JP2011049065A - Nonaqueous electrolyte battery and method of manufacturing the same - Google Patents

Nonaqueous electrolyte battery and method of manufacturing the same Download PDF

Info

Publication number
JP2011049065A
JP2011049065A JP2009197192A JP2009197192A JP2011049065A JP 2011049065 A JP2011049065 A JP 2011049065A JP 2009197192 A JP2009197192 A JP 2009197192A JP 2009197192 A JP2009197192 A JP 2009197192A JP 2011049065 A JP2011049065 A JP 2011049065A
Authority
JP
Japan
Prior art keywords
current collecting
negative electrode
positive electrode
lead
collecting tabs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009197192A
Other languages
Japanese (ja)
Inventor
Naganori Kashiwazaki
永記 柏▲崎▼
Yuichi Kosugi
裕一 小杉
Hideyuki Ishii
秀幸 石井
Manabu Toyabe
学 鳥谷部
Tatsuya Shinoda
達也 篠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009197192A priority Critical patent/JP2011049065A/en
Publication of JP2011049065A publication Critical patent/JP2011049065A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte battery having reduced failures in ultrasonic joining, and high energy density. <P>SOLUTION: The nonaqueous electrolyte battery includes a container 1, an electrode group 2 stored in the container, and including a positive electrode and a negative electrode, a plurality of positive electrode current collecting tabs 3 and a plurality of negative electrode current collecting tabs 4 extending from the positive electrode and the negative electrode of the electrode group, respectively, a positive electrode lead 7 and a negative electrode lead 8 electrically connected to the plurality of positive electrode current collecting tabs and the plurality of negative electrode current collecting tabs, respectively, a cover 9 covering an opening portion of the container, and output terminals 12, 13 provided on the cover and electrically connected to the positive electrode lead and the negative electrode lead, respectively. At least one current collecting tabs out of the plurality of positive electrode current collecting tabs and the plurality of negative electrode current collecting tabs are held between holding plates 5, 6. The holding plates are caulked and fixed to each other at one or more places across at least one current collecting tabs. The leads, the holding plates and at least one current collecting tabs are ultrasonic-joined to one another at one or more places. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、非水電解質電池およびその製造方法に関するものである。   The present invention relates to a nonaqueous electrolyte battery and a method for producing the same.

近年、電子機器の発達に伴ない、小型で軽量かつエネルギー密度が高く、さらに繰り返し充放電が可能な非水電解質二次電池としてリチウム二次電池が発達してきた。また、最近では、ハイブリッド車や電気自動車に搭載する車載用二次電池、電力平準化に使用される電力貯蔵用二次電池として好適な、急速充電および高出力放電が可能でかつサイクル性能に優れた非水電解質二次電池の開発が要望されている。このような二次電池として、負極活物質として小粒径(一次粒子の平均粒子径が1μm以下)のリチウムチタン酸化物(リチウムチタン複合酸化物)を用いた、急速充電および高出力放電が可能でかつサイクル性能に優れた非水電解質二次電池の開発がなされている。   In recent years, with the development of electronic devices, lithium secondary batteries have been developed as non-aqueous electrolyte secondary batteries that are small, lightweight, have high energy density, and can be repeatedly charged and discharged. Recently, it is suitable for in-vehicle secondary batteries mounted on hybrid cars and electric cars, and secondary batteries for power storage used for power leveling. Development of non-aqueous electrolyte secondary batteries is also desired. As such a secondary battery, rapid charging and high power discharge are possible using lithium titanium oxide (lithium titanium composite oxide) having a small particle size (average particle size of primary particles is 1 μm or less) as a negative electrode active material. In addition, non-aqueous electrolyte secondary batteries having excellent cycle performance have been developed.

エネルギー密度の高い二次電池の需要により、複数枚の集電タブを一つにする必要があり、例えば特許文献1には、断面略V字状の集電板を用いることが記載されている。これにおいては、複数積層された金属箔を集電板で挟み、正極集電部の稜部にレーザ光を照射することにより溶接される。レーザ溶接において、材料同士の密着性が重要で、固定が不十分で材料同士に隙間が空いている場合は、充分な溶接状態を得られないことが一般的に知られている。特許文献1においては、断面略V字状の集電板と金属箔の先端との密着性が不安定であるため、充分な溶接状態を得られない場合がある。そのため溶接箇所を複数設けて集電するなどの対策が必要であるが、部品点数が増えることは避けられない。   Due to the demand for secondary batteries with high energy density, it is necessary to combine a plurality of current collecting tabs. For example, Patent Document 1 describes using a current collecting plate having a substantially V-shaped cross section. . In this case, welding is performed by sandwiching a plurality of laminated metal foils with current collector plates and irradiating the ridges of the positive electrode current collector with laser light. In laser welding, it is generally known that adhesion between materials is important, and when the fixation is insufficient and there is a gap between the materials, a sufficient welding state cannot be obtained. In Patent Document 1, since the adhesiveness between the current collecting plate having a substantially V-shaped cross section and the tip of the metal foil is unstable, a sufficient welded state may not be obtained. For this reason, it is necessary to take measures such as collecting power by providing a plurality of welding points, but it is inevitable that the number of parts increases.

特許文献2には、発電要素の端面からはみ出した電極の金属箔(集電タブ)の間に電極接続部(リード)を挟み込み、この電極接続部とともに金属箔が挟持板で挟まれた構造が開示されている。   Patent Document 2 has a structure in which an electrode connecting portion (lead) is sandwiched between metal foils (current collecting tabs) of an electrode protruding from the end face of the power generation element, and the metal foil is sandwiched between the electrode connecting portions and a sandwiching plate. It is disclosed.

特許第4134521号Japanese Patent No. 4134521 特許第4204258号Patent No. 4420258

複数枚の集電タブおよび挟持板およびリードを一つに接続する手法としては、レーザ溶接のほかに超音波接合も挙げられる。超音波接合が使用されると、振動によって挟持板の位置がずれて、所定の寸法で設計された容器内に電極群を収容できない場合がある。容器の寸法に余裕をもたせると、エネルギー密度の低下につながってしまう。   As a method of connecting a plurality of current collecting tabs, sandwiching plates and leads together, ultrasonic welding as well as laser welding can be mentioned. When ultrasonic bonding is used, the position of the holding plate may be shifted due to vibration, and the electrode group may not be accommodated in a container designed with a predetermined size. If there is a margin in the dimensions of the container, the energy density will be reduced.

本発明の目的は、超音波接合時の不良が低減され、かつ高エネルギー密度である非水電解質電池およびその製造方法を提供することにある。   An object of the present invention is to provide a non-aqueous electrolyte battery having a high energy density with reduced defects during ultrasonic bonding and a method for manufacturing the same.

本発明の非水電解質電池は、容器と、
前記容器内に収納され、正極および負極を含む電極群と、
前記電極群の前記正極および負極それぞれから延出された複数の正極集電タブおよび複数の負極集電タブと、
前記複数の正極集電タブおよび負極集電タブとそれぞれ電気的に接続された正極リードおよび負極リードと、
前記容器の開口部を塞ぐ蓋と、
前記蓋に設けられ、前記正極リードまたは負極リードと電気的に接続された出力端子と
を備える非水電解質電池であって、
前記複数の正極集電タブおよび前記複数の負極集電タブの少なくとも一方の集電タブは挟持板に挟まれ、
前記挟持板は、前記少なくとも一方の集電タブを挟んで1箇所以上のかしめで固定され、
前記リードと前記挟持板と前記少なくとも一方の集電タブとは、1箇所以上の超音波により接合されていることを特徴とする。
The nonaqueous electrolyte battery of the present invention includes a container,
An electrode group housed in the container and including a positive electrode and a negative electrode;
A plurality of positive current collecting tabs and a plurality of negative current collecting tabs extending from the positive electrode and the negative electrode of the electrode group, and
A positive electrode lead and a negative electrode lead electrically connected to the plurality of positive electrode current collecting tabs and negative electrode current collecting tabs, respectively;
A lid that closes the opening of the container;
A non-aqueous electrolyte battery comprising an output terminal provided on the lid and electrically connected to the positive electrode lead or the negative electrode lead,
At least one current collecting tab of the plurality of positive electrode current collecting tabs and the plurality of negative electrode current collecting tabs is sandwiched between sandwiching plates,
The clamping plate is fixed with one or more crimps across the at least one current collecting tab,
The lead, the clamping plate, and the at least one current collecting tab are bonded to each other by one or more ultrasonic waves.

また、本発明の非水電解質電池の製造方法は、前述の非水電解質電池の製造方法であって、前記少なくとも一方の集電タブを挟んだ挟持板をかしめにより固定した後、前記リードと前記少なくとも一方の集電タブとの超音波接合を行なうことを特徴とする。   Further, the nonaqueous electrolyte battery manufacturing method of the present invention is the above-described nonaqueous electrolyte battery manufacturing method, wherein after fixing the clamping plate sandwiching the at least one current collecting tab by caulking, the lead and the lead and performing ultrasonic bonding with at least one of the current collector tab.

本発明によれば、超音波接合時の不良が低減され、かつ高エネルギー密度である非水電解質電池およびその製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the defect at the time of ultrasonic joining can be reduced, and the nonaqueous electrolyte battery which is high energy density, and its manufacturing method can be provided.

一実施形態に係る非水電解質電池を示す分解斜視図。The disassembled perspective view which shows the nonaqueous electrolyte battery which concerns on one Embodiment. 集電タブと挟持板との接続の一例を示す平面図。The top view which shows an example of a connection with a current collection tab and a clamping board. 集電タブと挟持板とをかしめる工程を示す概略図。Schematic view showing a caulking process and a collector tab and the clamping plate. 集電タブ、挟持板、およびリードの接続の一例を示す平面図。Electrode tabs, the holding plate, and a plan view showing an example of a lead connection. 集電タブ、挟持板、およびリードを超音波接合する工程を示す概略図。Electrode tabs, the holding plate, and a schematic view showing a process of ultrasonic bonding leads. 集電タブ、挟持板、およびリードの接続の他の例を示す平面図。Electrode tabs, the holding plate, and a plan view showing another example of the lead connection. 集電タブ、挟持板、およびリードの接続の他の例を示す平面図。Electrode tabs, the holding plate, and a plan view showing another example of the lead connection. 集電タブ、挟持板、およびリードの接続の他の例を示す平面図。Electrode tabs, the holding plate, and a plan view showing another example of the lead connection. 他の実施形態に係る非水電解質電池を示す分解斜視図。The disassembled perspective view which shows the nonaqueous electrolyte battery which concerns on other embodiment. 集電タブと挟持板とをかしめる工程を示す概略図。Schematic view showing a caulking process and a collector tab and the clamping plate. 集電タブ、挟持板、およびリードを超音波接合する工程を示す概略図。Electrode tabs, the holding plate, and a schematic view showing a process of ultrasonic bonding leads. 他の実施形態に係る非水電解質電池を示す分解斜視図。The disassembled perspective view which shows the nonaqueous electrolyte battery which concerns on other embodiment. 他の実施形態に係る非水電解質電池を示す分解斜視図。The disassembled perspective view which shows the nonaqueous electrolyte battery which concerns on other embodiment. 集電タブと挟持板との接続の他の例を示す平面図。Plan view showing another example of the connection between the current collector tabs and the holding plate. 集電タブ、挟持板、およびリードの接続の他の例を示す平面図。The top view which shows the other example of the connection of a current collection tab, a clamping board, and a lead. 他の実施形態に係る非水電解質電池を示す分解斜視図。The disassembled perspective view which shows the nonaqueous electrolyte battery which concerns on other embodiment.

以下、図面を参照して本発明の実施形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

一実施形態にかかる非水電解質電池は、図1に示すように、有底矩形筒状をなす容器1を具備する。容器1は、例えば、アルミニウム板もしくはアルミニウム合金板に深絞り加工を施すことにより成形されたものである。電極群2は、例えば、シート状の正極と、シート状の負極とをセパレータを間にして渦巻状に捲回した後、全体を容器の横断面形状に合致した断面四角形状に押し潰し変形することにより作製される。   As shown in FIG. 1, the nonaqueous electrolyte battery according to one embodiment includes a container 1 having a bottomed rectangular tube shape. The container 1 is formed by, for example, performing deep drawing on an aluminum plate or an aluminum alloy plate. For example, the electrode group 2 is formed by winding a sheet-like positive electrode and a sheet-like negative electrode in a spiral shape with a separator interposed therebetween, and then crushing and deforming the whole into a quadrangular cross-sectional shape that matches the cross-sectional shape of the container. It is produced by this.

正極は、例えば、正極活物質を含むスラリーをアルミニウム箔もしくはアルミニウム合金箔からなる集電体に塗布することにより作製される。正極活物質としては、リチウムを吸蔵放出できる酸化物や硫化物、ポリマーなどが使用できる。好ましい活物質としては、高い正極電位が得られるリチウムマンガン複合酸化物、リチウムニッケル複合酸化物、リチウムコバルト複合酸化物、リチウム燐酸鉄等が挙げられる。   The positive electrode is produced, for example, by applying a slurry containing a positive electrode active material to a current collector made of an aluminum foil or an aluminum alloy foil. As the positive electrode active material, oxides, sulfides, polymers, and the like that can occlude and release lithium can be used. Preferable active materials include lithium manganese composite oxide, lithium nickel composite oxide, lithium cobalt composite oxide, lithium iron phosphate, and the like that can obtain a high positive electrode potential.

また、負極は、負極活物質を含むスラリーをアルミニウム箔もしくはアルミニウム合金箔からなる集電体に塗布することにより作製される。負極活物質としては、リチウムを吸蔵放出できる金属酸化物、金属硫化物、金属窒化物、合金等が使用でき、好ましくは、リチウムイオンの吸蔵放出電位が金属リチウム電位に対して0.4V以上貴となる物質である。このようなリチウムイオン吸蔵放出電位を有する負極活物質は、アルミニウムもしくはアルミニウム合金とリチウムとの合金反応を抑えられることから、負極集電体および負極関連構成部材へのアルミニウムもしくはアルミニウム合金の使用を可能とする。例えば、チタン酸化物、リチウムチタン酸化物、タングステン酸化物、アモルファススズ酸化物、スズ珪素酸化物、および酸化珪素などがあり、中でもリチウムチタン複合酸化物が好ましい。セパレータとしては、微多孔性の膜、織布、不織布、これらのうち同一材または異種材の積層物等を用いることができる。セパレータを形成する材料としては、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合ポリマー、エチレン−ブテン共重合ポリマー等を挙げることができる。   The negative electrode is produced by applying a slurry containing a negative electrode active material to a current collector made of an aluminum foil or an aluminum alloy foil. As the negative electrode active material, metal oxides, metal sulfides, metal nitrides, alloys, and the like that can occlude and release lithium can be used. Preferably, the occlusion and release potential of lithium ions is 0.4 V or higher relative to the metal lithium potential. It is a substance. Since the negative electrode active material having such a lithium ion storage / release potential can suppress the alloy reaction between aluminum or an aluminum alloy and lithium, it is possible to use aluminum or an aluminum alloy for a negative electrode current collector and a negative electrode related component. And For example, there are titanium oxide, lithium titanium oxide, tungsten oxide, amorphous tin oxide, tin silicon oxide, and silicon oxide. Among these, lithium titanium composite oxide is preferable. As the separator, a microporous film, a woven fabric, a non-woven fabric, a laminate of the same material or different materials among these can be used. Examples of the material for forming the separator include polyethylene, polypropylene, ethylene-propylene copolymer, and ethylene-butene copolymer.

非水電解液(図示しない)は容器1内に収容されており、電極群2に含浸されている。非水電解液は、非水溶媒に電解質(例えば、リチウム塩)を溶解させることにより調製される。非水溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、γ−ブチロラクトン(γ−BL)、スルホラン、アセトニトリル、1,2−ジメトキシエタン、1,3−ジメトキシプロパン、ジメチルエーテル、テトラヒドロフラン(THF)、2−メチルテトラヒドロフラン等を挙げることができる。非水溶媒は、単独で使用しても、2種以上混合して使用してもよい。電解質としては、例えば、過塩素酸リチウム(LiClO4)、六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)、六フッ化砒素リチウム(LiAsF6)、トリフルオロメタンスルホン酸リチウム(LiCF3SO3)等のリチウム塩を挙げることができる。電解質は単独で使用しても、2種以上混合して使用してもよい。電解質の非水溶媒に対する溶解量は、0.2mol/L〜3mol/Lとすることが望ましい。 A non-aqueous electrolyte (not shown) is accommodated in the container 1 and impregnated in the electrode group 2. The non-aqueous electrolyte is prepared by dissolving an electrolyte (for example, a lithium salt) in a non-aqueous solvent. Examples of the non-aqueous solvent include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), γ-butyrolactone (γ -BL), sulfolane, acetonitrile, 1,2-dimethoxyethane, 1,3-dimethoxypropane, dimethyl ether, tetrahydrofuran (THF), 2-methyltetrahydrofuran and the like. Nonaqueous solvents may be used alone or in combination of two or more. Examples of the electrolyte include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoroarsenide (LiAsF 6 ), and trifluoromethanesulfone. Examples thereof include lithium salts such as lithium acid lithium (LiCF 3 SO 3 ). The electrolyte may be used alone or in combination of two or more. The amount of electrolyte dissolved in the non-aqueous solvent is desirably 0.2 mol / L to 3 mol / L.

電極群2の一方の端面には、スラリーが塗布されていない正極集電体が露出している。露出した正極集電体は、電極群2の厚さ方向に積層されており、これが複数の正極集電タブ3として機能する。一方、電極群2の他方の端面には、スラリーが塗布されていない負極集電体が露出している。露出した負極集電体は、電極群2の厚さ方向に積層されており、これが複数の負極集電タブ4として機能する。   On one end face of the electrode group 2, a positive electrode current collector not coated with slurry is exposed. The exposed positive electrode current collector is laminated in the thickness direction of the electrode group 2, and this functions as a plurality of positive electrode current collection tabs 3. On the other hand, the negative electrode current collector to which the slurry is not applied is exposed on the other end face of the electrode group 2. The exposed negative electrode current collector is laminated in the thickness direction of the electrode group 2, and this functions as a plurality of negative electrode current collection tabs 4.

正極集電タブ3には、例えば図1のように、正極の集電体を延出させたものを使用することができるが、正極と別体であってもよい。また、負極集電タブ4には、例えば図1のように、負極の集電体を延出させたものを使用することができるが、負極と別体であってもよい。   As the positive electrode current collecting tab 3, for example, as shown in FIG. 1, a positive electrode current collector extended can be used, but it may be separate from the positive electrode. Further, as the negative electrode current collecting tab 4, for example, as shown in FIG. 1, a negative electrode current collector extended can be used, but it may be separate from the negative electrode.

正極集電タブ3および負極集電タブ4は、挟持板5および挟持板6でそれぞれ挟まれている。シート状の正極とシート状の負極とを捲回して電極群が構成されるので、挟持板は、集電タブの湾曲している両端部を除いたストレート部分のみを挟んで配置される。負極集電タブ4を挟んだ挟持板6は、図2に示すように、かしめにより固定されている。かしめによる接続部は、参照符号17として図に示されている。   The positive electrode current collecting tab 3 and the negative electrode current collecting tab 4 are sandwiched between the sandwiching plate 5 and the sandwiching plate 6, respectively. Since the electrode group is formed by winding the sheet-like positive electrode and the sheet-like negative electrode, the sandwiching plate is disposed with only the straight portions except for the curved ends of the current collecting tab. As shown in FIG. 2, the clamping plate 6 sandwiching the negative electrode current collecting tab 4 is fixed by caulking. Connection according to caulking is shown in the figure as reference numeral 17.

ここで、かしめとは、集電タブ4と挟持板6とを圧着により接続することをさす。かしめによる接続部17は、集電タブ4を挟んだ挟持板6の一方の面に凹部が形成され、挟持板の他方の面においては、この凹部と対応する箇所に凸部が形成された形状を有する。   Here, caulking refers to connecting the current collecting tab 4 and the clamping plate 6 by pressure bonding. The connecting portion 17 by caulking has a shape in which a concave portion is formed on one surface of the sandwiching plate 6 sandwiching the current collecting tab 4, and a convex portion is formed at a position corresponding to the concave portion on the other surface of the sandwiching plate. Have

こうした挟持板6と集電タブ4との固定は、例えば図3に示されるように、集電タブ4を挟んだ挟持板6を台座18上に載置し、かしめ用ポンチ19を用いてかしめることによって行なわれる。正極集電タブ3を挟んだ挟持板5も同様に、かしめにより固定されていることが好ましい。   For example, as shown in FIG. 3, the clamping plate 6 and the current collecting tab 4 can be fixed by placing the clamping plate 6 sandwiching the current collecting tab 4 on a base 18 and using a caulking punch 19. It is done by squeezing. Similarly, the sandwiching plate 5 sandwiching the positive electrode current collecting tab 3 is preferably fixed by caulking.

かしめによって、挟持板6は集電タブ4に仮止めされることになる。その結果、後の工程でリードを挟持板に超音波により接合する際、位置ずれを軽減することができる。   The clamping plate 6 is temporarily fixed to the current collecting tab 4 by caulking. As a result, the position shift can be reduced when the leads are joined to the sandwiching plate by ultrasonic waves in a later step.

ところで、容器1の開口部は封口部材によって封止される。図1に示すように、封口部材は、容器1の開口部を塞ぐ蓋9と、蓋9の外面(上面)にガスケット10および11を介してそれぞれかしめ固定された正極出力端子12および負極出力端子13を備える。蓋9は、アルミニウムまたはアルミニウム合金板材等の金属を素材にしたプレス成形品からなる。図示していないが、蓋9には、電解液注入孔および安全弁が設けられている。電解液注入後、電解液注入孔は封止栓(図示しない)で閉止され、この封止栓は、蓋9に溶接される。   By the way, the opening part of the container 1 is sealed by the sealing member. As shown in FIG. 1, the sealing member includes a lid 9 that closes the opening of the container 1, and a positive output terminal 12 and a negative output terminal that are caulked and fixed to the outer surface (upper surface) of the lid 9 via gaskets 10 and 11, respectively. 13 is provided. The lid 9 is made of a press-formed product made of a metal such as aluminum or an aluminum alloy plate. Although not shown, the lid 9 is provided with an electrolyte injection hole and a safety valve. After the electrolyte injection, the electrolyte injection hole is closed with a sealing plug (not shown), and this sealing plug is welded to the lid 9.

蓋9の内面(下面)には、負極リード8が絶縁体15を介して配置されるとともに、正極リード7が絶縁体14を介して配置される。負極リード8は、接続プレート81と、接続プレート81に開口された貫通孔82と、接続プレート81から下方に延びた集電部83とを有する。絶縁体15は、貫通孔151が開口された矩形プレートからなる。負極出力端子13は、リベットで、蓋9上に配置された頭部13aと、頭部13aから下方に延出された軸部(図示しない)とを有する。負極出力端子13の軸部が、絶縁体15の貫通孔151と負極リード8の貫通孔82に挿入されてかしめ固定される、つまり、負極出力端子13は蓋9にかしめ固定され、さらに負極リード8にもかしめ固定される。こうして、負極リード8が負極出力端子13と電気的に接続される。 On the inner surface (lower surface) of the lid 9, the negative electrode lead 8 is disposed via the insulator 15, and the positive electrode lead 7 is disposed via the insulator 14. Anode lead 8 includes a connecting plate 81, and the connecting plate 8 through hole 82 which is open to 1, and a collector portion 8 3 extending downward from the connecting plate 81. Insulator 15 is made of a rectangular plate having a through-hole 15 1 is opened. The negative electrode output terminal 13 is a rivet and has a head portion 13 a disposed on the lid 9 and a shaft portion (not shown) extending downward from the head portion 13 a. Shaft portion of the negative output terminal 13 is inserted into the through hole 82 of the through-hole 15 1 and the negative electrode lead 8 of the insulator 15 is caulked and fixed, that is, the negative output terminal 13 is caulked to the cover 9, further It is also caulked and fixed to the negative electrode lead 8. Thus, the negative electrode lead 8 is electrically connected to the negative electrode output terminal 13.

正極リード7は、接続プレート71と、接続プレート71に開口された貫通孔72と、接続プレート71から下方に延びた集電部73とを有する。絶縁体14は、貫通孔141が開口された矩形プレートからなる。正極出力端子12は、リベットで、蓋9上に配置された頭部12aと、頭部12aから下方に延出された軸部(図示しない)とを有する。正極出力端子12の軸部が、絶縁体14の貫通孔141と正極リード7の貫通孔72に挿入されてかしめ固定される、つまり、正極出力端子12は蓋9にかしめ固定され、さらに正極リード7にもかしめ固定される。こうして、正極リード7が正極出力端子12と電気的に接続される。 The positive electrode lead 7 has a connecting plate 71, the through hole 7 2 opened in connecting plate 71, and a collector portion 7 3 extending downward from the connecting plate 71. Insulator 14 is made of a rectangular plate having a through-hole 14 1 is opened. The positive electrode output terminal 12 is a rivet, and has a head portion 12a disposed on the lid 9, and a shaft portion (not shown) extending downward from the head portion 12a. The shaft portion of the positive electrode output terminal 12 is inserted into the through hole 14 1 of the insulator 14 and the through hole 7 2 of the positive electrode lead 7 and fixed by caulking, that is, the positive electrode output terminal 12 is caulked and fixed to the lid 9. It is also caulked and fixed to the positive electrode lead 7. Thus, the positive electrode lead 7 is electrically connected to the positive electrode output terminal 12.

負極出力端子13および負極リード8の材質は、活物質の材質に合わせて変更することができる。例えば負極活物質としてチタン酸リチウムが用いられる場合には、アルミニウムもしくはアルミニウム合金を使用することができる。一方、正極出力端子12および正極リード7は、例えば、アルミニウムあるいはアルミニウム合金を使用することができる。   The material of the negative electrode output terminal 13 and the negative electrode lead 8 can be changed according to the material of the active material. For example, when lithium titanate is used as the negative electrode active material, aluminum or an aluminum alloy can be used. On the other hand, for example, aluminum or an aluminum alloy can be used for the positive electrode output terminal 12 and the positive electrode lead 7.

負極リード8は、負極集電タブ4と接続される。具体的には、負極リード8の集電部83は、図4に示すように、かしめにより負極集電タブ4に固定された挟持板6と、超音波により接合される。超音波による接合部は、参照符号20として図中に示されている。負極集電タブ4を挟んだ挟持板6と負極リードの集電部83とは、例えば、図5に示されるようにアンビル21とホーン22とを用いて超音波により接合することができる。これにより、負極集電タブ4が、負極の挟持板6および負極リード8を介して負極出力端子13と電気的に接続される。なお、超音波による接合部20の所望される寸法や位置などに応じて、アンビルおよびホーンは適切に選択すればよい。 The negative electrode lead 8 is connected to the negative electrode current collecting tab 4. Specifically, the collector portions 8 3 of the negative electrode lead 8, as shown in FIG. 4, a holding plate 6 which is fixed to the negative electrode current collector tab 4 by crimping, it is joined by ultrasonic. An ultrasonic joint is shown in the figure as reference numeral 20. The collector portions 8 3 of the negative electrode current collector holding plate 6 and the negative electrode lead across the tabs 4, for example, can be bonded by ultrasonic using the anvil 21 and the horn 22 as shown in FIG. As a result, the negative electrode current collecting tab 4 is electrically connected to the negative electrode output terminal 13 via the negative electrode holding plate 6 and the negative electrode lead 8. In addition, what is necessary is just to select an anvil and a horn suitably according to the dimension, position, etc. of the junction part 20 by an ultrasonic wave.

すでに説明したように、集電タブ4と挟持板6とはかしめにより固定されているので、リード8を超音波により接合する際に振動を受けても、位置ずれが生じることは避けられる。   As already described, since the current collecting tab 4 and the sandwiching plate 6 are fixed by caulking, even if the lead 8 is subjected to vibration when it is joined by ultrasonic waves, it is possible to avoid positional deviation.

正極の挟持板5も同様に、正極リード7の集電部73に超音波により接合されることが好ましい。これにより、正極集電タブ3が、正極の挟持板5および正極リード7を介して正極出力端子12と電気的に接続される。 Similarly clamping plate 5 of the positive electrode are preferably joined by ultrasonic waves to the collector portion 7 3 of the positive electrode lead 7. Thereby, the positive electrode current collecting tab 3 is electrically connected to the positive electrode output terminal 12 through the positive electrode holding plate 5 and the positive electrode lead 7.

また、前述した図では、正極出力端子および負極出力端子をいずれもリベットとしたが、負極出力端子のみをリベットとし、蓋9の外面に凸状に張り出した部分により正極出力端子を構成してもよい。あるいは、正極出力端子のみをリベットとして、蓋9の外面に凸状に張り出した部分を負極出力端子とすることもできる。   Further, in the above-described drawings, both the positive output terminal and the negative output terminal are rivets, but only the negative output terminal is a rivet, and the positive output terminal may be constituted by a portion protruding in a convex shape on the outer surface of the lid 9. Good. Alternatively, only the positive electrode output terminal can be used as a rivet, and the portion protruding from the outer surface of the lid 9 can be used as a negative electrode output terminal.

挟持板とリードとの接続の形態は、種々の変更が可能である。例えば、図6に示されるように、リード8の集電部83と挟持板6との超音波による接合部20を2箇所に設けてもよい。この場合には、かしめによる接続部17を間にして、2箇所の超音波による接合部20が挟持板6の長手方向に沿って配置される。図4の例と比較すると、挟持板の幅、すなわち集電タブの幅を小さくできるので、電極群の幅をより広く確保できるといった利点がある。 Various changes can be made to the form of connection between the holding plate and the lead. For example, as shown in FIG. 6 may be provided a current collecting portion 8 3 and the joint portion 20 by ultrasonic and holding plate 6 of the lead 8 in two places. In this case, the joint portions 20 by two ultrasonic waves are arranged along the longitudinal direction of the sandwiching plate 6 with the connection portion 17 by caulking in between. Compared with the example of FIG. 4, the width of the sandwiching plate, that is, the width of the current collecting tab can be reduced, so that there is an advantage that a wider width of the electrode group can be secured.

また、挟持板と集電タブとをかしめにより固定する接続部17が、2箇所以上に設けられた場合には、これらの固定はより確実なものとなる。かしめによる接続部17の位置は、図7に示すような挟持板6の長辺の両端、あるいは、図8に示すような挟持板6の短辺の両端のいずれとしてもよい。図示していないが、挟持板6の対角線上の2箇所に、かしめによる接続部17を設けることもでき、超音波による接合部20と組み合わせて種々の変更が可能である。   Moreover, when the connection part 17 which fixes a clamping board and a current collection tab by caulking is provided in two or more places, these fixation will become more reliable. The position of the connecting portion 17 by caulking may be either the both ends of the long side of the sandwiching plate 6 as shown in FIG. 7 or the both ends of the short side of the sandwiching plate 6 as shown in FIG. Although not shown, the connecting portions 17 by caulking can be provided at two locations on the diagonal line of the sandwiching plate 6, and various modifications can be made in combination with the ultrasonic bonded portions 20.

なお、かしめによる接続部および超音波による接合部は、いずれも、複数枚の集電タブを一つに束ねたもの毎に数える。一つに束ねられた複数枚の集電タブと挟持板とは、少なくとも1箇所のかしめにより固定され、こうした挟持板とリードとは、少なくとも1箇所の超音波により接合される。   In addition, both the connection part by caulking and the junction part by ultrasonic waves are counted for each of a plurality of current collecting tabs bundled together. The plurality of current collecting tabs and the sandwiching plate that are bundled together are fixed by caulking at at least one location, and the sandwiching plate and the lead are joined by at least one ultrasound.

以下、他の実施形態にかかる種々の構成の非水電解質電池を示すが、いずれにおいても、上述したような挟持板における接続形態の変更は適用することができる。   Hereinafter, non-aqueous electrolyte batteries having various configurations according to other embodiments will be described. In any case, the above-described change in the connection form of the sandwiching plate can be applied.

図9に示す非水電解質電池は、集電タブ、挟持板、およびこれに接続されるリードの構造が異なる以外は、図1に示したものと同様の構成である。具体的には、正極集電タブ3aおよび負極集電タブ4aは、それぞれ二つに分けられて挟持板5aおよび挟持板6aで挟まれている。ここで用いられる挟持板5a,6aは、それぞれ二箇所のU字状部分を有している。各集電タブにおいては、挟持板により束ねられた箇所がニ箇所となるので、これに対応して、正極リード7aの集電部73および負極リード8aの集電部83も二又で構成される。 The nonaqueous electrolyte battery shown in FIG. 9 has the same configuration as that shown in FIG. 1 except that the structure of the current collecting tab, the sandwiching plate, and the leads connected thereto is different. Specifically, the positive electrode current collecting tab 3a and the negative electrode current collecting tab 4a are divided into two parts and sandwiched between the sandwiching plate 5a and the sandwiching plate 6a. The clamping plates 5a and 6a used here each have two U-shaped portions. In each current collecting tab, the places bundled by the sandwiching plate are two places. Correspondingly, the current collecting part 7 3 of the positive electrode lead 7a and the current collecting part 8 3 of the negative electrode lead 8a are also bifurcated. Composed.

挟持板と集電タブとの固定にあたっては、例えば図10に示されるように、集電タブ4aの厚みを二分して挟持板6aで挟んで台座24を配置し、かしめ用ポンチ25を用いてかしめする。   When the clamping plate and the current collecting tab are fixed, for example, as shown in FIG. 10, the thickness of the current collecting tab 4 a is divided into two and the pedestal 24 is arranged between the clamping plates 6 a, and the caulking punch 25 is used. Caulking.

かしめによって負極集電タブ4aに固定された挟持板6aは、超音波によりリード8aの集電部83と接合される。超音波による接合は、例えば図11に示すように、アンビル26とホーン27とを用いて行なうことができる。 Holding plate 6a fixed to the negative electrode current collector tab 4a by caulking is joined to the current collecting portion 8 third lead 8a ultrasonically. Ultrasonic bonding can be performed using an anvil 26 and a horn 27 as shown in FIG.

集電タブが二つに分けて挟持板で挟まれるので、束ねられる集電タブの積層枚数が低減される。こうした状態でかしめが行なわれることにより、挟持板と集電タブとの固定を、より確実なものとすることができる。   Since the current collecting tabs are divided into two parts and sandwiched between the holding plates, the number of stacked current collecting tabs is reduced. By caulking in such a state, the clamping plate and the current collecting tab can be more securely fixed.

図12に示す非水電解質電池は、シート状の正極とシート状の負極とをセパレータを間に挟んで交互に積層することにより作製された電極群2bを有する。複数の正極集電タブ3bは、正極の複数個所と電気的に接続されており、それぞれが積層型電極面の一方の側面から横向きに導出されている。複数の負極静電タブ4bは、負極の複数個所と電気的に接続されており、それぞれが積層型電極の対向する他方の側面から横向きに導出されている。   The nonaqueous electrolyte battery shown in FIG. 12 has an electrode group 2b produced by alternately laminating a sheet-like positive electrode and a sheet-like negative electrode with a separator in between. The plurality of positive electrode current collecting tabs 3b are electrically connected to a plurality of positions of the positive electrode, and each is led out from one side surface of the stacked electrode surface in a lateral direction. The plurality of negative electrode electrostatic tabs 4b are electrically connected to a plurality of locations of the negative electrode, and each is led out laterally from the other side surface of the stacked electrode.

正極集電タブ3bとしては、例えば正極の集電体を部分的に延出されたものを使用することができるが、正極と別体であってもよい。また、負極集電タブ4bとしては、例えば、負極の集電体を部分的に延出されたものを用いることができるが、負極と別体であってもよい。   As the positive electrode current collecting tab 3b, for example, a positive electrode current collector partially extended can be used, but may be separate from the positive electrode. Moreover, as the negative electrode current collection tab 4b, for example, a negative electrode current collector partially extended can be used, but may be separate from the negative electrode.

積層型電極群2bであるので、挟持板6bは、負極集電タブ4bの幅全体を挟むことができる。正極集電タブ3bについても、その幅全体が挟持板5bで挟まれる。   Since it is the laminated electrode group 2b, the sandwiching plate 6b can sandwich the entire width of the negative electrode current collecting tab 4b. The entire width of the positive electrode current collecting tab 3b is also sandwiched between the clamping plates 5b.

こうした点が異なる以外は、図示する電池は図1に示した非水電解質電池と同様の構成であり、集電タブと挟持板とは同様にかしめされる。また、集電タブと挟持板とリードとは、前述と同様に超音波により接合される。   Except for these differences, the illustrated battery has the same configuration as the nonaqueous electrolyte battery shown in FIG. 1, and the current collecting tab and the sandwiching plate are caulked in the same manner. Further, the current collecting tab, the sandwiching plate, and the lead are joined by ultrasonic waves as described above.

以上においては、電極群の両側から複数の集電タブがそれぞれ引き出された両出し型の非水電解質電池の例を示した。こうした構成の電池は、容器内に収容する際の位置ずれの影響が特に大きい。本発明においては、複数の集電タブの少なくとも一方を挟持板で挟んでかしめにより固定し、超音波により挟持板とリードとが接合されるので、位置ずれを大幅に低減することが可能となった。その結果、高エネルギー密度の非水電解質電池を提供することができる。   In the above, an example of a double-sided nonaqueous electrolyte battery in which a plurality of current collecting tabs are drawn from both sides of the electrode group has been shown. The battery having such a configuration is particularly affected by a positional shift when accommodated in a container. In the present invention, since at least one of the plurality of current collecting tabs is sandwiched and fixed by caulking and the sandwiching plate and the lead are joined by ultrasonic waves, it is possible to greatly reduce the positional deviation. It was. As a result, a high energy density non-aqueous electrolyte battery can be provided.

両出し型のみならず、複数の集電タブが電極群の一方の側から引き出された片出し型の非水電解質電池にも本発明は有効である。   The present invention is effective not only for the double-sided type but also for a single-sided nonaqueous electrolyte battery in which a plurality of current collecting tabs are drawn from one side of the electrode group.

図13は、捲回片出し型の非水電解質電池の例であり、容器31内に電極群32が収容される。電極群32は、シート状の正極と、シート状の負極とをセパレータを間にして渦巻状に捲回した後、全体を容器の横断面形状に合致した断面四角形状に押し潰し変形することにより作製される。   FIG. 13 is an example of a wound piece-out nonaqueous electrolyte battery, and an electrode group 32 is accommodated in a container 31. The electrode group 32 is formed by winding a sheet-like positive electrode and a sheet-like negative electrode in a spiral shape with a separator in between, and then crushing and deforming the whole into a quadrangular cross-sectional shape that matches the cross-sectional shape of the container. Produced.

複数の正極集電タブ34は、正極の複数個所と電気的に接続されており、それぞれが電極群32の上端面32aから上向きに導出されている。一方、複数の負極集電タブ35は、負極の複数個所と電気的に接続されており、それぞれが電極群32の上端面32aから上向きに導出されている。   The plurality of positive electrode current collecting tabs 34 are electrically connected to a plurality of positions of the positive electrode, and are respectively led upward from the upper end surface 32 a of the electrode group 32. On the other hand, the plurality of negative electrode current collecting tabs 35 are electrically connected to a plurality of portions of the negative electrode, and each is led upward from the upper end surface 32 a of the electrode group 32.

正極集電タブ34としては、例えば正極の集電体を部分的に延出されたものを使用することができるが、正極と別体であってもよい。また、負極集電タブ35としては、例えば、負極の集電体を部分的に延出されたものを用いることができるが、負極と別体であってもよい。   As the positive electrode current collecting tab 34, for example, a positive electrode current collector partially extended can be used, but it may be separate from the positive electrode. Moreover, as the negative electrode current collection tab 35, for example, a negative electrode current collector partially extended can be used, but may be separate from the negative electrode.

正極集電タブ34および負極集電タブ35は、それぞれ挟持板36および挟持板37で挟まれ、上述したようにかしめされる。例えば図14に示すように、負極集電タブ35を挟んだ挟持板37は、かしめにより固定される。かしめによる接続部は、参照符号58として示されている。   The positive electrode current collecting tab 34 and the negative electrode current collecting tab 35 are sandwiched between the sandwiching plate 36 and the sandwiching plate 37, respectively, and are caulked as described above. For example, as shown in FIG. 14, the sandwiching plate 37 sandwiching the negative electrode current collecting tab 35 is fixed by caulking. The connection by caulking is shown as reference numeral 58.

容器31の開口部は、封口部材によって封止される。封口部材は、容器31の開口部を塞ぐ蓋38と、蓋38の外面(上面)にガスケット39を介して取り付けられた負極出力端子(リベット)40と、蓋38の外面(上面)側に凸状に張り出した正極出力端子43とを備える。図示していないが、蓋38には、電解液注入口および安全弁が設けられている。負極リード41は、上面と側面とを有するL字型であり、絶縁部材(図示しない)を介して蓋38の内面(下面)に配置される。負極リード41の上面は、負極出力端子40にかしめ固定されることにより、負極出力端子40と電気的に接続される。一方、正極リード42は、蓋38の内面(下面)に直接配置されることで正極出力端子43と電気的に接続される。なお、電解液注入孔(図示しない)より、電解液(図示しない)を注入後、封止栓(図示しない)で閉止される。この封止栓は、蓋38に溶接される。   The opening of the container 31 is sealed with a sealing member. The sealing member includes a lid 38 that closes the opening of the container 31, a negative output terminal (rivet) 40 that is attached to the outer surface (upper surface) of the lid 38 via a gasket 39, and a convex surface on the outer surface (upper surface) side of the lid 38. And a positive electrode output terminal 43 protruding in a shape. Although not shown, the lid 38 is provided with an electrolyte solution inlet and a safety valve. The negative electrode lead 41 is L-shaped having an upper surface and a side surface, and is disposed on the inner surface (lower surface) of the lid 38 via an insulating member (not shown). The upper surface of the negative electrode lead 41 is electrically connected to the negative electrode output terminal 40 by being caulked and fixed to the negative electrode output terminal 40. On the other hand, the positive electrode lead 42 is electrically connected to the positive electrode output terminal 43 by being disposed directly on the inner surface (lower surface) of the lid 38. The electrolyte solution (not shown) is injected from the electrolyte solution injection hole (not shown) and then closed with a sealing plug (not shown). This sealing plug is welded to the lid 38.

L字型の負極リード41は、負極集電タブ35と接続される。具体的には、負極リード41の側面は、図15に示すように、かしめによる接続部58によって負極集電タブ35に固定された挟持板37と、超音波により接合される。超音波による接合部は、参照符号59として示されている。   A negative electrode lead 41 of the L-shape, is connected to the negative electrode current collector tab 35. Specifically, as shown in FIG. 15, the side surface of the negative electrode lead 41 is joined by ultrasonic waves to a holding plate 37 fixed to the negative electrode current collecting tab 35 by a connecting portion 58 by caulking. The ultrasonic joint is shown as reference numeral 59.

さらに、蓋38の内面(下面)と電極群32の正極集電タブ34および負極集電タブ35が突出している上端面32aとの間に設けられる空間を囲むように、スペーサ51a,51bが配置される。スペーサ51aは、四角形のプレートの両方の短辺と、長辺方向の中間地点とに、仕切り板52a〜52cが設けられたものである。仕切り板52a〜52cの端面には、突起53が設けられている。   Furthermore, spacers 51a and 51b are arranged so as to surround a space provided between the inner surface (lower surface) of the lid 38 and the upper end surface 32a from which the positive electrode current collecting tab 34 and the negative electrode current collecting tab 35 of the electrode group 32 protrude. Is done. The spacer 51a is provided with partition plates 52a to 52c at both short sides of the rectangular plate and an intermediate point in the long side direction. Projections 53 are provided on the end surfaces of the partition plates 52a to 52c.

一方、スペーサ51bは、四角形のプレートの両方の短辺と、長辺方向の中間地点とに、仕切り板54a〜54cが設けられたものである。仕切り板54a〜54cの端面には、スペーサ51aの突起53を嵌め込むための凹部55が設けられている。スペーサ51aの仕切り板52a〜52cの突起53を、スペーサ51bの仕切り板54a〜54cの凹部55に嵌め込むと、スペーサ51aの仕切り板52a,52bとスペーサ51bの仕切り板54a,54bとで囲まれた空間内に正極集電タブ34と挟持板36と正極リード42とが位置し、スペーサ51aの仕切り板52b,52cとスペーサ51bの仕切り板54b,54cとで囲まれた空間内に負極集電タブ35と挟持板37と負極リード41とが位置する。これにより、正極集電タブ34と負極集電タブ35との絶縁、挟持板36と挟持板37との絶縁、正極リード42と負極リード41との絶縁、これら部材と容器31との絶縁が達成される。   On the other hand, the spacer 51b is provided with partition plates 54a to 54c at both short sides of the rectangular plate and an intermediate point in the long side direction. Concave portions 55 for fitting the protrusions 53 of the spacers 51a are provided on the end surfaces of the partition plates 54a to 54c. When the projections 53 of the partition plates 52a to 52c of the spacer 51a are fitted into the recesses 55 of the partition plates 54a to 54c of the spacer 51b, they are surrounded by the partition plates 52a and 52b of the spacer 51a and the partition plates 54a and 54b of the spacer 51b. The positive electrode current collecting tab 34, the clamping plate 36, and the positive electrode lead 42 are located in the space, and the negative electrode current collector is in a space surrounded by the partition plates 52b and 52c of the spacer 51a and the partition plates 54b and 54c of the spacer 51b. The tab 35, the clamping plate 37, and the negative electrode lead 41 are located. Thereby, the insulation between the positive electrode current collecting tab 34 and the negative electrode current collecting tab 35, the insulation between the holding plate 36 and the holding plate 37, the insulation between the positive electrode lead 42 and the negative electrode lead 41, and the insulation between these members and the container 31 are achieved. Is done.

また、こうしたスペーサ51a,51bは、電池に振動や衝撃が加わった際の電極群2の移動を防止することができる。さらに、電解液注入孔から注入された電解液が電極群32の上部に溜まるため、電極群32の上端面から電解液が浸透し易くなり、電極群32に電解液を均一に含浸させることができる。スペーサ51a,51bの4隅には、容器31と電極群32の空隙に電解液を浸透させるために穴56が設けられている。スペーサ51a,51bの材質としては、PP、PFAなどが挙げられる。   Further, the spacers 51a and 51b can prevent the electrode group 2 from moving when a vibration or impact is applied to the battery. Furthermore, since the electrolyte injected from the electrolyte injection hole accumulates in the upper part of the electrode group 32, the electrolyte easily penetrates from the upper end surface of the electrode group 32, and the electrode group 32 can be uniformly impregnated with the electrolyte. it can. Holes 56 are provided in the four corners of the spacers 51a and 51b to allow the electrolyte to penetrate into the gap between the container 31 and the electrode group 32. Examples of the material of the spacers 51a and 51b include PP and PFA.

上述した構成の非水電解質電池は、図16に示すような積層片出し型の構成に適用することもできる。図示する非水電解質電池は、シート状の正極とシート状の負極とをセパレータを挟んで交互に積層することにより作製された電極群33を有する。   The nonaqueous electrolyte battery having the above-described configuration can also be applied to a laminated piece-out configuration as shown in FIG. The nonaqueous electrolyte battery shown in the figure has an electrode group 33 produced by alternately laminating a sheet-like positive electrode and a sheet-like negative electrode with a separator interposed therebetween.

こうした点が異なる以外は、図示する電池は図13に示した非水電解質電池と同様の構成であり、集電タブと挟持板とは同様にかしめられる。また、集電タブと挟持板とリードとは、前述と同様に超音波により接合される。   Except for these differences, the illustrated battery has the same configuration as the nonaqueous electrolyte battery shown in FIG. 13, and the current collecting tab and the sandwiching plate are caulked in the same manner. Further, the current collecting tab, the sandwiching plate, and the lead are joined by ultrasonic waves as described above.

電極群の片側から複数の集電タブが引き出された非水電解質電池においても、容器内に収容する際の位置ずれは回避されることが望まれる。本発明においては、複数の集電タブの少なくとも一方を挟持板で挟んでかしめにより固定し、この挟持板とリードとが超音波により接合されるので、位置ずれを大幅に低減することが可能となった。その結果、高エネルギー密度の非水電解質電池を提供することができる。   Even in a non-aqueous electrolyte battery in which a plurality of current collecting tabs are drawn out from one side of the electrode group, it is desirable to avoid positional deviation when housed in a container. In the present invention, at least one of the plurality of current collecting tabs is sandwiched and fixed by caulking, and the sandwiching plate and the lead are joined by ultrasonic waves, so that the positional deviation can be greatly reduced. became. As a result, a high energy density non-aqueous electrolyte battery can be provided.

[実施例]
以下、実施例を示して本発明を詳細に説明する。
[Example]
Hereinafter, the present invention will be described in detail with reference to examples.

(実施例1)
正極には、リチウムコバルト酸化物(LiCoO2)と、導電剤として黒鉛粉末と、結着剤としてポリフッ化ビニリデン(PVdF)とを含む活物質含有層が、アルミニウムもしくはアルミニウム合金箔からなる集電体の両面に形成されたシート状のものを使用した。一方、負極には、リチウム金属の開回路電位に対して開回路電位0.4V以上のリチウム吸蔵電位を有する負極活物質粉末と導電剤として炭素粉末と結着剤としてポリフッ化ビニリデン(PVdF)とを含む活物質含有層が、アルミニウムもしくはアルミニウム合金箔からなる集電体の両面に形成されたシート状のものを使用した。
Example 1
The positive electrode has a current collector in which an active material-containing layer containing lithium cobalt oxide (LiCoO 2 ), graphite powder as a conductive agent, and polyvinylidene fluoride (PVdF) as a binder is made of aluminum or an aluminum alloy foil The sheet-like thing formed in both surfaces was used. On the other hand, the negative electrode includes a negative electrode active material powder having a lithium occlusion potential of 0.4 V or more with respect to the open circuit potential of lithium metal, carbon powder as a conductive agent, and polyvinylidene fluoride (PVdF) as a binder. The sheet-like thing in which the active material content layer containing this was formed on both surfaces of the electrical power collector which consists of aluminum or aluminum alloy foil was used.

電極群2は、正極と負極との間にセパレータを介在させながら、これらを渦巻状に捲回した後、全体を金属製容器1の断面形状に合致した断面四角形状に押し潰し変形することにより作製された図1に示した構造を有するものを使用した。   The electrode group 2 is obtained by winding the separator between a positive electrode and a negative electrode in a spiral shape and then crushing and deforming the whole into a quadrangular cross section that matches the cross sectional shape of the metal container 1. A manufactured product having the structure shown in FIG. 1 was used.

正極集電タブ3には、正極集電体を渦巻状に延出させたものを使用した。また、負極集電タブ4には、負極集電体を渦巻状に延出させたものを使用した。図1に示すように、正極集電タブ3および負極集電タブ4それぞれについて、所定枚数で積層して集電タブの先端部を重ね合わせ、集電タブを挟み込むように挟持板5および6を配置した。   As the positive electrode current collecting tab 3, a positive electrode current collector extended in a spiral shape was used. Moreover, the negative electrode current collection tab 4 used what the negative electrode current collector extended in the spiral shape. As shown in FIG. 1, for each of the positive electrode current collecting tab 3 and the negative electrode current collecting tab 4, a predetermined number of sheets are stacked, the leading ends of the current collecting tabs are overlapped, and the sandwiching plates 5 and 6 are sandwiched between the current collecting tabs. Arranged.

図3に示したように、挟持板の下側にブロック状の台座を配置した状態で、挟持板の上からポンチを使ってかしめを施した。かしめ後の集電タブおよび挟持板とリードとを超音波により接合した。   As shown in FIG. 3, caulking was performed from above the sandwiching plate using a punch in a state where a block-like pedestal was disposed below the sandwiching plate. The current collecting tab and the clamping plate after crimping and the lead were joined by ultrasonic waves.

超音波による接合には、日本エマソン株式会社製の超音波溶接機を使った。超音波溶接機のホーンの先端角度は90°とし、ホーンのパターン深さは、集電タブ群と挟持板の厚さと同等とした。こうして得られた電池を実施例1とした。実施例1の電池における集電タブと挟持板とリードとの接続の状態は、図6に示されるものとした。   For ultrasonic bonding, an ultrasonic welding machine manufactured by Nippon Emerson Co., Ltd. was used. The tip angle of the horn of the ultrasonic welder was 90 °, and the pattern depth of the horn was equal to the thickness of the current collecting tab group and the sandwiching plate. The battery thus obtained was referred to as Example 1. The connection state of the current collecting tab, the sandwiching plate, and the lead in the battery of Example 1 was as shown in FIG.

また、挟持板を固定するかしめの数、または挟持板で挟まれる集電タブの積層枚数を変更して、実施例2,3の電池を作製した。実施例2の電池は、2箇所にかしめを行なって集電タブと挟持板とを固定し、集電タブと挟持板とリードとを図7に示すように接続した以外は実施例1と同様に作製した。実施例3の電池は、集電タブの積層枚数を増加した以外は実施例1と同様に作製した。   In addition, the batteries of Examples 2 and 3 were manufactured by changing the number of crimps to fix the sandwiching plates or the number of stacked current collecting tabs sandwiched by the sandwiching plates. The battery of Example 2 is the same as Example 1 except that the current collecting tab and the holding plate are fixed by caulking in two places, and the current collecting tab, the holding plate, and the lead are connected as shown in FIG. It was prepared. The battery of Example 3 was produced in the same manner as Example 1 except that the number of stacked current collecting tabs was increased.

さらに、集電タブと挟持板とのかしめを行なわないで比較例1,2の電池を作製した。比較例においては、超音波による接合時に挟持板の位置ずれが発生して、電極群を容器内に挿入できないため、予め位置ズレ量を見込んだ電極群の寸法とした。よって実施例と比較例に使用した容器は同じサイズであるが、電極群の寸法が異なる。   Furthermore, the batteries of Comparative Examples 1 and 2 were produced without caulking the current collecting tab and the sandwiching plate. In the comparative example, since the positional displacement of the clamping plate occurred during joining by ultrasonic waves and the electrode group could not be inserted into the container, the dimensions of the electrode group were estimated in advance with the amount of displacement. Therefore, although the container used for the Example and the comparative example is the same size, the dimension of an electrode group differs.

比較例1のエネルギー密度を100%とし、実施例1〜3、および比較例2の電池のエネルギー密度を相対値として求めた。それぞれの電池の体積エネルギー密度を、挟持板で挟まれる集電タブ積層枚数、および挟持板を固定するかしめの数とともに、下記表1にまとめる。

Figure 2011049065
The energy density of Comparative Example 1 was set to 100%, and the energy densities of the batteries of Examples 1 to 3 and Comparative Example 2 were determined as relative values. The volume energy density of each battery is summarized in Table 1 below together with the number of stacked current collecting tabs sandwiched between the sandwiching plates and the number of caulkings that secure the sandwiching plates.
Figure 2011049065

比較例1の電池と比較すると、実施例1、2の電池は、体積エネルギー密度が5%向上している。挟持板で挟まれる集電タブの積層枚数が増えた場合でも、集電タブと挟持板とのかしめが行なわれていれば、実施例3に示されるように同等の体積エネルギー密度を得ることができる。   Compared with the battery of Comparative Example 1, the batteries of Examples 1 and 2 have a volume energy density improved by 5%. Even when the number of stacked current collecting tabs sandwiched between the sandwiching plates is increased, if the current collecting tabs and the sandwiching plates are caulked, an equivalent volume energy density can be obtained as shown in the third embodiment. it can.

これに対して、かしめが行なわれない場合には、集電タブの積層枚数が増加すると超音波接合時の位置ズレも大きくなる。同等の寸法の容器内に収容するには、電極群の寸法を縮小しなければならない。そのため、体積エネルギー密度が低下することが、比較例2の結果に示されている。   On the other hand, when caulking is not performed, the positional deviation during ultrasonic bonding increases as the number of stacked current collecting tabs increases. In order to be accommodated in a container having an equivalent size, the size of the electrode group must be reduced. Therefore, it is shown in the result of Comparative Example 2 that the volume energy density decreases.

すなわち、集電タブと挟持板とをかしめにより固定することによって、これらは仮止めされるので超音波接合時の位置ズレが軽減され、歩留まりを低下させることがない。しかも、容器に対して無駄のない適切な寸法で電極群を作製することができ、エネルギー密度の高いリチウムイオン二次電池が得られる。   That is, by fixing the current collecting tab and the sandwiching plate by caulking, these are temporarily fixed, so that the positional deviation at the time of ultrasonic bonding is reduced and the yield is not reduced. In addition, the electrode group can be produced with appropriate dimensions without waste with respect to the container, and a lithium ion secondary battery with high energy density can be obtained.

次に、積層型の電池を作製した。具体的には、実施例1の場合と同様の正極と負極とセパレータとを用い、正極と負極とをその間にセパレータを介在させながら交互に積層することにより積層型電極群を作製した。   Next, a stacked battery was produced. Specifically, the same positive electrode, negative electrode, and separator as in Example 1 were used, and the positive electrode and the negative electrode were alternately laminated with a separator interposed therebetween, to produce a laminated electrode group.

正極集電タブには、正極集電体を帯状に延出させたものを使用した。また、負極集電タブには、負極集電体を帯状に延出させたものを使用した。図12に示したように、正極集電タブ3bおよび負極集電タブ4bそれぞれについて、所定枚数で積層して集電タブの先端部を重ね合わせ、集電タブを挟み込むように挟持板5bおよび6bを配置した。   As the positive electrode current collector tab, a positive electrode current collector extended in a strip shape was used. Moreover, what extended the negative electrode collector to the strip | belt shape was used for the negative electrode current collection tab. As shown in FIG. 12, for each of the positive electrode current collecting tab 3b and the negative electrode current collecting tab 4b, sandwiching plates 5b and 6b are stacked so that a predetermined number of sheets are stacked and the tips of the current collecting tabs are overlapped to sandwich the current collecting tabs. Arranged.

前述と同様の手法により、集電タブと挟持板とをかしめにより固定し、次いで、集電タブおよび挟持板とリードとを超音波により接合した。こうして得られた電池を実施例4とした。   In the same manner as described above, the current collecting tab and the sandwiching plate were fixed by caulking, and then the current collecting tab and the sandwiching plate and the lead were joined by ultrasonic waves. The battery thus obtained was referred to as Example 4.

また、挟持板を固定するかしめの数、または挟持板で挟まれる集電タブの積層枚数を変更した以外は前述と同様の手法により、実施例5,6の電池を作製した。実施例5の電池は、2箇所にかしめを行なって集電タブと挟持板とを固定し、集電タブと挟持板とリードとを図15に示すように接続した。なお、実施例4,6では、図15におけるかしめによる接続部58を1箇所のみとした。   In addition, batteries of Examples 5 and 6 were fabricated by the same method as described above, except that the number of crimps to fix the sandwiching plates or the number of stacked current collecting tabs sandwiched by the sandwiching plates was changed. The battery of Example 5 was caulked at two locations to fix the current collecting tab and the sandwiching plate, and the current collecting tab, the sandwiching plate, and the lead were connected as shown in FIG. In Examples 4 and 6, the connecting portion 58 by caulking in FIG.

さらに、集電タブと挟持板とのかしめを行なわないで比較例3,4の電池を作製した。比較例においては、超音波による接合時に挟持板の位置ずれが発生して、電極群を容器内に挿入できないため、予め位置ズレ量を見込んだ電極群の寸法とした。よって実施例と比較例に使用した容器は同じサイズであるが、電極群の寸法が異なる。   Further, the batteries of Comparative Examples 3 and 4 were produced without caulking the current collecting tab and the sandwiching plate. In the comparative example, since the positional displacement of the clamping plate occurred during joining by ultrasonic waves and the electrode group could not be inserted into the container, the dimensions of the electrode group were estimated in advance with the amount of displacement. Therefore, although the container used for the Example and the comparative example is the same size, the dimension of an electrode group differs.

比較例3のエネルギー密度を100%とし、実施例4〜6、および比較例4の電池のエネルギー密度を相対値として求めた。それぞれの電池の体積エネルギー密度を、挟持板で挟まれる集電タブ積層枚数、および挟持板を固定するかしめの数とともに、下記表2にまとめる。

Figure 2011049065
The energy density of Comparative Example 3 was set to 100%, and the energy densities of the batteries of Examples 4 to 6 and Comparative Example 4 were determined as relative values. The volume energy density of each battery is summarized in Table 2 below together with the number of stacked current collecting tabs sandwiched between the sandwiching plates and the number of caulks that secure the sandwiching plates.
Figure 2011049065

比較例3の電池と比較すると、実施例4、5の電池は、体積エネルギー密度が5%向上している。挟持板で挟まれる集電タブの積層枚数が増えた場合でも、集電タブと挟持板とのかしめが行なわれていれば、実施例6に示されるように同等の体積エネルギー密度が得ることができる。   Compared with the battery of Comparative Example 3, the batteries of Examples 4 and 5 have a volume energy density improved by 5%. Even when the number of stacked current collecting tabs sandwiched between the clamping plates is increased, an equivalent volume energy density can be obtained as shown in Example 6 if the current collecting tabs and the clamping plates are caulked. it can.

これに対して、かしめが行なわれない場合には、集電タブの積層枚数が増加すると超音波接合時の位置ズレも大きくなる。同等の寸法の容器内に収容するには、電極群の寸法を縮小しなければならない。そのため、体積エネルギー密度が低下することが、比較例4の結果に示されている。   On the other hand, when caulking is not performed, the positional deviation during ultrasonic bonding increases as the number of stacked current collecting tabs increases. In order to be accommodated in a container having an equivalent size, the size of the electrode group must be reduced. Therefore, it is shown in the result of Comparative Example 4 that the volume energy density decreases.

すなわち、集電タブと挟持板とをかしめにより固定することによって、これらは仮止めされるので超音波接合時の位置ズレが軽減され、歩留まりを低下させることがない。しかも、容器に対して無駄のない適切な寸法で電極群を作製することができ、エネルギー密度の高いリチウムイオン二次電池が得られる。   That is, by fixing the current collecting tab and the sandwiching plate by caulking, these are temporarily fixed, so that the positional deviation at the time of ultrasonic bonding is reduced and the yield is not reduced. In addition, the electrode group can be produced with appropriate dimensions without waste with respect to the container, and a lithium ion secondary battery with high energy density can be obtained.

前述した実施例では非水電解液を用いた電池を例えに説明したが、非水電解液の代わりに固体電解質やポリマー電解質、または水溶液電解質を用いた電池についても当然適応可能である。さらに正負極活物質に関してもこの限りでなく、他の活物質を用いることができる。   In the above-described embodiments, a battery using a non-aqueous electrolyte is described as an example. However, a battery using a solid electrolyte, a polymer electrolyte, or an aqueous electrolyte instead of the non-aqueous electrolyte can be naturally applied. Furthermore, the positive and negative electrode active materials are not limited to this, and other active materials can be used.

なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.

1…容器; 2,2b…電極群; 3,3a,3b…正極集電タブ
4,4a,4b…負極集電タブ; 5,5a,5b…挟持板
6,6a,6b…挟持板; 7,7a…正極リード; 8,8a…負極リード
1,81…接続プレート; 72,82…貫通孔; 73,83…集電部; 9…蓋
10…ガスケット; 11…ガスケット; 12…正極出力端子
13…負極出力端子; 14,15…絶縁体;141,151…貫通孔
17…かしめによる接続部; 18,24…台座; 19,25…かしめ用ポンチ
20…超音波による接合部; 21,26…アンビル; 22,27…ホーン
31…容器; 32,33…電極群; 32a,33a…上端面
34…正極集電タブ; 35…負極集電タブ; 36,37…挟持板; 38…蓋
39…ガスケット; 40…負極出力端子; 41…負極リード; 42…正極リード
43…正極出力端子; 51a,51b…スペーサ; 52a〜52c…仕切り板
53…突起; 54a〜54c…仕切り板; 55…凹部; 56…穴
58…かしめによる接続部; 59…超音波による接合部。
DESCRIPTION OF SYMBOLS 1 ... Container; 2, 2b ... Electrode group; 3, 3a, 3b ... Positive electrode current collection tab 4, 4a, 4b ... Negative electrode current collection tab; 5, 5a, 5b ... Nipping plate 6, 6a, 6b ... Nipping plate; , 7a ... positive electrode lead; 8, 8a ... negative electrode lead 7 1 , 8 1 ... connection plate; 7 2 , 8 2 ... through hole; 7 3 , 8 3 ... current collector; 9 ... lid 10 ... gasket; 12 ... Positive electrode output terminal 13 ... Negative electrode output terminal; 14, 15 ... Insulator; 14 1 , 15 1 ... Through hole 17 ... Connection part by caulking; 18, 24 ... Base; 19, 25 ... Punch for caulking 20 ... Over 21, 26 ... anvil; 22, 27 ... horn 31 ... container; 32, 33 ... electrode group; 32a, 33a ... upper end surface 34 ... positive current collecting tab; 35 ... negative current collecting tab; ... sandwiching plate; 38 ... lid 39 ... gasket; 40 ... negative 41 ... Negative electrode lead; 42 ... Positive electrode lead 43 ... Positive electrode output terminal; 51a, 51b ... Spacer; 52a-52c ... Partition plate 53 ... Projection; 54a-54c ... Partition plate; 55 ... Recessed portion; 56 ... Hole 58 ... Connection part by caulking; 59 ... Joint part by ultrasonic waves.

Claims (3)

容器と、
前記容器内に収納され、正極および負極を含む電極群と、
前記電極群の前記正極および負極それぞれから延出された複数の正極集電タブおよび複数の負極集電タブと、
前記複数の正極集電タブおよび負極集電タブとそれぞれ電気的に接続された正極リードおよび負極リードと、
前記容器の開口部を塞ぐ蓋と、
前記蓋に設けられ、前記正極リードまたは負極リードと電気的に接続された出力端子と
を備える非水電解質電池であって、
前記複数の正極集電タブおよび前記複数の負極集電タブの少なくとも一方の集電タブは挟持板に挟まれ、
前記挟持板は、前記少なくとも一方の集電タブを挟んで1箇所以上のかしめで固定され、
前記リードと前記挟持板と前記少なくとも一方の集電タブとは、1箇所以上の超音波接合により形成されていることを特徴とする非水電解質電池。
A container,
An electrode group housed in the container and including a positive electrode and a negative electrode;
A plurality of positive current collecting tabs and a plurality of negative current collecting tabs extending from the positive electrode and the negative electrode of the electrode group, and
A positive electrode lead and a negative electrode lead electrically connected to the plurality of positive electrode current collecting tabs and negative electrode current collecting tabs, respectively;
A lid that closes the opening of the container;
A non-aqueous electrolyte battery comprising an output terminal provided on the lid and electrically connected to the positive electrode lead or the negative electrode lead,
At least one current collecting tab of the plurality of positive electrode current collecting tabs and the plurality of negative electrode current collecting tabs is sandwiched between sandwiching plates,
The clamping plate is fixed with one or more crimps across the at least one current collecting tab,
The non-aqueous electrolyte battery, wherein the lead, the sandwiching plate, and the at least one current collecting tab are formed by ultrasonic bonding at one or more locations.
前記複数の正極集電タブおよび前記複数の負極集電タブは、いずれも挟持板で挟まれていることを特徴とする請求項1に記載の非水電解質電池。   2. The nonaqueous electrolyte battery according to claim 1, wherein each of the plurality of positive electrode current collecting tabs and the plurality of negative electrode current collecting tabs is sandwiched between sandwiching plates. 請求項1または2に記載の非水電解質電池の製造方法であって、前記少なくとも一方の集電タブを挟んだ挟持板をかしめにより固定した後、前記リードと前記少なくとも一方の集電タブを挟んだ狭持板とを超音波接合することを特徴とする方法。   3. The method of manufacturing a non-aqueous electrolyte battery according to claim 1, wherein a clamping plate sandwiching the at least one current collecting tab is fixed by caulking, and then the lead and the at least one current collecting tab are sandwiched. A method characterized by ultrasonically joining a holding plate.
JP2009197192A 2009-08-27 2009-08-27 Nonaqueous electrolyte battery and method of manufacturing the same Pending JP2011049065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009197192A JP2011049065A (en) 2009-08-27 2009-08-27 Nonaqueous electrolyte battery and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009197192A JP2011049065A (en) 2009-08-27 2009-08-27 Nonaqueous electrolyte battery and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2011049065A true JP2011049065A (en) 2011-03-10

Family

ID=43835199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009197192A Pending JP2011049065A (en) 2009-08-27 2009-08-27 Nonaqueous electrolyte battery and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2011049065A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120037402A (en) * 2009-06-17 2012-04-19 가부시키가이샤 지에스 유아사 Battery and method for producing battery
JP2013101977A (en) * 2013-02-26 2013-05-23 Toshiba Corp Battery and ultrasonic bonding method of battery
JP2013105671A (en) * 2011-11-15 2013-05-30 Toyota Industries Corp Secondary battery, vehicle, and method for manufacturing secondary battery
WO2013125271A1 (en) * 2012-02-22 2013-08-29 株式会社Gsユアサ Electrical storage element
JP2013251123A (en) * 2012-05-31 2013-12-12 Hitachi Vehicle Energy Ltd Square secondary battery
JP2014035935A (en) * 2012-08-09 2014-02-24 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
WO2015115494A1 (en) 2014-01-29 2015-08-06 株式会社 東芝 Secondary battery and secondary battery production method
JP2016514354A (en) * 2013-07-29 2016-05-19 ジョーダン グリーン テクノロジー (ディージー) カンパニー リミテッドJordan Green Technology (Dg) Co., Ltd. Electrode plate, method of forming electrode plate, and method of forming lithium battery core including electrode plate
JP2016178091A (en) * 2016-06-06 2016-10-06 三洋電機株式会社 Nonaqueous electrolyte secondary battery manufacturing method
US9601734B2 (en) 2013-03-14 2017-03-21 Kabushiki Kaisha Toshiba Battery
US9673440B2 (en) 2013-03-14 2017-06-06 Kabushiki Kaisha Toshiba Battery including current collector tabs
JP2017157372A (en) * 2016-03-01 2017-09-07 株式会社東芝 Secondary battery, battery module, and vehicle
CN107195957A (en) * 2017-05-23 2017-09-22 深圳吉阳智能科技有限公司 The lithium ion battery and its preparation method of both positive and negative polarity homonymy arrangement
JP2017191705A (en) * 2016-04-13 2017-10-19 トヨタ自動車株式会社 Method of manufacturing secondary battery
US9853279B2 (en) 2010-09-21 2017-12-26 Kabushiki Kaisha Toshiba Battery and ultrasonic bonding method for battery
US10050299B2 (en) 2012-08-09 2018-08-14 Gs Yuasa International Ltd Manufacturing method of electric storage apparatus, auxiliary plate for ultrasonic welding, and electric storage apparatus
US10734655B2 (en) 2012-05-10 2020-08-04 Gs Yuasa International Ltd. Electric storage device
WO2023032151A1 (en) * 2021-09-03 2023-03-09 株式会社 東芝 Battery
WO2024062522A1 (en) * 2022-09-20 2024-03-28 株式会社 東芝 Secondary battery and method for manufacturing secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071199A (en) * 2002-08-02 2004-03-04 Japan Storage Battery Co Ltd Battery
JP2007335307A (en) * 2006-06-16 2007-12-27 Toshiba Battery Co Ltd Nonaqueous electrolyte battery
JP2009087728A (en) * 2007-09-28 2009-04-23 Toshiba Corp Battery
JP2009087729A (en) * 2007-09-28 2009-04-23 Toshiba Corp Closed battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071199A (en) * 2002-08-02 2004-03-04 Japan Storage Battery Co Ltd Battery
JP2007335307A (en) * 2006-06-16 2007-12-27 Toshiba Battery Co Ltd Nonaqueous electrolyte battery
JP2009087728A (en) * 2007-09-28 2009-04-23 Toshiba Corp Battery
JP2009087729A (en) * 2007-09-28 2009-04-23 Toshiba Corp Closed battery

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014132590A (en) * 2009-06-17 2014-07-17 Gs Yuasa Corp Battery and battery manufacturing method
KR101907935B1 (en) 2009-06-17 2018-10-15 가부시키가이샤 지에스 유아사 Battery and method for producing battery
KR20120037402A (en) * 2009-06-17 2012-04-19 가부시키가이샤 지에스 유아사 Battery and method for producing battery
US9853279B2 (en) 2010-09-21 2017-12-26 Kabushiki Kaisha Toshiba Battery and ultrasonic bonding method for battery
JP2013105671A (en) * 2011-11-15 2013-05-30 Toyota Industries Corp Secondary battery, vehicle, and method for manufacturing secondary battery
WO2013125271A1 (en) * 2012-02-22 2013-08-29 株式会社Gsユアサ Electrical storage element
CN104126241A (en) * 2012-02-22 2014-10-29 株式会社杰士汤浅国际 Electrical storage element
JPWO2013125271A1 (en) * 2012-02-22 2015-07-30 株式会社Gsユアサ Electricity storage element
US9590264B2 (en) 2012-02-22 2017-03-07 Gs Yuasa International Ltd. Electric storage device
US10734655B2 (en) 2012-05-10 2020-08-04 Gs Yuasa International Ltd. Electric storage device
JP2013251123A (en) * 2012-05-31 2013-12-12 Hitachi Vehicle Energy Ltd Square secondary battery
JP2014035935A (en) * 2012-08-09 2014-02-24 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
US10050299B2 (en) 2012-08-09 2018-08-14 Gs Yuasa International Ltd Manufacturing method of electric storage apparatus, auxiliary plate for ultrasonic welding, and electric storage apparatus
JP2013101977A (en) * 2013-02-26 2013-05-23 Toshiba Corp Battery and ultrasonic bonding method of battery
US9673440B2 (en) 2013-03-14 2017-06-06 Kabushiki Kaisha Toshiba Battery including current collector tabs
US9601734B2 (en) 2013-03-14 2017-03-21 Kabushiki Kaisha Toshiba Battery
JP2016514354A (en) * 2013-07-29 2016-05-19 ジョーダン グリーン テクノロジー (ディージー) カンパニー リミテッドJordan Green Technology (Dg) Co., Ltd. Electrode plate, method of forming electrode plate, and method of forming lithium battery core including electrode plate
US10418612B2 (en) 2014-01-29 2019-09-17 Kabushiki Kaisha Toshiba Secondary battery and a method of manufacturing secondary battery
WO2015115494A1 (en) 2014-01-29 2015-08-06 株式会社 東芝 Secondary battery and secondary battery production method
JP2017157372A (en) * 2016-03-01 2017-09-07 株式会社東芝 Secondary battery, battery module, and vehicle
JP2017191705A (en) * 2016-04-13 2017-10-19 トヨタ自動車株式会社 Method of manufacturing secondary battery
JP2016178091A (en) * 2016-06-06 2016-10-06 三洋電機株式会社 Nonaqueous electrolyte secondary battery manufacturing method
CN107195957A (en) * 2017-05-23 2017-09-22 深圳吉阳智能科技有限公司 The lithium ion battery and its preparation method of both positive and negative polarity homonymy arrangement
CN107195957B (en) * 2017-05-23 2024-05-28 深圳吉阳智能科技有限公司 Lithium ion battery with anode and cathode arranged on same side and manufacturing method thereof
WO2023032151A1 (en) * 2021-09-03 2023-03-09 株式会社 東芝 Battery
WO2024062522A1 (en) * 2022-09-20 2024-03-28 株式会社 東芝 Secondary battery and method for manufacturing secondary battery

Similar Documents

Publication Publication Date Title
JP2011049065A (en) Nonaqueous electrolyte battery and method of manufacturing the same
JP5618515B2 (en) battery
EP3101723B1 (en) Secondary battery and secondary battery production method
JP4659861B2 (en) Flat secondary battery and manufacturing method thereof
US8815426B2 (en) Prismatic sealed secondary cell and method of manufacturing the same
JP5537094B2 (en) battery
JP5106024B2 (en) battery
JP5566651B2 (en) Battery and manufacturing method thereof
JP5591566B2 (en) battery
JP6250921B2 (en) battery
JP2011071109A (en) Battery
JP2011171079A (en) Battery cell
JP5329890B2 (en) Non-aqueous electrolyte battery
JP2010282846A (en) Secondary battery and method of manufacturing the same
JP6173729B2 (en) Battery manufacturing method
JP2007087652A (en) Nonaqueous electrolyte battery
CN108028347A (en) Energy accumulating device and energy accumulating device production method
JP5483587B2 (en) Battery and manufacturing method thereof
US20220352606A1 (en) Secondary battery and method for manufacturing same
WO2017057200A1 (en) Electricity storage element and method for manufacturing electricity storage element
JP5677373B2 (en) battery
JP5161421B2 (en) Non-aqueous electrolyte battery
JP5678270B2 (en) Power generation element and secondary battery
JP6055983B2 (en) Battery current collector and lithium ion battery
JP2018147574A (en) Square Lithium Ion Secondary Battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131127

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131205

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140109

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140520