WO2017057200A1 - Electricity storage element and method for manufacturing electricity storage element - Google Patents

Electricity storage element and method for manufacturing electricity storage element Download PDF

Info

Publication number
WO2017057200A1
WO2017057200A1 PCT/JP2016/078099 JP2016078099W WO2017057200A1 WO 2017057200 A1 WO2017057200 A1 WO 2017057200A1 JP 2016078099 W JP2016078099 W JP 2016078099W WO 2017057200 A1 WO2017057200 A1 WO 2017057200A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode body
joining
current collector
recesses
recess
Prior art date
Application number
PCT/JP2016/078099
Other languages
French (fr)
Japanese (ja)
Inventor
好浩 山本
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to JP2017543217A priority Critical patent/JP6856024B2/en
Publication of WO2017057200A1 publication Critical patent/WO2017057200A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • H01G11/76Terminals, e.g. extensions of current collectors specially adapted for integration in multiple or stacked hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a power storage device including an electrode body and a current collector connected to the electrode body, and a method for manufacturing the same.
  • a power storage element such as a lithium ion secondary battery has an electrode body in which, for example, a positive electrode plate and a negative electrode plate, and a separator disposed between the positive electrode plate and the negative electrode plate are stacked.
  • the electrode body has an end portion (for example, a converging portion) on which metal foil portions not coated with an active material are laminated, and a metal member called a current collector is connected to the converging portion, for example. Is done.
  • welding using vibration may be used.
  • a technique called ultrasonic bonding in which a vibration by an ultrasonic wave is applied in a state where the focusing portion and the current collector are overlapped to join the focusing portion and the current collector.
  • the uneven surface is provided on the joint surface of the current collecting member to the current collector foil laminated portion, and the current collector foil of the current collector foil laminated portion is provided in the concave portion of the uneven region.
  • the current collecting member and the current collector foil laminated portion are joined by ultrasonic joining.
  • Patent Document 1 describes that the above configuration can sufficiently obtain the bonding strength of the bonding portion between the electrode plate of the electrode laminate and the current collecting terminal that extracts current from the electrode plate.
  • the converging part of the electrode body and the current collector are joined using a joining technique involving vibration such as ultrasonic joining, the surface of the metal foil that forms the converging part is scraped off, so that a small metal piece May occur.
  • the metal piece generated in this way moves to the inside of the electrode body, for example, there is a risk of causing problems such as the occurrence of a fine short circuit inside the electrode body.
  • the present invention provides a power storage element in which an electrode body and a current collector are joined using a joining technique involving vibration, and a highly reliable power storage element and a method for manufacturing the same.
  • the purpose is to do.
  • a method for manufacturing a power storage element includes an electrode body formed by stacking electrode plates, and a current collector electrically connected to the electrode body And a current collector using a joining tool having a plurality of protrusions, and an end portion of the electrode body in a first direction intersecting with the stacking direction of the electrode plates, and the current collector
  • the joining step the overlapping portion of the end portion of the electrode body and the current collector is vibrated by the joining tool in the joining step so that the first recess And a second recess deeper than the first recess.
  • the power storage device is a power storage device including an electrode body formed by laminating electrode plates, and a current collector electrically connected to the electrode body,
  • the electrode body has a joining portion that is a portion where the end portion in the first direction intersecting the laminating direction of the electrode plate and the current collector is joined, and the joining portion is viewed from the laminating direction.
  • a plurality of recesses are formed side by side in the joining region, which is a region in the case where the plurality of recesses include a first recess and a second recess deeper than the first recess.
  • the second recess is formed at a position closer to the center of the electrode body than the first recess in the first direction.
  • the present invention it is possible to provide a power storage element in which an electrode body and a current collector are bonded using a bonding technique involving vibration, and a highly reliable power storage element and a method for manufacturing the power storage element.
  • FIG. 1 is a perspective view showing an outline of the internal structure of the energy storage device according to the embodiment.
  • FIG. 2 is a diagram showing a connection mode between the current collector and the negative electrode terminal according to the embodiment.
  • FIG. 3 is a perspective view illustrating a schematic configuration of the electrode body according to the embodiment.
  • FIG. 4 is a diagram illustrating an arrangement example of joint portions according to the embodiment.
  • FIG. 5 is a cross-sectional view showing an outline of a VV cross section in FIG.
  • FIG. 6 is a sectional view showing an outline of a VI-VI section in FIG.
  • FIG. 7 is a diagram illustrating an arrangement example of a plurality of concave portions formed in the joint portion according to the embodiment.
  • FIG. 8 is a perspective view showing a schematic configuration of a bonding tip used for bonding the electrode body and the current collector according to the embodiment.
  • FIG. 9A is a first diagram illustrating a part of the manufacturing process of the energy storage device according to the embodiment.
  • FIG. 9B is a second diagram illustrating a part of the manufacturing process of the energy storage device according to the embodiment.
  • FIG. 9C is a third diagram illustrating a part of the manufacturing process of the energy storage device according to the embodiment.
  • FIG. 10 is a diagram illustrating an arrangement example of a plurality of concave portions formed in the joint portion according to the first modification of the embodiment.
  • FIG. 11 is a diagram illustrating an arrangement example of a plurality of concave portions formed in the joint portion according to the second modification of the embodiment.
  • FIG. 12 is a perspective view showing an outline of the internal structure of a power storage element that does not include a clip.
  • a method for manufacturing a power storage element includes an electrode body formed by stacking electrode plates, and a current collector electrically connected to the electrode body And a current collector using a joining tool having a plurality of protrusions, and an end portion of the electrode body in a first direction intersecting with the stacking direction of the electrode plates, and the current collector
  • the joining step the overlapping portion of the end portion of the electrode body and the current collector is vibrated by the joining tool in the joining step so that the first recess And a second recess deeper than the first recess.
  • the end of the electrode body and the current collector are joined by vibration by a joining tool having a plurality of protrusions.
  • a relatively shallow first recess and a relatively deep second recess are formed in the overlapping portion between the end of the electrode body and the current collector. Therefore, even when a minute metal piece (hereinafter also referred to as “foreign matter”) is generated when the first recess is formed, the movement of the foreign matter is regulated by the second recess formed deeper. .
  • the method for manufacturing a power storage element according to this aspect is a manufacturing method including a bonding step of bonding an electrode body and a current collector using a bonding technique involving vibration. According to this manufacturing method, it is possible to manufacture a power storage element having a structure that suppresses the movement of foreign matter generated in the joining process. Therefore, according to the manufacturing method according to this aspect, a highly reliable power storage element can be manufactured.
  • the joining step includes an overlapping portion of the end portion of the electrode body and the current collector by one or more of the plurality of protrusions.
  • the electrode body is formed by a first step of forming one or more of the second recesses by vibrating, and one or more other projections of the plurality of projections after the first step is started. It is good also as including the 2nd process of forming one or more above-mentioned 1st crevices by oscillating the overlap part of the above-mentioned end and the above-mentioned current collector.
  • the vibration by the one or more protrusions is started before the vibration by the one or more other protrusions (second process). Therefore, the foreign matter generated in the second step is regulated by the portion joined by the first step already started or the portion being joined. That is, the movement of the foreign matter generated in the joining process is suppressed.
  • the plurality of protrusions include a first protrusion and a second protrusion, and the protrusion disposition surface of the second protrusion on which the plurality of protrusions are disposed.
  • the height of the first projection is higher than the height of the first projection from the projection arrangement surface.
  • the joining tool is formed by overlapping the end portion of the electrode body and the current collector.
  • the second step by the first protrusion may be started after the start of the first step by the second protrusion.
  • the first step and the second step can be started in this order.
  • a welding tool that vibrates in the horizontal direction is moved vertically with respect to a portion where the end of the electrode body and the current collector are overlapped, thereby providing a single piece having a plurality of portions with different joining timings.
  • a junction can be formed.
  • the portion where the joining is started first functions as an element that hinders the movement of the foreign matter caused by the joining started later, and as a result, the reliability of the storage element is improved.
  • the power storage device is a power storage device including an electrode body formed by laminating electrode plates, and a current collector electrically connected to the electrode body,
  • the electrode body has a joining portion that is a portion where the end portion in the first direction intersecting the laminating direction of the electrode plate and the current collector is joined, and the joining portion is viewed from the laminating direction.
  • a plurality of recesses are formed side by side in the joining region, which is a region in the case where the plurality of recesses include a first recess and a second recess deeper than the first recess.
  • the second recess is formed at a position closer to the center of the electrode body than the first recess in the first direction.
  • the first concave portion and the second concave portion deeper than the first concave portion are formed in the joint portion, which is a portion where the end portion of the electrode body and the current collector are joined.
  • the joint having this structure is formed, for example, by vibration with a tool having at least two protrusions having different heights. That is, even when a foreign matter is generated when the portion corresponding to the first recess formed relatively shallowly, the movement of the foreign matter is a portion corresponding to the second recess formed relatively deep.
  • the one or more second recesses are arranged at a position closer to the center of the electrode body than the first recess, the center of the electrode body of the foreign matter generated in the joining of the portions corresponding to the first recesses Directional movement can be suppressed. That is, the possibility that foreign matter generated during the formation of the joint portion reaches the inside of the electrode body is further reduced.
  • the power storage device is a power storage device including the joined electrode body and the current collector, and movement of the foreign matter is suppressed even when foreign matter is generated in the joining process. It is an electrical storage element which has a structure. Therefore, the power storage element according to this embodiment is a highly reliable power storage element.
  • the plurality of recesses are arranged in a dispersed manner in the joining region, and the second recesses are provided along at least a part of the outer periphery of the joining region. It may be arranged.
  • the portion of the foreign matter generated inside the joining region having a two-dimensional extension is moved relatively deeply outside the joining region and is recessed along the outer periphery of the joining region. (Parts corresponding to the plurality of second recesses) can be efficiently suppressed.
  • a plurality of the second recesses may be arranged along the outer periphery so as to surround one or more of the first recesses.
  • the joint includes a portion of the pad disposed along the end of the electrode body and joined to the end, and the plurality of recesses May be formed on the pad.
  • each of the embodiments and modifications thereof described below shows one specific example of the present invention.
  • the shapes, materials, constituent elements, arrangement positions and connecting forms of constituent elements, order of manufacturing steps, and the like shown in the following embodiments and modifications thereof are merely examples, and are not intended to limit the present invention.
  • constituent elements that are not described in the independent claims indicating the highest concept are described as arbitrary constituent elements.
  • FIG. 1 is a perspective view showing an outline of the internal structure of a power storage device 10 according to the embodiment.
  • FIG. 1 is a diagram in which a part of a battery container 100 described later is omitted in order to illustrate the internal structure of the electricity storage element 10.
  • FIG. 2 is a diagram illustrating a connection mode between the current collector 140 and the negative electrode terminal 300 according to the embodiment.
  • the electricity storage element 10 is a secondary battery that can charge and discharge electricity, for example, a non-aqueous electrolyte secondary battery.
  • a non-aqueous electrolyte secondary battery examples include a lithium ion secondary battery in which the positive electrode active material is a lithium transition metal oxide such as lithium cobaltate and the negative electrode active material is a carbon material.
  • the kind of electrical storage element 10 is not limited to a nonaqueous electrolyte secondary battery, A secondary battery other than a nonaqueous electrolyte secondary battery may be sufficient, and a primary battery may be sufficient.
  • the power storage element 10 may be a capacitor such as a lithium ion capacitor. Further, the power storage element 10 may be a primary battery that can use the stored electricity without being charged by the user.
  • the power storage device 10 includes a battery container 100, a positive electrode terminal 200, and a negative electrode terminal 300.
  • the battery container 100 includes a main body 101 having a rectangular cylindrical shape made of metal and having a bottom, and a metal lid plate 110 that closes an opening of the main body 101.
  • the battery container 100 has a structure in which after the electrode body 120 and the like are accommodated therein, the lid plate 110 and the main body 101 are welded to seal the inside.
  • the positive electrode terminal 200 is attached to the lid plate 110 of the battery container 100 via a gasket 230 for maintaining the airtightness of the battery container 100.
  • the negative electrode terminal 300 is also attached to the lid plate 110 of the battery container 100 via the gasket 330.
  • Each of the gaskets 230 and 330 is formed of, for example, an insulating resin, and an electrical connection between the metal positive electrode terminal 200 and the negative electrode terminal 300 and the metal battery container 100 (cover plate 110). It also has a role of proper insulation.
  • an electrode body 120 is accommodated inside the battery container 100, and a positive current collector 130 and a negative current collector 140 are disposed. Yes.
  • a liquid such as an electrolytic solution is sealed in the battery container 100 of the power storage element 10, but the liquid is not shown.
  • the current collector 130, the current collector 140, and the lid plate 110 are also interposed between the current collector 130 and the current collector 140 and the lid plate 110.
  • An insulating gasket (lower gasket) is arranged.
  • the electrode body 120 includes a positive electrode plate, a negative electrode plate, and a separator, and is a member that can store electricity, and is formed to have an oval shape as a whole. Details of the electrode body 120 will be described later with reference to FIG.
  • the current collector 130 is a metal member connected to the positive electrode terminal 200 and the electrode body 120.
  • As the material of the current collector 130 for example, aluminum or an aluminum alloy that is the same material as the positive electrode of the electrode body 120 is employed.
  • the current collector 130 has a pair of long connection plate portions 132 connected to the electrode body 120.
  • the current collector 140 is a metal member connected to the negative electrode terminal 300 and the electrode body 120.
  • As the material of the current collector 140 for example, copper or a copper alloy that is the same material as the negative electrode of the electrode body 120 is employed.
  • the current collector 140 has a pair of long connection plate portions 142 connected to the electrode body 120.
  • the positive electrode terminal 200 and the current collector 130 are connected by caulking in the present embodiment.
  • the negative electrode terminal 300 and the current collector 140 are connected by caulking.
  • the negative electrode terminal 300 has a rivet portion 305.
  • the rivet portion 305 passes through the gasket 330, the cover plate 110 (see FIG. 1), and a lower gasket (not shown), and is inserted into a through hole 141a provided in the terminal connection portion 141 of the current collector 140.
  • the tip of the rivet portion 305 is caulked.
  • the negative electrode terminal 300 and the current collector 140 are connected.
  • the positive electrode terminal 200 is connected to the current collector 130 by caulking the rivet portion of the positive electrode terminal 200.
  • each of current collector 130 and current collector 140 and electrode body 120 are connected by ultrasonic bonding, which is an example of a bonding technique involving excitation, in the present embodiment. Has been.
  • Electrode body 120 has a converging portion in which an uncoated portion, which is a portion where no active material is coated on the electrode plate, is laminated on an end portion in the winding axis direction (X-axis direction in the present embodiment).
  • the electrode body 120 includes a converging part 136 in which an uncoated part 122 a of a positive electrode plate is laminated and a converging part 126 in which an uncoated part 123 a of a negative electrode plate is laminated. And have.
  • Each of the converging part 136 and the converging part 126 is an example of an end of the electrode body 120 in the first direction (in the present embodiment, the X-axis direction) intersecting with the electrode plate stacking direction.
  • the electrode body 120 is a wound electrode body, and on the positive electrode side, two converging portions 136 are arranged in the thickness direction (Y-axis direction in the present embodiment) across the winding shaft. Is formed. Similarly, on the negative electrode side of the electrode body 120, two converging portions 126 are formed in the thickness direction with the winding axis interposed therebetween.
  • connection plate portion 132 of the current collector 130 is joined to each of the two converging portions 136, and the connection plate portion 142 of the current collector 140 is joined to each of the two converging portions 126.
  • the current collector 140 will be described by focusing on the current collector 140.
  • the current collector 140 is disposed so that the pair of connection plate portions 142 sandwich the end portion of the electrode body 120 on the negative electrode side. In this state, each of the pair of connection plate portions 142 and the converging portion 126 are joined by ultrasonic joining.
  • connection plate part 142 At the time of this connection, the plurality of uncoated parts 123a constituting the converging part 126 joined to the connection plate part 142 are gathered near the center in the stacking direction, for example, and connected and pressed while being vibrated. 142.
  • the electrical storage element 10 has a joined portion that is a portion where the ends (the converging portions 136 and 126) of the electrode body 120 and the current collectors (130 and 140) are vibrated and joined. 160 is formed.
  • the joint 160 is formed with a plurality of recesses 170, and at least one of the plurality of recesses 170 is formed deeper than one or more other recesses 170.
  • the junction 160 included in the power storage element 10 according to the present embodiment will be described later with reference to FIGS. 4 to 9C.
  • the end portions (the converging portions 136 and 126) of the electrode body 120 and the current collectors 130 and 140 are joined by using a clip which is an example of a patch.
  • a clip which is an example of a patch.
  • one clip 150 is disposed on each of the pair of connection plate portions 132 of the current collector 130 and the pair of connection plate portions 142 of the current collector 140.
  • connection plate 142 Referring to one connection plate 142, the description will be made with one clip 150 arranged so as to sandwich the converging portion 126 and the connection plate 142 of the electrode body 120. That is, the connection plate portion 142 and the converging portion 126 are joined to each other by applying ultrasonic vibration while being pressed while the connection plate portion 142 and the converging portion 126 are sandwiched between the clips 150.
  • the clip 150 is a metal member that is used as an auxiliary so that the converging part 136 (126) formed by stacking the metal foils is not damaged by vibration caused by ultrasonic waves.
  • the clip 150 also has a role as a member that collects these elements to be joined when the converging part 136 (126) and the connecting plate part 132 (142) are joined.
  • the clip 150 attached to the current collector 130 on the positive electrode side for example, aluminum that is the same material as the positive electrode of the electrode body 120 or an aluminum alloy is employed.
  • a material of the clip 150 attached to the negative electrode side current collector 140 for example, copper or a copper alloy which is the same material as the negative electrode of the electrode body 120 is employed.
  • the clip 150 is a member used auxiliary as described above, and is not essential for joining the electrode body 120 and the current collectors 130 and 140.
  • the converging part 126 and the connecting plate part 142 are vibrated while directly applying a bonding chip (described later) to either the converging part 126 of the electrode body 120 or the connecting plate part 142 of the current collector 140. It may be joined.
  • FIG. 3 is a perspective view showing a schematic configuration of the electrode body 120 according to the embodiment.
  • the electrode body 120 is an example of an electrode body formed by winding an electrode plate.
  • the electrode body 120 is formed by alternately stacking and winding the positive electrode plate 122 and the negative electrode plate 123 and the two separators 124 and 125. Yes.
  • the electrode body 120 is formed by laminating the positive electrode plate 122, the separator 124, the negative electrode plate 123, and the separator 125 in this order and winding the cross section into an oval shape. Yes.
  • the electrode body 120 has a flat shape having a curved portion and a straight portion as shown in FIG. Specifically, the electrode body 120 includes a linear portion (pole) between the upper and lower curved portions in FIG. 3 (the portions where the electrode plates are turned on the positive and negative sides in the Z-axis direction) and the upper and lower curved portions. The plate is parallel to the Z-axis direction).
  • the positive electrode plate 122 is obtained by forming a mixture layer containing a positive electrode active material on the surface of a long metal foil made of aluminum.
  • a positive electrode active material contained in the mixture layer of the positive electrode plate 122 for example, LiMPO 4 , LiMSiO 4 , LiMBO 3 (M is one or more selected from Fe, Ni, Mn, Co, etc.) Polyanion compounds such as transition metal elements), spinel compounds such as lithium titanate and lithium manganate, LiMO 2 (M is one or more transition metal elements selected from Fe, Ni, Mn, Co, etc.), etc. Lithium transition metal oxide or the like can be used.
  • the negative electrode plate 123 is obtained by forming a mixture layer including a negative electrode active material layer on the surface of an elongated metal foil made of copper.
  • a known material can be used as appropriate as long as it is a negative electrode active material capable of occluding and releasing lithium ions.
  • lithium metal lithium metal, lithium alloys (lithium metal-containing alloys such as lithium-aluminum, lithium-silicon, lithium-lead, lithium-tin, lithium-aluminum-tin, lithium-gallium, and wood alloys), as well as occlusion of lithium ⁇ Releasable alloys, carbon materials (eg, graphite, non-graphitizable carbon, graphitizable carbon, low-temperature calcined carbon, amorphous carbon, etc.), metal oxides, lithium metal oxides (Li 4 Ti 6 O 12 etc.) And polyphosphoric acid compounds.
  • lithium metal lithium alloys
  • lithium metal-containing alloys such as lithium-aluminum, lithium-silicon, lithium-lead, lithium-tin, lithium-aluminum-tin, lithium-gallium, and wood alloys
  • carbon materials eg, graphite, non-graphitizable carbon, graphitizable carbon, low-temperature calcined carbon, amorphous carbon
  • the positive electrode plate 122 and the negative electrode plate 123 are wound while being shifted from each other in the winding axis direction via the separators 124 and 125.
  • the positive electrode plate 122 and the negative electrode plate 123 have the uncoated part which is a part in which the active material is not coated in the edge part of each shifted direction.
  • the uncoated part is also called, for example, “mixture layer non-formed part”.
  • the positive electrode plate 122 has the converging part 136 in which the uncoated part 122a not coated with the positive electrode active material is laminated at one end in the winding axis direction.
  • the negative electrode plate 123 has the converging portion 126 in which the uncoated portion 123a not coated with the negative electrode active material is laminated on the other end in the winding axis direction.
  • the power storage element 10 having the above-described configuration has a feature in the joint portion 160 that is a joint portion between the electrode body 120 and the current collectors 130 and 140. Further, in the present embodiment, the shape and attachment of negative side members (negative electrode terminal 300, current collector 140, clip 150, etc.) and positive side members (positive electrode terminal 200, current collector 130, clip 150, etc.) The structure and the like are substantially the same. Therefore, paying attention to the joint 160, which is a part where the electrode body 120 and the current collector 140 are joined, the characteristics of the structure and the like will be described with reference to FIGS. 4 to 9C.
  • FIG. 4 is a diagram illustrating an arrangement example of the joint 160 according to the embodiment.
  • the clip 150 and the like are not shown.
  • FIG. 5 is a cross-sectional view showing an outline of a VV cross section in FIG.
  • FIG. 6 is a sectional view showing an outline of a VI-VI section in FIG.
  • FIG. 7 is a diagram illustrating an arrangement example of the plurality of concave portions 170 formed in the joint portion 160 according to the embodiment.
  • a circular region with a thin dot represents the first concave portion 170a
  • a circular region with a dark dot represents the second concave portion 170b. This also applies to FIGS. 10 and 11 described later.
  • the electricity storage device 10 includes a joint portion 160 that is a portion where the converging portion 126 that is an end portion of the electrode body 120 and the current collector 140 are joined by vibration.
  • a joint portion 160 that is a portion where the converging portion 126 that is an end portion of the electrode body 120 and the current collector 140 are joined by vibration.
  • two portions in the longitudinal direction of the connection plate portion 142 that is long in the Z-axis direction are joined to the converging portion 126 of the electrode body 120.
  • two connecting portions 160 are formed per one connecting plate portion 142.
  • the number of the joint portions 160 is not particularly limited, and one or three or more joint portions 160 may be formed for one connection plate portion 142.
  • a plurality of recesses 170 are formed in the bonding region 165, which is a region when the bonding portion 160 is viewed from the electrode stacking direction (Y-axis direction in the present embodiment). Are formed side by side. More specifically, in the present embodiment, the converging portion 126 is vibrated by a joining tip (described later with reference to FIG. 8) via the clip 150. Therefore, a plurality of concave portions 170 are formed side by side in the bonding region 165 that is a region when the bonding portion 160 is viewed from the converging portion 126 side (Y-axis direction plus side). In addition, the joining area
  • the plurality of recesses 170 formed in the joint 160 include a first recess 170a and a second recess 170b deeper than the first recess 170a. That is, when the depth of the first recess 170a is D1, and the depth of the second recess 170b is D2, D2> D1. Moreover, D2: D1 is about 5: 4, for example.
  • the joint 160 having this structure is formed by vibration with a joining tip having at least two protrusions having different heights. That is, for example, the joining of the part corresponding to the second recessed part 170b is started before the joining of the part corresponding to the first recessed part 170a. Therefore, when a minute metal piece (hereinafter also referred to as “foreign matter”) is generated at the time of joining the portion corresponding to the first concave portion 170a, the movement of the foreign matter is restricted by the portion corresponding to the second concave portion 170b. receive. Further, for example, even when the vibration is started in a state where the joining tip is pressed against the overlapping portion of the converging portion 126 and the current collector 140, the second portion formed relatively deeply.
  • the concave portion 170b and the portion immediately below the concave portion 170b exist as a wall that suppresses the movement of the foreign matter generated when the first concave portion 170a is formed.
  • the metal may be ionized when a minute metal piece that is a foreign substance comes into contact with the positive electrode plate 122 of the electrode body 120.
  • the metal precipitates to form dendrite, and this dendrite penetrates the separator 125 to form a fine particle between the positive electrode plate 122 and the negative electrode plate 123. May cause a short circuit.
  • the movement of the foreign matter generated in the process of forming the joint 160 is suppressed by a part of the joint 160. Therefore, the possibility of occurrence of problems such as the fine short circuit is reduced.
  • the power storage element 10 according to the present embodiment is a power storage element 10 having a structure in which the movement of the foreign matter is suppressed even when the foreign matter is generated in the joining process. Therefore, the power storage element according to this aspect is a highly reliable power storage element 10.
  • the joint 160 has 15 recesses 170 arranged in a dispersed manner in the joint region 165.
  • a plurality (12 in this embodiment) of second recesses 170b are arranged along the outer periphery of the joining region 165 so as to surround one or more (three in this embodiment) first recesses 170a. ing.
  • the second recess 170b is located on the outermost side in the joining region 165
  • the first recess 170a is located on the inner side of the second recess 170b in the joining region 165.
  • the joint 160 when the joint 160 is viewed from the stacking direction (Y-axis direction), the second recess 170b deeper than the first recess 170a formed inside is formed at the end of the joint region 165. Progress of foreign matter generated inside the region 165 to the outside of the joining region 165 is suppressed.
  • a plurality of second recesses 170b are arranged along the outer periphery of the joining region 165 so as to surround one or more (three in the present embodiment) first recesses 170a. According to this configuration, it is possible to suppress progression of almost all foreign matters generated inside the joining region 165 to the outside of the joining region 165.
  • the one or more second recesses 170b are arranged in the first direction (X-axis direction).
  • the first recessed portion 170a is formed closer to the center of the electrode body 120.
  • the joint 160 configured in this way is formed by performing the manufacturing process shown in FIGS. 9A to 9C using, for example, the joining chip 520 shown in FIG.
  • FIG. 8 is a perspective view showing a configuration outline of a bonding tip 520 used for bonding the electrode body 120 and the current collector 140 according to the embodiment.
  • FIG. 9A is a first diagram illustrating a part of the manufacturing process of the electricity storage device 10 according to the embodiment
  • FIG. 9B is a second diagram illustrating a part of the manufacturing process
  • FIG. It is a 3rd figure which shows a part of the said manufacturing process.
  • the joining chip 520 shows the IX-IX cross section shown in FIG. 8, and the converging part 126, the connecting plate part 142, and the clip 150 correspond to the IX-IX cross section.
  • a cross section of the position is shown.
  • the dot area shown below the protrusion 530 represents a main area in which interface bonding by the vibration by the protrusion 530 is in progress or has been completed. .
  • the joining tip 520 used for joining the electrode body 120 and the current collector 140 is an example of a joining tool. As shown in FIGS. 8 and 9A, the first protrusion 530a and the second protrusion 530a having different heights are used. A projection arrangement surface 521 on which a plurality of projections 530 including the projection 530b are arranged is provided.
  • 15 protrusions 530 are arranged in a rectangular arrangement region 525 on the protrusion arrangement surface 521.
  • the twelve second protrusions 530b arranged along the outer periphery of the arrangement area 525 so as to surround the first protrusions 530a rather than the three first protrusions 530a arranged inside the arrangement area 525. high. That is, when the height of the first protrusion 530a is H1, and the height of the second protrusion 530b is H2, H2> H1.
  • H2: H1 is about 5: 4, for example.
  • the reference for the height of the protrusion 530 is the protrusion arrangement surface 521.
  • the method for manufacturing power storage element 10 includes a bonding step of bonding focusing portion 126 of electrode body 120 and current collector 140 using bonding chip 520 having a plurality of protrusions 530. .
  • the overlapping portion of the end portion (the converging portion 126) of the electrode body 120 and the current collector 140 is vibrated by the bonding tip 520, so that the first recess 170a and the first A second recess 170b deeper than the recess 170a is formed.
  • a relatively shallow first concave portion 170a and a relatively deep second concave portion 170b are formed in the overlapping portion of the converging portion 126 and the current collector 140. Therefore, even when a foreign substance is generated when the first concave portion 170a is formed, the movement of the foreign substance is restricted by the second concave portion formed deeper and a portion immediately below the second concave portion. Therefore, for example, the occurrence of problems such as a fine short circuit caused by the movement of foreign matter into the electrode body 120 is suppressed.
  • power storage device 10 having a structure in which the movement of the foreign material can be suppressed even when a foreign material is generated in the joining process. it can. Therefore, according to the method for manufacturing power storage element 10 according to the present embodiment, highly reliable power storage element 10 can be manufactured.
  • the bonding step according to the present embodiment is performed by exciting the overlapping portion of the converging portion 126 and the current collector 140 by one or more of the plurality of protrusions 530.
  • the bonding tip 520 is attached to the tip of a horn 510 provided in the ultrasonic bonding machine. Further, the overlapping portion of the converging portion 126 of the electrode body 120 and the connecting plate portion 142 of the current collector 140 is disposed on an anvil (not shown). In the present embodiment, as shown in FIG. 9A, the overlapped portion is arranged in a state of being covered by the clip 150.
  • the bonding tip 520 approaches the bonding target including the overlapping portion.
  • the second protrusion 530b having a higher height is to be joined (directly) before the first protrusion 530a.
  • the joining of the part corresponding to the second protrusion 530b is started before the joining of the part corresponding to the first protrusion 530a.
  • the first protrusion 530a reaches the object to be joined, and the joining of the portion corresponding to the first protrusion 530a to be joined is started, and the joining process for the object to be joined is completed as shown in FIG. 9C. That is, the joint 160, which is a portion where the converging portion 126 of the electrode body 120 and the current collector 140 are joined by vibration, is formed.
  • the plurality of protrusions 530 included in the bonding chip 520 include the first protrusion 530a and the second protrusion 530b, and the height of the second protrusion 530b from the protrusion arrangement surface 521 is The height of the first protrusion 530a from the protrusion arrangement surface 521 is higher.
  • the joining tip 520 is moved toward the overlapping portion of the converging portion 126 of the electrode body 120 and the current collector 140, so that the first step by the second protrusion 530b is started.
  • the second step by the one protrusion 530a is started.
  • One joint 160 having the same can be formed. Thereby, in one joint part 160, the part where joining was started first functions as an element which inhibits the movement of the foreign material produced by joining started later.
  • one bonding portion 160 having a structure that suppresses the movement of foreign matter can be formed by the vertical movement of one bonding chip 520 that vibrates by ultrasonic energy. Thereby, the highly reliable electrical storage element 10 can be manufactured efficiently.
  • a minute metal piece that is a foreign object is generated by rubbing adjacent metal foils of the converging portion 126 included in a region immediately below the first protrusion 530a.
  • the adjacent metal foils of the converging portion 126 immediately below the second protrusion 530b are already joined or being joined by the vibration by the second protrusion 530b. Therefore, the foreign matter generated in the region immediately below the first protrusion 530a is unlikely to move beyond the region immediately below the second protrusion 530b.
  • the vibration may be started in a state where the bonding tip 520 is pressed against the overlapping portion of the converging unit 126 and the current collector 140. That is, the joining of the portion corresponding to the first recess 170a by the first protrusion 530a and the joining of the portion corresponding to the second recess 170b by the second protrusion 530b may be started simultaneously or substantially simultaneously. Even in this case, it is difficult for the foreign matter generated during the formation of the relatively shallow first recess 170a to move beyond the second recess 170b that is formed relatively deep and directly below the second recess 170b.
  • the power storage device 10 manufactured by the above manufacturing method corresponds to the first recess 170a corresponding to the first protrusion 530a and the second protrusion 530b in the joint 160.
  • a plurality of recesses 170 including the second recesses 170b are formed.
  • the power storage element 10 having the joint 160 in which the plurality of recesses 170 are formed suppresses the movement of the foreign matter generated in the joining process to the outside of the joint 160 in the manufacturing process. ing. Further, even when the power storage element 10 is used after manufacturing, the movement of foreign matter remaining inside the joint 160 to the outside of the joint 160 is suppressed.
  • the joint 160 included in the power storage element 10 has a structure that allows foreign matters that may cause a problem to remain inside the joint 160 during and after the manufacture of the power storage element 10. Thereby, the highly reliable power storage element 10 is realized.
  • the joint 160 includes a portion of the pad (clip 150) disposed along the converging part 126 of the electrode body 120 and joined to the converging part 126, and the plurality of recesses 170 includes The clip 150 is formed.
  • the converging part that is formed by laminating the metal foil by exciting the converging part 126 via the clip 150 and that is easily damaged such as peeling or cracking. 126 can be protected. Specifically, since direct contact between the bonding tip 520 and the converging portion 126 of the electrode body is prevented, for example, the number of foreign matters generated in the bonding process for forming the bonding portion 160 is suppressed. In addition, it is possible to obtain an effect of improving the joint strength at the joint 160.
  • the power storage element 10 may include a joint 160 having a shape or structure different from that of the joint 160 illustrated in FIGS. Therefore, in the following, various modified examples related to the joint portion 160 according to the embodiment will be described focusing on differences from the above embodiment.
  • FIG. 10 is a diagram illustrating an arrangement example of the plurality of concave portions 170 formed in the joint portion 160a according to the first modification of the embodiment.
  • a plurality of recesses 170 are formed in a substantially rectangular joint region 165, and the plurality of recesses 170 are a first recess 170a and a second deeper than the first recess 170a.
  • a recess 170b is provided. About these points, it is common with the junction part 160 which concerns on the said embodiment.
  • joint portion 160a a plurality of the second concave portions 170b are arranged along only a part of the outer periphery of the joint region 165, and in this respect, the joint according to the above embodiment is provided. Different from the unit 160.
  • five second concave portions 170b are formed along a side on the minus side in the X-axis direction (see, for example, FIG. 10) that is a side on the center side of the electrode body 120.
  • the remaining ten concave portions 170 are all the first concave portions 170a.
  • the power storage element 10 can suppress the movement of the foreign matter generated in the bonding process even when the power storage element 10 has the bonding portion 160a according to the present modification, thereby obtaining high reliability.
  • a plurality of second recesses 170b may be arranged along only other sides in the bonding region 165.
  • the power storage element 10 is in the posture shown in FIG. 10, that is, when the longitudinal direction of the connection plate 142 (see FIG. 1) of the current collector 140 coincides with the Z-axis direction.
  • only the three second recesses 170b may be arranged along the lower side of the bonding region 165 in FIG. Thereby, it is suppressed that the foreign material which generate
  • the second recesses 170b may be arranged along at least a part of the outer periphery of the bonding region 165.
  • the movement of the foreign matter generated in the bonding process to the outside of the bonding portion 160a is disposed along the outer periphery of the bonding region 165 and is relatively deeply depressed (corresponding to the plurality of second concave portions 170b). Can be efficiently suppressed.
  • FIG. 11 is a diagram illustrating an arrangement example of the plurality of concave portions 170 formed in the joint portion 160b according to the second modification of the embodiment.
  • the plurality of recesses 170 are arranged in a distributed manner, and the plurality of second recesses 170b are arranged along the outer periphery of the joint region 165a so as to surround one or more first recesses 170a. Has been. About these points, it is common with the junction part 160 which concerns on the said embodiment.
  • the joint region 165a is elliptical, and the plurality of second recesses 170b are arranged along the outer periphery of the ellipse, so that a plurality (10 in the present embodiment). ) First recesses 170a. This is different from the joint 160 according to the above-described embodiment.
  • the plurality of recesses 170 formed in the joint 160b do not have to be arranged in a matrix as shown in FIG. 7 or FIG. 10, and each of the plurality of recesses 170 is within a predetermined plane area. You may arrange
  • the bonding portion 160b is formed with the plurality of second recesses 170b so as to surround the plurality of first recesses 170a inside the bonding region 165a, whereby the bonding according to the first embodiment is performed.
  • the same effect as the part 160 is produced. In other words, almost all foreign matters generated inside the joining region 165a can be prevented from proceeding to the outside of the joining region 165a (that is, movement of foreign matter from the inside of the joining portion 160b).
  • the plurality of second recesses 170b need not be arranged along the entire outer periphery of the bonding region 165a, and the plurality of second recesses 170b are arranged along only a part of the outer periphery of the bonding region 165a. May be.
  • the joint 160 may have a larger number of first recesses 170a than the second recesses 170b.
  • the movement of the foreign material generated in the formation of each of the relatively large number of first recesses 170a is suppressed by the one or more second recesses 170b and the portion immediately below the second recesses 170b. This is the same when the ratio of the one or more first recesses 170a is larger than the ratio of the one or more second recesses 170b in the plan view of the bonding region 165 (see FIG. 7).
  • FIG. 12 is a perspective view showing an outline of the internal structure of the energy storage device 10 a that does not include the clip 150.
  • the power storage element 10a shown in FIG. 12 is common to the power storage element 10 according to the above-described embodiment except that the clip 150 is not provided, and a detailed description thereof is omitted.
  • the joining chip 520 When a contact material such as the clip 150 is not used for joining the converging part 126 of the electrode body 120 and the connecting plate part 142 of the current collector 140, the joining chip 520 includes either the converging part 126 or the connecting plate part 142. (In the electric storage element 10a shown in FIG. 12, the bonding tip 520 is pressed against the converging portion 126). In this case, a joining region 165 in which a plurality of recesses 170 are arranged is formed on the one side, and the plurality of recesses 170 includes a plurality of first recesses 170a and a plurality of second recesses 170b (for example, FIG. 5). (See FIG. 7). Even in this case, for example, the movement of the foreign matter generated in the portion corresponding to the first recess 170a of the converging portion 126 is suppressed by the portion corresponding to the second recess 170b.
  • the electrode body included in the electricity storage element 10 does not have to be a wound type.
  • the power storage element 10 may include a stacked electrode body in which, for example, flat plate plates are stacked.
  • the electrical storage element 10 may be provided with the electrode body which has a structure which laminated
  • a converging portion formed by laminating an active material uncoated portion of the positive electrode plate or the negative electrode plate is formed at the end portion of the electrode body.
  • the joining portion 160 for example, the joining portion 160 according to the above-described embodiment is formed, so that the effect of suppressing movement of foreign matter generated in the joining step can be obtained.
  • first recess 170a and one second recess 170b may be formed in the joint 160.
  • the first recess 170a and the second recess 170b are arranged in the X-axis direction, and the second recess 170b is closer to the center of the electrode body 120 than the first recess 170a (for example, in FIG. 7).
  • the plurality of protrusions 530 included in the bonding tip 520 used for forming the bonding portion 160 may have different heights in three or more stages.
  • the bonding tip 520 may have a third protrusion that is taller than the second protrusion 530 b as at least one protrusion 530 of the plurality of protrusions 530.
  • the bonding tip 520 that vibrates in the horizontal direction is moved vertically with respect to the overlapping portion of the converging portion 126 and the current collector 140 of the electrode body 120, so that three portions having different bonding timings can be obtained.
  • a single joint 160 having the following can be formed.
  • the joining part 160 may have a third recessed part deeper than the second recessed part 170 b as at least one recessed part 170 among the plurality of recessed parts 170.
  • the part where the joining is started first in time series is the part where the joining is started later (following joining part). It can exist as a wall against the generated foreign matter. That is, there is an effect of suppressing movement of the foreign matter generated in the joining process.
  • the bonding tip 520 may have a plurality of protrusions 530 having a uniform height.
  • the bonding tip 520 is placed in a position where the protrusion arrangement surface 521 of the bonding tip 520 is inclined with respect to the overlapping portion of the converging portion 126 of the electrode body 120 and the current collector 140. Press against the part.
  • one or more protrusions of the plurality of protrusions 530 can be pressed against the overlapped portion before the other one or more protrusions. That is, in the joint portion 160, a plurality of portions having different joining timings can be formed.
  • one or more second recesses 170b are first formed using the bonding chip 520, and then the bonding chip 520 is formed. May be moved (or the overlapping portion of the converging portion 126 and the current collector 140 may be moved) to form one or more first recesses 170a. That is, two types of concave portions 170 (first concave portion 170a and second concave portion 170b) having different depths may be formed by performing the bonding operation twice using one bonding chip 520.
  • each of the 2nd recessed part 170b and the 1st recessed part 170a may be formed with another chip
  • the shape of the bonding region does not need to be rectangular (for example, the bonding region 165 (see FIG. 7)) or elliptical (for example, the bonding region 165a (see FIG. 11)), and the plurality of concave portions 170 are arranged side by side. As long as it is a region to be processed, it can take any shape as appropriate.
  • the current collector 140 may have at least one connection plate portion 142.
  • two converging portions 126 that exist in the thickness direction across the winding axis on the negative electrode side of the electrode body 120 may be collectively bonded to one connection plate portion. That is, the “two converging units 126” may be physically handled as one converging unit 126.
  • the present invention can be applied to power storage elements such as lithium ion secondary batteries.

Abstract

A method for manufacturing an electricity storage element (10) which is provided with an electrode body (120) that is obtained by laminating a positive electrode plate (122) and a negative electrode plate (123), and a collector (140) that is electrically connected to the electrode body (120). This method for manufacturing an electricity storage element (10) comprises a bonding step wherein the collector (140) and an end portion of the electrode body (120) in a first direction that intersects with the lamination direction of the positive electrode plate (122) and the negative electrode plate (123) are bonded with each other with use of a bonding chip (520) that has a plurality of projections (530). In the bonding step, a first recess (170a) and a second recess (170b) that is deeper than the first recess (170a) are formed in an overlap portion where the collector (140) overlaps a convergence part (126), which is the end portion of the electrode body (120), by vibrating the overlap portion by means of the bonding chip (520).

Description

蓄電素子及び蓄電素子の製造方法Power storage device and method for manufacturing power storage device
 本発明は、電極体と電極体に接続された集電体とを備える蓄電素子及びその製造方法に関する。 The present invention relates to a power storage device including an electrode body and a current collector connected to the electrode body, and a method for manufacturing the same.
 従来、リチウムイオン二次電池などの蓄電素子は、例えば、正極板および負極板と、正極板と負極板との間に配置されたセパレータとが積層された電極体を有する。電極体は、活物質が塗工されていない金属箔部分が積層された端部(例えば、集束部という。)を有し、集束部には、例えば集電体と呼ばれる金属製の部材が接続される。 Conventionally, a power storage element such as a lithium ion secondary battery has an electrode body in which, for example, a positive electrode plate and a negative electrode plate, and a separator disposed between the positive electrode plate and the negative electrode plate are stacked. The electrode body has an end portion (for example, a converging portion) on which metal foil portions not coated with an active material are laminated, and a metal member called a current collector is connected to the converging portion, for example. Is done.
 また、電極体の集束部と集電体とを接合する手法として、振動を用いた溶接が用いられる場合がある。例えば、集束部と集電体とを重ねた状態で超音波による振動を与えて、集束部と集電体とを接合する超音波接合と呼ばれる手法がある。 Also, as a technique for joining the converging portion of the electrode body and the current collector, welding using vibration may be used. For example, there is a technique called ultrasonic bonding in which a vibration by an ultrasonic wave is applied in a state where the focusing portion and the current collector are overlapped to join the focusing portion and the current collector.
 特許文献1に記載された二次電池では、集電部材における集電箔積層部分への接合面に、凹凸領域が設けられており、凹凸領域の凹部に集電箔積層部分の集電箔が食い込んだ状態で、集電部材と集電箔積層部分とが超音波接合によって接合されている。特許文献1には、上記構成により、電極積層体の電極板と、その電極板から電流を取り出す集電端子との間の接合箇所の接合強度が十分に得られる旨が記載されている。 In the secondary battery described in Patent Document 1, the uneven surface is provided on the joint surface of the current collecting member to the current collector foil laminated portion, and the current collector foil of the current collector foil laminated portion is provided in the concave portion of the uneven region. In the state where it has digged in, the current collecting member and the current collector foil laminated portion are joined by ultrasonic joining. Patent Document 1 describes that the above configuration can sufficiently obtain the bonding strength of the bonding portion between the electrode plate of the electrode laminate and the current collecting terminal that extracts current from the electrode plate.
特開2014-10913号公報JP 2014-10913 A
 電極体の集束部と集電体とを、超音波接合のような加振を伴う接合手法を用いて接合する場合、集束部を形成する金属箔の表面が削り取られることで、微小な金属片が発生する場合がある。このようにして発生した金属片は、例えば電極体の内部に移動した場合、電極体の内部における微短絡の発生等の不具合を引き起こすおそれがある。 When the converging part of the electrode body and the current collector are joined using a joining technique involving vibration such as ultrasonic joining, the surface of the metal foil that forms the converging part is scraped off, so that a small metal piece May occur. When the metal piece generated in this way moves to the inside of the electrode body, for example, there is a risk of causing problems such as the occurrence of a fine short circuit inside the electrode body.
 本発明は、上記従来の課題を考慮し、電極体と集電体とが加振を伴う接合手法を用いて接合された蓄電素子であって、信頼性の高い蓄電素子及びその製造方法を提供することを目的とする。 In view of the above-described conventional problems, the present invention provides a power storage element in which an electrode body and a current collector are joined using a joining technique involving vibration, and a highly reliable power storage element and a method for manufacturing the same. The purpose is to do.
 上記目的を達成するために、本発明の一態様に係る蓄電素子の製造方法は、極板が積層されることで形成された電極体と、前記電極体と電気的に接続された集電体とを備える蓄電素子の製造方法であって、複数の突起を有する接合用工具を用いて、前記電極体の、前記極板の積層方向と交差する第一方向の端部と、前記集電体とを接合する接合工程を含み、前記接合工程では、前記接合用工具によって、電極体の前記端部と前記集電体との重ね合わせ部分を加振することで、当該部分に、第一凹部と、前記第一凹部よりも深い第二凹部とを形成する。 In order to achieve the above object, a method for manufacturing a power storage element according to one embodiment of the present invention includes an electrode body formed by stacking electrode plates, and a current collector electrically connected to the electrode body And a current collector using a joining tool having a plurality of protrusions, and an end portion of the electrode body in a first direction intersecting with the stacking direction of the electrode plates, and the current collector In the joining step, the overlapping portion of the end portion of the electrode body and the current collector is vibrated by the joining tool in the joining step so that the first recess And a second recess deeper than the first recess.
 また、本発明の一態様に係る蓄電素子は、極板が積層されることで形成された電極体と、前記電極体と電気的に接続された集電体とを備える蓄電素子であって、前記電極体の、前記極板の積層方向と交差する第一方向の端部と、前記集電体とが接合された部分である接合部を有し、前記接合部の、前記積層方向から見た場合の領域である接合領域には、複数の凹部が並んで形成されており、前記複数の凹部は、第一凹部と、前記第一凹部よりも深い第二凹部とを含み、1以上の前記第二凹部は、前記第一方向において、前記第一凹部よりも前記電極体の中央に近い位置に形成されている。 The power storage device according to one embodiment of the present invention is a power storage device including an electrode body formed by laminating electrode plates, and a current collector electrically connected to the electrode body, The electrode body has a joining portion that is a portion where the end portion in the first direction intersecting the laminating direction of the electrode plate and the current collector is joined, and the joining portion is viewed from the laminating direction. A plurality of recesses are formed side by side in the joining region, which is a region in the case where the plurality of recesses include a first recess and a second recess deeper than the first recess. The second recess is formed at a position closer to the center of the electrode body than the first recess in the first direction.
 本発明によれば、電極体と集電体とが加振を伴う接合手法を用いて接合された蓄電素子であって、信頼性の高い蓄電素子及びその製造方法を提供することができる。 According to the present invention, it is possible to provide a power storage element in which an electrode body and a current collector are bonded using a bonding technique involving vibration, and a highly reliable power storage element and a method for manufacturing the power storage element.
図1は、実施の形態に係る蓄電素子の内部構造の概要を示す斜視図である。FIG. 1 is a perspective view showing an outline of the internal structure of the energy storage device according to the embodiment. 図2は、実施の形態に係る集電体と負極端子との接続態様を示す図である。FIG. 2 is a diagram showing a connection mode between the current collector and the negative electrode terminal according to the embodiment. 図3は、実施の形態に係る電極体の構成概要を示す斜視図である。FIG. 3 is a perspective view illustrating a schematic configuration of the electrode body according to the embodiment. 図4は、実施の形態に係る接合部の配置例を示す図である。FIG. 4 is a diagram illustrating an arrangement example of joint portions according to the embodiment. 図5は、図4におけるV-V断面の概要を示す断面図である。FIG. 5 is a cross-sectional view showing an outline of a VV cross section in FIG. 図6は、図4におけるVI-VI断面の概要を示す断面図である。FIG. 6 is a sectional view showing an outline of a VI-VI section in FIG. 図7は、実施の形態に係る接合部に形成された複数の凹部の配置例を示す図である。FIG. 7 is a diagram illustrating an arrangement example of a plurality of concave portions formed in the joint portion according to the embodiment. 図8は、実施の形態に係る電極体と集電体との接合に用いられる接合用チップの構成概要を示す斜視図である。FIG. 8 is a perspective view showing a schematic configuration of a bonding tip used for bonding the electrode body and the current collector according to the embodiment. 図9Aは、実施の形態に係る蓄電素子の製造工程の一部を示す第1の図である。FIG. 9A is a first diagram illustrating a part of the manufacturing process of the energy storage device according to the embodiment. 図9Bは、実施の形態に係る蓄電素子の製造工程の一部を示す第2の図である。FIG. 9B is a second diagram illustrating a part of the manufacturing process of the energy storage device according to the embodiment. 図9Cは、実施の形態に係る蓄電素子の製造工程の一部を示す第3の図である。FIG. 9C is a third diagram illustrating a part of the manufacturing process of the energy storage device according to the embodiment. 図10は、実施の形態の変形例1に係る接合部に形成された複数の凹部の配置例を示す図である。FIG. 10 is a diagram illustrating an arrangement example of a plurality of concave portions formed in the joint portion according to the first modification of the embodiment. 図11は、実施の形態の変形例2に係る接合部に形成された複数の凹部の配置例を示す図である。FIG. 11 is a diagram illustrating an arrangement example of a plurality of concave portions formed in the joint portion according to the second modification of the embodiment. 図12は、クリップを備えない蓄電素子の内部構造の概要を示す斜視図である。FIG. 12 is a perspective view showing an outline of the internal structure of a power storage element that does not include a clip.
 上記目的を達成するために、本発明の一態様に係る蓄電素子の製造方法は、極板が積層されることで形成された電極体と、前記電極体と電気的に接続された集電体とを備える蓄電素子の製造方法であって、複数の突起を有する接合用工具を用いて、前記電極体の、前記極板の積層方向と交差する第一方向の端部と、前記集電体とを接合する接合工程を含み、前記接合工程では、前記接合用工具によって、電極体の前記端部と前記集電体との重ね合わせ部分を加振することで、当該部分に、第一凹部と、前記第一凹部よりも深い第二凹部とを形成する。 In order to achieve the above object, a method for manufacturing a power storage element according to one embodiment of the present invention includes an electrode body formed by stacking electrode plates, and a current collector electrically connected to the electrode body And a current collector using a joining tool having a plurality of protrusions, and an end portion of the electrode body in a first direction intersecting with the stacking direction of the electrode plates, and the current collector In the joining step, the overlapping portion of the end portion of the electrode body and the current collector is vibrated by the joining tool in the joining step so that the first recess And a second recess deeper than the first recess.
 この方法によれば、複数の突起を有する接合用工具による加振によって、電極体の端部と集電体とが接合される。また、この接合の工程では、電極体の端部と集電体との重ね合わせ部分に、比較的に浅い第一凹部と比較的に深い第二凹部とが形成される。そのため、第一凹部の形成の際に微小な金属片(以下、「異物」ともいう)が発生した場合であっても、その異物の移動は、より深く形成される第二凹部によって規制を受ける。 According to this method, the end of the electrode body and the current collector are joined by vibration by a joining tool having a plurality of protrusions. In this bonding step, a relatively shallow first recess and a relatively deep second recess are formed in the overlapping portion between the end of the electrode body and the current collector. Therefore, even when a minute metal piece (hereinafter also referred to as “foreign matter”) is generated when the first recess is formed, the movement of the foreign matter is regulated by the second recess formed deeper. .
 このように、本態様に係る蓄電素子の製造方法は、加振を伴う接合手法を用いて電極体と集電体とを接合する接合工程を含む製造方法である。この製造方法によれば、接合工程において発生した異物の移動を抑制する構造を有する蓄電素子を製造することができる。従って、本態様に係る製造方法によれば、信頼性の高い蓄電素子を製造することができる。 Thus, the method for manufacturing a power storage element according to this aspect is a manufacturing method including a bonding step of bonding an electrode body and a current collector using a bonding technique involving vibration. According to this manufacturing method, it is possible to manufacture a power storage element having a structure that suppresses the movement of foreign matter generated in the joining process. Therefore, according to the manufacturing method according to this aspect, a highly reliable power storage element can be manufactured.
 また、本発明の一態様に係る蓄電素子の製造方法において、前記接合工程は、前記複数の突起のうちの1以上の突起によって、電極体の前記端部と前記集電体との重ね合わせ部分を加振することで、1以上の前記第二凹部を形成する第一工程と、前記第一工程が開始された後に、前記複数の突起のうちの他の1以上の突起によって、前記電極体の前記端部と前記集電体との重ね合わせ部分を加振することで、1以上の前記第一凹部を形成する第二工程とを含むとしてもよい。 Further, in the method for manufacturing a power storage element according to one embodiment of the present invention, the joining step includes an overlapping portion of the end portion of the electrode body and the current collector by one or more of the plurality of protrusions. The electrode body is formed by a first step of forming one or more of the second recesses by vibrating, and one or more other projections of the plurality of projections after the first step is started. It is good also as including the 2nd process of forming one or more above-mentioned 1st crevices by oscillating the overlap part of the above-mentioned end and the above-mentioned current collector.
 この製造方法によれば、接合工程において、1以上の突起による加振(第一工程)が、他の1以上の突起による加振(第二工程)よりも先に開始される。そのため、第二工程において発生した異物は、既に開始されている第一工程によって接合されている部分、または、接合中の部分によって規制を受ける。すなわち、接合工程において発生した異物の移動が抑制される。 According to this manufacturing method, in the joining process, the vibration by the one or more protrusions (first process) is started before the vibration by the one or more other protrusions (second process). Therefore, the foreign matter generated in the second step is regulated by the portion joined by the first step already started or the portion being joined. That is, the movement of the foreign matter generated in the joining process is suppressed.
 また、本発明の一態様に係る蓄電素子の製造方法において、前記複数の突起は、第一突起と第二突起とを含み、前記第二突起の、前記複数の突起が配置された突起配置面からの高さは、前記第一突起の前記突起配置面からの高さよりも高く、前記接合工程では、前記接合用工具を、前記電極体の前記端部と前記集電体との重ね合わせ部分に向けて移動させることで、前記第二突起による前記第一工程の開始の後に、前記第一突起による前記第二工程を開始させるとしてもよい。 Further, in the method for manufacturing a power storage element according to one aspect of the present invention, the plurality of protrusions include a first protrusion and a second protrusion, and the protrusion disposition surface of the second protrusion on which the plurality of protrusions are disposed. The height of the first projection is higher than the height of the first projection from the projection arrangement surface. In the joining step, the joining tool is formed by overlapping the end portion of the electrode body and the current collector. The second step by the first protrusion may be started after the start of the first step by the second protrusion.
 この製造方法によれば、互いに高さが異なる第一突起と第二突起とを有する接合用工具を、電極体の端部と集電体とが重ねられた部分に向けて移動させることで、第一工程及び第二工程を、この順で開始することができる。例えば、水平方向に振動する接合用工具を、電極体の端部と集電体とが重ねられた部分に対して垂直に移動させることで、接合のタイミングが互いに異なる複数の部分を有する1つの接合部を形成することができる。これにより、1つの接合部内において、先に接合が開始された部分が、後で開始された接合によって生じた異物の移動を阻害する要素として機能し、その結果、蓄電素子の信頼性が向上される。 According to this manufacturing method, by moving the joining tool having the first protrusion and the second protrusion having different heights toward the portion where the end of the electrode body and the current collector are overlapped, The first step and the second step can be started in this order. For example, a welding tool that vibrates in the horizontal direction is moved vertically with respect to a portion where the end of the electrode body and the current collector are overlapped, thereby providing a single piece having a plurality of portions with different joining timings. A junction can be formed. As a result, in one joint portion, the portion where the joining is started first functions as an element that hinders the movement of the foreign matter caused by the joining started later, and as a result, the reliability of the storage element is improved. The
 また、本発明の一態様に係る蓄電素子は、極板が積層されることで形成された電極体と、前記電極体と電気的に接続された集電体とを備える蓄電素子であって、前記電極体の、前記極板の積層方向と交差する第一方向の端部と、前記集電体とが接合された部分である接合部を有し、前記接合部の、前記積層方向から見た場合の領域である接合領域には、複数の凹部が並んで形成されており、前記複数の凹部は、第一凹部と、前記第一凹部よりも深い第二凹部とを含み、1以上の前記第二凹部は、前記第一方向において、前記第一凹部よりも前記電極体の中央に近い位置に形成されている。 The power storage device according to one embodiment of the present invention is a power storage device including an electrode body formed by laminating electrode plates, and a current collector electrically connected to the electrode body, The electrode body has a joining portion that is a portion where the end portion in the first direction intersecting the laminating direction of the electrode plate and the current collector is joined, and the joining portion is viewed from the laminating direction. A plurality of recesses are formed side by side in the joining region, which is a region in the case where the plurality of recesses include a first recess and a second recess deeper than the first recess. The second recess is formed at a position closer to the center of the electrode body than the first recess in the first direction.
 この構成によれば、電極体の端部と集電体とが接合された部分である接合部には、第一凹部と第一凹部よりも深い第二凹部とが形成されている。この構造を有する接合部は、例えば、互いに高さが異なる少なくとも2つの突起を有する工具による加振によって形成される。すなわち、比較的に浅く形成される第一凹部に対応する部分の接合の際に異物が発生した場合であっても、その異物の移動は、比較的深く形成される第二凹部に対応する部分による規制を受ける。つまり、接合工程において生じた異物によって、電極体の内部における微短絡等の不具合が発生する可能性が低減される。より詳細には、1以上の第二凹部が、第一凹部よりも電極体の中央に近い位置に配置されるため、第一凹部に対応する部分の接合において生じた異物の、電極体の中央向きの移動を抑制することができる。つまり、接合部の形成の際に発生した異物が、電極体の内部に到達する可能性がより低減される。 According to this configuration, the first concave portion and the second concave portion deeper than the first concave portion are formed in the joint portion, which is a portion where the end portion of the electrode body and the current collector are joined. The joint having this structure is formed, for example, by vibration with a tool having at least two protrusions having different heights. That is, even when a foreign matter is generated when the portion corresponding to the first recess formed relatively shallowly, the movement of the foreign matter is a portion corresponding to the second recess formed relatively deep. Subject to regulations by That is, the possibility that a defect such as a fine short circuit occurs inside the electrode body due to the foreign matter generated in the joining process is reduced. More specifically, since the one or more second recesses are arranged at a position closer to the center of the electrode body than the first recess, the center of the electrode body of the foreign matter generated in the joining of the portions corresponding to the first recesses Directional movement can be suppressed. That is, the possibility that foreign matter generated during the formation of the joint portion reaches the inside of the electrode body is further reduced.
 このように、本態様に係る蓄電素子は、接合された電極体と集電体とを備える蓄電素子であって、接合工程において異物が発生した場合であっても、当該異物の移動が抑制される構造を有する蓄電素子である。従って、本態様に係る蓄電素子は、信頼性の高い蓄電素子である。 As described above, the power storage device according to this aspect is a power storage device including the joined electrode body and the current collector, and movement of the foreign matter is suppressed even when foreign matter is generated in the joining process. It is an electrical storage element which has a structure. Therefore, the power storage element according to this embodiment is a highly reliable power storage element.
 また、本発明の一態様に係る蓄電素子において、前記複数の凹部は、前記接合領域において分散して配置されており、前記第二凹部は、前記接合領域の外周の少なくとも一部に沿って複数配置されているとしてもよい。 In the energy storage device according to one embodiment of the present invention, the plurality of recesses are arranged in a dispersed manner in the joining region, and the second recesses are provided along at least a part of the outer periphery of the joining region. It may be arranged.
 この構成によれば、2次元的な広がり持つ接合領域の内側で発生した異物の、接合領域の外側への移動を、接合領域の外周に沿って配置された、比較的に深く窪まされた部分(複数の第二凹部に対応する部分)によって効率よく抑制することができる。 According to this configuration, the portion of the foreign matter generated inside the joining region having a two-dimensional extension is moved relatively deeply outside the joining region and is recessed along the outer periphery of the joining region. (Parts corresponding to the plurality of second recesses) can be efficiently suppressed.
 また、本発明の一態様に係る蓄電素子において、前記第二凹部は、1以上の前記第一凹部を囲むように、前記外周に沿って複数配置されているとしてもよい。 In the power storage device according to one embodiment of the present invention, a plurality of the second recesses may be arranged along the outer periphery so as to surround one or more of the first recesses.
 この構成によれば、接合領域の内側で発生したほとんど全ての異物について、接合領域の外側への進行を抑制することができる。 According to this configuration, it is possible to suppress the progress of almost all foreign matters generated inside the joining region to the outside of the joining region.
 また、本発明の一態様に係る蓄電素子において、前記接合部は、前記電極体の前記端部に沿って配置された当て材の、前記端部と接合された部分を含み、前記複数の凹部は、前記当て材に形成されているとしてもよい。 Further, in the energy storage device according to one aspect of the present invention, the joint includes a portion of the pad disposed along the end of the electrode body and joined to the end, and the plurality of recesses May be formed on the pad.
 この構成によれば、当て材を用いて、電極体の端部と集電体との接合が行われているため、例えば、当該接合の高い信頼性が得られる。また、当該接合に用いられる工具と電極体の端部との直接的な接触が防止されるため、例えば、当該接合における異物の発生数が抑制される。 According to this configuration, since the end portion of the electrode body and the current collector are bonded using the contact material, for example, high reliability of the bonding can be obtained. Moreover, since the direct contact with the tool used for the said joining and the edge part of an electrode body is prevented, the generation | occurrence | production number of the foreign material in the said joining is suppressed, for example.
 以下、図面を参照しながら、本発明の実施の形態における蓄電素子について説明する。なお、各図は、模式図であり、必ずしも厳密に図示したものではない。 Hereinafter, a power storage device according to an embodiment of the present invention will be described with reference to the drawings. Each figure is a schematic diagram and is not necessarily illustrated exactly.
 また、以下で説明する実施の形態及びその変形例のそれぞれは、本発明の一具体例を示すものである。以下の実施の形態及びその変形例で示される形状、材料、構成要素、構成要素の配置位置及び接続形態、製造工程の順序などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態及びその変形例における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 In addition, each of the embodiments and modifications thereof described below shows one specific example of the present invention. The shapes, materials, constituent elements, arrangement positions and connecting forms of constituent elements, order of manufacturing steps, and the like shown in the following embodiments and modifications thereof are merely examples, and are not intended to limit the present invention. In addition, among the constituent elements in the following embodiments and modifications thereof, constituent elements that are not described in the independent claims indicating the highest concept are described as arbitrary constituent elements.
 まず、図1および図2を用いて、実施の形態に係る蓄電素子10の全般的な説明を行う。図1は、実施の形態に係る蓄電素子10の内部構造の概要を示す斜視図である。具体的には、図1は、蓄電素子10の内部構造を図示するために、後述する電池容器100の一部の図示が省略された図である。図2は、実施の形態に係る集電体140と負極端子300との接続態様を示す図である。 First, with reference to FIG. 1 and FIG. 2, a general description of the electricity storage device 10 according to the embodiment will be given. FIG. 1 is a perspective view showing an outline of the internal structure of a power storage device 10 according to the embodiment. Specifically, FIG. 1 is a diagram in which a part of a battery container 100 described later is omitted in order to illustrate the internal structure of the electricity storage element 10. FIG. 2 is a diagram illustrating a connection mode between the current collector 140 and the negative electrode terminal 300 according to the embodiment.
 蓄電素子10は、電気を充電し、また、電気を放電することのできる二次電池であり、例えば、非水電解質二次電池である。非水電解質電池としては、例えば、正極活物質がコバルト酸リチウムなどのリチウム遷移金属酸化物であり、負極活物質が炭素材料であるリチウムイオン二次電池を挙げることができる。 The electricity storage element 10 is a secondary battery that can charge and discharge electricity, for example, a non-aqueous electrolyte secondary battery. Examples of the non-aqueous electrolyte battery include a lithium ion secondary battery in which the positive electrode active material is a lithium transition metal oxide such as lithium cobaltate and the negative electrode active material is a carbon material.
 なお、蓄電素子10の種類は、非水電解質二次電池には限定されず、非水電解質二次電池以外の二次電池であってもよく、また、一次電池であってもよい。また、蓄電素子10は、リチウムイオンキャパシタ等のキャパシタであってもよい。更に、蓄電素子10は、使用者が充電をしなくても蓄えられている電気を使用できる一次電池であってもよい。 In addition, the kind of electrical storage element 10 is not limited to a nonaqueous electrolyte secondary battery, A secondary battery other than a nonaqueous electrolyte secondary battery may be sufficient, and a primary battery may be sufficient. The power storage element 10 may be a capacitor such as a lithium ion capacitor. Further, the power storage element 10 may be a primary battery that can use the stored electricity without being charged by the user.
 図1に示すように、実施の形態に係る蓄電素子10は、電池容器100と、正極端子200と、負極端子300とを備える。電池容器100は、金属からなる矩形筒状で底を備える本体101と、本体101の開口を閉塞する金属製の蓋板110とで構成されている。また、電池容器100は、電極体120等を内部に収容後、蓋板110と本体101とが溶接等されることにより、内部を密封する構造を有する。 As shown in FIG. 1, the power storage device 10 according to the embodiment includes a battery container 100, a positive electrode terminal 200, and a negative electrode terminal 300. The battery container 100 includes a main body 101 having a rectangular cylindrical shape made of metal and having a bottom, and a metal lid plate 110 that closes an opening of the main body 101. In addition, the battery container 100 has a structure in which after the electrode body 120 and the like are accommodated therein, the lid plate 110 and the main body 101 are welded to seal the inside.
 正極端子200は、電池容器100の気密性を保つためのガスケット230を介して電池容器100の蓋板110に取り付けられている。負極端子300も同様にガスケット330を介して電池容器100の蓋板110に取り付けられている。 The positive electrode terminal 200 is attached to the lid plate 110 of the battery container 100 via a gasket 230 for maintaining the airtightness of the battery container 100. Similarly, the negative electrode terminal 300 is also attached to the lid plate 110 of the battery container 100 via the gasket 330.
 なお、ガスケット230および330のそれぞれは、例えば絶縁性の樹脂で形成されており、金属製の正極端子200および負極端子300と、金属製の電池容器100(蓋板110)との間の電気的な絶縁の役割も有している。 Each of the gaskets 230 and 330 is formed of, for example, an insulating resin, and an electrical connection between the metal positive electrode terminal 200 and the negative electrode terminal 300 and the metal battery container 100 (cover plate 110). It also has a role of proper insulation.
 また、図1に示すように、電池容器100の内方には、電極体120が収容されており、さらに、正極側の集電体130と、負極側の集電体140とが配置されている。なお、本実施の形態では、蓄電素子10の電池容器100の内部には電解液などの液体が封入されているが、当該液体の図示は省略する。 As shown in FIG. 1, an electrode body 120 is accommodated inside the battery container 100, and a positive current collector 130 and a negative current collector 140 are disposed. Yes. In the present embodiment, a liquid such as an electrolytic solution is sealed in the battery container 100 of the power storage element 10, but the liquid is not shown.
 また、図1には表されていないが、集電体130および集電体140のそれぞれと、蓋板110との間にも、集電体130および集電体140と、蓋板110とを絶縁するガスケット(下ガスケット)が配置されている。 Although not shown in FIG. 1, the current collector 130, the current collector 140, and the lid plate 110 are also interposed between the current collector 130 and the current collector 140 and the lid plate 110. An insulating gasket (lower gasket) is arranged.
 電極体120は、正極板と負極板とセパレータとを備え、電気を蓄えることができる部材であり、全体が長円形状となるように形成されている。電極体120の詳細については、図3を用いて後述する。 The electrode body 120 includes a positive electrode plate, a negative electrode plate, and a separator, and is a member that can store electricity, and is formed to have an oval shape as a whole. Details of the electrode body 120 will be described later with reference to FIG.
 集電体130は、正極端子200および電極体120に接続された金属部材である。集電体130の素材としては、例えば、電極体120の正極と同じ素材であるアルミニウムまたはアルミニウム合金が採用される。集電体130は、電極体120と接続される一対の長尺状の接続板部132を有している。 The current collector 130 is a metal member connected to the positive electrode terminal 200 and the electrode body 120. As the material of the current collector 130, for example, aluminum or an aluminum alloy that is the same material as the positive electrode of the electrode body 120 is employed. The current collector 130 has a pair of long connection plate portions 132 connected to the electrode body 120.
 集電体140は、負極端子300および電極体120に接続された金属部材である。集電体140の素材としては、例えば、電極体120の負極と同じ素材である銅または銅合金が採用される。集電体140は、電極体120と接続される一対の長尺状の接続板部142を有している。 The current collector 140 is a metal member connected to the negative electrode terminal 300 and the electrode body 120. As the material of the current collector 140, for example, copper or a copper alloy that is the same material as the negative electrode of the electrode body 120 is employed. The current collector 140 has a pair of long connection plate portions 142 connected to the electrode body 120.
 また、正極端子200および集電体130は、本実施の形態では、かしめによって接続されている。負極端子300および集電体140も同様にかしめによって接続されている。 In addition, the positive electrode terminal 200 and the current collector 130 are connected by caulking in the present embodiment. Similarly, the negative electrode terminal 300 and the current collector 140 are connected by caulking.
 例えば、図2に示すように、負極端子300はリベット部305を有している。このリベット部305が、ガスケット330、蓋板110(図1参照)、および、図示しない下ガスケットを貫通し、集電体140の、端子接続部141に設けられた貫通孔141aに挿入された状態で、リベット部305の先端がかしめられる。これにより、負極端子300と集電体140とが接続される。 For example, as shown in FIG. 2, the negative electrode terminal 300 has a rivet portion 305. The rivet portion 305 passes through the gasket 330, the cover plate 110 (see FIG. 1), and a lower gasket (not shown), and is inserted into a through hole 141a provided in the terminal connection portion 141 of the current collector 140. Thus, the tip of the rivet portion 305 is caulked. Thereby, the negative electrode terminal 300 and the current collector 140 are connected.
 正極端子200も同様に、正極端子200が有するリベット部がかしめられることで、集電体130と接続されている。 Similarly, the positive electrode terminal 200 is connected to the current collector 130 by caulking the rivet portion of the positive electrode terminal 200.
 このような構成の蓄電素子10において、集電体130および集電体140のそれぞれと、電極体120とは、本実施の形態では、加振を伴う接合手法の一例である超音波接合によって接続されている。 In power storage element 10 having such a configuration, each of current collector 130 and current collector 140 and electrode body 120 are connected by ultrasonic bonding, which is an example of a bonding technique involving excitation, in the present embodiment. Has been.
 電極体120は、巻回軸方向(本実施の形態におけるX軸方向)の端部に、極板において活物質が塗工されていない部分である未塗工部が積層された集束部を有する。本実施の形態では、図1に示すように、電極体120は、正極板の未塗工部122aが積層された集束部136と、負極板の未塗工部123aが積層された集束部126とを有する。集束部136及び集束部126のそれぞれは、電極体120の、極板の積層方向と交差する第一方向(本実施の形態ではX軸方向)の端部の一例である。 Electrode body 120 has a converging portion in which an uncoated portion, which is a portion where no active material is coated on the electrode plate, is laminated on an end portion in the winding axis direction (X-axis direction in the present embodiment). . In the present embodiment, as shown in FIG. 1, the electrode body 120 includes a converging part 136 in which an uncoated part 122 a of a positive electrode plate is laminated and a converging part 126 in which an uncoated part 123 a of a negative electrode plate is laminated. And have. Each of the converging part 136 and the converging part 126 is an example of an end of the electrode body 120 in the first direction (in the present embodiment, the X-axis direction) intersecting with the electrode plate stacking direction.
 なお、本実施の形態では、電極体120は巻回型の電極体であり、正極側には、巻回軸を挟んで厚み方向(本実施の形態におけるY軸方向)に2つの集束部136が形成されている。電極体120の負極側も同様に、巻回軸を挟んで厚み方向に2つの集束部126が形成されている。 In the present embodiment, the electrode body 120 is a wound electrode body, and on the positive electrode side, two converging portions 136 are arranged in the thickness direction (Y-axis direction in the present embodiment) across the winding shaft. Is formed. Similarly, on the negative electrode side of the electrode body 120, two converging portions 126 are formed in the thickness direction with the winding axis interposed therebetween.
 2つの集束部136のそれぞれには、集電体130が有する接続板部132が接合され、2つの集束部126のそれぞれには、集電体140が有する接続板部142が接合される。 The connection plate portion 132 of the current collector 130 is joined to each of the two converging portions 136, and the connection plate portion 142 of the current collector 140 is joined to each of the two converging portions 126.
 集電体140に着目して説明すると、一対の接続板部142が、電極体120の負極側の端部を挟むように集電体140が配置される。その状態で、一対の接続板部142のそれぞれと集束部126とが超音波接合によって接合される。 The current collector 140 will be described by focusing on the current collector 140. The current collector 140 is disposed so that the pair of connection plate portions 142 sandwich the end portion of the electrode body 120 on the negative electrode side. In this state, each of the pair of connection plate portions 142 and the converging portion 126 are joined by ultrasonic joining.
 この接続の際、接続板部142と接合される集束部126を構成する複数の未塗工部123aは、例えば、積層方向の中央付近に寄せ集められ、加圧及び加振されながら接続板部142に接続される。 At the time of this connection, the plurality of uncoated parts 123a constituting the converging part 126 joined to the connection plate part 142 are gathered near the center in the stacking direction, for example, and connected and pressed while being vibrated. 142.
 上記の接合工程を経た結果、蓄電素子10には、電極体120の端部(集束部136、126)と集電体(130、140)とが加振されて接合された部分である接合部160が形成される。 As a result of the joining process described above, the electrical storage element 10 has a joined portion that is a portion where the ends (the converging portions 136 and 126) of the electrode body 120 and the current collectors (130 and 140) are vibrated and joined. 160 is formed.
 本実施の形態では、接合部160には、複数の凹部170が形成され、かつ、複数の凹部170のうちの少なくとも1つの凹部170が他の1以上の凹部170よりも深く形成されている。本実施の形態に係る蓄電素子10が有する接合部160については、図4~図9Cを用いて後述する。 In the present embodiment, the joint 160 is formed with a plurality of recesses 170, and at least one of the plurality of recesses 170 is formed deeper than one or more other recesses 170. The junction 160 included in the power storage element 10 according to the present embodiment will be described later with reference to FIGS. 4 to 9C.
 ここで、本実施の形態では、当て材の一例であるクリップを用いて、電極体120の端部(集束部136及び126)と集電体130及び140との接合が行われている。具体的には、集電体130の一対の接続板部132および集電体140の一対の接続板部142のそれぞれに1つのクリップ150が配置されている。 Here, in the present embodiment, the end portions (the converging portions 136 and 126) of the electrode body 120 and the current collectors 130 and 140 are joined by using a clip which is an example of a patch. Specifically, one clip 150 is disposed on each of the pair of connection plate portions 132 of the current collector 130 and the pair of connection plate portions 142 of the current collector 140.
 1つの接続板部142に着目して説明すると、電極体120の集束部126および接続板部142を挟むように、1つのクリップ150が配置されている。つまり、接続板部142と集束部126とがクリップ150に挟み込まれた状態で加圧されながら超音波による振動が与えられることで、接続板部142と集束部126とが接合される。 Referring to one connection plate 142, the description will be made with one clip 150 arranged so as to sandwich the converging portion 126 and the connection plate 142 of the electrode body 120. That is, the connection plate portion 142 and the converging portion 126 are joined to each other by applying ultrasonic vibration while being pressed while the connection plate portion 142 and the converging portion 126 are sandwiched between the clips 150.
 クリップ150は、超音波による振動によって、金属箔が積層されることで形成された集束部136(126)が損傷しないように、補助的に用いられる金属部材である。また、クリップ150は、集束部136(126)と、接続板部132(142)との接合の際に、これら接合対象の要素を取りまとめる部材としての役割も有する。 The clip 150 is a metal member that is used as an auxiliary so that the converging part 136 (126) formed by stacking the metal foils is not damaged by vibration caused by ultrasonic waves. The clip 150 also has a role as a member that collects these elements to be joined when the converging part 136 (126) and the connecting plate part 132 (142) are joined.
 なお、正極側の集電体130に取り付けられるクリップ150の素材としては、例えば、電極体120の正極と同じ素材であるアルミニウム、または、アルミニウム合金が採用される。また、負極側の集電体140に取り付けられるクリップ150の素材としては、例えば、電極体120の負極と同じ素材である銅、または、銅合金が採用される。 In addition, as a material of the clip 150 attached to the current collector 130 on the positive electrode side, for example, aluminum that is the same material as the positive electrode of the electrode body 120 or an aluminum alloy is employed. In addition, as a material of the clip 150 attached to the negative electrode side current collector 140, for example, copper or a copper alloy which is the same material as the negative electrode of the electrode body 120 is employed.
 また、このクリップ150は、上記のように補助的に用いられる部材であり、電極体120と、集電体130及び140との接合に必須ではない。例えば、電極体120の集束部126及び集電体140の接続板部142のいずれか一方に、後述する接合用チップを直接当てながら加振することで、集束部126と接続板部142とが接合されてもよい。 In addition, the clip 150 is a member used auxiliary as described above, and is not essential for joining the electrode body 120 and the current collectors 130 and 140. For example, the converging part 126 and the connecting plate part 142 are vibrated while directly applying a bonding chip (described later) to either the converging part 126 of the electrode body 120 or the connecting plate part 142 of the current collector 140. It may be joined.
 次に、図3を用いて本実施の形態に係る電極体120の構成概要を説明する。図3は、実施の形態に係る電極体120の構成概要を示す斜視図である。 Next, an outline of the configuration of the electrode body 120 according to the present embodiment will be described with reference to FIG. FIG. 3 is a perspective view showing a schematic configuration of the electrode body 120 according to the embodiment.
 電極体120は、極板が巻回されることで形成された電極体の一例である。本実施の形態では、図3に示すように、電極体120は、正極板122および負極板123と、2枚のセパレータ124、125とが交互に積層されかつ巻回されることで形成されている。 The electrode body 120 is an example of an electrode body formed by winding an electrode plate. In the present embodiment, as shown in FIG. 3, the electrode body 120 is formed by alternately stacking and winding the positive electrode plate 122 and the negative electrode plate 123 and the two separators 124 and 125. Yes.
 つまり、電極体120は、正極板122と、セパレータ124と、負極板123と、セパレータ125とがこの順に積層され、かつ、断面が長円形状になるように巻回されることで形成されている。 That is, the electrode body 120 is formed by laminating the positive electrode plate 122, the separator 124, the negative electrode plate 123, and the separator 125 in this order and winding the cross section into an oval shape. Yes.
 すなわち、電極体120は、図3に示すように湾曲部と直線部とを有する扁平形状である。具体的には、電極体120は、図3における上下の湾曲部(Z軸方向プラス側およびマイナス側の、極板がターンしている部分)と、上下の湾曲部の間の直線部(極板がZ軸方向と平行になっている部分)とを有している。 That is, the electrode body 120 has a flat shape having a curved portion and a straight portion as shown in FIG. Specifically, the electrode body 120 includes a linear portion (pole) between the upper and lower curved portions in FIG. 3 (the portions where the electrode plates are turned on the positive and negative sides in the Z-axis direction) and the upper and lower curved portions. The plate is parallel to the Z-axis direction).
 正極板122は、アルミニウムからなる長尺帯状の金属箔の表面に、正極活物質を含む合剤層が形成されたものである。正極板122が有する合剤層に含まれる正極活物質としては、例えば、LiMPO、LiMSiO、LiMBO(Mは、Fe、Ni、Mn、Co等から選択される1種または2種以上の遷移金属元素)等のポリアニオン化合物、チタン酸リチウム、マンガン酸リチウム等のスピネル化合物、LiMO(MはFe、Ni、Mn、Co等から選択される1種または2種以上の遷移金属元素)等のリチウム遷移金属酸化物等を用いることができる。 The positive electrode plate 122 is obtained by forming a mixture layer containing a positive electrode active material on the surface of a long metal foil made of aluminum. As the positive electrode active material contained in the mixture layer of the positive electrode plate 122, for example, LiMPO 4 , LiMSiO 4 , LiMBO 3 (M is one or more selected from Fe, Ni, Mn, Co, etc.) Polyanion compounds such as transition metal elements), spinel compounds such as lithium titanate and lithium manganate, LiMO 2 (M is one or more transition metal elements selected from Fe, Ni, Mn, Co, etc.), etc. Lithium transition metal oxide or the like can be used.
 負極板123は、銅からなる長尺帯状の金属箔の表面に、負極活物質層を含む合剤層が形成されたものである。負極板123が有する合剤層に含まれる負極活物質としては、例えばリチウムイオンを吸蔵放出可能な負極活物質であれば、適宜公知の材料を使用できる。例えば、リチウム金属、リチウム合金(リチウム-アルミニウム、リチウム-シリコン、リチウム-鉛、リチウム-錫、リチウム-アルミニウム-錫、リチウム-ガリウム、およびウッド合金等のリチウム金属含有合金)の他、リチウムを吸蔵・放出可能な合金、炭素材料(例えば黒鉛、難黒鉛化炭素、易黒鉛化炭素、低温焼成炭素、非晶質カーボン等)、金属酸化物、リチウム金属酸化物(LiTi12等)、ポリリン酸化合物などが挙げられる。 The negative electrode plate 123 is obtained by forming a mixture layer including a negative electrode active material layer on the surface of an elongated metal foil made of copper. As the negative electrode active material contained in the mixture layer of the negative electrode plate 123, for example, a known material can be used as appropriate as long as it is a negative electrode active material capable of occluding and releasing lithium ions. For example, lithium metal, lithium alloys (lithium metal-containing alloys such as lithium-aluminum, lithium-silicon, lithium-lead, lithium-tin, lithium-aluminum-tin, lithium-gallium, and wood alloys), as well as occlusion of lithium・ Releasable alloys, carbon materials (eg, graphite, non-graphitizable carbon, graphitizable carbon, low-temperature calcined carbon, amorphous carbon, etc.), metal oxides, lithium metal oxides (Li 4 Ti 6 O 12 etc.) And polyphosphoric acid compounds.
 このように構成された電極体120において、より具体的には、正極板122と負極板123とは、セパレータ124、125を介し、巻回軸方向に互いにずらして巻回されている。そして、正極板122および負極板123は、それぞれのずらされた方向の端縁部に、活物質が塗工されていない部分である未塗工部を有する。なお、未塗工部は、例えば「合剤層非形成部」とも呼ばれる。 More specifically, in the electrode body 120 configured as described above, the positive electrode plate 122 and the negative electrode plate 123 are wound while being shifted from each other in the winding axis direction via the separators 124 and 125. And the positive electrode plate 122 and the negative electrode plate 123 have the uncoated part which is a part in which the active material is not coated in the edge part of each shifted direction. The uncoated part is also called, for example, “mixture layer non-formed part”.
 すなわち、正極板122は、上述のように、巻回軸方向の一端に、正極活物質が塗工されていない未塗工部122aが積層された集束部136を有している。また、負極板123は、上述のように、巻回軸方向の他端に、負極活物質が塗工されていない未塗工部123aが積層された集束部126を有している。 That is, as described above, the positive electrode plate 122 has the converging part 136 in which the uncoated part 122a not coated with the positive electrode active material is laminated at one end in the winding axis direction. Further, as described above, the negative electrode plate 123 has the converging portion 126 in which the uncoated portion 123a not coated with the negative electrode active material is laminated on the other end in the winding axis direction.
 以上説明した構成を有する蓄電素子10では、電極体120と、集電体130及び140それぞれとの接合部分である接合部160に特徴を有している。また、本実施の形態では、負極側の部材(負極端子300、集電体140およびクリップ150等)と、正極側の部材(正極端子200、集電体130およびクリップ150等)の形状および取り付け構造等は、実質的に同一である。そこで、電極体120と集電体140とが接合された部分である接合部160に着目し、その構造等についての特徴を、図4~図9Cを用いて説明する。 The power storage element 10 having the above-described configuration has a feature in the joint portion 160 that is a joint portion between the electrode body 120 and the current collectors 130 and 140. Further, in the present embodiment, the shape and attachment of negative side members (negative electrode terminal 300, current collector 140, clip 150, etc.) and positive side members (positive electrode terminal 200, current collector 130, clip 150, etc.) The structure and the like are substantially the same. Therefore, paying attention to the joint 160, which is a part where the electrode body 120 and the current collector 140 are joined, the characteristics of the structure and the like will be described with reference to FIGS. 4 to 9C.
 図4は、実施の形態に係る接合部160の配置例を示す図である。なお、図4では、クリップ150等の図示は省略されている。図5は、図4におけるV-V断面の概要を示す断面図である。図6は、図4におけるVI-VI断面の概要を示す断面図である。図7は、実施の形態に係る接合部160に形成された複数の凹部170の配置例を示す図である。なお、図7において、薄いドットが付された円形領域は、第一凹部170aを表し、濃いドットが付された円形領域は、第二凹部170bを表している。このことは、後述する図10及び図11でも同じである。 FIG. 4 is a diagram illustrating an arrangement example of the joint 160 according to the embodiment. In FIG. 4, the clip 150 and the like are not shown. FIG. 5 is a cross-sectional view showing an outline of a VV cross section in FIG. FIG. 6 is a sectional view showing an outline of a VI-VI section in FIG. FIG. 7 is a diagram illustrating an arrangement example of the plurality of concave portions 170 formed in the joint portion 160 according to the embodiment. In FIG. 7, a circular region with a thin dot represents the first concave portion 170a, and a circular region with a dark dot represents the second concave portion 170b. This also applies to FIGS. 10 and 11 described later.
 本実施の形態に係る蓄電素子10は、電極体120の端部である集束部126と集電体140とが加振されて接合された部分である接合部160を有する。本実施の形態では、図4に示すように、Z軸方向に長尺状の接続板部142の長手方向の2箇所が、電極体120の集束部126と接合されている。つまり、本実施の形態では、1つの接続板部142あたり、2つの接合部160が形成されている。なお、接合部160の数に特に限定はなく、1つの接続板部142について、1つまたは3以上の接合部160が形成されていてもよい。 The electricity storage device 10 according to the present exemplary embodiment includes a joint portion 160 that is a portion where the converging portion 126 that is an end portion of the electrode body 120 and the current collector 140 are joined by vibration. In the present embodiment, as shown in FIG. 4, two portions in the longitudinal direction of the connection plate portion 142 that is long in the Z-axis direction are joined to the converging portion 126 of the electrode body 120. In other words, in the present embodiment, two connecting portions 160 are formed per one connecting plate portion 142. Note that the number of the joint portions 160 is not particularly limited, and one or three or more joint portions 160 may be formed for one connection plate portion 142.
 また、図5~図7に示すように、接合部160の、極板の積層方向(本実施の形態ではY軸方向)から見た場合の領域である接合領域165には、複数の凹部170が並んで形成されている。より詳細には、本実施の形態では、クリップ150を介して、集束部126に接合用チップ(図8を用いて後述)による加振がなされる。そのため、接合部160の、集束部126側(Y軸方向プラス側)から見た場合の領域である接合領域165に、複数の凹部170が並んで形成されている。なお、これら複数の凹部170が形成された接合領域165は、例えば「溶接痕」と呼ばれる場合もある。 Further, as shown in FIGS. 5 to 7, a plurality of recesses 170 are formed in the bonding region 165, which is a region when the bonding portion 160 is viewed from the electrode stacking direction (Y-axis direction in the present embodiment). Are formed side by side. More specifically, in the present embodiment, the converging portion 126 is vibrated by a joining tip (described later with reference to FIG. 8) via the clip 150. Therefore, a plurality of concave portions 170 are formed side by side in the bonding region 165 that is a region when the bonding portion 160 is viewed from the converging portion 126 side (Y-axis direction plus side). In addition, the joining area | region 165 in which these some recessed part 170 was formed may be called a "welding trace", for example.
 また、接合部160に形成された複数の凹部170は、第一凹部170aと、第一凹部170aよりも深い第二凹部170bとを含む。つまり、第一凹部170aの深さをD1とし、第二凹部170bの深さをD2とした場合、D2>D1である。また、D2:D1は、例えば、5:4程度である。 Also, the plurality of recesses 170 formed in the joint 160 include a first recess 170a and a second recess 170b deeper than the first recess 170a. That is, when the depth of the first recess 170a is D1, and the depth of the second recess 170b is D2, D2> D1. Moreover, D2: D1 is about 5: 4, for example.
 この構造を有する接合部160は、互いに高さが異なる少なくとも2つの突起を有する接合用チップによる加振によって形成される。すなわち、例えば、第二凹部170bに対応する部分の接合が、第一凹部170aに対応する部分の接合よりも先に開始される。そのため、第一凹部170aに対応する部分の接合の際に微小な金属片(以下、「異物」ともいう)が発生した場合、その異物の移動は、第二凹部170bに対応する部分による規制を受ける。また、例えば、集束部126と集電体140との重ね合わせ部分に、接合用チップが押し当てられた状態で加振が開始された場合であっても、比較的に深く形成される第二凹部170b及びその直下の部分は、第一凹部170aの形成の際に発生した異物の移動を抑制する壁として存在する。 The joint 160 having this structure is formed by vibration with a joining tip having at least two protrusions having different heights. That is, for example, the joining of the part corresponding to the second recessed part 170b is started before the joining of the part corresponding to the first recessed part 170a. Therefore, when a minute metal piece (hereinafter also referred to as “foreign matter”) is generated at the time of joining the portion corresponding to the first concave portion 170a, the movement of the foreign matter is restricted by the portion corresponding to the second concave portion 170b. receive. Further, for example, even when the vibration is started in a state where the joining tip is pressed against the overlapping portion of the converging portion 126 and the current collector 140, the second portion formed relatively deeply. The concave portion 170b and the portion immediately below the concave portion 170b exist as a wall that suppresses the movement of the foreign matter generated when the first concave portion 170a is formed.
 これにより、例えば、当該異物に起因する微短絡の発生が抑制される。より詳細には、電極体120の正極板122に、異物である微小な金属片が接触することで、当該金属がイオン化する場合がある。この場合、イオン化した金属が、近くの負極板123に到達した際に、金属が析出してデンドライトを形成し、このデンドライトが、セパレータ125を貫いて正極板122と負極板123との間の微短絡を発生させる可能性がある。しかしながら、本実施の形態では、上述のように、接合部160の形成の過程において発生した異物の移動は、接合部160の一部によって抑制される。そのため、上記微短絡等の不具合の発生の可能性は低減される。 Thereby, for example, the occurrence of a fine short circuit due to the foreign matter is suppressed. More specifically, the metal may be ionized when a minute metal piece that is a foreign substance comes into contact with the positive electrode plate 122 of the electrode body 120. In this case, when the ionized metal reaches the nearby negative electrode plate 123, the metal precipitates to form dendrite, and this dendrite penetrates the separator 125 to form a fine particle between the positive electrode plate 122 and the negative electrode plate 123. May cause a short circuit. However, in the present embodiment, as described above, the movement of the foreign matter generated in the process of forming the joint 160 is suppressed by a part of the joint 160. Therefore, the possibility of occurrence of problems such as the fine short circuit is reduced.
 このように、本実施の形態に係る蓄電素子10は、接合工程において異物が発生した場合であっても、当該異物の移動が抑制される構造を有する蓄電素子10である。従って、本態様に係る蓄電素子は、信頼性の高い蓄電素子10である。 As described above, the power storage element 10 according to the present embodiment is a power storage element 10 having a structure in which the movement of the foreign matter is suppressed even when the foreign matter is generated in the joining process. Therefore, the power storage element according to this aspect is a highly reliable power storage element 10.
 具体的には、本実施の形態では、矩形の接合領域165において、X軸方向に並ぶ3つの凹部170が、Y軸方向に5つ並べられている。つまり、接合部160は、接合領域165において分散して配置された15個の凹部170を有する。また、第二凹部170bは、1以上(本実施の形態では3つ)の第一凹部170aを囲むように、接合領域165の外周に沿って、複数(本実施の形態では12個)配置されている。 Specifically, in the present embodiment, in the rectangular bonding region 165, three concave portions 170 arranged in the X-axis direction are arranged in the Y-axis direction. That is, the joint 160 has 15 recesses 170 arranged in a dispersed manner in the joint region 165. In addition, a plurality (12 in this embodiment) of second recesses 170b are arranged along the outer periphery of the joining region 165 so as to surround one or more (three in this embodiment) first recesses 170a. ing.
 つまり、第二凹部170bは、接合領域165における最も外側に位置し、第一凹部170aは、接合領域165において、第二凹部170bよりも内側に位置している。 That is, the second recess 170b is located on the outermost side in the joining region 165, and the first recess 170a is located on the inner side of the second recess 170b in the joining region 165.
 すなわち、接合部160を積層方向(Y軸方向)から見た場合において、接合領域165の端部に、内側に形成される第一凹部170aよりも深い第二凹部170bが形成されるため、接合領域165の内側で発生した異物の接合領域165の外側への進行が抑制される。 That is, when the joint 160 is viewed from the stacking direction (Y-axis direction), the second recess 170b deeper than the first recess 170a formed inside is formed at the end of the joint region 165. Progress of foreign matter generated inside the region 165 to the outside of the joining region 165 is suppressed.
 また、より詳細には、第二凹部170bは、1以上(本実施の形態では3つ)の第一凹部170aを囲むように、接合領域165の外周に沿って複数配置されている。この構成によれば、接合領域165の内側で発生したほとんど全ての異物について、接合領域165の外側への進行を抑制することができる。 More specifically, a plurality of second recesses 170b are arranged along the outer periphery of the joining region 165 so as to surround one or more (three in the present embodiment) first recesses 170a. According to this configuration, it is possible to suppress progression of almost all foreign matters generated inside the joining region 165 to the outside of the joining region 165.
 また、第一凹部170a及び第二凹部170bと、電極体120との位置関係という観点から言うと、図7に示すように、1以上の第二凹部170bは、第一方向(X軸方向)において、第一凹部170aよりも電極体120の中央に近い位置に形成されている。 From the viewpoint of the positional relationship between the first recess 170a and the second recess 170b and the electrode body 120, as shown in FIG. 7, the one or more second recesses 170b are arranged in the first direction (X-axis direction). In FIG. 2, the first recessed portion 170a is formed closer to the center of the electrode body 120.
 この構成によれば、第一凹部170aに対応する部分の接合において生じた異物の、電極体120の中央向きの移動を抑制することができる。つまり、接合部160の形成の際に発生した異物の電極体120の内部への移動をより効率よく阻止することができる。従って、異物が、電極体120の内部に到達することによる微短絡等の不具合の発生の可能性がより低減される。 According to this configuration, it is possible to suppress the movement of the foreign matter generated in the joining of the portion corresponding to the first recess 170a toward the center of the electrode body 120. That is, it is possible to more efficiently prevent the foreign matter generated during the formation of the joint 160 from moving into the electrode body 120. Therefore, the possibility of occurrence of defects such as a fine short circuit due to the foreign matter reaching the inside of the electrode body 120 is further reduced.
 このように構成された接合部160は、例えば図8に示す接合用チップ520を用いて、図9A~図9Cに示される製造工程が実行されることで形成される。 The joint 160 configured in this way is formed by performing the manufacturing process shown in FIGS. 9A to 9C using, for example, the joining chip 520 shown in FIG.
 図8は、実施の形態に係る電極体120と集電体140との接合に用いられる接合用チップ520の構成概要を示す斜視図である。図9Aは、実施の形態に係る蓄電素子10の製造工程の一部を示す第1の図であり、図9Bは、当該製造工程の一部を示す第2の図であり、図9Cは、当該製造工程の一部を示す第3の図である。なお、図9A~図9Cにおいて、接合用チップ520は、図8に示すIX-IX断面が図示されており、集束部126、接続板部142及びクリップ150については、IX-IX断面に対応する位置の断面が図示されている。また、図9B及び図9Cにおいて、突起530の下方に示されるドットの領域は、当該突起530によって加振されることによる界面接合が進行中、または界面接合が完了した主な領域を表している。 FIG. 8 is a perspective view showing a configuration outline of a bonding tip 520 used for bonding the electrode body 120 and the current collector 140 according to the embodiment. FIG. 9A is a first diagram illustrating a part of the manufacturing process of the electricity storage device 10 according to the embodiment, FIG. 9B is a second diagram illustrating a part of the manufacturing process, and FIG. It is a 3rd figure which shows a part of the said manufacturing process. 9A to 9C, the joining chip 520 shows the IX-IX cross section shown in FIG. 8, and the converging part 126, the connecting plate part 142, and the clip 150 correspond to the IX-IX cross section. A cross section of the position is shown. In FIG. 9B and FIG. 9C, the dot area shown below the protrusion 530 represents a main area in which interface bonding by the vibration by the protrusion 530 is in progress or has been completed. .
 電極体120と集電体140との接合に用いられる接合用チップ520は、接合用工具の一例であり、図8及び図9Aに示すように、互いに高さが異なる第一突起530aと第二突起530bとを含む複数の突起530が配置された突起配置面521を有する。 The joining tip 520 used for joining the electrode body 120 and the current collector 140 is an example of a joining tool. As shown in FIGS. 8 and 9A, the first protrusion 530a and the second protrusion 530a having different heights are used. A projection arrangement surface 521 on which a plurality of projections 530 including the projection 530b are arranged is provided.
 本実施の形態では、突起配置面521における矩形の配置領域525に、15個の突起530が配置されている。また、配置領域525の内側に配置された3つの第一突起530aよりも、これら第一突起530aを囲むように配置領域525の外周に沿って配置された12個の第二突起530bの方が高い。つまり、第一突起530aの高さをH1とし、第二突起530bの高さをH2とした場合、H2>H1である。また、H2:H1は、例えば5:4程度である。なお、突起530の高さの基準は、突起配置面521である。 In this embodiment, 15 protrusions 530 are arranged in a rectangular arrangement region 525 on the protrusion arrangement surface 521. In addition, the twelve second protrusions 530b arranged along the outer periphery of the arrangement area 525 so as to surround the first protrusions 530a rather than the three first protrusions 530a arranged inside the arrangement area 525. high. That is, when the height of the first protrusion 530a is H1, and the height of the second protrusion 530b is H2, H2> H1. Moreover, H2: H1 is about 5: 4, for example. The reference for the height of the protrusion 530 is the protrusion arrangement surface 521.
 このように構成された接合用チップ520を用いて実行される、蓄電素子10の製造方法は以下のように説明される。すなわち、本実施の形態に係る蓄電素子10の製造方法は、複数の突起530を有する接合用チップ520を用いて、電極体120の集束部126と集電体140とを接合する接合工程を含む。当該接合工程では、接合用チップ520によって電極体120の端部(集束部126)と集電体140との重ね合わせ部分を加振することで、当該部分に、第一凹部170aと、第一凹部170aよりも深い第二凹部170bとを形成する。 The method for manufacturing the electricity storage device 10 executed using the joining chip 520 configured as described above will be described as follows. In other words, the method for manufacturing power storage element 10 according to the present embodiment includes a bonding step of bonding focusing portion 126 of electrode body 120 and current collector 140 using bonding chip 520 having a plurality of protrusions 530. . In the bonding step, the overlapping portion of the end portion (the converging portion 126) of the electrode body 120 and the current collector 140 is vibrated by the bonding tip 520, so that the first recess 170a and the first A second recess 170b deeper than the recess 170a is formed.
 つまり、当該接合工程では、集束部126と集電体140との重ね合わせ部分に、比較的に浅い第一凹部170aと比較的に深い第二凹部170bとが形成される。そのため、第一凹部170aの形成の際に異物が発生した場合であっても、その異物の移動は、より深く形成される第二凹部及びその直下の部分によって規制を受ける。そのため、例えば、異物が電極体120の内部に移動することにより生じる微短絡等の不具合の発生が抑制される。すなわち、本実施の形態に係る蓄電素子10の製造方法によれば、接合工程において異物が発生した場合であっても、当該異物の移動が抑制される構造を有する蓄電素子10を製造することができる。従って、本実施の形態に係る蓄電素子10の製造方法によれば、信頼性の高い蓄電素子10を製造することができる。 That is, in the joining step, a relatively shallow first concave portion 170a and a relatively deep second concave portion 170b are formed in the overlapping portion of the converging portion 126 and the current collector 140. Therefore, even when a foreign substance is generated when the first concave portion 170a is formed, the movement of the foreign substance is restricted by the second concave portion formed deeper and a portion immediately below the second concave portion. Therefore, for example, the occurrence of problems such as a fine short circuit caused by the movement of foreign matter into the electrode body 120 is suppressed. That is, according to the method for manufacturing power storage device 10 according to the present embodiment, power storage device 10 having a structure in which the movement of the foreign material can be suppressed even when a foreign material is generated in the joining process. it can. Therefore, according to the method for manufacturing power storage element 10 according to the present embodiment, highly reliable power storage element 10 can be manufactured.
 また、より詳細には、本実施の形態に係る接合工程は、複数の突起530のうちの1以上の突起530によって、集束部126と集電体140との重ね合わせ部分を加振することで、1以上の第二凹部170bを形成する第一工程と、第一工程が開始された後に、複数の突起530のうちの他の1以上の突起530によって、集束部126と集電体140との重ね合わせ部分を加振することで、1以上の第一凹部170aを形成する第二工程とを含む。従って、第二工程において発生した異物は、既に開始されている第一工程によって接合されている部分、または、接合中の部分によって規制を受ける。すなわち、接合工程において発生した異物の移動が抑制される。 In more detail, the bonding step according to the present embodiment is performed by exciting the overlapping portion of the converging portion 126 and the current collector 140 by one or more of the plurality of protrusions 530. The first step of forming one or more second concave portions 170b, and after the first step is started, the converging portion 126 and the current collector 140 are formed by one or more other projections 530 among the plurality of projections 530. And a second step of forming one or more first recesses 170a by vibrating the overlapping portion. Accordingly, the foreign matter generated in the second step is regulated by the portion joined by the first step already started or the portion being joined. That is, the movement of the foreign matter generated in the joining process is suppressed.
 具体的には、図9Aに示すように、接合用チップ520は、超音波接合機が備えるホーン510の先端に装着される。また、電極体120の集束部126と集電体140の接続板部142との重ね合わせ部分が、アンビル(図示せず)上に配置される。なお、本実施の形態では、図9Aに示すように、当該重ね合わせ部分がクリップ150に覆われた状態で配置される。 Specifically, as shown in FIG. 9A, the bonding tip 520 is attached to the tip of a horn 510 provided in the ultrasonic bonding machine. Further, the overlapping portion of the converging portion 126 of the electrode body 120 and the connecting plate portion 142 of the current collector 140 is disposed on an anvil (not shown). In the present embodiment, as shown in FIG. 9A, the overlapped portion is arranged in a state of being covered by the clip 150.
 その後、当該重ね合わせ部分を含む接合対象に対して接合用チップ520が接近する。このとき、図9Bに示すように、互いに高さが異なる第一突起530a及び第二突起530bのうち、高さがより高い第二突起530bが、第一突起530aより先に接合対象(直接的にはクリップ150)に到達し、接合対象を加振する。 Thereafter, the bonding tip 520 approaches the bonding target including the overlapping portion. At this time, as shown in FIG. 9B, among the first protrusion 530a and the second protrusion 530b having different heights, the second protrusion 530b having a higher height is to be joined (directly) before the first protrusion 530a. To reach the clip 150) and vibrate the objects to be joined.
 すなわち、第二突起530bに対応する部分の接合が、第一突起530aに対応する部分の接合よりも先に開始される。その後、接合対象に第一突起530aが到達し、接合対象の第一突起530aに対応する部分の接合が開始され、図9Cに示すように、接合対象に対する接合工程が終了する。すなわち、電極体120の集束部126と集電体140とが加振されて接合された部分である接合部160が形成される。 That is, the joining of the part corresponding to the second protrusion 530b is started before the joining of the part corresponding to the first protrusion 530a. Thereafter, the first protrusion 530a reaches the object to be joined, and the joining of the portion corresponding to the first protrusion 530a to be joined is started, and the joining process for the object to be joined is completed as shown in FIG. 9C. That is, the joint 160, which is a portion where the converging portion 126 of the electrode body 120 and the current collector 140 are joined by vibration, is formed.
 このように、本実施の形態では、接合用チップ520が有する複数の突起530は、第一突起530aと第二突起530bとを含み、第二突起530bの突起配置面521からの高さは、第一突起530aの突起配置面521からの高さよりも高い。また、接合工程では、接合用チップ520を、電極体120の集束部126と集電体140との重ね合わせ部分に向けて移動させることで、第二突起530bによる第一工程の開始後に、第一突起530aによる前記第二工程を開始させる。 Thus, in the present embodiment, the plurality of protrusions 530 included in the bonding chip 520 include the first protrusion 530a and the second protrusion 530b, and the height of the second protrusion 530b from the protrusion arrangement surface 521 is The height of the first protrusion 530a from the protrusion arrangement surface 521 is higher. Further, in the joining step, the joining tip 520 is moved toward the overlapping portion of the converging portion 126 of the electrode body 120 and the current collector 140, so that the first step by the second protrusion 530b is started. The second step by the one protrusion 530a is started.
 つまり、水平方向に振動する接合用チップ520を、電極体120の集束部126と集電体140との重ね合わせ部分に対して垂直に移動させることで、接合のタイミングが互いに異なる複数の部分を有する1つの接合部160を形成することができる。これにより、1つの接合部160内において、先に接合が開始された部分が、後で開始された接合によって生じた異物の移動を阻害する要素として機能する。 That is, by moving the joining tip 520 that vibrates in the horizontal direction perpendicularly to the overlapping portion of the converging portion 126 and the current collector 140 of the electrode body 120, a plurality of portions having different joining timings can be obtained. One joint 160 having the same can be formed. Thereby, in one joint part 160, the part where joining was started first functions as an element which inhibits the movement of the foreign material produced by joining started later.
 つまり、例えば超音波エネルギーによって振動する1つの接合用チップ520の上下方向の移動によって、異物の移動を抑制する構造を有する1つの接合部160を形成することができる。これにより、信頼性の高い蓄電素子10を効率よく製造することができる。 That is, for example, one bonding portion 160 having a structure that suppresses the movement of foreign matter can be formed by the vertical movement of one bonding chip 520 that vibrates by ultrasonic energy. Thereby, the highly reliable electrical storage element 10 can be manufactured efficiently.
 ここで、1つの接合部160内において、先に接合が開始された部分が、後で開始された接合によって生じた異物の移動を阻害することについて、具体的に説明する。 Here, a specific description will be given of the fact that, in one joint portion 160, the portion where the joining is started first hinders the movement of foreign matter caused by the joining started later.
 例えば、第一突起530aの直下の領域に含まれる、集束部126の隣接する金属箔同士が擦れ合うことで、異物である微小な金属片が生じた場合を想定する。この場合、異物の発生時点では、第二突起530bの直下の集束部126の隣接する金属箔同士は、第二突起530bによる加振によって接合済みまたは接合中である。そのため、第一突起530aの直下の領域で発生した異物は、第二突起530bの直下の領域を越えて移動する可能性は低い。 For example, it is assumed that a minute metal piece that is a foreign object is generated by rubbing adjacent metal foils of the converging portion 126 included in a region immediately below the first protrusion 530a. In this case, when the foreign matter is generated, the adjacent metal foils of the converging portion 126 immediately below the second protrusion 530b are already joined or being joined by the vibration by the second protrusion 530b. Therefore, the foreign matter generated in the region immediately below the first protrusion 530a is unlikely to move beyond the region immediately below the second protrusion 530b.
 従って、複数の突起530で加振することで、集束部126と集電体140とを接合する接合工程において、一部の突起に対応する部分で異物が発生した場合であっても、その異物の移動は、接合が完了したまたは進行中の他の部分によって抑制される。 Therefore, even if foreign matter is generated in a portion corresponding to some of the protrusions in the joining step of joining the converging portion 126 and the current collector 140 by exciting with a plurality of protrusions 530, the foreign matter This movement is constrained by other parts that have been joined or are in progress.
 なお、集束部126と集電体140との重ね合わせ部分に、接合用チップ520が押し当てられた状態で加振が開始されてもよい。つまり、第一突起530aによる第一凹部170aに対応する部分の接合と、第二突起530bによる第二凹部170bに対応する部分の接合とが同時または略同時に開始されてもよい。この場合であっても、比較的に浅い第一凹部170aの形成の際に発生した異物は、比較的に深く形成される第二凹部170bおよびその直下を越えて移動することは困難である。つまり、比較的に深く形成される第二凹部170b及びその直下の部分は、第一凹部170aの形成の際に発生した異物の移動を抑制する壁として存在する。従って、接合工程において発生した異物の移動は抑制される。 It should be noted that the vibration may be started in a state where the bonding tip 520 is pressed against the overlapping portion of the converging unit 126 and the current collector 140. That is, the joining of the portion corresponding to the first recess 170a by the first protrusion 530a and the joining of the portion corresponding to the second recess 170b by the second protrusion 530b may be started simultaneously or substantially simultaneously. Even in this case, it is difficult for the foreign matter generated during the formation of the relatively shallow first recess 170a to move beyond the second recess 170b that is formed relatively deep and directly below the second recess 170b. That is, the second recess 170b formed relatively deeply and the portion immediately below the second recess 170b exist as walls that suppress the movement of foreign matter generated during the formation of the first recess 170a. Therefore, the movement of the foreign matter generated in the joining process is suppressed.
 また、上記製造方法によって製造された蓄電素子10は、図5~図7に示すように、接合部160には、第一突起530aに対応する第一凹部170aと、第二突起530bに対応する第二凹部170bとを含む、複数の凹部170が形成される。 In addition, as shown in FIGS. 5 to 7, the power storage device 10 manufactured by the above manufacturing method corresponds to the first recess 170a corresponding to the first protrusion 530a and the second protrusion 530b in the joint 160. A plurality of recesses 170 including the second recesses 170b are formed.
 つまり、これら複数の凹部170が形成された接合部160を有する蓄電素子10は、上述のように、その製造工程において、接合工程で生じた異物の、接合部160の外側への移動が抑制されている。また、製造後に、蓄電素子10を使用する時点においても、接合部160の内側に残存している異物の、接合部160の外側への移動が抑制される。 In other words, as described above, the power storage element 10 having the joint 160 in which the plurality of recesses 170 are formed suppresses the movement of the foreign matter generated in the joining process to the outside of the joint 160 in the manufacturing process. ing. Further, even when the power storage element 10 is used after manufacturing, the movement of foreign matter remaining inside the joint 160 to the outside of the joint 160 is suppressed.
 すなわち、蓄電素子10が有する接合部160は、蓄電素子10の製造中及び製造後において、不具合の要因となる異物を接合部160の内部にとどめておくことができる構造を有している。これにより、信頼性の高い蓄電素子10が実現されている。 In other words, the joint 160 included in the power storage element 10 has a structure that allows foreign matters that may cause a problem to remain inside the joint 160 during and after the manufacture of the power storage element 10. Thereby, the highly reliable power storage element 10 is realized.
 また、本実施の形態では、接合部160は、電極体120の集束部126に沿って配置された当て材(クリップ150)の、集束部126と接合された部分を含み、複数の凹部170は、クリップ150に形成されている。 Further, in the present embodiment, the joint 160 includes a portion of the pad (clip 150) disposed along the converging part 126 of the electrode body 120 and joined to the converging part 126, and the plurality of recesses 170 includes The clip 150 is formed.
 このように、集束部126に対し、クリップ150を介して加振することで、金属箔が積層することで形成された部分であって、はく離または亀裂等の損傷が生じ易い部分である集束部126を保護することができる。具体的には、接合用チップ520と電極体の集束部126との直接的な接触が防止されるため、例えば、接合部160を形成する接合工程における異物の発生数が抑制される。また、接合部160における接合強度の向上効果を得ることもできる。 In this way, the converging part that is formed by laminating the metal foil by exciting the converging part 126 via the clip 150 and that is easily damaged such as peeling or cracking. 126 can be protected. Specifically, since direct contact between the bonding tip 520 and the converging portion 126 of the electrode body is prevented, for example, the number of foreign matters generated in the bonding process for forming the bonding portion 160 is suppressed. In addition, it is possible to obtain an effect of improving the joint strength at the joint 160.
 なお、蓄電素子10は、図5~図7等に示す接合部160とは異なる形状または構造の接合部160を有してもよい。そこで、以下に、実施の形態に係る接合部160に関する各種の変形例を、上記実施の形態との差分を中心に説明する。 Note that the power storage element 10 may include a joint 160 having a shape or structure different from that of the joint 160 illustrated in FIGS. Therefore, in the following, various modified examples related to the joint portion 160 according to the embodiment will be described focusing on differences from the above embodiment.
 (変形例1)
 図10は、実施の形態の変形例1に係る接合部160aに形成された複数の凹部170の配置例を示す図である。
(Modification 1)
FIG. 10 is a diagram illustrating an arrangement example of the plurality of concave portions 170 formed in the joint portion 160a according to the first modification of the embodiment.
 図10に示す接合部160aでは、略矩形の接合領域165の中に、複数の凹部170が形成されており、複数の凹部170は、第一凹部170aと、第一凹部170aよりも深い第二凹部170bを有している。これらの点については、上記実施の形態に係る接合部160と共通する。 In the joint 160a shown in FIG. 10, a plurality of recesses 170 are formed in a substantially rectangular joint region 165, and the plurality of recesses 170 are a first recess 170a and a second deeper than the first recess 170a. A recess 170b is provided. About these points, it is common with the junction part 160 which concerns on the said embodiment.
 しかし、本変形例に係る接合部160aでは、第二凹部170bは、接合領域165の外周の全部ではなく一部のみに沿って複数配置されており、この点で、上記実施の形態に係る接合部160とは異なる。 However, in the joint portion 160a according to this modification, a plurality of the second concave portions 170b are arranged along only a part of the outer periphery of the joint region 165, and in this respect, the joint according to the above embodiment is provided. Different from the unit 160.
 具体的には、接合部160aにおける接合領域165には、電極体120の中央側の辺である、X軸方向マイナス側の辺(例えば図10参照)に沿って、5つの第二凹部170bが配置されており、残りの10個の凹部170は全て第一凹部170aである。 Specifically, in the bonding region 165 in the bonding portion 160a, five second concave portions 170b are formed along a side on the minus side in the X-axis direction (see, for example, FIG. 10) that is a side on the center side of the electrode body 120. The remaining ten concave portions 170 are all the first concave portions 170a.
 この場合、これら第一凹部170aに対応する部分の接合が行われる時点では、電極体120の中央に最も近い縦一列分の第二凹部170bに対応する部分の接合が、既に開始されている。 In this case, at the time when the portions corresponding to the first concave portions 170a are joined, the joining of the portions corresponding to the second concave portions 170b corresponding to the vertical line closest to the center of the electrode body 120 has already started.
 そのため、集束部126の、複数の第一凹部170aに対応する部分の接合において異物が生じた場合、その異物の、電極体120の中央向きの移動は、集束部126の、第二凹部170bに対応する部分によって抑制される。 Therefore, when a foreign material is generated in the joining of the portions corresponding to the plurality of first concave portions 170a of the converging portion 126, the movement of the foreign material toward the center of the electrode body 120 is caused to the second concave portion 170b of the converging portion 126. Suppressed by the corresponding part.
 つまり、蓄電素子10は、本変形例に係る接合部160aを有する場合であっても、接合工程において発生した異物の移動を抑制することができ、これにより、高い信頼性を得ることができる。 That is, the power storage element 10 can suppress the movement of the foreign matter generated in the bonding process even when the power storage element 10 has the bonding portion 160a according to the present modification, thereby obtaining high reliability.
 なお、第二凹部170bは、接合領域165における他の辺のみに沿って複数配置されてもよい。例えば、蓄電素子10の使用時の姿勢が、図10に示される姿勢である場合、つまり、集電体140の接続板部142(図1参照)の長手方向がZ軸方向と一致する場合を想定する。この場合、接合領域165の図10における下辺に沿って、3つの第二凹部170bのみが配置されてもよい。これにより、接合工程において発生した異物が、重力によって、接合部160aの外側に流出することが抑制される。 Note that a plurality of second recesses 170b may be arranged along only other sides in the bonding region 165. For example, when the power storage element 10 is in the posture shown in FIG. 10, that is, when the longitudinal direction of the connection plate 142 (see FIG. 1) of the current collector 140 coincides with the Z-axis direction. Suppose. In this case, only the three second recesses 170b may be arranged along the lower side of the bonding region 165 in FIG. Thereby, it is suppressed that the foreign material which generate | occur | produced in the joining process flows out of the junction part 160a by gravity.
 つまり、複数の凹部170が、接合領域165において分散して配置されている場合、第二凹部170bは、接合領域165の外周の少なくとも一部に沿って複数配置されていればよい。これにより、接合工程において発生した異物の、接合部160aの外部への移動を、接合領域165の外周に沿って配置された、比較的に深く窪まされた部分(複数の第二凹部170bに対応する部分)によって効率よく抑制することができる。 That is, when the plurality of recesses 170 are dispersed and arranged in the bonding region 165, the second recesses 170b may be arranged along at least a part of the outer periphery of the bonding region 165. As a result, the movement of the foreign matter generated in the bonding process to the outside of the bonding portion 160a is disposed along the outer periphery of the bonding region 165 and is relatively deeply depressed (corresponding to the plurality of second concave portions 170b). Can be efficiently suppressed.
 (変形例2)
 図11は、実施の形態の変形例2に係る接合部160bに形成された複数の凹部170の配置例を示す図である。
(Modification 2)
FIG. 11 is a diagram illustrating an arrangement example of the plurality of concave portions 170 formed in the joint portion 160b according to the second modification of the embodiment.
 図11に示す接合部160bにおいて、複数の凹部170は分散して配置されており、第二凹部170bは、1以上の第一凹部170aを囲むように、接合領域165aの外周に沿って複数配置されている。これらの点については、上記実施の形態に係る接合部160と共通する。 In the joint 160b shown in FIG. 11, the plurality of recesses 170 are arranged in a distributed manner, and the plurality of second recesses 170b are arranged along the outer periphery of the joint region 165a so as to surround one or more first recesses 170a. Has been. About these points, it is common with the junction part 160 which concerns on the said embodiment.
 しかし、本変形例に係る接合部160bでは、接合領域165aは楕円形であり、複数の第二凹部170bは、楕円形の外周に沿って配置されることで、複数(本実施の形態では10個)の第一凹部170aを囲んでいる。この点で、上記実施の形態に係る接合部160とは異なる。 However, in the joint 160b according to this modification, the joint region 165a is elliptical, and the plurality of second recesses 170b are arranged along the outer periphery of the ellipse, so that a plurality (10 in the present embodiment). ) First recesses 170a. This is different from the joint 160 according to the above-described embodiment.
 つまり、接合部160bに形成される複数の凹部170は、図7または図10に示されるように行列状に配置されている必要はなく、複数の凹部170のそれぞれは、所定の平面領域内において任意の位置に配置されていてもよい。 That is, the plurality of recesses 170 formed in the joint 160b do not have to be arranged in a matrix as shown in FIG. 7 or FIG. 10, and each of the plurality of recesses 170 is within a predetermined plane area. You may arrange | position in arbitrary positions.
 この場合であっても、接合部160bは、接合領域165aの内側の複数の第一凹部170aを囲むように、複数の第二凹部170bが形成されていることで、実施の形態1に係る接合部160と同様の効果を奏する。すなわち、接合領域165aの内側で発生したほとんど全ての異物について、接合領域165aの外側への進行(つまり、接合部160bの内部から外部への異物の移動)を抑制することができる。 Even in this case, the bonding portion 160b is formed with the plurality of second recesses 170b so as to surround the plurality of first recesses 170a inside the bonding region 165a, whereby the bonding according to the first embodiment is performed. The same effect as the part 160 is produced. In other words, almost all foreign matters generated inside the joining region 165a can be prevented from proceeding to the outside of the joining region 165a (that is, movement of foreign matter from the inside of the joining portion 160b).
 なお、第二凹部170bは、接合領域165aの外周の全部に沿って複数配置されている必要はなく、接合領域165aの外周の一部のみに沿って、複数の第二凹部170bが配置されていてもよい。 The plurality of second recesses 170b need not be arranged along the entire outer periphery of the bonding region 165a, and the plurality of second recesses 170b are arranged along only a part of the outer periphery of the bonding region 165a. May be.
 (他の実施の形態)
 以上、本発明に係る蓄電素子について、実施の形態及びその変形例に基づいて説明した。しかしながら、本発明は、上記実施の形態及びその変形例に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を上記実施の形態またはその変形例に施したものも、あるいは、上記説明された複数の構成要素を組み合わせて構築される形態も、本発明の範囲内に含まれる。
(Other embodiments)
As described above, the power storage device according to the present invention has been described based on the embodiment and the modifications thereof. However, the present invention is not limited to the above-described embodiment and its modifications. As long as it does not deviate from the gist of the present invention, various modifications conceived by those skilled in the art may be applied to the above-described embodiment or its modifications, or a form constructed by combining a plurality of the constituent elements described above. Included within the scope of the invention.
 例えば、接合部160は、第二凹部170bよりも多くの数の第一凹部170aを有してもよい。これにより、比較的に多い数の第一凹部170aそれぞれの形成において発生した異物の移動は、1以上の第二凹部170b及びその直下の部分によって抑制される。このことは、接合領域165(図7参照)を平面視した場合において、1以上の第一凹部170aが占める割合が、1以上の第二凹部170bが占める割合より多い場合も同じである。 For example, the joint 160 may have a larger number of first recesses 170a than the second recesses 170b. Thereby, the movement of the foreign material generated in the formation of each of the relatively large number of first recesses 170a is suppressed by the one or more second recesses 170b and the portion immediately below the second recesses 170b. This is the same when the ratio of the one or more first recesses 170a is larger than the ratio of the one or more second recesses 170b in the plan view of the bonding region 165 (see FIG. 7).
 また、例えば、接合部160が有する複数の凹部170は、クリップ150に形成されなくてもよい。図12は、クリップ150を備えない蓄電素子10aの内部構造の概要を示す斜視図である。なお、図12が示す蓄電素子10aは、クリップ150を備えていないこと以外は、上記実施の形態に係る蓄電素子10と共通しており、詳細な説明は省略する。 For example, the plurality of recesses 170 included in the joint 160 may not be formed in the clip 150. FIG. 12 is a perspective view showing an outline of the internal structure of the energy storage device 10 a that does not include the clip 150. The power storage element 10a shown in FIG. 12 is common to the power storage element 10 according to the above-described embodiment except that the clip 150 is not provided, and a detailed description thereof is omitted.
 電極体120の集束部126と、集電体140の接続板部142との接合に、クリップ150等の当て材を用いない場合、接合用チップ520は、集束部126及び接続板部142のいずれか一方に押し当てられる(図12に示す蓄電素子10aでは、集束部126に接合用チップ520が押し当てられている。)。この場合、当該一方に、複数の凹部170が並ぶ接合領域165が形成され、これら複数の凹部170には、複数の第一凹部170aと、複数の第二凹部170bとが含まれる(例えば図5~図7参照)。この場合であっても、例えば集束部126の、第一凹部170aに対応する部分において発生した異物の移動は、第二凹部170bに対応する部分によって抑制される。 When a contact material such as the clip 150 is not used for joining the converging part 126 of the electrode body 120 and the connecting plate part 142 of the current collector 140, the joining chip 520 includes either the converging part 126 or the connecting plate part 142. (In the electric storage element 10a shown in FIG. 12, the bonding tip 520 is pressed against the converging portion 126). In this case, a joining region 165 in which a plurality of recesses 170 are arranged is formed on the one side, and the plurality of recesses 170 includes a plurality of first recesses 170a and a plurality of second recesses 170b (for example, FIG. 5). (See FIG. 7). Even in this case, for example, the movement of the foreign matter generated in the portion corresponding to the first recess 170a of the converging portion 126 is suppressed by the portion corresponding to the second recess 170b.
 また、蓄電素子10が備える電極体は巻回型である必要はない。蓄電素子10は、例えば平板状極板を積層した積層型の電極体を備えてもよい。また、蓄電素子10は、例えば、長尺帯状の極板を山折りと谷折りとの繰り返しによって蛇腹状に積層した構造を有する電極体を備えてもよい。いずれの場合であっても、電極体の端部には、正極板または負極板の、活物質未塗工部が積層されることで形成された集束部が形成される。この集束部と集電体との接合部分として、例えば上記実施の形態に係る接合部160が形成されることで、接合工程において発生した異物についての移動の抑制効果を得ることができる。 Further, the electrode body included in the electricity storage element 10 does not have to be a wound type. The power storage element 10 may include a stacked electrode body in which, for example, flat plate plates are stacked. Moreover, the electrical storage element 10 may be provided with the electrode body which has a structure which laminated | stacked the elongate strip | belt-shaped electrode plate on the bellows shape by repeating a mountain fold and a valley fold, for example. In any case, a converging portion formed by laminating an active material uncoated portion of the positive electrode plate or the negative electrode plate is formed at the end portion of the electrode body. As the joining portion between the converging portion and the current collector, for example, the joining portion 160 according to the above-described embodiment is formed, so that the effect of suppressing movement of foreign matter generated in the joining step can be obtained.
 また、接合部160には、3以上の凹部170が形成されている必要はなく、1つの第一凹部170aと1つの第二凹部170bのみが接合部160に形成されていてもよい。この場合、例えば、第一凹部170aと第二凹部170bとをX軸方向に並べ、かつ、第二凹部170bを、第一凹部170aよりも、電極体120の中央に近い位置(例えば図7におけるX軸方向マイナス側)に配置することが好ましい。つまり、接合部160のうちの、電極体120の中央に近い部分の接合が、遠い部分の接合よりも先に開始されるように接合工程を実行することが好ましい。これにより、第一凹部170aに対応する部分の接合の際に生じた異物の、電極体120の中央向きの移動を抑制することができる。 Also, it is not necessary that three or more recesses 170 are formed in the joint 160, and only one first recess 170a and one second recess 170b may be formed in the joint 160. In this case, for example, the first recess 170a and the second recess 170b are arranged in the X-axis direction, and the second recess 170b is closer to the center of the electrode body 120 than the first recess 170a (for example, in FIG. 7). It is preferable to arrange on the minus side in the X-axis direction. That is, it is preferable to perform the joining process so that the joining of the portion near the center of the electrode body 120 in the joining portion 160 is started before joining the distant portion. Thereby, the movement toward the center of the electrode body 120 of the foreign material produced at the time of joining of the part corresponding to the 1st recessed part 170a can be suppressed.
 また、接合部160の形成に用いられる接合用チップ520が有する複数の突起530は、3段階以上で高さが異なっていてもよい。例えば、接合用チップ520は、複数の突起530のうちの少なくとも1つの突起530として、第二突起530bよりも背の高い第三突起を有してもよい。この場合、水平方向に振動する接合用チップ520を、電極体120の集束部126と集電体140との重ね合わせ部分に対して垂直に移動させることで、接合のタイミングが互いに異なる3つの部分を有する1つの接合部160を形成することができる。すなわち、接合部160は、複数の凹部170のうちの少なくとも1つの凹部170として、第二凹部170bよりも深い第三凹部を有してもよい。この場合であっても、接合部160を形成する接合工程において、時系列上で先に接合が開始される部分(先行接合部分)が、後で接合が開始される部分(後続接合部分)で発生する異物に対する壁として存在し得る。つまり、接合工程において生じた異物に対する移動の抑制効果が奏される。 In addition, the plurality of protrusions 530 included in the bonding tip 520 used for forming the bonding portion 160 may have different heights in three or more stages. For example, the bonding tip 520 may have a third protrusion that is taller than the second protrusion 530 b as at least one protrusion 530 of the plurality of protrusions 530. In this case, the bonding tip 520 that vibrates in the horizontal direction is moved vertically with respect to the overlapping portion of the converging portion 126 and the current collector 140 of the electrode body 120, so that three portions having different bonding timings can be obtained. A single joint 160 having the following can be formed. That is, the joining part 160 may have a third recessed part deeper than the second recessed part 170 b as at least one recessed part 170 among the plurality of recessed parts 170. Even in this case, in the joining process for forming the joining portion 160, the part where the joining is started first in time series (preceding joining part) is the part where the joining is started later (following joining part). It can exist as a wall against the generated foreign matter. That is, there is an effect of suppressing movement of the foreign matter generated in the joining process.
 また、接合用チップ520は、高さが均一な複数の突起530を有してもよい。この場合、例えば、接合用チップ520の突起配置面521が、電極体120の集束部126と集電体140との重ね合わせ部分に対して傾いた姿勢で、接合用チップ520を、当該重ね合わせ部分に押し当てる。これにより、複数の突起530のうちの1以上の突起を、他の1以上の突起よりも先に、当該重ね合わせ部分に押し当てることができる。つまり、接合部160において、接合のタイミングが互いに異なる複数の部分を形成することができる。この場合であっても、後続接合部分で発生した異物の移動を、先行接合部分が抑制する効果を得ることができる。なお、このように接合工程が実行された場合においても、接合部160には、深さが互いに異なる少なくとも2つの凹部170が形成される。 Also, the bonding tip 520 may have a plurality of protrusions 530 having a uniform height. In this case, for example, the bonding tip 520 is placed in a position where the protrusion arrangement surface 521 of the bonding tip 520 is inclined with respect to the overlapping portion of the converging portion 126 of the electrode body 120 and the current collector 140. Press against the part. Thereby, one or more protrusions of the plurality of protrusions 530 can be pressed against the overlapped portion before the other one or more protrusions. That is, in the joint portion 160, a plurality of portions having different joining timings can be formed. Even in this case, the effect of suppressing the movement of the foreign matter generated at the subsequent bonding portion by the preceding bonding portion can be obtained. Even when the joining step is performed in this manner, at least two concave portions 170 having different depths are formed in the joining portion 160.
 また、接合用チップ520が高さが均一な複数の突起530を有する場合、この接合用チップ520を用いて、例えば、最初に1以上の第二凹部170bを形成し、その後、接合用チップ520を移動させて(または、集束部126と集電体140との重ね合わせ部分を移動させて)、1以上の第一凹部170aを形成してもよい。つまり、1つの接合用チップ520を用いて2回の接合作業を行うことで、互いに深さが異なる2種類の凹部170(第一凹部170a及び第二凹部170b)を形成してもよい。なお、このように2回の接合作業によって第二凹部170b及び第一凹部170aを形成する場合、第二凹部170b及び第一凹部170aのそれぞれを、別の接合用チップによって形成してもよい。つまり、本実施の形態に係る蓄電素子10の製造方法に用いられる接合用工具(接合用チップ520)として、第一凹部170aを形成するための第一接合用工具、及び、第二凹部170bを形成するための第二接合用工具の2種類の接合用工具が採用されてもよい。 When the bonding chip 520 has a plurality of protrusions 530 having a uniform height, for example, one or more second recesses 170b are first formed using the bonding chip 520, and then the bonding chip 520 is formed. May be moved (or the overlapping portion of the converging portion 126 and the current collector 140 may be moved) to form one or more first recesses 170a. That is, two types of concave portions 170 (first concave portion 170a and second concave portion 170b) having different depths may be formed by performing the bonding operation twice using one bonding chip 520. In addition, when forming the 2nd recessed part 170b and the 1st recessed part 170a by 2 joining operations in this way, you may form each of the 2nd recessed part 170b and the 1st recessed part 170a with another chip | tip for joining. That is, as the joining tool (joining tip 520) used in the method for manufacturing the energy storage device 10 according to the present embodiment, the first joining tool for forming the first recess 170a and the second recess 170b are used. Two types of joining tools, the second joining tool for forming, may be employed.
 また、接合領域の形状は、矩形(例えば、接合領域165(図7参照))または楕円形(例えば、接合領域165a(図11参照))である必要はなく、複数の凹部170が並んで配置される領域であれば、適宜、任意の形状を取りうる。 In addition, the shape of the bonding region does not need to be rectangular (for example, the bonding region 165 (see FIG. 7)) or elliptical (for example, the bonding region 165a (see FIG. 11)), and the plurality of concave portions 170 are arranged side by side. As long as it is a region to be processed, it can take any shape as appropriate.
 また、集電体140は、一対の接続板部142を有するとしたが、集電体140は、少なくとも1つの接続板部142を有すればよい。この場合、電極体120の負極側において巻回軸を挟んで厚み方向に2つ存在する2つの集束部126が、一括して1つの接続板部に接合されてもよい。つまり、上記の「2つの集束部126」は、物理的に1つの集束部126として扱われてもよい。 Further, although the current collector 140 has a pair of connection plate portions 142, the current collector 140 may have at least one connection plate portion 142. In this case, two converging portions 126 that exist in the thickness direction across the winding axis on the negative electrode side of the electrode body 120 may be collectively bonded to one connection plate portion. That is, the “two converging units 126” may be physically handled as one converging unit 126.
 本発明は、リチウムイオン二次電池などの蓄電素子等に適用できる。 The present invention can be applied to power storage elements such as lithium ion secondary batteries.
  10 蓄電素子
 100 電池容器
 101 本体
 110 蓋板
 120 電極体
 122 正極板
 122a、123a 未塗工部
 123 負極板
 124、125 セパレータ
 126、136 集束部
 130、140 集電体
 132 接続板部
 141 端子接続部
 141a 貫通孔
 142 接続板部
 150 クリップ
 160、160a、160b 接合部
 165、165a 接合領域
 170 凹部
 170a 第一凹部
 170b 第二凹部
 200 正極端子
 230、330 ガスケット
 300 負極端子
 305 リベット部
 510 ホーン
 520 接合用チップ
 521 突起配置面
 525 配置領域
 530 突起
 530a 第一突起
 530b 第二突起
DESCRIPTION OF SYMBOLS 10 Power storage element 100 Battery container 101 Main body 110 Cover plate 120 Electrode body 122 Positive electrode plate 122a, 123a Uncoated part 123 Negative electrode plate 124, 125 Separator 126, 136 Converging part 130, 140 Current collector 132 Connection board part 141 Terminal connection part 141a Through-hole 142 Connection plate part 150 Clip 160, 160a, 160b Joint part 165, 165a Joint area 170 Concave part 170a First concave part 170b Second concave part 200 Positive electrode terminal 230, 330 Gasket 300 Negative electrode terminal 305 Rivet part 510 Horn 520 Joining tip 521 Protrusion arrangement surface 525 Arrangement area 530 Protrusion 530a First protrusion 530b Second protrusion

Claims (7)

  1.  極板が積層されることで形成された電極体と、前記電極体と電気的に接続された集電体とを備える蓄電素子の製造方法であって、
     複数の突起を有する接合用工具を用いて、前記電極体の、前記極板の積層方向と交差する第一方向の端部と、前記集電体とを接合する接合工程を含み、
     前記接合工程では、前記接合用工具によって、電極体の前記端部と前記集電体との重ね合わせ部分を加振することで、当該部分に、第一凹部と、前記第一凹部よりも深い第二凹部とを形成する
     蓄電素子の製造方法。
    An electrode body formed by laminating electrode plates, and a method of manufacturing an electricity storage device comprising a current collector electrically connected to the electrode body,
    Using a joining tool having a plurality of protrusions, including a joining step of joining the current collector and an end portion of the electrode body in a first direction intersecting a lamination direction of the electrode plates;
    In the joining step, the overlapping portion of the end portion of the electrode body and the current collector is vibrated by the joining tool so that the portion is deeper than the first recess and the first recess. A method for manufacturing a power storage element that forms a second recess.
  2.  前記接合工程は、
     前記複数の突起のうちの1以上の突起によって、電極体の前記端部と前記集電体との重ね合わせ部分を加振することで、1以上の前記第二凹部を形成する第一工程と、
     前記第一工程が開始された後に、前記複数の突起のうちの他の1以上の突起によって、前記電極体の前記端部と前記集電体との重ね合わせ部分を加振することで、1以上の前記第一凹部を形成する第二工程とを含む
     請求項1記載の蓄電素子の製造方法。
    The joining step includes
    A first step of forming one or more second recesses by exciting the overlapping portion of the end of the electrode body and the current collector with one or more of the plurality of protrusions; ,
    After the first step is started, the overlapping portion of the end portion of the electrode body and the current collector is vibrated by one or more other protrusions of the plurality of protrusions. The manufacturing method of the electrical storage element of Claim 1 including the 2nd process of forming the above said 1st recessed part.
  3.  前記複数の突起は、第一突起と第二突起とを含み、
     前記第二突起の、前記複数の突起が配置された突起配置面からの高さは、前記第一突起の前記突起配置面からの高さよりも高く、
     前記接合工程では、前記接合用工具を、前記電極体の前記端部と前記集電体との重ね合わせ部分に向けて移動させることで、前記第二突起による前記第一工程の開始の後に、前記第一突起による前記第二工程を開始させる
     請求項2記載の蓄電素子の製造方法。
    The plurality of protrusions include a first protrusion and a second protrusion,
    The height of the second protrusion from the protrusion arrangement surface on which the plurality of protrusions are arranged is higher than the height of the first protrusion from the protrusion arrangement surface.
    In the joining step, after the start of the first step by the second protrusion, the joining tool is moved toward the overlapping portion of the end of the electrode body and the current collector. The method for manufacturing a power storage element according to claim 2, wherein the second step by the first protrusion is started.
  4.  極板が積層されることで形成された電極体と、前記電極体と電気的に接続された集電体とを備える蓄電素子であって、
     前記電極体の、前記極板の積層方向と交差する第一方向の端部と、前記集電体とが接合された部分である接合部を有し、
     前記接合部の、前記積層方向から見た場合の領域である接合領域には、複数の凹部が並んで形成されており、
     前記複数の凹部は、第一凹部と、前記第一凹部よりも深い第二凹部とを含み、
     1以上の前記第二凹部は、前記第一方向において、前記第一凹部よりも前記電極体の中央に近い位置に形成されている
     蓄電素子。
    An electrical storage element comprising an electrode body formed by laminating electrode plates, and a current collector electrically connected to the electrode body,
    The electrode body has a joining portion which is a portion where the end portion in the first direction intersecting the stacking direction of the electrode plates and the current collector are joined,
    A plurality of recesses are formed side by side in the bonding region, which is a region when viewed from the stacking direction of the bonding portion,
    The plurality of recesses include a first recess and a second recess deeper than the first recess,
    The one or more second recesses are formed in a position closer to the center of the electrode body than the first recess in the first direction.
  5.  前記複数の凹部は、前記接合領域において分散して配置されており、
     前記第二凹部は、前記接合領域の外周の少なくとも一部に沿って複数配置されている
     請求項4記載の蓄電素子。
    The plurality of recesses are arranged dispersed in the joining region,
    The power storage element according to claim 4, wherein a plurality of the second recesses are arranged along at least a part of the outer periphery of the joining region.
  6.  前記第二凹部は、1以上の前記第一凹部を囲むように、前記外周に沿って複数配置されている
     請求項5記載の蓄電素子。
    The power storage device according to claim 5, wherein a plurality of the second recesses are arranged along the outer periphery so as to surround one or more of the first recesses.
  7.  前記接合部は、前記電極体の前記端部に沿って配置された当て材の、前記端部と接合された部分を含み、
     前記複数の凹部は、前記当て材に形成されている
     請求項4~6のいずれか1項に記載の蓄電素子。
    The joint includes a portion of the pad disposed along the end of the electrode body and joined to the end.
    The electricity storage device according to any one of claims 4 to 6, wherein the plurality of recesses are formed in the contact member.
PCT/JP2016/078099 2015-09-29 2016-09-23 Electricity storage element and method for manufacturing electricity storage element WO2017057200A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017543217A JP6856024B2 (en) 2015-09-29 2016-09-23 Power storage element and manufacturing method of power storage element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-192252 2015-09-29
JP2015192252 2015-09-29

Publications (1)

Publication Number Publication Date
WO2017057200A1 true WO2017057200A1 (en) 2017-04-06

Family

ID=58427379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078099 WO2017057200A1 (en) 2015-09-29 2016-09-23 Electricity storage element and method for manufacturing electricity storage element

Country Status (2)

Country Link
JP (1) JP6856024B2 (en)
WO (1) WO2017057200A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019139954A (en) * 2018-02-09 2019-08-22 トヨタ自動車株式会社 Method for manufacturing power storage device
CN111554960A (en) * 2019-02-08 2020-08-18 三洋电机株式会社 Method for manufacturing electricity storage element, bonding method, and bonded body
JP2023014838A (en) * 2021-07-19 2023-01-31 プライムプラネットエナジー&ソリューションズ株式会社 Horn, terminal component, and secondary battery
WO2023189626A1 (en) * 2022-03-29 2023-10-05 株式会社村田製作所 Secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6975917B2 (en) * 2018-10-11 2021-12-01 パナソニックIpマネジメント株式会社 Joint structure

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09330706A (en) * 1996-06-10 1997-12-22 Fuji Photo Film Co Ltd Manufacture of battery pole plate and battery
JP2006231402A (en) * 2005-01-28 2006-09-07 Nissan Motor Co Ltd Ultrasonic bonding equipment and resulting bonding structure
JP2009087728A (en) * 2007-09-28 2009-04-23 Toshiba Corp Battery
JP2010282846A (en) * 2009-06-04 2010-12-16 Toyota Motor Corp Secondary battery and method of manufacturing the same
WO2013105361A1 (en) * 2012-01-12 2013-07-18 日立マクセル株式会社 Ultrasonic welding tip, ultrasonic welding machine, and method for producing battery
WO2014002227A1 (en) * 2012-06-28 2014-01-03 トヨタ自動車株式会社 Method for producing battery and battery
US20140087245A1 (en) * 2011-05-30 2014-03-27 Lg Chem, Ltd. Ultrasonic welding apparatus and secondary battery with enhanced electrode structure
JP2014143230A (en) * 2013-01-22 2014-08-07 Ibiden Co Ltd Manufacturing method of power storage device component, manufacturing method of power storage device, power storage device component and power storage device
JP2014203780A (en) * 2013-04-09 2014-10-27 トヨタ自動車株式会社 Method of manufacturing battery and battery
JP2014212012A (en) * 2013-04-18 2014-11-13 トヨタ自動車株式会社 Method of manufacturing secondary battery and secondary battery

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09330706A (en) * 1996-06-10 1997-12-22 Fuji Photo Film Co Ltd Manufacture of battery pole plate and battery
JP2006231402A (en) * 2005-01-28 2006-09-07 Nissan Motor Co Ltd Ultrasonic bonding equipment and resulting bonding structure
JP2009087728A (en) * 2007-09-28 2009-04-23 Toshiba Corp Battery
JP2010282846A (en) * 2009-06-04 2010-12-16 Toyota Motor Corp Secondary battery and method of manufacturing the same
US20140087245A1 (en) * 2011-05-30 2014-03-27 Lg Chem, Ltd. Ultrasonic welding apparatus and secondary battery with enhanced electrode structure
WO2013105361A1 (en) * 2012-01-12 2013-07-18 日立マクセル株式会社 Ultrasonic welding tip, ultrasonic welding machine, and method for producing battery
WO2014002227A1 (en) * 2012-06-28 2014-01-03 トヨタ自動車株式会社 Method for producing battery and battery
JP2014143230A (en) * 2013-01-22 2014-08-07 Ibiden Co Ltd Manufacturing method of power storage device component, manufacturing method of power storage device, power storage device component and power storage device
JP2014203780A (en) * 2013-04-09 2014-10-27 トヨタ自動車株式会社 Method of manufacturing battery and battery
JP2014212012A (en) * 2013-04-18 2014-11-13 トヨタ自動車株式会社 Method of manufacturing secondary battery and secondary battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019139954A (en) * 2018-02-09 2019-08-22 トヨタ自動車株式会社 Method for manufacturing power storage device
CN111554960A (en) * 2019-02-08 2020-08-18 三洋电机株式会社 Method for manufacturing electricity storage element, bonding method, and bonded body
JP2020129491A (en) * 2019-02-08 2020-08-27 三洋電機株式会社 Power storage element manufacturing method, power storage element, joining method, and conjugant
US11469443B2 (en) * 2019-02-08 2022-10-11 Sanyo Electric Co., Ltd. Electricity storage element including stacked metal foils joined to lead by second joint within first joint, method of manufacturing electricity storage element, joining method, and joint assembly
JP7305367B2 (en) 2019-02-08 2023-07-10 三洋電機株式会社 Electric storage element manufacturing method, electric storage element, joining method, and joined body
CN111554960B (en) * 2019-02-08 2024-04-23 三洋电机株式会社 Method for manufacturing power storage element, bonding method, and bonded body
JP2023014838A (en) * 2021-07-19 2023-01-31 プライムプラネットエナジー&ソリューションズ株式会社 Horn, terminal component, and secondary battery
JP7334215B2 (en) 2021-07-19 2023-08-28 プライムプラネットエナジー&ソリューションズ株式会社 Horns, terminal parts and secondary batteries
WO2023189626A1 (en) * 2022-03-29 2023-10-05 株式会社村田製作所 Secondary battery

Also Published As

Publication number Publication date
JPWO2017057200A1 (en) 2018-08-30
JP6856024B2 (en) 2021-04-07

Similar Documents

Publication Publication Date Title
JP6735445B2 (en) Wound battery
JP5564278B2 (en) Secondary battery
WO2017057200A1 (en) Electricity storage element and method for manufacturing electricity storage element
JP6363893B2 (en) Secondary battery
JP5472687B2 (en) Secondary battery and manufacturing method thereof
JP2011049065A (en) Nonaqueous electrolyte battery and method of manufacturing the same
WO2017149949A1 (en) Method for manufacturing electrode body, and method for manufacturing nonaqueous electrolyte secondary battery
JP6582443B2 (en) Secondary battery and manufacturing method thereof
KR101675623B1 (en) Secondary Battery and Manufacturing Method Thereof
JP2007019017A (en) Secondary cell
JP5122617B2 (en) Rectangular secondary battery and method for manufacturing the same
JP2017010743A (en) Secondary battery and assembled battery using the same
JP5538262B2 (en) Method for manufacturing prismatic secondary battery
JP2011192547A (en) Battery
JP2018018691A (en) Secondary battery and method of manufacturing the same, and battery pack using the same
JP6868704B2 (en) Secondary battery
JP6055983B2 (en) Battery current collector and lithium ion battery
JP6330295B2 (en) Power storage device and method for manufacturing power storage device
JP2018101568A (en) Square secondary battery and manufacturing method thereof
JP2013239266A (en) Battery and method for manufacturing battery
US10601019B2 (en) Energy storage device
JP5568512B2 (en) Square battery
JP2019067544A (en) Secondary battery and manufacturing method thereof
JP2016039090A (en) Power storage element, and power storage device
JP4204366B2 (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851374

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017543217

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16851374

Country of ref document: EP

Kind code of ref document: A1