold is provided by providing a step in the top seal mold and making the width of the top seal mold smaller than the width of the top sealing portion. As a result, it was found that all the problems in the case of using can be solved, and the present invention has been completed.

すなわち、本願の請求項に係るラミネート電池の製造方法の発明は、少なくとも以下の(1)〜(2)の工程を有することを特徴とする。
(1)正極タブ及び負極タブを有する電極組立体を、底部を2つ折りに折り曲げたラミネートフィルムの内部に挿入する工程、
(2)該ラミネートフィルムの前記正極タブ及び負極タブが導出されている側のトップ部を、一対のバー状の金型であって、前記トップ部の先端側に対応する部分の前記金型の封止部の長さ方向に沿った側端部に一定幅の段差部が形成されており、前記金型の基部を基準として前記段差部の表面までの高さは前記金型の封止部の表面までの高さより低くされ、かつ、前記金型の段差部の幅と封止部の幅とを合わせた全体の幅が前記ラミネートフィルムのトップ部の幅よりも小さい金型を用いて溶着する工程。
That is, the invention of the method for manufacturing a laminated battery according to claim 1 of the present application is characterized by having at least the following steps (1) to (2).
(1) A step of inserting an electrode assembly having a positive electrode tab and a negative electrode tab into a laminate film having a bottom folded in two,
(2) The top portion of the laminate film from which the positive electrode tab and the negative electrode tab are led out is a pair of bar-shaped molds, and the portion of the mold corresponding to the tip side of the top portion A step portion having a constant width is formed at a side end portion along the length direction of the sealing portion, and the height to the surface of the step portion with respect to the base portion of the mold is the sealing portion of the mold. Welding using a mold that is lower than the height to the surface of the mold , and the total width of the stepped portion of the mold and the width of the sealing portion is smaller than the width of the top portion of the laminate film Process.

また、本願の請求項2に係る発明は、前記請求項1に記載のラミネート電池の製造方法において、前記(2)の工程において、前記金型として、更に、前記正極タブ及び負極タブの導出用の溝部が形成されているものを用いたことを特徴とする。
また、本願の請求項に係る発明は、前記請求項1又は2に記載のラミネート電池の製造方法において、前記(2)の工程において、前記金型として、前記バー状の金型に対してサイド封止部が形成されたL字金型であって、前記サイド封止部の高さが前記金型の封止部と同一の高さとされたL字金型を使用し、前記ラミネートフィルムのトップ部と一方のサイド部を同時に溶着するようになしたことを特徴とする。
The invention according to claim 2 of the present application is the method for producing a laminated battery according to claim 1, wherein, in the step (2), as the mold, the positive electrode tab and the negative electrode tab are derived. What used the thing in which the groove part of this was formed was used.
The invention according to claim 3 of the present application is the method for manufacturing a laminated battery according to claim 1 or 2 , wherein in the step (2), as the mold , the bar-shaped mold is used. An L-shaped mold in which a side sealing portion is formed, and the laminate film uses an L-shaped mold in which the height of the side sealing portion is the same as that of the sealing portion of the mold. The top part and the one side part are welded at the same time.

更に、本願の請求項に係る発明は、前記請求項1に記載のラミネート電池の製造方法を実施するために用いられるラミネート電池製造用金型であって、一対のバー状の金型からなり、該バー状の金型の封止部の長さ方向に沿った側端部に一定幅の段差部が形成されており、前記金型の基部を基準として前記段差部の表面までの高さは前記金型の封止部の表面までの高さよりも低くされていることを特徴とする。 Furthermore, the invention according to claim 4 of the present application is a mold for manufacturing a laminated battery used for carrying out the method for manufacturing a laminated battery according to claim 1, and comprises a pair of bar-shaped molds. A step portion having a constant width is formed at a side end portion along the length direction of the sealing portion of the bar-shaped mold, and the height to the surface of the step portion with respect to the base portion of the mold Is lower than the height to the surface of the sealing portion of the mold .

また、本願の請求項に係る発明は、前記請求項に記載のラミネート電池製造用金型において、更に、正極タブ及び負極タブの導出用の溝部を有していることを特徴とする。 Further, the invention according to claim 5 of the present application is characterized in that the laminated battery manufacturing mold according to claim 4 further includes a groove for leading out the positive electrode tab and the negative electrode tab.

また、本願の請求項に係る発明は、前記請求項又はに記載のラミネート電池製造用金型において、更に、前記バー状の金型の封止部と同じ高さのサイド部封止用のバー状金型と組み合わされてL字金型となされていることを特徴とする。 The invention according to claim 6 of the present application is the mold for manufacturing a laminated battery according to claim 4 or 5 , further comprising a side part sealing having the same height as the sealing part of the bar-shaped mold. It is characterized by being combined with a bar-shaped metal mold for making an L-shaped metal mold.

本願の請求項に記載のラミネート電池の製造方法によれば、トップ封止部全体の厚さを小さく制御することができるとともに、しかも、従来のものと同程度の封止信頼性を達成することができるラミネート電池を、簡単にかつ高精度に製造することができるようになる。 According to the method for manufacturing a laminated battery according to claim 1 of the present application, the thickness of the entire top sealing portion can be controlled to be small, and the same sealing reliability as that of the conventional one can be achieved. A laminate battery capable of being manufactured can be easily and accurately manufactured.

また、本願の請求項2に係るラミネート電池の製造方法によれば、正極タブ及び負極タブの厚みを考慮して、全てのトップ封止部を予め定めた所定の厚さとなるように封止することができる。また、本願の請求項に係るラミネート電池の製造方法によれば、トップ部と一方のサイド部を同時に封止できるようになるので、工程数を減らすことができ、ラミネート電池の製造効率が向上する。 According to the method for manufacturing a laminated battery according to claim 2 of the present application, all the top sealing portions are sealed to have a predetermined thickness in consideration of the thicknesses of the positive electrode tab and the negative electrode tab. be able to. Further, according to the method for manufacturing a laminated battery according to claim 3 of the present application, the top part and one side part can be sealed simultaneously, so the number of steps can be reduced and the manufacturing efficiency of the laminated battery is improved. To do.

更に、本願の請求項4及び5に係るラミネート電池の製造用金型によれば、容易に請求項1記載のラミネート電池製造方法を実施することができるようになり、加えて、この金型の段差部を含む封止部全体の幅はトップ封止部幅より小さいため、ラミネートフィルムから溶融した樹脂が露出することが減るので、この溶融した樹脂がヒータヘッドに付着することがなくなり、工程歩留まりが向上すると共に、溶着不良が起りにくくなる。 Furthermore, according to the manufacturing mold for the laminate battery according to claim 4 and 5 of the present application, it will be able to implement the method of manufacturing a laminate battery of easily claim 1, wherein, in addition, the mold Since the entire width of the sealing portion including the step portion is smaller than the width of the top sealing portion , the molten resin is less exposed from the laminate film, so that the molten resin does not adhere to the heater head, The process yield is improved and poor welding is less likely to occur.

また、本願の請求項に係るラミネート電池の製造用金型によれば、トップ部と一方のサイド部とを同時に溶着できるので、工程数を減らすことができ、ラミネート電池の製造効率が向上する。 Further, according to the laminate battery manufacturing mold according to claim 6 of the present application, the top portion and the one side portion can be welded simultaneously, so the number of steps can be reduced and the manufacturing efficiency of the laminate battery is improved. .

以下、本発明を実施するための最良の形態を実施例及び比較例により詳細に説明するが、以下に示す実施例は本発明の技術思想を具体化するためのラミネート電池の製造方法及びラミネート電池製造用金型を例示するものであって、本発明をこれらのものに限定することを意図するものではない。 It will be described below in more detail by the best mode for carrying out the present invention examples and comparative examples, examples manufacturing method and a laminate of the laminate batteries for embodying the technical idea of the present invention shown below It is intended to illustrate battery manufacturing molds and is not intended to limit the invention to these.

なお、本発明の実施例及び比較例の相違点は、使用した金型の相違に基づくトップ封止部の構成のみであって、実施例及び比較例のラミネート電池の製造工程は、既に上述したバー状の金型を使用した従来例のラミネート電池の製造工程と実質的に同一であるので、必要に応じて図6を参照して説明することとする。 In addition, the difference between the Example of this invention and a comparative example is only the structure of the top sealing part based on the difference in the metal mold | die used, Comprising: The manufacturing process of the laminated battery of an Example and a comparative example was already mentioned above. Since it is substantially the same as the manufacturing process of the conventional laminated battery using a bar-shaped mold, it will be described with reference to FIG. 6 as necessary.

<ラミネート電池の製造>
まず、実施例及び比較例に共通のラミネート電池の製造工程について説明する。まず、正極活物質としてはLiMnに代表されるスピネル型マンガン酸リチウム及びLiCoOに代表されるコバルト酸リチウムを一定量混合したものを用い、この混合正極活物質に炭素導電剤、グラファイトを所定量混合した後でフッ素樹脂系結着剤と一定の割合で混合して正極合剤とし、アルミニウム箔の両面に塗着し、乾燥後圧延して極板とした。なお、マンガン酸リチウム或いはコバルト酸リチウムに異種元素を添加したものも同様の効果が得られる正極活物質として使用できる。
<Manufacture of laminated batteries>
First, the manufacturing process of the laminated battery common to an Example and a comparative example is demonstrated. First, as a positive electrode active material, a mixture of a certain amount of spinel type lithium manganate typified by LiMn 2 O 4 and lithium cobaltate typified by LiCoO 2 is used. Was mixed with a fluororesin binder at a certain ratio to form a positive electrode mixture, applied to both surfaces of the aluminum foil, dried and rolled to obtain an electrode plate. In addition, what added the different element to lithium manganate or cobalt oxide can also be used as a positive electrode active material from which the same effect is acquired.

また、負極は炭素材とフッ素樹脂系結着剤を一定の割合で混合し、銅箔の両面に塗着した後、乾燥後圧延して極板とした。   Further, the negative electrode was prepared by mixing a carbon material and a fluororesin binder at a certain ratio, coating the both surfaces of the copper foil, drying and rolling to form an electrode plate.

このようにして製造した正極極板と負極極板とを多孔質ポリエチレンフィルムからなる2枚のセパレータを介して互いに絶縁した状態で渦巻状に巻き取り、押し潰して偏平巻回電極体11を製造した。その際、この偏平巻回電極体11は、負極の銅箔露出部にポリプロピレン(PP)製樹脂から成るシール材15が具備された負極タブ12を溶接しておくと共に、正極のアルミニウム箔露出部にもPP製樹脂からなるシール材15'が具備された正極タブ13を溶接しておいた。   The positive electrode plate and the negative electrode plate thus manufactured are wound in a spiral shape in a state of being insulated from each other through two separators made of a porous polyethylene film, and are crushed to produce a flat wound electrode body 11. did. At this time, the flat wound electrode body 11 is formed by welding the negative electrode tab 12 provided with the sealing material 15 made of polypropylene (PP) resin to the negative electrode copper foil exposed portion and the positive electrode aluminum foil exposed portion. Further, the positive electrode tab 13 provided with the sealing material 15 ′ made of PP resin was welded.

この成型した偏平巻回電極体11を、偏平型巻回電極体11を所定の大きさの周知のラミネートフィルム(例えばアルミラミネートフィルム)14を2つ折りした、いわゆるカップ成型されたラミネート外装内に収納した。このラミネートフィルムの総厚は約0.100mmであり、シーラント層の厚みは約0.030mmである。   The formed flat wound electrode body 11 is housed in a so-called cup-molded laminate exterior in which the flat wound electrode body 11 is folded in two with a known laminate film (for example, aluminum laminate film) 14 having a predetermined size. did. The total thickness of this laminate film is about 0.100 mm, and the thickness of the sealant layer is about 0.030 mm.

次いで、このラミネートフィルム14のトップ部(タブ側)を実施例又は比較例の金型を用いて定位方式で溶着してトップ封止部16を形成する(図6(a)参照)。次いで、実施例及び比較例共に共通のバー状の金型19を使用して、図6(b)〜図6(e)に示した従来例の場合と同様にして、ラミネートフィルム14の一方のサイド部側を溶着して第1のサイド封止部17を形成した後、液状電解質をもう一方のサイド部側18から注入し(図6(b)参照)、ラミネートフィルム14の他方側をバー状の金型により仮溶着して仮封止部20を形成し(図6(c)参照)、予備充電及びエージングした後、ラミネートフィルム14の他方側をバー状の金型19で定位方式に制御して溶着して第2のサイド封止部21を形成し(図6(d)参照)、最後に、前記ラミネートフィルムの不要部を切断して実施例及び比較例のラミネート電池を得た(図6(e)参照)。得られた電池の規格は、設計容量が640mAhであり、トップ部(タブ側)の溶着部の構成を除いて実施例及び比較例とも全て同一の構成を有している。   Next, the top sealing portion 16 is formed by welding the top portion (tab side) of the laminate film 14 by a localization method using the mold of the example or the comparative example (see FIG. 6A). Next, in the same manner as in the conventional example shown in FIGS. 6 (b) to 6 (e), one bar of the laminate film 14 is used by using a common bar-shaped mold 19 in both the example and the comparative example. After the side portion side is welded to form the first side sealing portion 17, the liquid electrolyte is injected from the other side portion side 18 (see FIG. 6B), and the other side of the laminate film 14 is placed on the bar. After temporarily welding with a metal mold to form a temporary sealing portion 20 (see FIG. 6 (c)), precharging and aging, the other side of the laminate film 14 is positioned with a bar-shaped metal mold 19 The second side sealing portion 21 was formed by controlling and welding (see FIG. 6D). Finally, unnecessary portions of the laminate film were cut to obtain laminate batteries of Examples and Comparative Examples. (See FIG. 6 (e)). The standard of the obtained battery has a design capacity of 640 mAh, and all the examples and comparative examples have the same configuration except for the configuration of the welded portion of the top portion (tab side).

なお、ポリマー電解質としては、非水溶媒(有機溶媒)に六弗化リン酸リチウム(LiPF)を1mol/lの割合で溶解した電解液とポリプロピレングリコールジアクリレート

Figure 0004443178
又は、ポリプロピレングリコールジメタクリレート
Figure 0004443178
を重量比で12:1で混合した溶液に重合開始剤としてt−ヘキシルパーオキシピバレートを5000ppm添加したものを、先の電池巻取り体を収納したアルミ外装体内に注液したあと、60℃オーブン中に3時間静置し、硬化させたものを使用した。 As the polymer electrolyte, an electrolytic solution obtained by dissolving lithium hexafluorophosphate (LiPF 6 ) in a non-aqueous solvent (organic solvent) at a rate of 1 mol / l and polypropylene glycol diacrylate
Figure 0004443178
Or polypropylene glycol dimethacrylate
Figure 0004443178
After adding 5000 ppm of t-hexylperoxypivalate as a polymerization initiator to a solution prepared by mixing 12 wt. A cured product was allowed to stand in an oven for 3 hours.

なお、非水溶媒(有機溶媒)としては、カーボネート類、ラクトン類、エーテル類、エステル類、芳香族炭化水素などが挙げられ、これらの中でカーボネート類、ラクトン類、エーテル類、ケトン類、エステル類などが好ましく、カーボネート類がさらに好適に用いられる。なお、これら溶媒の2種類以上を混合して用いることもできる。   Nonaqueous solvents (organic solvents) include carbonates, lactones, ethers, esters, aromatic hydrocarbons, etc. Among these, carbonates, lactones, ethers, ketones, esters And the like, and carbonates are more preferably used. Two or more of these solvents can be mixed and used.

カーボネート類の具体例としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン、γ−バレロラクトン、γ−ジメトキシエタン、テトラヒドロフラン、アニソール、1,4−ジオキサン、ジエチルカーボネートなどを挙げることができ、これらカーボネート類を2種類以上混合して用いてもよい。   Specific examples of carbonates include propylene carbonate, ethylene carbonate, butylene carbonate, γ-butyrolactone, γ-valerolactone, γ-dimethoxyethane, tetrahydrofuran, anisole, 1,4-dioxane, diethyl carbonate, and the like. Two or more of these carbonates may be mixed and used.

非水系電解液を構成する電解質としては、六弗化リン酸リチウム(LiPF)以外に、過塩素酸リチウム(LiClO)、ホウフッ化リチウム(LiBF)、六フッ化砒酸リチウム(LiAsF)、トリフルオロメチルスルホン酸リチウム(LiCFSO)、ビストリフルオロメチルスルホニルイミドリチウム[LiN(CFSO]、ビスペンタフルオロエチルスルホニルイミドリチウムLiN(SO及びこれらの混合物などを適宜選択して用いることができる。 The electrolyte constituting the nonaqueous electrolytic solution, in addition hexafluoride lithium phosphate (LiPF 6), lithium perchlorate (LiClO 4), lithium borofluoride (LiBF 4), hexafluoro arsenate lithium (LiAsF 6) , Lithium trifluoromethylsulfonate (LiCF 3 SO 3 ), bistrifluoromethylsulfonylimide lithium [LiN (CF 3 SO 2 ) 2 ], bispentafluoroethylsulfonylimide lithium LiN (SO 2 C 2 F 5 ) 2 and these A mixture of these can be selected and used as appropriate.

実施例及び比較例共に、ラミネート電池のトップ封止部の幅は4mmとし、金型幅aは2.50mmとした。また、実施例及び比較例の金型共に、タブとラミネート外装体のAlとの短を防止するために、タブ逃がしを設けてあり、そのタブ逃がしの高さeは0.060mmとした。また、タブ部に設ける薄いシール材15、15'としては、正、負極用タブ共にフィルムの厚みが0.070mm/枚のものを用いた。 In both the examples and comparative examples, the width of the top sealing portion of the laminated battery was 4 mm, and the mold width a was 2.50 mm. Further, both the mold of Examples and Comparative Examples, in order to prevent short-circuit between the Al tabs and laminate casing, is provided with a relief tab, the height e of the tab relief was 0.060 mm. Further, as the thin sealing materials 15 and 15 'provided in the tab portion, both positive and negative electrode tabs having a film thickness of 0.070 mm / sheet were used.

<比較例>
比較例の金型を図1に示し、この比較例の金型を2個一組で用いて電池トップ部分を溶着した状態を図2に示す(なお、下部の金型については図示省略した)。なお、図1において、図1(a)は比較例の金型の正面図、図1(b)は底面図を示し、図1(c)は図1(a)のA−A'線に沿った一部拡大断面図である。
<Comparative example>
FIG. 1 shows the mold of the comparative example, and FIG. 2 shows a state in which the battery top portion is welded using two of the molds of this comparative example as a set (note that the lower mold is not shown). . 1A is a front view of a comparative mold, FIG. 1B is a bottom view, and FIG. 1C is taken along line AA ′ of FIG. 1A. It is a partially expanded sectional view along.

この比較例の金型25は、封止部26及びタブ逃がし部27を有しており、金型の溶着幅aは封止部26の封止幅bと同一で、a=b=2.50mmである。また、溝状に形成されているタブ逃がし27の高さeは、e=0.060mmである。この比較例の金型の各部寸法を表1に示した。 The mold 25 of this comparative example has a sealing part 26 and a tab relief part 27, the total welded part width a of the mold is the same as the sealing part width b of the sealing part 26, and a = b = 2.50 mm. Further, the height e of the tab relief 27 formed in the groove shape is e = 0.060 mm. Table 1 shows the dimensions of each part of the mold of this comparative example.

この比較例の金型25を用いて、タブ間封止部厚みが平均0.180mm(0.160mm〜0.200mm)となり、また、トップ封止部の未溶着部分の幅が0.60mm±0.30mmとなるように定位制御して電池トップ部分を溶着すると、図6(e)のY−Y'部に対応する一部断面図である図2に示したように、ラミネートフィルム14のシーラントやタブ保護樹脂がはみ出して、樹脂22が溜まり、先端部分の厚みが大きくなった。   Using the mold 25 of this comparative example, the thickness of the sealing portion between the tabs becomes an average of 0.180 mm (0.160 mm to 0.200 mm), and the width of the unwelded portion of the top sealing portion is 0.60 mm ± When the battery top portion is welded by controlling the localization so as to be 0.30 mm, as shown in FIG. 2 which is a partial cross-sectional view corresponding to the YY ′ portion of FIG. The sealant and the tab protection resin protruded, the resin 22 accumulated, and the thickness of the tip portion increased.

このようにして比較例の金型を用いて製造したラミネート電池50のトップ部の溶着幅、タブ間封止部厚み及び先端部厚みの平均値をそれぞれ測定すると共に、40%充電状態で、80℃、90%の相対湿度下に20日間保存した後の電池膨れ寸法(平均値)及びトップ封止部の開封状態を測定し、結果をまとめて表2に示した。なお、得られた比較例のラミネート電池50のトップ部の溶着幅、タブ間封止部厚み及び先端部厚みの関係は、それぞれ図2に示したとおりである。また、比較例では、金型25を取り除くと先端部の厚みがラミネートフィルム14の弾性力のために変化するが、先端部厚みについては保護素子等を配置したプリント配線基板(図7参照)やパッケージによる押圧を考慮して100g負荷状態で測定した値を示した。   Thus, while measuring the average value of the welding width of the top part of the laminated battery 50 manufactured using the metal mold | die of a comparative example, the sealing part thickness between tabs, and the front-end | tip part thickness, it is 80% in a 40% charge state, respectively. The battery swell dimensions (average value) and the unsealed state of the top sealing part after storage at 20 ° C. and 90% relative humidity for 20 days were measured, and the results are shown in Table 2. In addition, the relationship of the welding width of the top part of the laminated battery 50 of the obtained comparative example, the sealing part thickness between tabs, and the front-end | tip part thickness is as showing in FIG. Further, in the comparative example, when the mold 25 is removed, the thickness of the tip changes due to the elastic force of the laminate film 14, but for the tip thickness, a printed wiring board (see FIG. 7) on which a protective element or the like is disposed, A value measured in a load state of 100 g in consideration of pressing by the package is shown.

<実施例1〜3>
次に、実施例1〜3の金型を図3に示し、この実施例1〜3の金型を2個一組で用いて電池トップ部分を溶着した状態を図4に示す(なお、下部の金型については図示省略した)。なお、図3において、図3(a)は実施例1〜3の金型の正面図、図3(b)は底面図を示し、図3(c)は図3(a)のB−B'線に沿った一部拡大断面図である。
<Examples 1-3>
Next, the metal mold | die of Examples 1-3 is shown in FIG. 3, and the state which welded the battery top part using two metal mold | dies of this Example 1-3 in one set is shown in FIG. The illustration of the mold was omitted). In FIG. 3, FIG. 3 (a) is a front view of the molds of Examples 1 to 3, FIG. 3 (b) is a bottom view, and FIG. 3 (c) is BB in FIG. 3 (a). It is a partially expanded sectional view along line '.

この実施例1〜3の金型28は、封止部29、タブ逃がし部30及び金型28の長さ方向に沿って段差部31を有しており、金型28の段差部31と封止部29とを含む全体の溶着幅a(全溶着幅)は全て比較例のものと等しく、a=2.50mmである。さらに、金型28の封止部29の幅(封止幅)bは、b=1.50mm(実施例1)、b=1.75mm(実施例2)及びb=2.00mm(実施例3)と変化させ、また、段差部31の幅cは、c=1.00mm(実施例1)、c=0.75mm(実施例2)、c=0.50mm(実施例3)と変化させた。すなわち、実施例1〜3においては、金型28の封止部29の幅b及び段差部31の幅cについて、b+c=aの関係となっており、この部分は全て溶着される領域となっている。なお、金型28の基部28aを基準とした段差部31の表面までの高さh1は封止部29の表面までの高さh2よりもdだけ小さくなっている。この段差高さdは、実施例1〜3共に全て0.20mmとし、タブ逃がし高さeは全て比較例のものと等しく、e=0.060mmとした。この実施例1〜3の金型の各部寸法をまとめて表1に示した。 The molds 28 of the first to third embodiments have a step part 31 along the length direction of the sealing part 29, the tab relief part 30 and the mold 28, and the step part 31 of the mold 28 and the sealing part 29 are sealed. The total welding width a (total welding width) including the stopper 29 is all equal to that of the comparative example, and a = 2.50 mm. Further, the width (sealing portion width) b of the sealing portion 29 of the mold 28 is such that b = 1.50 mm (Example 1), b = 1.75 mm (Example 2), and b = 2.00 mm (implementing). Example 3) and the width c of the stepped portion 31 is c = 1.00 mm (Example 1), c = 0.75 mm (Example 2), and c = 0.50 mm (Example 3). Changed. That is, in Examples 1 to 3, the width b of the sealing portion 29 of the mold 28 and the width c of the stepped portion 31 have a relationship of b + c = a, and this portion is a region to be welded. ing. Note that the height h1 to the surface of the stepped portion 31 with respect to the base portion 28a of the mold 28 is smaller than the height h2 to the surface of the sealing portion 29 by d. The height d of the step is referred to as Example 1-3 together all 0.20 mm, the tab relief height e is equal to that of all comparative examples, was e = 0.060 mm. The dimensions of each part of the molds of Examples 1 to 3 are collectively shown in Table 1.

更に、実施例1〜3の金型28を用いて、タブ間封止部厚みが平均0.180mmとなるように定位制御して製造したラミネート電池10のトップ部の溶着部幅A、封止部幅B、段差部幅C、段差部厚みD、タブ間封止部厚み及び先端部厚みの平均値をそれぞれ測定すると共に、40%充電状態で、80℃、90%の相対湿度下に20日間保存した後の電池膨れ寸法(平均値)及びトップ封止部の開封状態を測定し、結果をまとめて表2に示した。   Further, using the mold 28 of Examples 1 to 3, the welded portion width A of the top portion of the laminated battery 10 manufactured by controlling the orientation so that the thickness of the sealed portion between the tabs is 0.180 mm on the average, sealing The average value of the part width B, the step part width C, the step part thickness D, the inter-tab sealing part thickness, and the tip part thickness was measured, and at 40% charge state, at 80 ° C. and 90% relative humidity. The battery swelling dimensions (average value) after storage for a day and the unsealed state of the top sealing part were measured, and the results are summarized in Table 2.

なお、得られた実施例1〜3のラミネート電池10のトップ部の溶着部幅A、封止部幅B、段差部幅C、段差部厚みD、タブ間封止部厚み及び先端部厚みの関係は、図4に示したとおりである。また、実施例1〜3では、金型28を取り除くと先端部の厚みがラミネートフィルム14の弾性力のために変化するが、先端部厚みについては比較例と同じく、保護素子等を配置したプリント配線基板(図7参照)やパッケージによる押圧を考慮して100g負荷状態で測定した値を示した。   In addition, the welding part width A, the sealing part width B, the step part width C, the step part thickness D, the inter-tab sealing part thickness, and the tip part thickness of the top part of the obtained laminated batteries 10 of Examples 1 to 3 The relationship is as shown in FIG. Further, in Examples 1 to 3, when the mold 28 is removed, the thickness of the tip changes due to the elastic force of the laminate film 14, but the tip thickness is the same as in the comparative example in which the protective element is disposed. The values measured in a load state of 100 g in consideration of pressing by the wiring board (see FIG. 7) and the package are shown.

Figure 0004443178
Figure 0004443178

Figure 0004443178
Figure 0004443178

上記表2の結果から明らかなように、実施例1〜3の金型28を用いて製造したラミネート電池10は、いずれも封止部幅Bを比較例の溶着部幅Aよりも小さくしても、先端部厚みは比較例のものよりも小さくなっており、しかも、80℃、相対湿度90%という高温高湿度下に20日間保存しても、電池の膨れは比較例の電池と同程度であり、また、封止部が開封したものはなく、従来例のものと同程度の封止信頼性を有していることが確認された。 As is clear from the results in Table 2 above, all of the laminated batteries 10 manufactured using the molds 28 of Examples 1 to 3 have the sealing part width B smaller than the welding part width A of the comparative example. However, the tip thickness is smaller than that of the comparative example, and even when stored at a high temperature and high humidity of 80 ° C. and a relative humidity of 90% for 20 days, the swelling of the battery is similar to that of the comparative example. In addition, none of the sealing portions were opened, and it was confirmed that the sealing reliability was comparable to that of the conventional example.

なお、上記実施例1〜3では、トップ封止及びサイド封止をバー状の金型を用いて個別に行った例を示したが、L型の金型を用いて同時に行うようになすことも可能である。この場合のL型の金型の形状を図5を用いて説明するが、図3の実施例1〜3の金型と実質的に同一の部分の構成は同じ符号を付与してその詳細な説明は省略する。なお、図5(a)はL字金型の正面図、図5(b)は平面図、図5(c)は左側面図、図5(d)は底面図である。   In the first to third embodiments, the top sealing and the side sealing are individually performed using a bar-shaped mold. However, the top sealing and the side sealing are performed simultaneously using an L-shaped mold. Is also possible. The shape of the L-shaped mold in this case will be described with reference to FIG. 5, but the configuration of substantially the same parts as the molds of Examples 1 to 3 in FIG. Description is omitted. 5A is a front view of the L-shaped mold, FIG. 5B is a plan view, FIG. 5C is a left side view, and FIG. 5D is a bottom view.

図5に示したL型の金型40は、トップ封止部41及びサイド封止形成部42を有し、トップ封止形成部41は図3に示した実施例1〜3のトップ封止部用金型と実質的に同一の構成を有しており、また、サイド封止形成部42は、従来例の図6(b)に示したバー状の金型19と同じ構成を有しており、金型40の基部を基準としてトップ封止部用金型の封止部29の高さとサイド封止部42の高さが同一となるように一体化された構成を有している。このL字金型40を使用すれば、ラミネートフィルムのトップ封止及びサイド封止を一度の操作で行うことができ、工数の低下につながる。 An L-shaped mold 40 shown in FIG. 5 has a top sealing portion 41 and a side sealing forming portion 42, and the top sealing forming portion 41 is the top sealing of the first to third embodiments shown in FIG. The side seal forming part 42 has the same configuration as the bar-shaped mold 19 shown in FIG. 6B of the conventional example. The top sealing part mold has a structure integrated with the base sealing part 29 so that the height of the sealing part 29 of the top sealing part mold is the same as the height of the side sealing part 42. . If this L-shaped mold 40 is used, the top sealing and the side sealing of the laminate film can be performed by a single operation, leading to a reduction in man-hours.

比較例の金型を示し、図1(a)は正面図、図1(b)は底面図であり、図1(c)は図1(a)のA−A'線に沿った一部拡大断面図である。FIG. 1A is a front view, FIG. 1B is a bottom view, and FIG. 1C is a part along line AA ′ in FIG. 1A. It is an expanded sectional view. 図1の金型を2個一組で用いて電池トップ部分を溶着した状態を示す図である。It is a figure which shows the state which welded the battery top part using the metal mold | die of FIG. 実施例1〜3の金型を示し、図3(a)は正面図、図3(b)は底面図であり、図3(c)は図3(a)のB−B'線に沿った一部拡大断面図である。The metal mold | die of Examples 1-3 is shown, Fig.3 (a) is a front view, FIG.3 (b) is a bottom view, FIG.3 (c) follows the BB 'line | wire of Fig.3 (a). FIG. 図3の金型を2個一組で用いて電池トップ部分を溶着した状態を示す図である。It is a figure which shows the state which welded the battery top part using the metal mold | die of FIG. 本発明のL字金型を示す図であり、図5(a)はL字金型の正面図、図5(b)は平面図、図5(c)は左側面図、図5(d)は底面図である。It is a figure which shows the L-shaped metal mold | die of this invention, Fig.5 (a) is a front view of an L-shaped metal mold | die, FIG.5 (b) is a top view, FIG.5 (c) is a left view, FIG.5 (d). ) Is a bottom view. 従来例のラミネート電池の各製造工程を説明する図である。It is a figure explaining each manufacturing process of the laminated battery of a prior art example. 図6(e)のラミネート電池のX−X'線に沿った一部断面図である。It is a partial cross section figure which followed the XX 'line | wire of the laminated battery of FIG.6 (e).

10、50 ラミネート電池
11 偏平巻回電極体
12 負極タブ
13 正極タブ
14 ラミネートフィルム
16 トップ封止部
17、21 サイド封止部
22 樹脂
23 プリント配線基板
25、28 金型
26、29 封止部
27、30 タブ逃がし部
28a 金型の基部
31 段差部
40 L字金型
DESCRIPTION OF SYMBOLS 10, 50 Laminated battery 11 Flat winding electrode body 12 Negative electrode tab 13 Positive electrode tab 14 Laminating film 16 Top sealing part 17, 21 Side sealing part 22 Resin 23 Printed wiring board 25, 28 Mold 26, 29 Sealing part 27 , 30 tab relief
28a Mold base 31 Step 40 L-shaped mold

Claims (6)

少なくとも以下の(1)〜(2)の工程を有することを特徴とするラミネート電池の製造方法。
(1)正極タブ及び負極タブを有する電極組立体を、底部を2つ折りに折り曲げたラミネートフィルムの内部に挿入する工程、
(2)該ラミネートフィルムの前記正極タブ及び負極タブが導出されている側のトップ部を、一対のバー状の金型であって、前記トップ部の先端側に対応する部分の前記金型の封止部の長さ方向に沿った側端部に一定幅の段差部が形成されており、前記金型の基部を基準として前記段差部の表面までの高さは前記金型の封止部の表面までの高さより低くされ、かつ、前記金型の段差部の幅と封止部の幅とを合わせた全体の幅が前記ラミネートフィルムのトップ部の幅よりも小さい金型を用いて溶着する工程。
A method for producing a laminated battery, comprising at least the following steps (1) to (2):
(1) A step of inserting an electrode assembly having a positive electrode tab and a negative electrode tab into a laminate film having a bottom folded in two,
(2) The top portion of the laminate film from which the positive electrode tab and the negative electrode tab are led out is a pair of bar-shaped molds, and the portion of the mold corresponding to the tip side of the top portion A step portion having a constant width is formed at a side end portion along the length direction of the sealing portion, and the height to the surface of the step portion with respect to the base portion of the mold is the sealing portion of the mold. Welding using a mold that is lower than the height to the surface of the mold , and the total width of the stepped portion of the mold and the width of the sealing portion is smaller than the width of the top portion of the laminate film Process.
前記(2)の工程において、前記金型として、更に、前記正極タブ及び負極タブの導出用の溝部が形成されているものを用いたことを特徴とする請求項1に記載のラミネート電池の製造方法。2. The production of a laminated battery according to claim 1, wherein, in the step (2), the mold further has a groove for leading out the positive electrode tab and the negative electrode tab. Method. 前記(2)の工程において、前記金型として、前記バー状の金型に対してサイド封止部が形成されたL字金型であって、前記サイド封止部の高さが前記金型の封止部と同一の高さとされたL字金型を使用し、前記ラミネートフィルムのトップ部と一方のサイド部を同時に溶着するようになしたことを特徴とする請求項1又は2に記載のラミネート電池の製造方法。 In the step (2), as the mold , an L-shaped mold in which a side sealing portion is formed with respect to the bar-shaped mold, and the height of the side sealing portion is the mold. of using the same height as it is the L-shaped die and the sealing unit, according to claim 1 or 2, characterized in that none to simultaneously weld the top portion and the one side of the laminate film Manufacturing method for laminated battery. 一対のバー状の金型からなり、該バー状の金型の封止部の長さ方向に沿った側端部に一定幅の段差部が形成されており、前記金型の基部を基準として前記段差部の表面までの高さは前記金型の封止部の表面までの高さよりも低くされていることを特徴とする請求項1に記載のラミネート電池の製造方法を実施するために用いられるラミネート電池製造用金型。 It consists of a pair of bar-shaped molds, and a step portion having a constant width is formed at the side end along the length direction of the sealing part of the bar-shaped mold, and the base of the mold is used as a reference 2. The laminate battery manufacturing method according to claim 1, wherein a height to the surface of the stepped portion is lower than a height to the surface of the sealing portion of the mold. 3. Mold for manufacturing laminated battery . 更に、正極タブ及び負極タブの導出用の溝部を有していることを特徴とする請求項に記載のラミネート電池製造用金型。 Furthermore, it has a groove part for derivation | leading-out of a positive electrode tab and a negative electrode tab, The metal mold | die for laminated battery manufacture of Claim 4 characterized by the above-mentioned. 更に、前記バー状の金型の封止部と同じ高さのサイド部封止用のバー状金型と組み合わされてL字金型となされていることを特徴とする請求項4又は5に記載のラミネート電池製造用金型。 Furthermore, in claim 4 or 5, characterized in that in combination with the bar-shaped mold for the side part sealing the same height as the sealing portion of the bar-shaped mold are made with L-shaped die A mold for manufacturing a laminated battery as described.
JP2003337088A 2003-09-29 2003-09-29 Laminate battery manufacturing method and laminate battery manufacturing mold Expired - Fee Related JP4443178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003337088A JP4443178B2 (en) 2003-09-29 2003-09-29 Laminate battery manufacturing method and laminate battery manufacturing mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003337088A JP4443178B2 (en) 2003-09-29 2003-09-29 Laminate battery manufacturing method and laminate battery manufacturing mold

Publications (3)

Publication Number Publication Date
JP2005108486A JP2005108486A (en) 2005-04-21
JP2005108486A5 JP2005108486A5 (en) 2006-06-15
JP4443178B2 true JP4443178B2 (en) 2010-03-31

Family

ID=34533004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003337088A Expired - Fee Related JP4443178B2 (en) 2003-09-29 2003-09-29 Laminate battery manufacturing method and laminate battery manufacturing mold

Country Status (1)

Country Link
JP (1) JP4443178B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102773337A (en) * 2012-07-03 2012-11-14 昆山诚业德精密模具有限公司 Die core set suitable for bending flange of battery cavity
KR101811836B1 (en) * 2015-01-14 2017-12-22 주식회사 엘지화학 A Sealing Device For Battery Case having an unsealing portion employed with possibly adjusting heights
KR101843824B1 (en) * 2015-05-04 2018-05-14 주식회사 엘지화학 A Sealing Device For Battery Case having an unsealing portion employed with possibly adjusting heights

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005243453A (en) * 2004-02-26 2005-09-08 Sii Micro Parts Ltd Electrochemical-cell and its manufacturing method
JP4720172B2 (en) * 2004-12-10 2011-07-13 ソニー株式会社 battery
JP4887634B2 (en) * 2005-02-25 2012-02-29 ソニー株式会社 Battery and its sealing method
JP5004451B2 (en) * 2005-09-28 2012-08-22 三洋電機株式会社 Batteries provided with a film-like exterior body and a method for producing the same
JP4978107B2 (en) * 2006-08-10 2012-07-18 日産自動車株式会社 Assembled battery
JP5025277B2 (en) * 2007-02-13 2012-09-12 株式会社東芝 Battery manufacturing method
KR101106395B1 (en) * 2009-10-15 2012-01-17 삼성에스디아이 주식회사 Secondary battery and Manufacturing method for the Same
JP5327249B2 (en) * 2011-02-18 2013-10-30 ソニー株式会社 battery
KR101297014B1 (en) 2011-08-31 2013-08-14 삼성에스디아이 주식회사 Secondary battery
WO2023190128A1 (en) * 2022-03-30 2023-10-05 パナソニックエナジー株式会社 Method for producing battery equipped with laminate-film outer package

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102773337A (en) * 2012-07-03 2012-11-14 昆山诚业德精密模具有限公司 Die core set suitable for bending flange of battery cavity
KR101811836B1 (en) * 2015-01-14 2017-12-22 주식회사 엘지화학 A Sealing Device For Battery Case having an unsealing portion employed with possibly adjusting heights
KR101843824B1 (en) * 2015-05-04 2018-05-14 주식회사 엘지화학 A Sealing Device For Battery Case having an unsealing portion employed with possibly adjusting heights

Also Published As

Publication number Publication date
JP2005108486A (en) 2005-04-21

Similar Documents

Publication Publication Date Title
JP4565810B2 (en) Laminated battery
KR101294587B1 (en) Non-Aqueous Secondary Battery
KR100742109B1 (en) Nonaqueous-electrolyte secondary battery and method of manufacturing the same
KR100929126B1 (en) Nonaqueous Electrolyte Battery and Manufacturing Method Thereof
JP2006164868A (en) Battery
JP2001167743A (en) Secondary battery and electronic device using the same
JP4443248B2 (en) Manufacturing method of laminated battery
JP4443178B2 (en) Laminate battery manufacturing method and laminate battery manufacturing mold
US20140045057A1 (en) Non-aqueous electrolyte secondary battery
JP2014035939A (en) Non-aqueous electrolyte secondary battery
JP2013206699A (en) Electrochemical device
JP6097030B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
US20140080010A1 (en) Non-aqueous electrolyte secondary battery
US20140045011A1 (en) Non-aqueous electrolyte secondary battery
JP2004253155A (en) Bipolar battery
JP5951404B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2007149507A (en) Nonaqueous secondary battery
JP6037713B2 (en) Nonaqueous electrolyte secondary battery
JP4518744B2 (en) LAMINATED BATTERY, PROCESS FOR PRODUCING THE SAME, AND L-SHAPE FOR PRODUCTION OF LAMINATED BATTERY
JP6241529B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP5964102B2 (en) Manufacturing method of battery having flat electrode body
JP2006236857A (en) Battery and its sealing method
JP2001176501A (en) Method of manufacturing non-aqueous electrolytic battery
JP2001076758A (en) Lithium secondary battery and its manufacture
JP6213615B2 (en) Method for producing non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees