JP5119615B2 - Secondary battery and assembled battery - Google Patents

Secondary battery and assembled battery Download PDF

Info

Publication number
JP5119615B2
JP5119615B2 JP2006163717A JP2006163717A JP5119615B2 JP 5119615 B2 JP5119615 B2 JP 5119615B2 JP 2006163717 A JP2006163717 A JP 2006163717A JP 2006163717 A JP2006163717 A JP 2006163717A JP 5119615 B2 JP5119615 B2 JP 5119615B2
Authority
JP
Japan
Prior art keywords
exterior member
insulating layer
battery
secondary battery
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006163717A
Other languages
Japanese (ja)
Other versions
JP2007335158A (en
Inventor
暁 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006163717A priority Critical patent/JP5119615B2/en
Publication of JP2007335158A publication Critical patent/JP2007335158A/en
Application granted granted Critical
Publication of JP5119615B2 publication Critical patent/JP5119615B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Battery Mounting, Suspending (AREA)

Description

本発明は、電極板を有する発電要素を外装部材に収容して封止すると共に、導電部材を介して電極板に接続された電極端子が外装部材から外部に導出している二次電池及び該二次電池を複数積層し、これらを電気的に接続した組電池に関する。   The invention provides a secondary battery in which a power generation element having an electrode plate is accommodated in an exterior member and sealed, and an electrode terminal connected to the electrode plate via a conductive member is led out from the exterior member, and The present invention relates to an assembled battery in which a plurality of secondary batteries are stacked and these are electrically connected.

電極板を有する発電要素を外装部材に収容して封止すると共に、導電部材を介して電極板に接続された電極端子を外装部材から外部に導出した二次電池では、過充電等の異常時に電池内部にガスが発生して内圧が上昇する場合がある。このような内圧上昇を解消するために、外装部材が膨張した際に当該外装部材を穿孔可能な切刃を二次電池に設け、当該穿孔からガスを外部に放出させる技術が従来から知られている(例えば、特許文献1参照)。   In the secondary battery in which the power generation element having the electrode plate is accommodated in the exterior member and sealed, and the electrode terminal connected to the electrode plate via the conductive member is led out from the exterior member, in the event of an abnormality such as overcharge Gas may be generated inside the battery and the internal pressure may increase. In order to eliminate such an increase in internal pressure, a technique has been conventionally known in which a secondary blade is provided with a cutting blade capable of perforating the exterior member when the exterior member expands, and gas is released from the perforation to the outside. (For example, refer to Patent Document 1).

しかしながら、この技術では、ガス放出により電池の内圧を低下させることが出来ても、過充電状態は引き続き継続しているのでガス発生自体を抑制することはできない。   However, with this technology, even if the internal pressure of the battery can be reduced by releasing the gas, the overcharge state continues and the gas generation itself cannot be suppressed.

特開2001−222986号公報JP 2001-222986 A

本発明は、過充電等の異常を停止させたり緩和させることが可能な二次電池を提供することを目的とする。   An object of this invention is to provide the secondary battery which can stop or relieve abnormalities, such as an overcharge.

上記目的を達成するために、本発明によれば、正負極の電極板を積層して形成された発電要素と、金属層、及び、前記金属層の一方の面側に積層された絶縁層、を少なくとも有するシート状部材を、前記絶縁層を内側にして袋状に形成した外装部材と、導電部材を介して前記電極板に接続された電極端子と、を備え、前記発電要素が前記外装部材によって形成された空間内に収容され、前記外装部材が外周縁に沿って封止され、前記電極端子が前記外装部材から外部に導出した二次電池であって、前記導電部材は、前記空間内に位置しており、前記絶縁層において前記導電部材に対向している部分に、当該絶縁層の他の部分よりも溶融し易い易溶融部が形成されている二次電池が提供される。
To achieve the above object, according to the present invention, a power generating element formed by laminating positive and negative electrode plates, a metal layer, and an insulating layer laminated on one surface side of the metal layer, An exterior member formed in a bag shape with the insulating layer inside, and an electrode terminal connected to the electrode plate via a conductive member, and the power generation element is the exterior member A secondary battery in which the exterior member is sealed along an outer peripheral edge, and the electrode terminal is led out from the exterior member . The secondary battery is provided with an easily meltable portion that is easier to melt than other portions of the insulating layer at a portion of the insulating layer facing the conductive member.

本発明では、外装部材の絶縁層において、電極板と電極端子とを接続する導電部材に対向する部分に、他の部分よりも相対的に溶融し易い易溶融部を形成し、電池の異常発熱時にこの易溶融部を先に溶融させて、外装部材の金属層を導電部材に対して露出させる。これにより、異常発生時に金属層と導電部材が導通して電池内部のエネルギーが金属層に放電されるので、二次電池を短絡させて異常を停止させたり、二次電池の自然放電を促すことにより異常を緩和させることができる。   In the present invention, in the insulating layer of the exterior member, an easily melting portion that is relatively easier to melt than other portions is formed in the portion facing the conductive member that connects the electrode plate and the electrode terminal, and abnormal heat generation of the battery Sometimes this easy melting part is melted first, and the metal layer of the exterior member is exposed to the conductive member. As a result, when an abnormality occurs, the metal layer and the conductive member are conducted, and the energy inside the battery is discharged to the metal layer. Therefore, the secondary battery is short-circuited to stop the abnormality, or the secondary battery is spontaneously discharged. Can alleviate the abnormality.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1及び図2は本発明の実施形態に係る薄型電池の全体を示す平面図及び側面図、図3は図1のIII-III線に沿った拡大断面図、図4〜図6はそれぞれ図2のIV部〜VI部の拡大断面図、図7は図1のVII-VII線に沿った断面図である。   1 and 2 are a plan view and a side view showing the entire thin battery according to the embodiment of the present invention, FIG. 3 is an enlarged sectional view taken along line III-III of FIG. 1, and FIGS. FIG. 7 is a sectional view taken along line VII-VII in FIG.

図1及び図2は一つの薄型電池1(単位電池)を示し、この薄型電池1を電気的に複数接続することにより所望の電圧、容量の組電池が構成される。   1 and 2 show one thin battery 1 (unit battery), and an assembled battery having a desired voltage and capacity is configured by electrically connecting a plurality of the thin batteries 1.

本実施形態に係る薄型電池1は、積層可能な平板状(薄型)のリチウムイオン二次電池であり、図1〜図3に示すように、発電要素10、外装部材40及び電極端子20、30から構成されており、例えば10mm以下の総厚を有している。   The thin battery 1 according to the present embodiment is a stackable flat (thin) lithium ion secondary battery, and as illustrated in FIGS. 1 to 3, the power generation element 10, the exterior member 40, and the electrode terminals 20 and 30. For example, and has a total thickness of 10 mm or less.

発電要素10は、図4に示すように、正極電極板11、セパレータ12、負極電極板13及び電解質(不図示)から構成されており、正極電極板11と負極電極板13はセパレータ12を介して交互に積層されている。なお、以下では、正極電極板11を正極板11と記載し、負極電極板13を負極板13と記載し、正負極の電極板を総称して電極板と記載する。   As shown in FIG. 4, the power generation element 10 includes a positive electrode plate 11, a separator 12, a negative electrode plate 13, and an electrolyte (not shown). The positive electrode plate 11 and the negative electrode plate 13 are interposed via the separator 12. Are alternately stacked. Hereinafter, the positive electrode plate 11 is referred to as a positive electrode plate 11, the negative electrode plate 13 is referred to as a negative electrode plate 13, and the positive and negative electrode plates are collectively referred to as an electrode plate.

正極板11は、正極側集電体11aと、この正極側集電体11aの両主面にそれぞれ形成された正極層11b、11cと、を有しており、正極側集電体11aは、正極層11b、11cが形成されていない正極側導電部材25を介して、正極端子20に接続されている。   The positive electrode plate 11 includes a positive electrode side current collector 11a and positive electrode layers 11b and 11c respectively formed on both main surfaces of the positive electrode side current collector 11a. The positive electrode layer 20 is connected to the positive electrode terminal 20 through the positive electrode side conductive member 25 in which the positive electrode layers 11b and 11c are not formed.

正極側集電体11aは、例えば、アルミニウム箔、アルミニウム合金箔、又は、ニッケル箔等の電気化学的に安定した金属箔から構成されている。   The positive electrode side current collector 11a is made of an electrochemically stable metal foil such as an aluminum foil, an aluminum alloy foil, or a nickel foil.

正極層11b、11cは、例えば、LiNiO等のリチウム・ニッケル系複合酸化物、LiMn等のリチウム・マンガン系複合酸化物、又は、LiCoO等のリチウム・コバルト系複合酸化物等や、カルコゲン(S、Se、Te)化物等の正極活物質と、カーボンブラック等の導電剤と、ポリフッ化エチレンの水性ディスパージョン等の結着剤と、を混合したものを、正極側集電体11aの両主面に塗布し、乾燥及び圧縮することにより形成されている。 Positive electrode layer 11b, 11c can, for example, lithium-nickel composite oxide such as LiNiO 2, lithium-manganese-based composite oxide such as LiMn 2 O 4, or the like Ya lithium cobalt-based composite oxide such as LiCoO 2, A positive electrode side current collector obtained by mixing a positive electrode active material such as a chalcogen (S, Se, Te) compound, a conductive agent such as carbon black, and a binder such as an aqueous dispersion of polyfluorinated ethylene. It is formed by applying to both main surfaces of 11a, drying and compressing.

本実施形態では、正極側集電体11aの一方の端部に正極層11b、11cが形成されておらず、この正極層11b、11cが形成されていない部分の正極側集電体11aが正極側導電部材25を構成している。この正極側導電部材25は、正極端子20の内側の端部に超音波溶接等の手法により接合されている。なお、本発明においては、特にこれに限定されず、正極側導電部材25を、正極側集電体11aとは別の部材で構成しても良い。   In the present embodiment, the positive electrode layers 11b and 11c are not formed at one end of the positive electrode current collector 11a, and the positive electrode current collector 11a in the portion where the positive electrode layers 11b and 11c are not formed is the positive electrode. The side conductive member 25 is configured. The positive electrode side conductive member 25 is joined to the inner end of the positive electrode terminal 20 by a technique such as ultrasonic welding. In the present invention, the present invention is not particularly limited to this, and the positive electrode side conductive member 25 may be formed of a member different from the positive electrode side current collector 11a.

負極板13は、負極側集電体13aと、この負極側集電体13aの両主面にそれぞれ形成された負極層13b、13cと、を有しており、正極側集電体13aは、負極層13b、13cが形成されていない負極側導電部材35を介して、負極端子30に接続されている。   The negative electrode plate 13 includes a negative electrode side current collector 13a and negative electrode layers 13b and 13c formed on both main surfaces of the negative electrode side current collector 13a. The positive electrode side current collector 13a includes: The negative electrode layer 30 is connected to the negative electrode terminal 30 through the negative electrode side conductive member 35 on which the negative electrode layers 13b and 13c are not formed.

負極側集電体13aは、例えば、ニッケル箔、銅箔、ステンレス箔、又は、鉄箔等の電気化学的に安定した金属箔である。   The negative electrode side current collector 13a is an electrochemically stable metal foil such as a nickel foil, a copper foil, a stainless steel foil, or an iron foil.

負極層13b、13cは、例えば、非晶質炭素、難黒鉛化炭素、易黒鉛化炭素、又は、黒鉛等のような上記の正極活物質のリチウムイオンを吸蔵及び放出する負極活物質に、有機物焼成体の前駆体材料としてのスチレンブタジエンゴム樹脂粉末の水性ディスパージョンを混合し、乾燥させた後に粉砕することで、炭素粒子表面に炭化したスチレンブタジエンゴムを担持させたものを主材料とし、これにアクリル樹脂エマルジョン等の結着剤をさらに混合し、この混合物を負極側集電体13aの両主面に塗布、乾燥及び圧縮することにより形成されている。   The negative electrode layers 13b and 13c are formed of, for example, an organic material into the negative electrode active material that occludes and releases lithium ions of the positive electrode active material, such as amorphous carbon, non-graphitizable carbon, graphitizable carbon, or graphite. An aqueous dispersion of styrene butadiene rubber resin powder as a precursor material of the fired body is mixed, dried, and pulverized, so that the carbon material surface carries carbonized styrene butadiene rubber as the main material. Further, a binder such as an acrylic resin emulsion is further mixed, and this mixture is applied to both main surfaces of the negative electrode side current collector 13a, dried and compressed.

本実施形態では、負極側集電体13aの一方の端部に負極層13b、13cが形成されておらず、この負極層13b、13cが形成されていない部分の負極側集電体13aが負極側導電部材35を構成している。負極側導電部材35は、負極端子30の内側の端部に超音波溶接等の手法により接合されている。なお、本発明においては、特にこれに限定されず、負極側導電部材35を、負極側集電体13aとは別の部材で構成しても良い。   In the present embodiment, the negative electrode layers 13b and 13c are not formed at one end of the negative electrode side current collector 13a, and the negative electrode side current collector 13a in a portion where the negative electrode layers 13b and 13c are not formed is the negative electrode. A side conductive member 35 is formed. The negative electrode side conductive member 35 is joined to the inner end of the negative electrode terminal 30 by a technique such as ultrasonic welding. In the present invention, the present invention is not particularly limited to this, and the negative electrode side conductive member 35 may be formed of a member different from the negative electrode side current collector 13a.

セパレータ12は、上述した正極板11と負極板13との短絡を防止するものであり、電解質を保持する機能を備えても良い。このセパレータ12は、例えば、ポリエチレン(PE)やポリプロピレン(PP)等のポリオレフィン等から構成される微多孔性膜であり、過電流が流れると、その発熱によって層の空孔が閉塞され電流を遮断する機能をも有する。   The separator 12 prevents a short circuit between the positive electrode plate 11 and the negative electrode plate 13 described above, and may have a function of holding an electrolyte. This separator 12 is a microporous film made of polyolefin such as polyethylene (PE) or polypropylene (PP), for example. When an overcurrent flows, the pores of the layer are blocked by the heat generation and the current is cut off. It also has a function to

なお、本発明におけるセパレータは、ポリオレフィン等の単層膜のみに限定されず、ポリプロピレン膜をポリエチレン膜でサンドイッチした三層構造や、ポリオレフィン微多孔性膜と有機不織布等を積層したものを用いることもできる。このようにセパレータを複層化することで、過電流防止機能、電解質保持機能及びセパレータの形状維持(剛性向上)機能等の諸機能を付与することができる。   The separator in the present invention is not limited to a single-layer film such as polyolefin, but may be a three-layer structure in which a polypropylene film is sandwiched with a polyethylene film, or a laminate of a polyolefin microporous film and an organic nonwoven fabric or the like. it can. Thus, by making a separator into a multilayer, various functions, such as an overcurrent prevention function, an electrolyte holding function, and a separator shape maintenance (stiffness improvement) function, can be provided.

以上の発電要素10は、セパレータ12を介して正極板11と負極板13とが交互に積層されて構成されている。そして、全ての正極板11は、正極側導電部材25を介して、金属箔製の正極端子20に接続される一方で、全ての負極板13は、負極側導電部材35を介して、同じく金属箔製の負極端子30に接続されている。   The power generation element 10 described above is configured by alternately stacking positive plates 11 and negative plates 13 with separators 12 interposed therebetween. All the positive plates 11 are connected to the positive terminal 20 made of metal foil through the positive electrode side conductive member 25, while all the negative plates 13 are also made of the same metal through the negative electrode side conductive member 35. It is connected to the negative electrode terminal 30 made of foil.

なお、発電要素10を構成する正極板11、セパレータ12及び負極板13の枚数は、必要に応じた枚数を選択して構成することができ、例えば、1枚の正極板11、1枚のセパレータ12及び1枚の負極板13でも発電要素10を構成することができる。   The number of the positive electrode plate 11, the separator 12 and the negative electrode plate 13 constituting the power generation element 10 can be selected and configured as required. For example, one positive plate 11, one separator The power generation element 10 can also be configured with 12 and one negative electrode plate 13.

正極端子20も負極端子30も電気化学的に安定した金属材料であれば特に限定されないが、正極端子20としては、上述の正極側集電体11と同様に、例えば、アルミニウム箔、アルミニウム合金箔、銅箔、又は、ニッケル箔等を挙げることができる。また、負極端子30としては、上述の負極側集電体13aと同様に、例えば、ニッケル箔、銅箔、ステンレス箔、又は、鉄箔等を挙げることができる。   The positive electrode terminal 20 and the negative electrode terminal 30 are not particularly limited as long as they are electrochemically stable metal materials. As the positive electrode terminal 20, for example, an aluminum foil or an aluminum alloy foil can be used as in the positive electrode current collector 11 described above. , Copper foil, or nickel foil. Moreover, as the negative electrode terminal 30, the nickel foil, copper foil, stainless steel foil, or iron foil etc. can be mentioned similarly to the above-mentioned negative electrode side collector 13a, for example.

以上のように構成される発電要素10は、外装部材40に収容されて封止されている。外装部材40は、発電要素10を上方から覆うシート状の上部外装部材41(上部シート部材)と、上部外装部材41に対向して発電要素10を下方から覆うシート状の下部外装部材42(下部シート部材)と、から構成されている。   The power generation element 10 configured as described above is housed and sealed in the exterior member 40. The exterior member 40 includes a sheet-like upper exterior member 41 (upper sheet member) that covers the power generation element 10 from above, and a sheet-like lower exterior member 42 (lower part) that faces the upper exterior member 41 and covers the power generation element 10 from below. Sheet member).

上部外装部材41は、図2及び図3に示すように、発電要素10を収容可能なカップ状の外形形状を有している。この上部外装部材41は、図5に示すように、薄型電池1の外側から内側に向かって、外側樹脂層41a、接着層41b、金属層41c及び内側樹脂層41dが積層されて構成されている。外側樹脂層41aは、例えばポリアミド系樹脂やポリエステル系樹脂等の電気絶縁性に優れた樹脂フィルムから構成されている。外側樹脂層41aと金属層41cとは接着層41bを介して接着されており、金属層41cは、例えばアルミニウム箔等の金属箔から構成されている。内側樹脂層41dは、例えばポリエチレンやポリプロピレン等の耐電解液性及び熱融着性に優れた樹脂フィルムから構成されている。   As shown in FIGS. 2 and 3, the upper exterior member 41 has a cup-shaped outer shape that can accommodate the power generation element 10. As shown in FIG. 5, the upper exterior member 41 is formed by laminating an outer resin layer 41a, an adhesive layer 41b, a metal layer 41c, and an inner resin layer 41d from the outer side to the inner side of the thin battery 1. . The outer resin layer 41a is made of a resin film excellent in electrical insulation, such as a polyamide resin or a polyester resin. The outer resin layer 41a and the metal layer 41c are bonded via an adhesive layer 41b, and the metal layer 41c is made of a metal foil such as an aluminum foil. The inner resin layer 41d is made of a resin film excellent in electrolytic solution resistance and heat fusion property such as polyethylene or polypropylene.

これに対し、下部外装部材42は、図2及び図3に示すように、平板状の外形形状を有している。この下部外装部材42は、上部外装部材41と同様に、薄型電池1の外側から内側に向かって、外側樹脂層42a、接着層42b、金属層42c及び内側樹脂層42dが積層されて構成されている。外側樹脂層42aは、例えばポリアミド系樹脂やポリエステル系樹脂等の電気絶縁性に優れた樹脂フィルムから構成されている。外側樹脂層42aと金属層42cとは接着層42bを介して接着されており、金属層42cは、例えばアルミニウム箔等の金属箔から構成されている。内側樹脂層42dは、例えばポリエチレンやポリプロピレン等の耐電解液性及び熱融着性に優れた樹脂フィルムから構成されている。   On the other hand, the lower exterior member 42 has a flat outer shape as shown in FIGS. Similar to the upper exterior member 41, the lower exterior member 42 is formed by laminating an outer resin layer 42a, an adhesive layer 42b, a metal layer 42c, and an inner resin layer 42d from the outside to the inside of the thin battery 1. Yes. The outer resin layer 42a is made of, for example, a resin film excellent in electrical insulation, such as a polyamide resin or a polyester resin. The outer resin layer 42a and the metal layer 42c are bonded via an adhesive layer 42b, and the metal layer 42c is made of a metal foil such as an aluminum foil, for example. The inner resin layer 42d is made of, for example, a resin film excellent in electrolytic solution resistance and heat fusion property such as polyethylene and polypropylene.

本実施形態では、図3及び図6に示すように、上部外装部材41の内側樹脂層41dにおいて正極側導電部材25に対向している部分に、易溶融部41eが形成されている。内側樹脂層41dにおいて、易溶融部41e以外の他の部分が厚さtを有しているのに対し、易溶融部41eは厚さt(t<t)を有しており、易溶融部41eは内側樹脂層41dの他の部分よりも厚さが相対的に薄くなっている。また、特に図示しないが、負極側においても同様に、上部外装部材41の内側樹脂層41dにおいて負極側導電部材35に対向している部分にも、他の部分に対して厚さが相対的に薄い易溶融部41eが形成されている。 In the present embodiment, as shown in FIGS. 3 and 6, an easily melting portion 41 e is formed in a portion of the inner resin layer 41 d of the upper exterior member 41 that faces the positive electrode side conductive member 25. In the inner resin layer 41d, while the other portions other than the easily melting portion 41e has a thickness t 0, easily melted portion 41e has a thickness t 1 (t 1 <t 0 ) The easily meltable portion 41e is relatively thinner than other portions of the inner resin layer 41d. Further, although not particularly illustrated, the thickness of the inner resin layer 41d of the upper exterior member 41 facing the negative electrode side conductive member 35 is also relatively smaller than that of the other portion on the negative electrode side. A thin easily melting part 41e is formed.

この易溶融部41eは、内側樹脂層41dの他の部分よりも溶融し易くなっており、電池の異常発熱時にこの易溶融部41eが先に溶融して、金属層41cが正極側導電部材25に対して露出するようになっている。このため、異常発生時に金属層41cと正極側導電部材25が導通して電池内部のエネルギーが上部外装部材41の金属層41cに放電されるので、薄型電池1を短絡させて異常を停止させたり、薄型電池の自然放電を促すことにより異常を緩和させることができる。   The easy melting part 41e is easier to melt than the other part of the inner resin layer 41d, and when the battery is abnormally heated, the easy melting part 41e is melted first, and the metal layer 41c becomes the positive electrode side conductive member 25. To be exposed. For this reason, when the abnormality occurs, the metal layer 41c and the positive electrode side conductive member 25 are electrically connected, and the energy inside the battery is discharged to the metal layer 41c of the upper exterior member 41. Therefore, the thin battery 1 is short-circuited to stop the abnormality. Abnormalities can be alleviated by promoting natural discharge of thin batteries.

また、例えば、電池に充電器を接続して、電池外部から充電電流を供給している場合には、金属層41eに充電電流をバイパスさせることができる。   For example, when a charger is connected to the battery and a charging current is supplied from the outside of the battery, the metal layer 41e can bypass the charging current.

なお、本実施形態では、易溶融部41eを薄くすることにより易溶融部41eを内側樹脂層41dの他の部分よりも溶融し易くしたが、本発明においては特にこれに限定されない。例えば、上部外装部材41の内側樹脂層41dの易溶融部41e以外をポリプロピレンで構成し、易溶融部41eをポリプロピレンよりも融点が低いポリエチレンで構成しても良い。   In the present embodiment, the easy melting part 41e is made thinner than the other part of the inner resin layer 41d by making the easy melting part 41e thinner. However, the present invention is not particularly limited to this. For example, other than the easily meltable part 41e of the inner resin layer 41d of the upper exterior member 41 may be made of polypropylene, and the easily meltable part 41e may be made of polyethylene having a melting point lower than that of polypropylene.

本実施形態では、さらに、図3に図示するように、当該電池1内の封止性を維持するために、正極端子20と外装部材40との間に、例えば、ポリプロピレン等から構成されるシール部材43が介装されている。同様に、特に図示しないが、負極端子30と外装部材40との間にもシール部材43が介装されている。   In the present embodiment, as illustrated in FIG. 3, a seal made of, for example, polypropylene is provided between the positive electrode terminal 20 and the exterior member 40 in order to maintain the sealing performance in the battery 1. A member 43 is interposed. Similarly, although not particularly illustrated, a seal member 43 is also interposed between the negative electrode terminal 30 and the exterior member 40.

また、本実施形態では、図7に示すように、外装部材40の例えばコーナー部において、上部外装部材41の内側樹脂層41dの一部が剥ぎ取られて金属層41cが露出していると共に、下部外装部材42の内側樹脂層42dの一部も剥ぎ取られて金属層42cが露出しており、これら露出している金属層41c、42c同士が接触して導通している。   In the present embodiment, as shown in FIG. 7, for example, in the corner portion of the exterior member 40, a part of the inner resin layer 41 d of the upper exterior member 41 is peeled off and the metal layer 41 c is exposed, A part of the inner resin layer 42d of the lower exterior member 42 is also peeled off to expose the metal layer 42c, and the exposed metal layers 41c and 42c are in contact with each other and are conductive.

このように、金属層41c、42c同士を導通させることにより、電池の異常発生時に、上部外装部材41の金属層41cに加えて、下部外装部材42の金属層42cにも電流が流れるので、薄型電池1の放電電流を増加させることができる。   In this way, by conducting the metal layers 41c and 42c to each other, a current flows through the metal layer 42c of the lower exterior member 42 in addition to the metal layer 41c of the upper exterior member 41 when a battery abnormality occurs. The discharge current of the battery 1 can be increased.

なお、本発明においては、一枚の樹脂−金属薄膜ラミネート材を折り曲げて外装部材40を構成することで上部外装部材41及び下部外装部材42を1枚のラミネート材で構成しても良い。この場合には、上部外装部材41の金属層41cと下部外装部材42の金属層42cとは当初から接続されている。   In the present invention, the upper exterior member 41 and the lower exterior member 42 may be formed of a single laminate material by bending the single resin-metal thin film laminate material to form the exterior member 40. In this case, the metal layer 41c of the upper exterior member 41 and the metal layer 42c of the lower exterior member 42 are connected from the beginning.

以上のような構成の外装部材40によって、上述の発電要素10、正極端子20及び負極端子30の一部を包み込み、当該外装部材40により形成される空間に、有機液体溶媒に過塩素酸リチウム(LiClO)やホウフッ化リチウム(LiBF)、六フッ化リン酸リチウム(LiPF)等のリチウム塩を溶質とした液体電解質を注入しながら、外装部材40により形成される空間を吸引して減圧し、外装部材40をその外周縁に沿って、例えば、ヒートシーラ等の熱融着機により熱融着して封止する。 The exterior member 40 configured as described above encloses part of the power generation element 10, the positive electrode terminal 20, and the negative electrode terminal 30 described above, and in the space formed by the exterior member 40, lithium perchlorate ( While injecting a liquid electrolyte in which a lithium salt such as LiClO 4 ), lithium borofluoride (LiBF 4 ), or lithium hexafluorophosphate (LiPF 6 ) is used as a solute, the space formed by the exterior member 40 is sucked and decompressed. Then, the exterior member 40 is sealed by heat fusion along the outer peripheral edge by a heat fusion machine such as a heat sealer.

有機液体溶媒としては、プロピレンカーボネート(PC)やエチレンカーボネート(EC)、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)等のエステル系溶媒を挙げることができるが、本発明の有機液体溶媒は特にこれに限定されることなく、エステル系溶媒に、γ−ブチラクトン(γ−BL)、ジエトキシエタン(DEE)等のエーテル系溶媒その他の混合、調合した有機液体溶媒を用いることもできる。   Examples of the organic liquid solvent include ester solvents such as propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), and methyl ethyl carbonate (MEC). Without being limited thereto, ether solvents such as γ-butylactone (γ-BL) and diethoxyethane (DEE) and other mixed organic liquid solvents can be used as the ester solvent.

図8は本発明の実施形態に係る組電池を示す部分断面図である。   FIG. 8 is a partial cross-sectional view showing an assembled battery according to an embodiment of the present invention.

本実施形態に係る組電池100は、図8に示すように、2つの薄型電池1A、1Bと、2つの弾性部材102a、102bと、これらを収容しているケース101とから構成されている。   As shown in FIG. 8, the assembled battery 100 according to the present embodiment includes two thin batteries 1A and 1B, two elastic members 102a and 102b, and a case 101 that houses them.

薄型電池1A、1Bは、いずれも上述した薄型電池1と同様の構成のものであり、正極端子20が実質的に同一方向を向くような姿勢で、厚さ方向に沿って積層されている。これら薄型電池1A、1Bは、正極端子20同士が接合され電気的に並列接続されている。   Each of the thin batteries 1A and 1B has the same configuration as the thin battery 1 described above, and is stacked along the thickness direction so that the positive electrode terminal 20 faces substantially the same direction. In these thin batteries 1A and 1B, the positive terminals 20 are joined and electrically connected in parallel.

上側の薄型電池1Aとケース101の内側上面との間には、弾性変形可能な弾性部材102aが介装されている。この弾性部材102aは、薄型電池1Aの上部外装部材41において易溶融部41eが形成されている部分を電池外側から押圧している。また、薄型電池1A、1B同士の間にも、弾性変形可能な弾性部材102bが介装されている。この弾性部材102bも、薄型電池1Bの上部外装部材41において易溶融部41eが形成されている部分を電池外側から押圧している。これら弾性部材102a、102bは、例えば、機械的なバネ、柔軟性を有する合成樹脂材料やエラストマー等で構成することができる。   An elastic member 102 a that can be elastically deformed is interposed between the upper thin battery 1 </ b> A and the inner upper surface of the case 101. The elastic member 102a presses a portion of the upper exterior member 41 of the thin battery 1A where the easily meltable portion 41e is formed from the outside of the battery. An elastic member 102b that can be elastically deformed is interposed between the thin batteries 1A and 1B. This elastic member 102b also presses the portion of the upper exterior member 41 of the thin battery 1B where the easily meltable portion 41e is formed from the outside of the battery. These elastic members 102a and 102b can be made of, for example, a mechanical spring, a flexible synthetic resin material, an elastomer, or the like.

また、特に図示しないが、負極側においても、上側の薄型電池1Aとケースとの間、及び、薄型電池1A、1B同士の間に弾性部材102a、102bが形成されており、それぞれの電池の上部外装部材41において易溶融部41eが形成されている部分を弾性部材102a、102bが電池外部から押圧している。   Although not particularly illustrated, elastic members 102a and 102b are formed on the negative electrode side between the upper thin battery 1A and the case and between the thin batteries 1A and 1B, respectively. The elastic members 102a and 102b press the portion of the exterior member 41 where the easily meltable portion 41e is formed from the outside of the battery.

電池の異常発生時に易溶融部41eが溶融した場合に、弾性部材102a、102bで上部外装部材41を押圧することにより、露出した金属層41cと正極側導電部材25とを確実に接触させることができる。   When the easily melting part 41e is melted when a battery abnormality occurs, the exposed metal layer 41c and the positive electrode-side conductive member 25 can be reliably brought into contact with each other by pressing the upper exterior member 41 with the elastic members 102a and 102b. it can.

なお、以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記の実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。   The embodiment described above is described for facilitating the understanding of the present invention, and is not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.

上述の実施形態では、二つの薄型電池1A、1Bを用いて組電池100を構成したが、本発明において組電池を構成する薄型電池の数は特にこれに限定されず、要求される電圧や容量等に応じて、3つ以上の薄型電池を用いて組電池を構成しても良い。   In the above-described embodiment, the assembled battery 100 is configured by using the two thin batteries 1A and 1B. However, the number of the thin batteries constituting the assembled battery in the present invention is not particularly limited to this, and the required voltage and capacity are not limited. Depending on the above, the assembled battery may be configured using three or more thin batteries.

また、上述の実施形態では、薄型電池1A、1Bを直列接続して組電池100を構成したが、本発明においては特に限定されず、要求される電圧や容量等に応じて、薄型電池を並列接続或いは直列並列を混合して接続しても良い。   In the above-described embodiment, the assembled battery 100 is configured by connecting the thin batteries 1A and 1B in series. However, the present invention is not particularly limited, and the thin batteries are arranged in parallel according to the required voltage, capacity, and the like. Connection or series / parallel may be mixed and connected.

以下に、本発明をさらに具体化した実施例及び比較例により本発明の効果を確認した。以下の実施例及び比較例は、上述した実施形態に係る薄型電池及び組電池の効果を確認するためのものである。   Below, the effect of the present invention was confirmed by examples and comparative examples that further embody the present invention. The following examples and comparative examples are for confirming the effects of the thin battery and the assembled battery according to the above-described embodiment.

実施例1
スピネル型リチウムマンガン酸化物に黒鉛及びポリフッ化ビニリデン(PVDF)を混合した粉末をN−メチル−2−ピロリドン(NMP)に分散させてスラリーとし、このスラリーを厚さ20μmのアルミニウム箔の両主面に塗布して乾燥させた後、圧縮及び裁断して正極板を作製した。なお、アルミニウム箔の一部にはスラリーを塗布せずに、正極板を正極端子に接続するための正極側導電部材とした。
Example 1
Powder obtained by mixing spinel type lithium manganese oxide with graphite and polyvinylidene fluoride (PVDF) is dispersed in N-methyl-2-pyrrolidone (NMP) to form a slurry, and this slurry is formed on both main surfaces of an aluminum foil having a thickness of 20 μm. After coating and drying, a positive electrode plate was prepared by compression and cutting. In addition, it was set as the positive electrode side electrically-conductive member for connecting a positive electrode plate to a positive electrode terminal, without apply | coating a slurry to a part of aluminum foil.

また、難黒鉛化炭素とポリフッ化ビニリデン(PVDF)を混合した粉末をN−メチル−2−ピロリドン(NMP)に分散させてスラリーとし、このスラリーを厚さ10μmの銅箔の両主面に塗布して乾燥させた後、圧縮及び裁断して負極板を作製した。なお、銅箔の一部にはスラリーを塗布せず、負極板と負極端子に接続するための負極側導電部材とした。   Also, a powder obtained by mixing non-graphitizable carbon and polyvinylidene fluoride (PVDF) is dispersed in N-methyl-2-pyrrolidone (NMP) to form a slurry, and this slurry is applied to both main surfaces of a 10 μm thick copper foil. And dried, and then compressed and cut to prepare a negative electrode plate. In addition, it was set as the negative electrode side electrically-conductive member for connecting a negative electrode plate and a negative electrode terminal, without apply | coating a slurry to a part of copper foil.

このように作製した正極板及び負極板を、それらの間にセパレータを挟み、且つ、最外側に負極板が位置するように、交互に積層して電極積層体とした。セパレータとして、25μmの微多孔性ポリエチレンフィルムを用いた。この電極積層体の大きさは、長さ200mm×幅120mm×高さ3mmであった。   The positive electrode plate and the negative electrode plate thus produced were alternately laminated so that a separator was sandwiched between them and the negative electrode plate was positioned on the outermost side to obtain an electrode laminate. A 25 μm microporous polyethylene film was used as a separator. The size of this electrode laminate was 200 mm long × 120 mm wide × 3 mm high.

この電極積層体から延びている各正極側導電部材を正極端子にそれぞれ溶接すると共に、当該積層体から延びている各負極側導電部材を負極端子にそれぞれ溶接した。正極端子として、厚さ100μmのアルミニウム箔を用いた。また、負極端子として、厚さ100μmのニッケル箔を用いた。   Each positive electrode side conductive member extending from the electrode laminate was welded to the positive terminal, and each negative electrode conductive member extending from the laminate was welded to the negative terminal. An aluminum foil having a thickness of 100 μm was used as the positive electrode terminal. Further, a nickel foil having a thickness of 100 μm was used as the negative electrode terminal.

次いで、電極端子に接続された電極積層体を、2枚の外装部材の間に収容し、電極端子の一部をその外周縁から導出させた状態で、当該外装部材の短辺側二辺と長辺側一辺の合計三辺を熱融着し、当該開口から所定量の電解液を注入した後に、外装部材により形成される空間内を減圧した状態で、残る一辺を熱融着して実施例1の電池サンプルを作製した。   Next, the electrode laminate connected to the electrode terminal is accommodated between the two exterior members, and in a state where a part of the electrode terminal is led out from the outer peripheral edge, After heat-sealing a total of three sides on the long side and injecting a predetermined amount of electrolyte from the opening, the remaining one side is heat-sealed while the space formed by the exterior member is decompressed. The battery sample of Example 1 was produced.

上部外装部材及び下部外装部材としては、外側樹脂層が厚さ15μmのナイロン層、金属層が厚さ40μmのアルミニウム合金層、及び、内側樹脂層が厚さ45μmのポリプロピレン層、から構成される三層構造の樹脂−金属薄膜ラミネート材を用いた。   The upper exterior member and the lower exterior member are composed of a nylon layer having an outer resin layer thickness of 15 μm, an aluminum alloy layer having a metal layer thickness of 40 μm, and a polypropylene layer having an inner resin layer thickness of 45 μm. A layered resin-metal thin film laminate was used.

また、実施例1では、内側樹脂層において正極側導電部材及び負極側導電部材にそれぞれ対向している部分の厚さを薄くして(本実施例では15μmとした)易溶融部を形成した。   Moreover, in Example 1, the thickness of the part which each opposed to the positive electrode side electrically-conductive member and the negative electrode side electrically-conductive member in an inner side resin layer was made thin (it set to 15 micrometers in this Example), and the easily meltable part was formed.

電解液としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)及びジエチルカーボネート(DEC)の混合溶媒に、支持電解質としても六フッ化リン酸リチウム(LiPF)を溶解したものを使用した。 As the electrolytic solution, a mixed solvent of propylene carbonate (PC), ethylene carbonate (EC) and diethyl carbonate (DEC) in which lithium hexafluorophosphate (LiPF 6 ) was dissolved as a supporting electrolyte was used.

以上のような電池サンプルを厚さ方向に8個積層し、この8個の電池サンプルをケースに収容して実施例1の組電池を構成した。この際、隣接する電池サンプル同士は、異極の電極端子同士が対向するような方向で積層し、8個の電池サンプルを直列接続した。   Eight battery samples as described above were stacked in the thickness direction, and the eight battery samples were accommodated in a case to form the assembled battery of Example 1. At this time, the adjacent battery samples were stacked in such a direction that the electrode terminals with different polarities face each other, and eight battery samples were connected in series.

表1に実施例1におけるサンプルの作製条件を示す。   Table 1 shows the sample preparation conditions in Example 1.

Figure 0005119615
この実施例1では5個の組電池サンプルについて以下のような過充電試験と釘刺し試験を行い、電池の異常発生の評価を行った。
Figure 0005119615
In Example 1, the following overcharge test and nail penetration test were performed on five assembled battery samples to evaluate the occurrence of battery abnormality.

過充電試験は、SOC(State of Charge)100%の状態から、電流を一定とした状態を維持して、SOC250%を目標として充電を行い、その間にいずれのサンプルも電池温度(電極板中心の温度)が200℃に達しなかった場合には「◎」と評価し、1つのサンプルでも電池温度が200℃に達しなかった場合には「○」と評価し、全てのサンプルの電池温度が200℃に達した場合には「×」と評価した。   In the overcharge test, the state of charge (SOC) of 100% is maintained at a constant current, and charging is performed with the target of SOC 250%. If the temperature does not reach 200 ° C., it is evaluated as “◎”. If even one sample does not reach the battery temperature of 200 ° C., it is evaluated as “◯”. When it reached ° C., it was evaluated as “×”.

また、釘刺し試験では、鉄製の釘を組電池の厚さ方向に貫通させ、その後、いずれのサンプルも電池温度が200℃に達しなかった場合には「◎」と評価し、1つのサンプルでも電池温度が200℃に達しなかった場合には「○」と評価し、全てのサンプルの温度が200℃に達した場合には「×」と評価した。   In the nail penetration test, an iron nail was penetrated in the thickness direction of the assembled battery, and after that, when any of the samples did not reach the battery temperature of 200 ° C., the evaluation was “◎”. When the battery temperature did not reach 200 ° C., it was evaluated as “◯”, and when the temperature of all the samples reached 200 ° C., it was evaluated as “x”.

実施例1の過充電試験及び釘刺し試験の結果を表2に示す。   Table 2 shows the results of the overcharge test and the nail penetration test of Example 1.

Figure 0005119615
実施例2
実施例2では、弾性部材が、各薄型電池の上部外装部材において易溶融部が形成されている部分を押圧するように、各電池サンプルの間、及び、ケース内側上面と電池サンプルとの間に弾性部材をそれぞれ配置した。それ以外は、実施例1と同様の条件で組電池サンプルを作製した。実施例2におけるサンプルの作製条件を上記の表1に示す。
Figure 0005119615
Example 2
In Example 2, the elastic member presses the portion where the easily meltable portion is formed in the upper exterior member of each thin battery, and between the battery samples and between the case inner upper surface and the battery sample. Each elastic member was arranged. Otherwise, an assembled battery sample was produced under the same conditions as in Example 1. The sample production conditions in Example 2 are shown in Table 1 above.

この実施例2のサンプル5個に対して、実施例1と同様の条件で過充電試験と釘刺し試験を行った。実施例2の過充電試験及び釘刺し試験の結果を上記の表2に示す。   An overcharge test and a nail penetration test were performed on the five samples of Example 2 under the same conditions as in Example 1. The results of the overcharge test and the nail penetration test of Example 2 are shown in Table 2 above.

実施例3
実施例3では、組電池を構成する各薄型電池の内側樹脂層において、内側樹脂層の厚さを一定とし、正極側導電部材及び負極側導電部材にそれぞれ対向している部分を、ポリプロピレン(融点約150℃)よりも融点が低いポリエチレン(融点約110℃)で構成して易溶融部を形成した。それ以外は、実施例1と同様の条件で組電池サンプルを作製した。実施例3におけるサンプルの作製条件を上記の表1に示す。
Example 3
In Example 3, in the inner resin layer of each thin battery constituting the assembled battery, the thickness of the inner resin layer is constant, and the portions facing the positive electrode side conductive member and the negative electrode side conductive member are made of polypropylene (melting point). An easily meltable part was formed from polyethylene (melting point: about 110 ° C.) having a melting point lower than that of about 150 ° C.). Otherwise, an assembled battery sample was produced under the same conditions as in Example 1. The production conditions of the sample in Example 3 are shown in Table 1 above.

この実施例3のサンプル5個に対して、実施例1と同様の条件で過充電試験と釘刺し試験を行った。実施例3の過充電試験及び釘刺し試験の結果を上記の表2に示す。   An overcharge test and a nail penetration test were performed on the five samples of Example 3 under the same conditions as in Example 1. The results of the overcharge test and the nail penetration test of Example 3 are shown in Table 2 above.

実施例4
実施例4では、弾性部材が各薄型電池の上部外装部材において易溶融部が形成されている部分を押圧するように、各電池サンプルの間、及び、ケース内側上面と電池サンプルとの間に弾性部材をそれぞれ配置した。それ以外は、実施例3と同様の条件で組電池サンプルを作製した。実施例4におけるサンプルの作製条件を上記の表1に示す。
Example 4
In Example 4, the elastic member is elastic between each battery sample and between the case inner upper surface and the battery sample so as to press the portion where the easily meltable portion is formed in the upper exterior member of each thin battery. Each member was arranged. Otherwise, an assembled battery sample was produced under the same conditions as in Example 3. The sample production conditions in Example 4 are shown in Table 1 above.

この実施例4のサンプル5個に対して、実施例1と同様の条件で過充電試験と釘刺し試験を行った。実施例4の過充電試験及び釘刺し試験の結果を上記の表2に示す。   An overcharge test and a nail penetration test were performed on the five samples of Example 4 under the same conditions as in Example 1. The results of the overcharge test and the nail penetration test of Example 4 are shown in Table 2 above.

比較例1
比較例1では、内側樹脂層に易溶融部を設けなかったこと以外は、実施例1や実施例3と同様の条件で組電池サンプルを作製した。比較例1におけるサンプルの作製条件を上記の表1に示す。
Comparative Example 1
In Comparative Example 1, an assembled battery sample was produced under the same conditions as in Example 1 and Example 3, except that the inner resin layer was not provided with an easily meltable portion. The sample production conditions in Comparative Example 1 are shown in Table 1 above.

この比較例1のサンプル5個に対して、実施例1と同様の条件で過充電試験と釘刺し試験を行った。比較例1の過充電試験及び釘刺し試験の結果を上記の表2に示す。   An overcharge test and a nail penetration test were performed on the five samples of Comparative Example 1 under the same conditions as in Example 1. The results of the overcharge test and the nail penetration test of Comparative Example 1 are shown in Table 2 above.

比較例2
比較例2では、内側樹脂層に易溶融部を設けなかったこと以外は、実施例2や実施例4と同様の条件で組電池サンプルを作製した。比較例2におけるサンプルの作製条件を上記の表1に示す。
Comparative Example 2
In Comparative Example 2, an assembled battery sample was produced under the same conditions as in Example 2 and Example 4 except that the inner resin layer was not provided with an easily meltable portion. The sample production conditions in Comparative Example 2 are shown in Table 1 above.

この比較例2のサンプル5個に対して、実施例1と同様の条件で過充電試験と釘刺し試験を行った。比較例2の過充電試験及び釘刺し試験の結果を上記の表2に示す。   An overcharge test and a nail penetration test were performed on the five samples of Comparative Example 2 under the same conditions as in Example 1. The results of the overcharge test and the nail penetration test of Comparative Example 2 are shown in Table 2 above.

考察
実施例1〜4の組電池サンプルは、表2に示すように、釘刺し試験において良好な結果が得られた。これは、薄型電池の上部外装部材に形成された易溶融部が溶融し、露出した金属層が導電部材に接触したためと考えられる。
Discussion As shown in Table 2, the assembled battery samples of Examples 1 to 4 gave good results in the nail penetration test. This is presumably because the easily melted portion formed on the upper exterior member of the thin battery melted and the exposed metal layer contacted the conductive member.

また、実施例3及び4の組電池サンプルは、同表に示すように、過充電試験においても良好な結果が得られた。これは、薄型電池の上部外装部材において易溶融部が形成されている部分を弾性部材が押圧して、露出した金属層が導電部材に適切に接触しているためと考えられる。   In addition, as shown in the same table, the assembled battery samples of Examples 3 and 4 gave good results in the overcharge test. This is presumably because the elastic member presses the portion where the easily meltable portion is formed in the upper exterior member of the thin battery, and the exposed metal layer is appropriately in contact with the conductive member.

なお、上記の実施例においては、内側樹脂層の一部の厚さを薄くするか、若しくは、低融点の樹脂で形成するかの何れかにより易溶融部を形成したが、本発明においては特にこれに限定されず、例えば、樹脂層の厚さを薄くすると共に低融点の樹脂で形成する等、適宜変更可能である。   In the above embodiment, the easily meltable part is formed by either reducing the thickness of a part of the inner resin layer or by using a resin having a low melting point. It is not limited to this, For example, it can change suitably, for example, forming the resin layer thinly and forming with low melting point resin.

図1は、本発明の実施形態に係る薄型電池の全体構成を示す平面図である。FIG. 1 is a plan view showing the overall configuration of a thin battery according to an embodiment of the present invention. 図2は、本発明の実施形態に係る薄型電池の全体構成を示す側面図である。FIG. 2 is a side view showing the overall configuration of the thin battery according to the embodiment of the present invention. 図3は、図1のIII-III線に沿った拡大断面図である。FIG. 3 is an enlarged cross-sectional view taken along line III-III in FIG. 図4は、図2のIV部の拡大断面図である。FIG. 4 is an enlarged cross-sectional view of a portion IV in FIG. 図5は、図2のV部の拡大断面図である。FIG. 5 is an enlarged cross-sectional view of a portion V in FIG. 図6は、図2のVI部の拡大断面図である。6 is an enlarged cross-sectional view of a portion VI in FIG. 図7は、図1のVII-VII線に沿った断面図である。7 is a cross-sectional view taken along line VII-VII in FIG. 図8は、本発明の実施形態に係る組電池を示す部分断面図である。FIG. 8 is a partial cross-sectional view showing the assembled battery according to the embodiment of the present invention.

符号の説明Explanation of symbols

1…薄型電池
10…発電要素
11…正極板
11a…正極側集電体
11b、11c…正極層
12…セパレータ
13…負極板
13a…負極側集電体
13b、13c…負極層
20…正極端子
25…正極側導電部材
30…負極端子
35…負極側導電部材
40…外装部材
41…上部外装部材
41a…外側樹脂層
41b…接着層
41c…金属層
41d…内側樹脂層
41e…易溶融部
42…下部外装部材
42a…外側樹脂層
42b…接着層
42c…金属層
42d…内側樹脂層
43…シール部材
100…組電池
101…ケース
102a、102b…弾性部材
DESCRIPTION OF SYMBOLS 1 ... Thin battery 10 ... Electric power generation element 11 ... Positive electrode plate 11a ... Positive electrode side collector 11b, 11c ... Positive electrode layer 12 ... Separator 13 ... Negative electrode plate 13a ... Negative electrode side collector 13b, 13c ... Negative electrode layer 20 ... Positive electrode terminal 25 ... positive electrode side conductive member 30 ... negative electrode terminal 35 ... negative electrode side conductive member 40 ... exterior member 41 ... upper exterior member 41a ... outer resin layer 41b ... adhesive layer 41c ... metal layer 41d ... inner resin layer 41e ... easy melting part 42 ... lower part Exterior member 42a ... Outer resin layer 42b ... Adhesive layer 42c ... Metal layer 42d ... Inner resin layer 43 ... Seal member 100 ... Battery pack 101 ... Case 102a, 102b ... Elastic member

Claims (7)

正負極の電極板を積層して形成された発電要素と、
金属層、及び、前記金属層の一方の面側に積層された絶縁層、を少なくとも有するシート状部材を、前記絶縁層を内側にして袋状に形成した外装部材と、
導電部材を介して前記電極板に接続された電極端子と、を備え、
前記発電要素が前記外装部材によって形成された空間内に収容され、前記外装部材が外周縁に沿って封止され、前記電極端子が前記外装部材から外部に導出した二次電池であって、
前記導電部材は、前記空間内に位置しており、
前記絶縁層において前記導電部材に対向している部分に、当該絶縁層の他の部分よりも溶融し易い易溶融部が形成されている二次電池。
A power generation element formed by laminating positive and negative electrode plates;
A sheet member having at least a metal layer and an insulating layer laminated on one surface side of the metal layer, an exterior member formed in a bag shape with the insulating layer inside, and
An electrode terminal connected to the electrode plate via a conductive member,
The power generation element is housed in a space formed by the exterior member, the exterior member is sealed along an outer peripheral edge, and the electrode terminal is a secondary battery led out from the exterior member,
The conductive member is located in the space;
The secondary battery in which the easily meltable part which melt | dissolves more easily than the other part of the said insulating layer is formed in the part facing the said electrically-conductive member in the said insulating layer.
前記絶縁層の前記易溶融部は、当該絶縁層の他の部分よりも厚さが相対的に薄くなっている請求項1記載の二次電池。   The secondary battery according to claim 1, wherein the easily meltable portion of the insulating layer is relatively thinner than other portions of the insulating layer. 前記絶縁層の前記易溶融部は、当該絶縁層の他の部分を構成する材料よりも融点が相対的に低い材料から構成されている請求項1記載の二次電池   The secondary battery according to claim 1, wherein the easily meltable portion of the insulating layer is made of a material having a relatively lower melting point than a material constituting the other part of the insulating layer. 前記外装部材は、前記発電要素を上方から覆う上部シート部材と、当該発電要素を下方から覆う下部シート部材と、から構成されており、
前記上部シート部材が有する前記金属層と、前記下部シート部材が有する前記金属層とは、電気的に接続されている請求項1〜3の何れかに記載の二次電池。
The exterior member is composed of an upper sheet member that covers the power generation element from above, and a lower sheet member that covers the power generation element from below,
The secondary battery according to claim 1, wherein the metal layer included in the upper sheet member and the metal layer included in the lower sheet member are electrically connected.
前記絶縁層において前記易溶融部が形成されている部分を前記外装部材の外側から押圧する押圧手段をさらに備えた請求項1〜4の何れかに記載の二次電池。   The secondary battery according to any one of claims 1 to 4, further comprising pressing means for pressing a portion of the insulating layer where the easily meltable portion is formed from the outside of the exterior member. 請求項5記載の二次電池を複数積層すると共に、当該積層された二次電池の電極端子同士を接続して、当該複数の二次電池を電気的に接続した組電池であって、
前記押圧手段は、複数の前記二次電池の間に挟持されることにより、当該各二次電池の前記絶縁層において前記易溶融部が形成されている部分を前記外装部材の外側から押圧する組電池。
A battery pack comprising a plurality of the secondary batteries according to claim 5 stacked together, the electrode terminals of the stacked secondary batteries connected to each other, and the plurality of secondary batteries electrically connected.
The pressing means is a set that is sandwiched between a plurality of the secondary batteries to press a portion where the easily meltable portion is formed in the insulating layer of each secondary battery from the outside of the exterior member. battery.
前記押圧手段は、弾性変形可能な弾性部材を含む請求項6記載の組電池。   The assembled battery according to claim 6, wherein the pressing means includes an elastic member that can be elastically deformed.
JP2006163717A 2006-06-13 2006-06-13 Secondary battery and assembled battery Active JP5119615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006163717A JP5119615B2 (en) 2006-06-13 2006-06-13 Secondary battery and assembled battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006163717A JP5119615B2 (en) 2006-06-13 2006-06-13 Secondary battery and assembled battery

Publications (2)

Publication Number Publication Date
JP2007335158A JP2007335158A (en) 2007-12-27
JP5119615B2 true JP5119615B2 (en) 2013-01-16

Family

ID=38934431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006163717A Active JP5119615B2 (en) 2006-06-13 2006-06-13 Secondary battery and assembled battery

Country Status (1)

Country Link
JP (1) JP5119615B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5219587B2 (en) * 2008-03-31 2013-06-26 三洋電機株式会社 Laminated battery and battery module including the laminated battery
JP5673314B2 (en) * 2011-04-08 2015-02-18 日産自動車株式会社 Secondary battery and case assembly and assembled battery using the same
JP2015185371A (en) * 2014-03-24 2015-10-22 株式会社Gsユアサ power storage device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4193248B2 (en) * 1998-11-10 2008-12-10 ソニー株式会社 Gel electrolyte battery
JP2001297795A (en) * 2000-04-11 2001-10-26 Mitsubishi Chemicals Corp Battery
JP2003346779A (en) * 2002-05-23 2003-12-05 Sanyo Gs Soft Energy Co Ltd Non-aqueous secondary battery
JP2004185959A (en) * 2002-12-03 2004-07-02 Hitachi Maxell Ltd Battery
JP4706170B2 (en) * 2003-10-14 2011-06-22 株式会社Gsユアサ Assembled battery
JP2007026901A (en) * 2005-07-15 2007-02-01 Toyota Motor Corp Film packaged battery

Also Published As

Publication number Publication date
JP2007335158A (en) 2007-12-27

Similar Documents

Publication Publication Date Title
JP6859059B2 (en) Lithium-ion secondary battery and its manufacturing method
JP4720384B2 (en) Bipolar battery
JP6250921B2 (en) battery
WO2011002064A1 (en) Laminated battery
JP4096664B2 (en) Laminated battery
JP2005251617A (en) Secondary battery and battery pack
JP5348720B2 (en) Flat non-aqueous secondary battery
JP6376442B2 (en) Electricity storage element
JP4182856B2 (en) Secondary battery, assembled battery, composite assembled battery, vehicle, and manufacturing method of secondary battery
JP5161421B2 (en) Non-aqueous electrolyte battery
JP2012151036A (en) Laminated battery
JP5678270B2 (en) Power generation element and secondary battery
JP2004031137A (en) Thin battery
US10312493B2 (en) Battery
JP5119615B2 (en) Secondary battery and assembled battery
JP2009110812A (en) Battery and method of manufacturing the same
JP3702868B2 (en) Thin battery
JP2006236775A (en) Secondary battery
JP2005129393A (en) Secondary battery
JP5334109B2 (en) Laminated battery
JP2007073437A (en) Secondary battery
JP2005166353A (en) Secondary battery, battery pack, composite battery pack, vehicle, and manufacturing method of secondary battery
KR101722662B1 (en) Pouch-Type Secondary Battery
JP5566671B2 (en) Flat non-aqueous secondary battery
JP2012074230A (en) Collector and electrode for battery, and battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120405

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121008

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5119615

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250