JP2014212012A - Method of manufacturing secondary battery and secondary battery - Google Patents

Method of manufacturing secondary battery and secondary battery Download PDF

Info

Publication number
JP2014212012A
JP2014212012A JP2013087312A JP2013087312A JP2014212012A JP 2014212012 A JP2014212012 A JP 2014212012A JP 2013087312 A JP2013087312 A JP 2013087312A JP 2013087312 A JP2013087312 A JP 2013087312A JP 2014212012 A JP2014212012 A JP 2014212012A
Authority
JP
Japan
Prior art keywords
current collector
positive electrode
welding
negative electrode
electrode current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013087312A
Other languages
Japanese (ja)
Inventor
幸男 播磨
Yukio Harima
幸男 播磨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013087312A priority Critical patent/JP2014212012A/en
Publication of JP2014212012A publication Critical patent/JP2014212012A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a secondary battery in which a collector laminate and a collector terminal can be bonded well with high bond strength, and to provide a secondary battery.SOLUTION: A method of manufacturing a battery 100 includes a step for preparing a wound electrode body 110 having a positive electrode collector laminate 136 at one end, a step for forming a first welding mark region 10 and a second welding mark region 20 having a recess 22 in the positive electrode collector laminate by using a horn 41 having an anvil 45 and a plurality of protrusions 42, and a step performing resistance-welding while holding the first welding mark region 10 and second welding mark region 20, together with a positive electrode collector terminal 191, by using a pair of electrodes 51. In the step for forming a recess, both welding mark regions are formed to satisfy the relations; S1≥S2 and 1<S2/S3<6 (S1:area of first welding mark, S2:contact area of the first welding mark and an electrode during resistance-welding, S3:contact area of the second welding mark and the positive electrode collector terminal during resistance-welding).

Description

本発明は,二次電池の製造方法および二次電池に関する。詳しくは,集電体積層部に集電端子を良好に接合し得る二次電池の製造方法および二次電池に関する。   The present invention relates to a method for manufacturing a secondary battery and a secondary battery. Specifically, the present invention relates to a secondary battery manufacturing method and a secondary battery that can satisfactorily join a current collector terminal to a current collector laminate.

近年,リチウムイオン二次電池などの二次電池は,携帯電話やパーソナルコンピュータ等の電子機器,ハイブリッド自動車や電気自動車等の車両等,多岐にわたる分野で利用されている。特にリチウムイオン二次電池は,エネルギー密度が高いため,各種の機器に搭載する上で好適である。   In recent years, secondary batteries such as lithium ion secondary batteries have been used in various fields such as electronic devices such as mobile phones and personal computers, vehicles such as hybrid cars and electric cars. In particular, a lithium ion secondary battery has a high energy density and is suitable for mounting in various devices.

このような二次電池として従来から,角型の電池ケースに,電極体を収容した構成の二次電池が知られている。電極体としては例えば,箔状の正極集電体の表面に正極活物質層が塗工された正極板,箔状の負極集電体の表面に負極活物質層が塗工された負極板,および,正極板と負極板とを絶縁するセパレータを重ねて捲回した捲回電極体がある。この捲回電極体は,正極活物質層の形成されていない正極活物質層非塗工部が巻き重ねられてなる正極集電体積層部を,捲回軸方向に沿う一端側に有するとともに,負極活物質層の形成されていない負極活物質層非塗工部が巻き重ねられてなる負極集電体積層部を,捲回軸方向に沿う他端側に有している。この正極集電体積層部には,正極集電端子が接合されており,負極集電体積層部には,負極集電端子が接合されている。   Conventionally, a secondary battery having a configuration in which an electrode body is accommodated in a rectangular battery case is known as such a secondary battery. Examples of the electrode body include a positive electrode plate coated with a positive electrode active material layer on the surface of a foil-shaped positive electrode current collector, a negative electrode plate coated with a negative electrode active material layer on the surface of a foil-shaped negative electrode current collector, In addition, there is a wound electrode body in which separators that insulate a positive electrode plate and a negative electrode plate are overlapped and wound. This wound electrode body has a positive electrode current collector laminated portion formed by winding a positive electrode active material layer non-coated portion on which a positive electrode active material layer is not formed on one end side along the winding axis direction, A negative electrode current collector laminated portion formed by winding a negative electrode active material layer non-coated portion on which a negative electrode active material layer is not formed is provided on the other end side along the winding axis direction. A positive electrode current collector terminal is joined to the positive electrode current collector laminated portion, and a negative electrode current collector terminal is joined to the negative electrode current collector laminated portion.

ここで,集電体積層部に対する集電端子の接合方法として,従来から下記特許文献1に示す方法が知れられている。下記特許文献1では,その図1に示されるように,積層された複数の「アルミニウム箔1a,1a…」を端子用の「アルミ製ベース板B」とともに「超音波ヘッドH,H」間に挟んで押圧するとともに,超音波振動により振動させている。これにより,アルミニウム箔1a,1a…の「酸化被膜2a,2a…」を破壊するとともに,積層された複数のアルミニウム箔1a,1a…を仮付けしている。そして,同文献の図2に示されるように,アルミニウム箔1a,1a…の仮付けされた箇所をアルミ製ベース板Bとともに一対の「電極E,E」で挟み込んで電極E,E間に電流を流すことにより,積層されたアルミニウム箔1a,1a…とアルミ製ベース板Bとを抵抗溶接にて接合している。この接合方法によれば,積層された複数のアルミニウム箔1a,1a…を常に安定した溶接強度で抵抗溶接にて接合できるとされている。   Here, as a method of joining the current collector terminal to the current collector laminated portion, a method shown in Patent Document 1 below has been conventionally known. In Patent Document 1 below, as shown in FIG. 1, a plurality of laminated “aluminum foils 1 a, 1 a...” Are placed between “ultrasonic heads H, H” together with “aluminum base plate B” for terminals. While being sandwiched and pressed, it is vibrated by ultrasonic vibration. As a result, the “oxide films 2a, 2a...” Of the aluminum foils 1a, 1a... Are destroyed and a plurality of laminated aluminum foils 1a, 1a. Then, as shown in FIG. 2 of the same document, the temporarily attached portions of the aluminum foils 1a, 1a... Are sandwiched between a pair of “electrodes E, E” together with the aluminum base plate B, and a current is passed between the electrodes E, E. , And the laminated aluminum foils 1a, 1a... And the aluminum base plate B are joined by resistance welding. According to this joining method, it is supposed that a plurality of laminated aluminum foils 1a, 1a... Can always be joined by resistance welding with stable welding strength.

特開2010−184260号公報JP 2010-184260 A

しかしながら,上記特許文献1に記載の接合方法には次のような問題点があった。すなわち上記した接合方法では,超音波ヘッド間に,積層されたアルミニウム箔とアルミ製ベース板を挟み込む。そのため,超音波ヘッドは,アルミニウム箔におけるアルミ製ベース板側の面に接しない。しかも,超音波ヘッドにおけるアルミニウム箔への接触面やアルミ製ベース板への接触面は,凸部のない平坦面である。従って,超音波溶接後のアルミニウム箔に,凹部のある溶接痕が形成されない。   However, the joining method described in Patent Document 1 has the following problems. That is, in the above joining method, the laminated aluminum foil and the aluminum base plate are sandwiched between the ultrasonic heads. For this reason, the ultrasonic head does not contact the aluminum base plate side surface of the aluminum foil. In addition, the contact surface to the aluminum foil and the contact surface to the aluminum base plate in the ultrasonic head are flat surfaces having no projections. Therefore, a weld mark having a recess is not formed on the aluminum foil after ultrasonic welding.

そのため超音波溶接後の抵抗溶接において,アルミニウム箔の仮付された箇所を一対の電極間に位置させても,電極間への通電の初期に電流の流れる箇所が安定しない。例えば,積層されたアルミニウム箔における酸化被膜の破壊された一つの箇所に,集中して電流が流れたり,積層されたアルミニウム箔における酸化被膜の破壊された複数の箇所に,大きさの異なる電流が分散して流れたりする。   For this reason, in resistance welding after ultrasonic welding, even if the location where the aluminum foil is temporarily attached is positioned between a pair of electrodes, the location where the current flows is not stable at the initial stage of energization between the electrodes. For example, current flows in a concentrated manner at one location where the oxide film in the laminated aluminum foil is destroyed, or currents of different sizes are present at multiple locations where the oxide film is destroyed in the laminated aluminum foil. It flows in a distributed manner.

酸化被膜の破壊された一つの箇所に集中して電流が流れた場合には,集中して電流が流れた箇所のみが非常に高温となる。その結果,アルミニウムが噴き出すほど溶融し,図23に示すように,肉のない欠肉部200のある1つの大きなナゲット201が瞬時に形成されてしまうことがある。欠肉部200が形成されてしまうと,アルミニウム箔202とアルミ製ベース板203との溶接強度が著しく低下する。また,噴き出した溶融状態のアルミニウムが抵抗溶接装置の電極に付着し,図24に示すように,アルミニウム箔202が抵抗溶接装置の電極205に接合されてしまうことがある。図24において一点鎖線は,アルミニウム箔202と電極205との接合箇所を示している。アルミニウム箔202が抵抗溶接装置の電極205に接合されてしまうと,電池の生産性が低下する。   When the current flows concentrated on one location where the oxide film is broken, only the location where the concentrated current flows becomes very hot. As a result, the aluminum melts as it is ejected, and as shown in FIG. 23, one large nugget 201 having a thin portion 200 having no meat may be instantaneously formed. If the lacking part 200 is formed, the welding strength between the aluminum foil 202 and the aluminum base plate 203 is significantly reduced. Also, the molten aluminum that has been ejected may adhere to the electrode of the resistance welding apparatus, and as shown in FIG. 24, the aluminum foil 202 may be joined to the electrode 205 of the resistance welding apparatus. In FIG. 24, an alternate long and short dash line indicates a joint location between the aluminum foil 202 and the electrode 205. If the aluminum foil 202 is joined to the electrode 205 of the resistance welding apparatus, the productivity of the battery is lowered.

また,酸化被膜の破壊された複数の箇所に大きさの異なる電流が分散して流れた場合には,大きな電流が流れた箇所は小さな電流が流れた箇所に比して高温になる。その結果,アルミニウムの溶融状態に差が生じ,図25に示すように,サイズの異なる複数のナゲット210が形成されてしまう。このような不均一のナゲット210の形成は,製品毎の溶接強度のばらつきの原因となる。なお,上記特許文献1に記載の接合方法では,超音波仮付工程で仮付された部分(図25中のクロスハッチング部分211参照)の表面積よりも,抵抗溶接工程で電流の流れる部分(図25中の破線で示される部分212)の表面積の方が小さい。このことも抵抗溶接時に電流の流れる箇所が安定しないことの原因の一つとなっている。   In addition, when currents of different sizes flow in a plurality of locations where the oxide film is broken, the location where a large current flows becomes higher than the location where a small current flows. As a result, a difference occurs in the molten state of aluminum, and a plurality of nuggets 210 having different sizes are formed as shown in FIG. The formation of such a non-uniform nugget 210 causes a variation in welding strength among products. Note that, in the joining method described in Patent Document 1 above, the portion where current flows in the resistance welding process (see FIG. 25) rather than the surface area of the portion temporarily attached in the ultrasonic attachment step (see the cross-hatching portion 211 in FIG. 25). 25, the surface area of the portion 212) indicated by the broken line is smaller. This is also one of the reasons that the location where current flows during resistance welding is not stable.

本発明は上記した問題点を解決するためになされたものである。すなわちその課題とするところは,集電体積層部と集電端子とを高い接合強度で良好に接合することが可能な二次電池の製造方法及び二次電池を提供することにある。   The present invention has been made to solve the above-described problems. That is, an object of the present invention is to provide a secondary battery manufacturing method and a secondary battery that can satisfactorily bond the current collector laminated portion and the current collector terminal with high bonding strength.

この課題の解決を目的としてなされた本発明の一態様における二次電池の製造方法は,正極集電体に正極活物質層が塗工された正極塗工部と正極集電体に正極活物質層が塗工されていない正極非塗工部とを含む正極板,負極集電体に負極活物質層が塗工された負極塗工部と負極集電体に負極活物質層が塗工されていない負極非塗工部とを含む負極板,及び,正極塗工部と負極塗工部との間に介在するセパレータを含み,正極非塗工部が負極板からはみ出た状態で積層された正極集電体積層部を一端に有するとともに,負極非塗工部が正極板からはみ出た状態で積層された負極集電体積層部を他端に有する電極体を用意する準備工程と,アンビルと複数の凸部を有するホーンとを備える超音波溶接装置を用いて,ホーンが有する複数の凸部を押し当てるようにアンビルとホーンとの間に正極集電体積層部又は負極集電体積層部のうち一方の極の集電体積層部を挟み込みつつ,ホーンを振動させることにより,集電体積層部におけるアンビルとの接触面に第1溶接痕領域を形成するとともに,集電体積層部におけるホーンとの接触面に凹部のある第2溶接痕領域を形成する凹部形成工程と,集電体積層部における少なくとも第2溶接痕領域を含む領域にその集電体積層部に対応する極の集電端子を当接させつつ,第1電極と第2電極からなる一対の電極を備える抵抗溶接装置を用いて第1溶接痕領域及び第2溶接痕領域が一対の電極の間に位置するように集電体積層部と集電端子とを一対の電極で挟み込んで抵抗溶接を行う抵抗溶接工程と,をこの順に含み,凹部形成工程では,次の式(1)及び(2)が満たされるように,第1溶接痕領域及び第2溶接痕領域を形成する。
S1≧S2 …(1)
1<S2/S3<6…(2)
S1:形成予定の第1溶接痕領域の面積
S2:形成予定の第1溶接痕領域と,その第1溶接痕領域が抵抗溶接工程で当接する予定の第1電極との抵抗溶接工程における接触面積
S3:形成予定の第2溶接痕領域と,その第2溶接痕領域が抵抗溶接工程で当接する予定の集電端子との抵抗溶接工程における接触面積
In order to solve this problem, a method for manufacturing a secondary battery according to an embodiment of the present invention includes a positive electrode coated portion in which a positive electrode active material layer is coated on a positive electrode current collector and a positive electrode active material on the positive electrode current collector. A negative electrode active material layer is applied to a negative electrode coated portion and a negative electrode current collector in which a negative electrode active material layer is coated on a positive electrode plate, a negative electrode current collector, and a negative electrode non-coated portion. A negative electrode plate including a negative electrode non-coated portion and a separator interposed between the positive electrode coated portion and the negative electrode coated portion, and the positive electrode non-coated portion is laminated in a state of protruding from the negative electrode plate. A preparatory step of preparing an electrode body having a positive electrode current collector laminated portion at one end and a negative electrode current collector laminated portion laminated at the other end with the negative electrode non-coated portion protruding from the positive electrode plate; Using an ultrasonic welding apparatus equipped with a horn having a plurality of convex portions, the plurality of convex portions possessed by the horn are pressed. The current collector laminated portion is obtained by vibrating the horn while sandwiching the current collector laminated portion of one of the positive electrode current collector laminated portion or the negative electrode current collector laminated portion between the anvil and the horn so as to be applied. Forming a first weld trace region on the contact surface with the anvil in the step, and forming a second weld trace region having a concave portion on the contact surface with the horn in the current collector laminated portion; A resistance welding apparatus comprising a pair of electrodes composed of a first electrode and a second electrode while contacting a current collecting terminal of a pole corresponding to the current collector laminated portion in a region including at least the second welding mark region A resistance welding process in which resistance welding is performed by sandwiching the current collector laminated portion and the current collector terminal between the pair of electrodes so that the first welding trace region and the second welding trace region are positioned between the pair of electrodes. In this order, in the recess formation process, As 1) and (2) are satisfied, to form the first welding mark area and a second welded mark regions.
S1 ≧ S2 (1)
1 <S2 / S3 <6 (2)
S1: Area of the first welding trace area to be formed S2: Contact area in the resistance welding process between the first welding trace area to be formed and the first electrode to which the first welding trace area is abutted in the resistance welding process S3: Contact area in the resistance welding process between the second welding mark area to be formed and the current collector terminal where the second welding mark area is scheduled to abut in the resistance welding process

上記した二次電池の製造方法では,抵抗溶接前に,超音波溶接にて集電体積層部に凹部のある第2溶接痕領域を形成している。そして抵抗溶接工程では,一対の電極の間に第2溶接痕領域を位置させている。この第2溶接痕領域と集電端子との接触面積S3は,第1溶接痕領域と第1電極との接触面積S2よりも小さい。そのため,抵抗溶接を行うにあたり,集電体積層部における集電端子との接触面の接触抵抗(接触面における電気抵抗)が,集電体積層部における第1電極との接触面の接触抵抗よりも大きくなる。よって,集電体積層部と集電端子との接触面に十分なジュール熱を発生させることができる。従って,集電体積層部と集電端子とを十分に溶融することができる。その結果,適切なサイズのナゲットを形成することができ,集電体積層部と集電端子とを強固に接合することができる(十分な溶接強度で接合することができる)。   In the secondary battery manufacturing method described above, the second welding trace region having a recess in the current collector laminated portion is formed by ultrasonic welding before resistance welding. In the resistance welding process, the second welding mark region is positioned between the pair of electrodes. The contact area S3 between the second welding trace area and the current collecting terminal is smaller than the contact area S2 between the first welding trace area and the first electrode. Therefore, when performing resistance welding, the contact resistance of the contact surface with the current collector terminal (electrical resistance at the contact surface) in the current collector laminated portion is determined by the contact resistance of the contact surface with the first electrode in the current collector laminated portion. Also grows. Therefore, sufficient Joule heat can be generated on the contact surface between the current collector stack and the current collector terminal. Therefore, the current collector laminated portion and the current collector terminal can be sufficiently melted. As a result, a nugget of an appropriate size can be formed, and the current collector laminated portion and the current collector terminal can be firmly bonded (bonding can be performed with sufficient welding strength).

しかも,1≧S2/S3とした場合には集電体積層部と第1電極との接触面の接触抵抗が高くなり過ぎて,その接触面の温度が高くなり過ぎることにより,集電体積層部が過剰に溶融して第1電極と接合してしまうおそれがある。しかしながら,本構成では1<S2/S3としているため,このような不具合が生じない。   Moreover, when 1 ≧ S2 / S3, the contact resistance of the contact surface between the current collector stack and the first electrode becomes too high, and the temperature of the contact surface becomes too high. There is a possibility that the portion melts excessively and is joined to the first electrode. However, since 1 <S2 / S3 in this configuration, such a problem does not occur.

また,S2/S3≧6とした場合には集電体積層部と集電端子との接触面の接触抵抗が高くなり過ぎて,その接触面の温度が高くなり過ぎることにより集電体積層部が過剰に溶融し,溶融した集電体積層部が噴き出して第1電極と接合したり欠肉部のあるナゲットが形成されたりするおそれがある。しかしながら,本構成ではS2/S3<6としているため,このような不具合が生じない。   Further, when S2 / S3 ≧ 6, the contact resistance of the contact surface between the current collector stack and the current collector terminal becomes too high, and the temperature of the contact surface becomes too high. May melt excessively, and the melted current collector laminated portion may be ejected and bonded to the first electrode or a nugget with a lacking portion may be formed. However, in this configuration, since S2 / S3 <6, such a problem does not occur.

ここで上記した二次電池の製造方法における凹部形成工程では,ホーンが有する複数の凸部のピッチを大きくすることにより接触面積S3を小さくし,ホーンが有する複数の凸部のピッチを小さくすることにより接触面積S3を大きくすることが望ましい。   Here, in the recess forming step in the manufacturing method of the secondary battery described above, the contact area S3 is reduced by increasing the pitch of the plurality of protrusions included in the horn, and the pitch of the plurality of protrusions included in the horn is decreased. Therefore, it is desirable to increase the contact area S3.

このようにすれば,他のパラメータ(超音波溶接におけるホーンの押圧力,振動周波数,及び溶接時間等)を変更するのに比して,上記した式(2)を満たす第2溶接痕領域を確実に形成することができるからである。   In this way, the second welding mark region satisfying the above-described expression (2) is compared with changing other parameters (such as the pressing force of the horn in ultrasonic welding, the vibration frequency, and the welding time). It is because it can form reliably.

また上記した二次電池の製造方法における凹部形成工程では,アンビルとして複数の凸部を有するものを用い,アンビルが有する複数の凸部を押し当てるようにアンビルとホーンとの間に集電体積層部を挟み込み,凹部のある第1溶接痕領域を形成することが望ましい。   In the recess forming step in the method for manufacturing a secondary battery described above, the anvil having a plurality of projections is used, and the current collector is laminated between the anvil and the horn so as to press the plurality of projections of the anvil. It is desirable to form a first weld mark region having a concave portion by sandwiching the portion.

このようにすれば,抵抗溶接時における第1溶接痕領域と第1電極との接触面積S2を,第1溶接痕領域の面積S1よりも小さくすることができる(S1>S2)。そのため,S1=S2とした場合に比して,集電体積層部と第1電極との接触面の接触抵抗を大きくすることができる。その結果,集電体積層部の発熱を促進して良好な溶接を行うことができる。なお,上記式(2)が満たされている限り,集電体積層部と第1電極とが接合してしまうほど,集電体積層部が溶融することはない。   If it does in this way, the contact area S2 of the 1st welding trace area | region and 1st electrode at the time of resistance welding can be made smaller than the area S1 of a 1st welding trace area | region (S1> S2). Therefore, compared with the case where S1 = S2, the contact resistance of the contact surface between the current collector stack and the first electrode can be increased. As a result, heat generation in the current collector laminated portion can be promoted and good welding can be performed. In addition, as long as the said Formula (2) is satisfy | filled, a collector laminated part is not melted so that a collector laminated part and a 1st electrode may join.

また上記した二次電池の製造方法における凹部形成工程では,アンビルが有する複数の凸部のピッチを大きくすることにより接触面積S2を小さくし,アンビルが有する複数の凸部のピッチを小さくすることにより接触面積S2を大きくすることが望ましい。   Further, in the recess forming step in the method for manufacturing a secondary battery described above, the contact area S2 is reduced by increasing the pitch of the plurality of protrusions included in the anvil, and the pitch of the plurality of protrusions included in the anvil is decreased. It is desirable to increase the contact area S2.

このようにすれば,他のパラメータ(超音波溶接におけるホーンの押圧力,振動周波数,及び,溶接時間等)を変更するのに比して,上記した式(1)及び式(2)を満たす第1溶接痕領域を確実に形成することができるからである。   In this way, the above formulas (1) and (2) are satisfied as compared to changing other parameters (such as horn pressing force, vibration frequency, and welding time in ultrasonic welding). This is because the first welding mark region can be formed reliably.

また上記した二次電池の製造方法における凹部形成工程では,次の式(3)がさらに満たされるように,第1溶接痕領域を形成することが望ましい。
A>S1…(3)
A:前記抵抗溶接工程で用いる予定の前記第1電極における接合対象に接触する端面の面積
Moreover, in the recessed part formation process in the manufacturing method of an above-described secondary battery, it is desirable to form a 1st welding trace area | region so that following Formula (3) may be satisfy | filled further.
A> S1 (3)
A: The area of the end surface in contact with the joining target in the first electrode scheduled to be used in the resistance welding process

A≦S1とした場合には,第1溶接痕領域に流れる電流の電流密度が低下する。そのため,集電体積層部を十分に溶融することができなくなる。その結果,形成されるナゲットが小さくなる。また,第1溶接痕領域における第1電極の周縁との接触部位では,第1溶接痕領域の凹部のために第1電極の周縁が第1溶接痕領域と接しない箇所が生じる。そのため,第1電極が集電体積層部を十分に押圧することができず,その箇所に形成されるナゲットは他のナゲットよりも著しく小さいものとなってしまう。これらの原因によりA≦S1とした場合には,集電体積層部と集電端子との接合強度が低下する。しかしながら上記の製造方法ではA>S1としているため,このような不具合は生じない。   In the case of A ≦ S1, the current density of the current flowing in the first welding mark region is reduced. For this reason, the current collector laminated portion cannot be sufficiently melted. As a result, a smaller nugget is formed. Moreover, in the contact part with the periphery of the 1st electrode in a 1st welding trace area | region, the location where the periphery of a 1st electrode does not contact | connect a 1st welding trace area | region arises because of the recessed part of a 1st welding trace area | region. For this reason, the first electrode cannot sufficiently press the current collector laminated portion, and the nugget formed at that location is significantly smaller than the other nuggets. For these reasons, when A ≦ S1, the bonding strength between the current collector stack and the current collector terminal decreases. However, since A> S1 in the above manufacturing method, such a problem does not occur.

また上記した二次電池の製造方法における準備工程では,正極集電体としてアルミニウム箔を用い,凹部形成工程では,正極集電体積層部に第1溶接痕領域及び第2溶接痕領域を形成し,抵抗溶接工程では,正極集電体積層部にアルミニウム製の正極集電端子を接合することとしてもよい。   Further, in the preparation step in the method for manufacturing a secondary battery described above, an aluminum foil is used as the positive electrode current collector, and in the recess forming step, the first welding mark region and the second welding mark region are formed in the positive electrode current collector laminated portion. In the resistance welding process, a positive electrode current collector terminal made of aluminum may be joined to the positive electrode current collector laminated portion.

アルミニウムは例えば銅などの他の金属よりも熱伝導率が低いため,銅と比べると抵抗溶接には不向きである。またアルミニウムは表面に電気抵抗の高い酸化被膜が存在するため,そのまま抵抗溶接を行うと集電体積層部と抵抗溶接装置の第1電極とが溶着するおそれがある。しかしながら上記した二次電池の製造方法では,超音波溶接によりアルミニウム箔に凹部を施すことにより集電体積層部と集電端子との接触面の接触抵抗を大きくしているため,抵抗溶接であっても十分に集電体積層部を発熱させて溶融することができる。また超音波溶接によりアルミニウム箔の酸化被膜が破壊されるため,集電体積層部と第1電極の溶着を防ぐことができる。その結果,集電体積層部と第1電極の溶着を防ぎつつ,十分な強度で集電体積層部と集電端子とを接合することができる。なお,銅に比して抵抗溶接に不向きなアルミニウム製の正極集電体積層部と正極集電端子との接合に抵抗溶接を用いるのは,次のようなメリットがあるからである。すなわち,近年の正極集電端子には,異常時に電流を遮断するための電流遮断機構を組み込んだ構成のものがある。このような正極集電端子を超音波溶接により正極集電体積層部と接合すると,溶接時に超音波により電流遮断機構に力が加わり,電流遮断機構に不具合が生じるおそれがある。しかし超音波溶接ではなく抵抗溶接を用いれば,このような不具合を生じることなく,電流遮断機構を有した正極集電端子と正極集電体積層部とを接合することができる。   Aluminum has a lower thermal conductivity than other metals such as copper, so it is not suitable for resistance welding compared to copper. In addition, since aluminum has an oxide film with a high electric resistance on the surface, there is a possibility that the current collector laminated portion and the first electrode of the resistance welding apparatus are welded if resistance welding is performed as it is. However, in the above-described secondary battery manufacturing method, since the contact resistance of the contact surface between the current collector laminated portion and the current collector terminal is increased by forming a recess in the aluminum foil by ultrasonic welding, resistance welding is not used. However, the current collector laminated portion can be sufficiently heated and melted. Moreover, since the oxide film of the aluminum foil is destroyed by ultrasonic welding, it is possible to prevent welding of the current collector laminated portion and the first electrode. As a result, it is possible to join the current collector laminate portion and the current collector terminal with sufficient strength while preventing the current collector laminate portion and the first electrode from being welded. The reason why resistance welding is used for joining the positive electrode current collector laminated portion made of aluminum, which is not suitable for resistance welding compared to copper, and the positive electrode current collector terminal is as follows. That is, some recent positive electrode current collecting terminals have a structure incorporating a current interrupting mechanism for interrupting current in the event of an abnormality. When such a positive electrode current collector terminal is joined to the positive electrode current collector laminated portion by ultrasonic welding, a force is applied to the current interruption mechanism by ultrasonic waves during welding, and there is a risk that the current interruption mechanism may be defective. However, if resistance welding is used instead of ultrasonic welding, the positive electrode current collector terminal having the current interruption mechanism and the positive electrode current collector laminated portion can be joined without causing such a problem.

また本発明は,正極集電体に正極活物質層が塗工された正極塗工部と正極集電体に正極活物質層が塗工されていない正極非塗工部とを含む正極板,負極集電体に負極活物質層が塗工された負極塗工部と負極集電体に負極活物質層が塗工されていない負極非塗工部とを含む負極板,及び,正極塗工部と負極塗工部との間に介在するセパレータを含み,正極非塗工部が負極板からはみ出た状態で積層された正極集電体積層部を一端に有するとともに,負極非塗工部が正極板からはみ出た状態で積層された負極集電体積層部を他端に有する電極体と,正極集電体積層部に接合された正極集電端子と,負極集電体積層部に接合された負極集電端子と,を備え,正極集電体積層部又は負極集電体積層部のうち少なくともいずれか一方の極の集電体積層部は,正極集電端子又は負極集電端子のうち当該集電体積層部に対応する極の集電端子との接合面の裏側の面に,凹部のある又は凹部のない第1溶接痕領域を有するとともに,接合面に,ナゲットの形成された第2溶接痕領域を有するものであり,第1溶接痕領域及び第2溶接痕領域は,次の式(4)及び(5)を満たしているものであることを特徴とする二次電池にも及ぶ。
S1≧S4 …(4)
1<S4/S5<2…(5)
S1:第1溶接痕領域の面積
S4:第1溶接痕領域における凹んでいない箇所の面積
S5:第2溶接痕領域におけるナゲットでない箇所の面積
The present invention also includes a positive electrode plate including a positive electrode coated portion in which a positive electrode active material layer is coated on a positive electrode current collector and a positive electrode non-coated portion in which the positive electrode current collector is not coated with a positive electrode active material layer, A negative electrode plate including a negative electrode coated portion in which a negative electrode active material layer is coated on a negative electrode current collector, and a negative electrode non-coated portion in which the negative electrode current collector is not coated with a negative electrode active material layer, and positive electrode coating Including a separator interposed between the negative electrode coating portion and the negative electrode coating portion, the positive electrode non-coating portion being laminated in a state protruding from the negative electrode plate at one end, An electrode body having a negative electrode current collector laminated part laminated in a state protruding from the positive electrode plate at the other end, a positive electrode current collector terminal joined to the positive electrode current collector laminated part, and a negative electrode current collector laminated part And a negative electrode current collector terminal, and a current collector laminate portion of at least one of the positive electrode current collector laminate portion and the negative electrode current collector laminate portion , Of the positive electrode current collector terminal or the negative electrode current collector terminal, a first welding mark region having a concave portion or no concave portion is provided on the back surface of the joint surface with the current collector terminal of the electrode corresponding to the current collector laminated portion. In addition, the joint surface has a second weld trace region where a nugget is formed, and the first weld trace region and the second weld trace region satisfy the following expressions (4) and (5): It extends to the secondary battery characterized by being.
S1 ≧ S4 (4)
1 <S4 / S5 <2 (5)
S1: Area of the first welding trace area S4: Area of the non-dented area in the first welding trace area S5: Area of the non-nugget area in the second welding trace area

この二次電池は,上記した製造方法により製造した二次電池である。従ってこの電池では,上記したように集電体積層部と集電端子とが高い接合強度で良好に接合されている。   This secondary battery is a secondary battery manufactured by the above-described manufacturing method. Therefore, in this battery, as described above, the current collector laminated portion and the current collector terminal are well bonded with high bonding strength.

本発明によれば,集電体積層部と集電端子とを高い接合強度で良好に接合することが可能な二次電池の製造方法及び二次電池が提供されている。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method and secondary battery of a secondary battery which can favorably join a collector lamination part and a current collection terminal with high joining strength are provided.

実施形態に係る二次電池を示す断面図である。It is sectional drawing which shows the secondary battery which concerns on embodiment. 同二次電池が備える捲回電極体の構造を示す図である。It is a figure which shows the structure of the winding electrode body with which the secondary battery is equipped. 実施形態において超音波溶接をしている様子を模式的に示す図であり,ホーンとアンビルで集電体積層部を挟み込んでいる様子を示す図である。It is a figure which shows a mode that ultrasonic welding is carried out in embodiment, and is a figure which shows a mode that the collector laminated part is inserted | pinched with the horn and the anvil. ホーンの先端面を示す平面図である。It is a top view which shows the front end surface of a horn. アンビルの先端面を示す平面図である。It is a top view which shows the front end surface of an anvil. アンビルと接していた箇所に形成された第1溶接痕領域を示す図である。It is a figure which shows the 1st welding trace area | region formed in the location which was in contact with the anvil. ホーンと接していた箇所に形成された第2溶接痕領域を示す図である。It is a figure which shows the 2nd welding trace area | region formed in the location which was in contact with the horn. 実施形態において抵抗溶接をしている様子を模式的に示す図であり,一対の電極で集電体積層部および集電端子を挟み込んでいる様子を示す図である。It is a figure which shows a mode that resistance welding is carried out in embodiment, and is a figure which shows a mode that the collector laminated part and the current collection terminal are inserted | pinched by a pair of electrodes. 抵抗溶接装置の電極の直径および溶接痕領域の直径を示す図である。It is a figure which shows the diameter of the electrode of a resistance welding apparatus, and the diameter of a welding trace area | region. 第1電極と第1溶接痕領域との位置関係を示す図である。It is a figure which shows the positional relationship of a 1st electrode and a 1st welding trace area | region. 第2電極と第2溶接痕領域との位置関係を示す図である。It is a figure which shows the positional relationship of a 2nd electrode and a 2nd welding trace area | region. 抵抗溶接後の集電体積層部および集電端子の接合状態を模式的に示す図である。It is a figure which shows typically the joined state of the collector laminated part and current collection terminal after resistance welding. 実験中の実施例5において抵抗溶接をしている様子を模式的に示す図である。It is a figure which shows typically a mode that resistance welding is carried out in Example 5 in experiment. 実験中の実施例5における第1電極と第1溶接痕領域との位置関係を示す図である。It is a figure which shows the positional relationship of the 1st electrode and 1st welding trace area | region in Example 5 in experiment. 実験中の実施例5における第2電極と第2溶接痕領域との位置関係を示す図である。It is a figure which shows the positional relationship of the 2nd electrode and 2nd welding trace area | region in Example 5 in experiment. 実験中の実施例5における抵抗溶接後の集電体積層部および集電端子の接合状態を模式的に示す図である。It is a figure which shows typically the joining state of the collector laminated part and current collection terminal after resistance welding in Example 5 in experiment. 実験中の比較例1において抵抗溶接をしている様子を模式的に示す図である。It is a figure which shows typically a mode that resistance welding is performed in the comparative example 1 in experiment. 実験中の比較例1における抵抗溶接後の集電体積層部および集電端子の接合状態を模式的に示す図である。It is a figure which shows typically the joined state of the collector laminated part and current collection terminal after resistance welding in the comparative example 1 in experiment. 実験中の比較例2において抵抗溶接をしている様子を模式的に示す図である。It is a figure which shows typically a mode that resistance welding is performed in the comparative example 2 in experiment. 実験中の比較例2における抵抗溶接後の集電体積層部および集電端子の接合状態を模式的に示す図である。It is a figure which shows typically the joining state of the collector laminated part and current collection terminal after resistance welding in the comparative example 2 in experiment. 実施形態における抵抗溶接後の第1溶接痕領域を示す図である。It is a figure which shows the 1st welding trace area | region after resistance welding in embodiment. 実施形態における抵抗溶接後の第2溶接痕領域を示す図であり,第2溶接痕領域を図12のA−A断面で見た図である。It is a figure which shows the 2nd welding trace area | region after resistance welding in embodiment, and is the figure which looked at the 2nd welding trace area | region in the AA cross section of FIG. 従来技術の課題の一つを模式的に示す図である。It is a figure which shows typically one of the subjects of a prior art. 従来技術の課題の一つを模式的に示す図である。It is a figure which shows typically one of the subjects of a prior art. 従来技術の課題の一つを模式的に示す図である。It is a figure which shows typically one of the subjects of a prior art.

以下,本発明の二次電池を具体化した実施形態について,添付図面を参照しつつ詳細に説明する。図1は,実施形態に係る二次電池100の断面図である。実施形態に係る二次電池100(以下単に「電池100」ともいう)は,図1に示すように,角型の電池ケース180と,電池ケース180の内部に収容された扁平形状の捲回電極体110とを備える角型のリチウムイオン二次電池である。この電池100は,ハイブリッドカーや電気自動車等の車両や,ハンマードリル等の電池使用機器に動力源として搭載されるものである。なお,本明細書において,特に断りのない限りは,上下左右は,図1を基準にいうものとし,また,図1中紙面手前側を前方,紙面奥側を後方というものとする。   Hereinafter, embodiments of the secondary battery of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a cross-sectional view of a secondary battery 100 according to the embodiment. As shown in FIG. 1, the secondary battery 100 according to the embodiment (hereinafter also simply referred to as “battery 100”) includes a rectangular battery case 180 and a flat wound electrode housed in the battery case 180. A prismatic lithium ion secondary battery including the body 110. The battery 100 is mounted as a power source in a vehicle such as a hybrid car or an electric vehicle, or a battery-powered device such as a hammer drill. In this specification, unless otherwise specified, the top, bottom, left, and right refer to FIG. 1, and the front side of the page in FIG. 1 is the front and the back side of the page is the back.

電池ケース180は,アルミニウムからなり,電池ケース本体181及び封口蓋182を有する。より詳細には電池ケース180は,封口蓋182以外の面のうちの2面が他の面よりも大面積の扁平面をなす扁平角型のものである。封口蓋182は,矩形板状であり,電池ケース本体181の上部開口を閉塞して,この電池ケース本体181に溶接されている。この封口蓋182には,矩形板状の安全弁197が封着されている。   The battery case 180 is made of aluminum and has a battery case main body 181 and a sealing lid 182. More specifically, the battery case 180 is a flat rectangular type in which two of the surfaces other than the sealing lid 182 form a flat surface having a larger area than the other surfaces. The sealing lid 182 has a rectangular plate shape, closes the upper opening of the battery case body 181, and is welded to the battery case body 181. A rectangular plate-shaped safety valve 197 is sealed on the sealing lid 182.

電池ケース本体181は,上部を開口させた有底矩形箱形状をなしており,内部に扁平形状の捲回電極体110を収容している。より詳細には,電池ケース本体181は,封口蓋182に対向する矩形板状のケース底壁部181bと,ケース底壁部181bの周縁から上方へ立設する4つのケース側壁部181cとを備えている。   The battery case body 181 has a bottomed rectangular box shape with an open top, and houses a flat wound electrode body 110 therein. More specifically, the battery case main body 181 includes a rectangular plate-like case bottom wall portion 181b facing the sealing lid 182, and four case side wall portions 181c standing upward from the periphery of the case bottom wall portion 181b. ing.

捲回電極体110は,帯状の正極板130及び負極板120が帯状のセパレータ150を介して扁平形状に捲回されてなる捲回型の電極体である。この捲回電極体110は,捲回軸方向AXを水平方向に沿わせた状態で,電池ケース180内に収容されている。正極板130には,クランク状に屈曲した板状の正極集電端子191が接合されている。正極集電端子191の正極板130に対する接合方法については後述する。また,負極板120には,クランク状に屈曲した板状の負極集電端子192が抵抗溶接により接合されている。なお,正極集電端子191は,後述する正極集電体131と同様の材料(本形態では,アルミニウム)からなる。また,負極集電端子192は,後述する負極集電体121と同様の材料(本形態では,銅)からなる。   The wound electrode body 110 is a wound electrode body in which a belt-like positive electrode plate 130 and a negative electrode plate 120 are wound into a flat shape via a belt-like separator 150. The wound electrode body 110 is housed in the battery case 180 in a state where the wound axis direction AX is in the horizontal direction. A plate-like positive current collecting terminal 191 bent in a crank shape is joined to the positive electrode plate 130. A method for joining the positive electrode current collecting terminal 191 to the positive electrode plate 130 will be described later. Further, a plate-shaped negative electrode current collecting terminal 192 bent in a crank shape is joined to the negative electrode plate 120 by resistance welding. Note that the positive electrode current collector terminal 191 is made of the same material (aluminum in this embodiment) as the positive electrode current collector 131 described later. The negative electrode current collector terminal 192 is made of the same material (copper in this embodiment) as the negative electrode current collector 121 described later.

正極集電端子191及び負極集電端子192のうち,それぞれの先端(上端)に位置する正極外部端子部191a及び負極外部端子部192aは,電池ケース180の封口蓋182を貫通して蓋表面182Aから突出している。正極外部端子部191aと封口蓋182との間,及び,負極外部端子部192aと封口蓋182との間には,それぞれ,電気絶縁性の樹脂からなる絶縁部材195が介在している。   Of the positive electrode current collecting terminal 191 and the negative electrode current collecting terminal 192, the positive electrode external terminal portion 191a and the negative electrode external terminal portion 192a located at the respective leading ends (upper ends) penetrate the sealing lid 182 of the battery case 180 and cover surface 182A. Protruding from. Insulating members 195 made of an electrically insulating resin are interposed between the positive external terminal portion 191a and the sealing lid 182 and between the negative external terminal portion 192a and the sealing lid 182, respectively.

図2は,捲回電極体110の構造を示す図である。図2に示すように,正極板130は,長手方向DA(図2において上下方向)に沿って延びるアルミニウム箔からなる帯状の正極集電体(正極集電板)131と,この正極集電体131の表面の一部に塗工された正極活物質層132とを含むものである。正極活物質層132は,例えば,コバルト酸リチウム(LiCoO)からなる正極活物質133と,アセチレンブラックからなる導電材と,ポリフッ化ビニリデン(PVDF)からなる結着材とを含んでいる。 FIG. 2 is a view showing the structure of the wound electrode body 110. As shown in FIG. 2, the positive electrode plate 130 includes a strip-shaped positive electrode current collector (positive electrode current collector plate) 131 made of an aluminum foil extending in the longitudinal direction DA (vertical direction in FIG. 2), and the positive electrode current collector. And a positive electrode active material layer 132 coated on a part of the surface of 131. The positive electrode active material layer 132 includes, for example, a positive electrode active material 133 made of lithium cobalt oxide (LiCoO 2 ), a conductive material made of acetylene black, and a binder made of polyvinylidene fluoride (PVDF).

正極集電体131のうち,正極活物質層132が塗工されている部位を,正極塗工部(正極活物質層形成部)131aという。一方,正極活物質層132が塗工されていない部位を,正極非塗工部(正極活物質層非形成部)131bという。正極非塗工部131bは,正極集電体131(正極板130)の幅方向DB(図2において左右方向)の端部(図2において左端部)に位置し,正極集電体131(正極板130)の長手方向DAに沿って帯状に延びている。   A portion of the positive electrode current collector 131 on which the positive electrode active material layer 132 is applied is referred to as a positive electrode coating portion (positive electrode active material layer forming portion) 131a. On the other hand, a portion where the positive electrode active material layer 132 is not coated is referred to as a positive electrode non-coated portion (positive electrode active material layer non-formed portion) 131b. The positive electrode non-coating portion 131b is located at the end portion (left end portion in FIG. 2) of the positive electrode current collector 131 (positive electrode plate 130) in the width direction DB (left and right direction in FIG. 2). The plate 130) extends in a strip shape along the longitudinal direction DA.

また負極板120は,長手方向DAに沿って延びる銅箔からなる帯状の負極集電体(負極集電板)121と,この負極集電体121の表面の一部に塗工された負極活物質層122とを含むものである。負極活物質層122は,例えば,黒鉛(グラファイト)からなる負極活物質123と,SBRからなる結着剤と,CMCからなる増粘剤とを含んでいる。   The negative electrode plate 120 includes a strip-shaped negative electrode current collector (negative electrode current collector plate) 121 made of a copper foil extending along the longitudinal direction DA, and a negative electrode active material coated on a part of the surface of the negative electrode current collector 121. The material layer 122 is included. The negative electrode active material layer 122 includes, for example, a negative electrode active material 123 made of graphite (graphite), a binder made of SBR, and a thickener made of CMC.

負極集電体121のうち,負極活物質層122が塗工されている部位を,負極塗工部(負極活物質層形成部)121aという。一方,負極集電体121のうち,負極活物質層122が塗工されていない部位を,負極非塗工部(負極活物質層非形成部)121bという。負極非塗工部121bは,負極集電体121(負極板120)の幅方向DBの端部(図2において右端部)に位置し,負極集電体121(負極板120)の長手方向DAに沿って帯状に延びている。   A portion of the negative electrode current collector 121 where the negative electrode active material layer 122 is coated is referred to as a negative electrode coating portion (negative electrode active material layer forming portion) 121a. On the other hand, a portion of the negative electrode current collector 121 where the negative electrode active material layer 122 is not coated is referred to as a negative electrode non-coated portion (negative electrode active material layer non-formed portion) 121b. The negative electrode non-coating portion 121b is located at the end portion (right end portion in FIG. 2) of the negative electrode current collector 121 (negative electrode plate 120) in the width direction DB, and the longitudinal direction DA of the negative electrode current collector 121 (negative electrode plate 120). It extends in the shape of a belt along.

またセパレータ150は,例えばポリエチレンからなり,正極板130と負極板120との間に介在して,これらを離間させるものである。なお,このセパレータ150には,図1に示すように,リチウムイオンを有する電解液160が含浸されている。電解液160は,例えば,エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とを,体積比でEC:EMC=3:7に調整した混合有機溶媒に,溶質として六フッ化リン酸リチウム(LiPF)を添加し,リチウムイオン濃度を1mol/Lとした非水電解液である。 The separator 150 is made of polyethylene, for example, and is interposed between the positive electrode plate 130 and the negative electrode plate 120 to separate them. The separator 150 is impregnated with an electrolytic solution 160 having lithium ions as shown in FIG. The electrolyte 160 is, for example, lithium hexafluorophosphate (LiPF) as a solute in a mixed organic solvent in which ethylene carbonate (EC) and ethyl methyl carbonate (EMC) are adjusted to EC: EMC = 3: 7 by volume ratio. 6 ) is a non-aqueous electrolyte with a lithium ion concentration of 1 mol / L.

このように構成された捲回電極体110は,図1に示すように,正極非塗工部131bが負極板120からはみ出た状態で巻き重ねられてなる正極集電体積層部136を,捲回軸方向AXに沿う一端部(左端部)に有している。正極集電体積層部136は,正極集電端子191の下端部が後述する溶接方法により接合されている部分である。図1において符号137で示す箇所は,その溶接痕を示している。この溶接により,正極集電端子191と捲回電極体110とが電気的かつ機械的に接続されている。   As shown in FIG. 1, the wound electrode body 110 configured as described above includes a positive electrode current collector stack 136 formed by winding the positive electrode non-coated portion 131 b so as to protrude from the negative electrode plate 120. At one end (left end) along the rotational axis direction AX. The positive electrode current collector laminated portion 136 is a portion where the lower end portion of the positive electrode current collector terminal 191 is joined by a welding method described later. In FIG. 1, a portion indicated by reference numeral 137 indicates the welding mark. By this welding, the positive electrode current collecting terminal 191 and the wound electrode body 110 are electrically and mechanically connected.

また,捲回電極体110は,負極非塗工部121bが正極板130からはみ出た状態で巻き重ねられてなる負極集電体積層部126を,捲回軸方向AXに沿う他端部(右端部)に有している。負極集電体積層部126は,負極集電端子192の下端部が抵抗溶接により溶接されている部分である。図1において符号127で示す箇所は,その溶接痕を示している。この溶接により,負極集電端子192と捲回電極体110とが電気的かつ機械的に接続されている。   In addition, the wound electrode body 110 includes a negative electrode current collector laminated portion 126 formed by winding the negative electrode non-coated portion 121b so as to protrude from the positive electrode plate 130, and the other end portion (right end) along the winding axis direction AX. Part). The negative electrode current collector laminated portion 126 is a portion where the lower end portion of the negative electrode current collector terminal 192 is welded by resistance welding. In FIG. 1, a portion indicated by reference numeral 127 indicates the welding mark. By this welding, the negative electrode current collector terminal 192 and the wound electrode body 110 are electrically and mechanically connected.

なお,捲回電極体110において,正極集電体積層部136と負極集電体積層部126との間に位置しているのは,発電部116である。発電部116は,正極塗工部131a(正極板130の正極活物質層132が形成されている部分,図2参照)と,負極塗工部121a(負極板120の負極活物質層122が形成されている部分,図2参照)と,セパレータ150とが巻き重ねられている部分である。   In the wound electrode body 110, the power generation unit 116 is located between the positive electrode current collector stacking portion 136 and the negative electrode current collector stacking portion 126. The power generation unit 116 includes a positive electrode coating unit 131a (a portion where the positive electrode active material layer 132 of the positive electrode plate 130 is formed, see FIG. 2) and a negative electrode coating unit 121a (the negative electrode active material layer 122 of the negative electrode plate 120 is formed). 2 (see FIG. 2) and a portion where the separator 150 is wound.

次に,本形態の電池100の製造工程について簡単に説明する。まず,上述のように構成した捲回電極体110,電池ケース本体181,及び,封口蓋182を用意する。封口蓋182には,予め集電端子191,192を組み付けておく。   Next, the manufacturing process of the battery 100 of this embodiment will be briefly described. First, the wound electrode body 110, the battery case body 181, and the sealing lid 182 configured as described above are prepared. Current collecting terminals 191 and 192 are assembled to the sealing lid 182 in advance.

次に,図1に示すように,正極集電端子191を,捲回電極体110の正極集電体積層部136に後述の溶接方法により接合する。さらに,負極集電端子192を,捲回電極体110の負極集電体積層部126に抵抗溶接により接合する。   Next, as shown in FIG. 1, the positive electrode current collector terminal 191 is joined to the positive electrode current collector laminated portion 136 of the wound electrode body 110 by a welding method described later. Further, the negative electrode current collector terminal 192 is joined to the negative electrode current collector laminated portion 126 of the wound electrode body 110 by resistance welding.

続いて,電池ケース本体181の内部に捲回電極体110を収容すると共に,封口蓋182により電池ケース本体181を閉塞する。そして,封口蓋182と電池ケース本体181を,レーザー溶接により接合する。   Subsequently, the wound electrode body 110 is accommodated in the battery case body 181 and the battery case body 181 is closed by the sealing lid 182. Then, the sealing lid 182 and the battery case body 181 are joined by laser welding.

レーザー溶接により封口蓋182と電池ケース本体181を接合した後は,図示しない注液口を通じて,電解液160を電池ケース本体181の内部に注入して,捲回電極体110に含侵させる。そして,注液口を注液栓で封止する。その後,所定の処理を行うことで,本形態の電池100(図1参照)が完成する。   After the sealing lid 182 and the battery case main body 181 are joined by laser welding, the electrolytic solution 160 is injected into the battery case main body 181 through a liquid injection port (not shown) to impregnate the wound electrode body 110. Then, the liquid inlet is sealed with a liquid stopper. Thereafter, the battery 100 of this embodiment (see FIG. 1) is completed by performing predetermined processing.

次に,正極集電端子191の正極集電体積層部136への接合方法について詳述する。正極集電端子191の正極集電体積層部136への接合は,まず正極集電体積層部136のみに超音波溶接を行い(図3〜7),その後正極集電体積層部136及び正極集電端子191に抵抗溶接を行う(図6〜12)ことによりなされる。まず超音波溶接について具体的に説明する。   Next, a method for joining the positive current collector terminal 191 to the positive current collector laminated portion 136 will be described in detail. For joining the positive current collector terminal 191 to the positive current collector laminated portion 136, first, ultrasonic welding is performed only on the positive current collector laminated portion 136 (FIGS. 3 to 7), and then the positive current collector laminated portion 136 and the positive electrode This is done by performing resistance welding on the current collecting terminal 191 (FIGS. 6 to 12). First, the ultrasonic welding will be specifically described.

(超音波溶接)
実施形態では,正極集電体積層部136に正極集電端子191を接合する前に,正極集電体積層部136を構成する各層を超音波溶接により接合することとしている。これは,正極集電体積層部136の表裏の表面(前面136a及び後面136b,図3参照)に,散点状に凹部を形成するためである。すなわち,図6,7に示すように,超音波溶接後の正極集電体積層部136の前面136a及び後面136bには,溶接痕としての凹部12,22が形成されている。正極集電体積層部136の前面136aにおける凹部12の形成されている領域を,第1溶接痕領域10という(図6参照)。また,正極集電体積層部136の後面136bにおける凹部22の形成されている領域を,第2溶接痕領域20という(図7参照)。
(Ultrasonic welding)
In the embodiment, before the positive electrode current collector terminal 191 is bonded to the positive electrode current collector stacking portion 136, the layers constituting the positive electrode current collector stacking portion 136 are bonded by ultrasonic welding. This is because concave portions are formed in the form of dots on the front and back surfaces of the positive electrode current collector stack 136 (front surface 136a and rear surface 136b, see FIG. 3). That is, as shown in FIGS. 6 and 7, the concave portions 12 and 22 as welding marks are formed on the front surface 136 a and the rear surface 136 b of the positive electrode current collector laminated portion 136 after ultrasonic welding. A region where the concave portion 12 is formed in the front surface 136a of the positive electrode current collector laminated portion 136 is referred to as a first welding mark region 10 (see FIG. 6). Moreover, the area | region where the recessed part 22 is formed in the rear surface 136b of the positive electrode collector lamination part 136 is called the 2nd welding trace area | region 20 (refer FIG. 7).

超音波溶接をするにあたり,まず,超音波溶接装置を用意する。図3に示すように,超音波溶接装置40は,振動体であるホーン41とそれに協働するアンビル45とを備えるものである。この超音波溶接装置40を用いた超音波溶接では,ホーン41とアンビル45とで接合対象であるワーク(正極集電体積層部136)を挟み込む。このときホーン41に設けられた複数の凸部42,及びアンビル45に設けられた複数の凸部46は,高加圧でワーク(正極集電体積層部136)に押し当てられる。そしてホーン41をワークの面方向に沿って(正極集電体積層部136の後面136bの面方向に沿って左右に)振動させる。すなわち,図中矢印V方向に振動させる。   First, prepare an ultrasonic welding device for ultrasonic welding. As shown in FIG. 3, the ultrasonic welding apparatus 40 includes a horn 41 that is a vibrating body and an anvil 45 that cooperates with the horn 41. In ultrasonic welding using this ultrasonic welding apparatus 40, a work (positive electrode current collector stacking portion 136) to be joined is sandwiched between a horn 41 and an anvil 45. At this time, the plurality of convex portions 42 provided on the horn 41 and the plurality of convex portions 46 provided on the anvil 45 are pressed against the work (positive electrode current collector stacking portion 136) with high pressure. The horn 41 is vibrated along the surface direction of the work (left and right along the surface direction of the rear surface 136b of the positive electrode current collector stacking portion 136). That is, it is vibrated in the direction of arrow V in the figure.

これにより,正極集電体積層部136を構成する各層138が溶接されるとともに,正極集電体積層部136の前面136aには図6に示すように,アンビル45の凸部46に対応する凹部12のある第1溶接痕領域10が形成され,後面136bには図7に示すように,ホーン41の凸部42に対応する凹部22のある第2溶接痕領域20が形成される。なお実施形態では,ホーン41の振動方向Vを捲回軸方向AXと同じ方向に設定している。これにより,ホーン41の振動により正極集電体積層部136に亀裂や破断が生じるのを防いでいる。   As a result, the layers 138 constituting the positive electrode current collector stacking portion 136 are welded, and the front surface 136a of the positive electrode current collector stacking portion 136 has a concave portion corresponding to the convex portion 46 of the anvil 45 as shown in FIG. The first welding mark area 10 having 12 is formed, and the second welding mark area 20 having the recess 22 corresponding to the protrusion 42 of the horn 41 is formed on the rear surface 136b as shown in FIG. In the embodiment, the vibration direction V of the horn 41 is set in the same direction as the winding axis direction AX. This prevents the positive electrode current collector laminated portion 136 from being cracked or broken by the vibration of the horn 41.

ここで,ホーン41の先端面(ワークに対する接触端面)41aに形成されている複数の凸部42,及びアンビル45の先端面(ワークに対する接触端面)45aに形成されている複数の凸部46について詳しく述べる。図4は,ホーン41の先端面41aに形成されている複数の凸部42(以下「第1凸部42」ともいう)を示している。図5は,アンビル45の先端面45aに形成されている複数の凸部46(以下「第2凸部46」ともいう)を示している。第1凸部42及び第2凸部46は,ともに四角錐形状の突起である。図4,5に示すように,第2凸部46のピッチP2は第1凸部42のピッチP1よりも小さい。但し,ホーン41の先端面41a(ホーン41における凸部42が設けられている領域)と,アンビル45の先端面45a(アンビル45における凸部46が設けられている領域)とは同じ大きさである。また,アンビル45に設けられている凸部46の数は,ホーン41に設けられている凸部42の数よりも多い。また,アンビル45に設けられている凸部46は,ホーン41に設けられている凸部42よりも高さ(鉛直方向に沿う長さ)が短い。   Here, the plurality of convex portions 42 formed on the front end surface (contact end surface with respect to the workpiece) 41 a of the horn 41 and the plurality of convex portions 46 formed on the front end surface (contact end surface with respect to the workpiece) 45 a of the anvil 45. Describe in detail. FIG. 4 shows a plurality of convex portions 42 (hereinafter also referred to as “first convex portions 42”) formed on the front end surface 41 a of the horn 41. FIG. 5 shows a plurality of convex portions 46 (hereinafter also referred to as “second convex portions 46”) formed on the front end surface 45 a of the anvil 45. Both the first convex portion 42 and the second convex portion 46 are quadrangular pyramidal projections. As shown in FIGS. 4 and 5, the pitch P <b> 2 of the second protrusions 46 is smaller than the pitch P <b> 1 of the first protrusions 42. However, the tip surface 41a of the horn 41 (region where the convex portion 42 is provided in the horn 41) and the tip surface 45a of the anvil 45 (region where the convex portion 46 is provided in the anvil 45) are the same size. is there. Further, the number of convex portions 46 provided on the anvil 45 is larger than the number of convex portions 42 provided on the horn 41. Further, the convex portion 46 provided on the anvil 45 is shorter in height (length along the vertical direction) than the convex portion 42 provided on the horn 41.

実施形態では,このような第1凸部42を備えるホーン41及び第2凸部46を備えるアンビル45を用いて正極集電体積層部136を溶接する。そのため,アンビル45が押し当てられていた正極集電体積層部136の前面136aには,図6に示すような溶接痕(第1溶接痕領域10)が形成される。一方,ホーン41が押し当てられていた正極集電体積層部136の後面136bには,図7に示すような溶接痕(第2溶接痕領域20)が形成される。第2溶接痕領域20の凹部22の陥没は,第1溶接痕領域10の凹部12の陥没よりも深い。また,第2溶接痕領域20の凹部22の開口面の面積は,第1溶接痕領域10の凹部12の開口面の面積よりも大きい。すなわち,正極集電体積層部136の前面136aに形成された第1溶接痕領域10における凹んでいない箇所(第1溶接痕領域10における凹部12を除いた箇所)の面積S2(図10参照)は,正極集電体積層部136の後面136bに形成された第2溶接痕領域20における凹んでいない箇所(第2溶接痕領域20における凹部22を除いた箇所)の面積S3(図11参照)よりも大きい。   In the embodiment, the positive electrode current collector laminated portion 136 is welded using the horn 41 having the first convex portion 42 and the anvil 45 having the second convex portion 46. Therefore, a welding mark (first welding mark region 10) as shown in FIG. 6 is formed on the front surface 136a of the positive electrode current collector stack 136 where the anvil 45 is pressed. On the other hand, a welding mark (second welding mark region 20) as shown in FIG. 7 is formed on the rear surface 136b of the positive electrode current collector stack 136 where the horn 41 is pressed. The depression of the recess 22 in the second welding trace area 20 is deeper than the depression of the depression 12 in the first welding trace area 10. In addition, the area of the opening surface of the recess 22 in the second welding trace region 20 is larger than the area of the opening surface of the recess 12 in the first welding trace region 10. That is, the area S2 of a portion not recessed in the first welding mark region 10 formed on the front surface 136a of the positive electrode current collector stacking portion 136 (a portion excluding the recess 12 in the first welding mark region 10) (see FIG. 10). Is the area S3 of the non-recessed portion (the portion excluding the recessed portion 22 in the second welding trace region 20) in the second welding trace region 20 formed on the rear surface 136b of the positive electrode current collector stack 136 (see FIG. 11). Bigger than.

なお本実施形態では,凸部42,46の形状として特に好ましい四角錐(ピラミッド型)を採用しているが,ホーン41およびアンビル45におけるそれぞれの凸部42,46の突出形状としては,ワーク(正極集電体積層部136)に押し付けることができるような突起状のものである限り,特に限定するものではない。例えば,四角錐以外の多角錐や円錐,または先端部が切り落とされた多角錐や円錐,あるいは円筒や半球などの形状とすることができる。   In the present embodiment, a particularly preferable quadrangular pyramid (pyramid type) is adopted as the shape of the convex portions 42 and 46. However, as the protruding shape of the convex portions 42 and 46 in the horn 41 and the anvil 45, a workpiece ( There is no particular limitation as long as it is a projection that can be pressed against the positive electrode current collector stack 136). For example, the shape may be a polygonal pyramid or cone other than a quadrangular pyramid, a polygonal pyramid or cone with the tip cut off, or a cylinder or hemisphere.

また本実施形態では,ホーン41およびアンビル45におけるそれぞれの凸部42,46は,いずれも複数個設けられており,アンビル45に設けられた凸部42の数よりも,ホーン41に設けられた凸部46の数の方が少ない。ただし,それぞれの凸部42,46の数は限定されるものではなく,溶接面積に応じて適宜調整することができる。また本形態では,ホーン41として,凸部42(12個)が図4に示すように配置されたものを用い,アンビル45として,ホーン41の凸部42より小さな凸部46が図5に示すように配置されたものを用いているが,凸部42,46の配列についても特に制限されるものではない。例えば,凸部が単列に配置されていてもよいし,複列に配置されていてもよい。複列である場合には,千鳥模様,市松模様などのパターン性を有する配置であってもよいし,規則性なしに配置されていてもよい。   In the present embodiment, the horn 41 and the anvil 45 are each provided with a plurality of convex portions 42 and 46, and are provided on the horn 41 rather than the number of the convex portions 42 provided on the anvil 45. The number of convex portions 46 is smaller. However, the number of each convex part 42 and 46 is not limited, It can adjust suitably according to a welding area. Further, in this embodiment, the horn 41 has a convex portion (12 pieces) arranged as shown in FIG. 4, and the anvil 45 has a convex portion 46 smaller than the convex portion 42 of the horn 41 as shown in FIG. However, the arrangement of the convex portions 42 and 46 is not particularly limited. For example, the convex portions may be arranged in a single row, or may be arranged in a double row. When it is a double row, it may be arranged with a pattern such as a staggered pattern or a checkered pattern, or may be arranged without regularity.

上記したように実施形態の超音波溶接では,このようなホーン41の凸部42及びアンビル45の凸部46を正極集電体積層部136に押し当てることにより,箔状の正極集電体131が積層されてなる正極集電体積層部136に対してホーン41の凸部42及びアンビル45の凸部46をしっかりと食い込ませる。ところで,アルミニウム製の正極集電体および正極集電端子が超音波溶接された従来の二次電池では,アルミニウムの表面に形成された酸化被膜のため,超音波による振動が正極集電体積層部における正極集電端子側の内層部分まで伝播されず,強固な接合となっていないことがあった。しかしながら,本実施形態の製造方法によると,ホーン41の凸部42及びアンビル45の凸部46がアルミニウムの表面の酸化被膜を壊すため,正極集電体積層部136の全層が良好に固相接合する。すなわち,正極集電体積層部136の隣り合う各層138同士を強固に接合することができる。その結果,安定して高出力を発揮し得る信頼性の高い二次電池とすることができる。   As described above, in the ultrasonic welding according to the embodiment, the convex portion 42 of the horn 41 and the convex portion 46 of the anvil 45 are pressed against the positive electrode current collector stacking portion 136, so that the foil-shaped positive electrode current collector 131 is pressed. The convex portion 42 of the horn 41 and the convex portion 46 of the anvil 45 are firmly bitten into the positive electrode current collector laminated portion 136 in which are stacked. By the way, in the conventional secondary battery in which the positive electrode current collector made of aluminum and the positive electrode current collector terminal are ultrasonically welded, the vibration due to the ultrasonic wave is caused by the oxide film formed on the surface of the aluminum. In some cases, it was not propagated to the inner layer portion on the positive electrode current collector terminal side, and the bonding was not strong. However, according to the manufacturing method of this embodiment, the convex portions 42 of the horn 41 and the convex portions 46 of the anvil 45 break the oxide film on the surface of the aluminum, so that all the layers of the positive electrode current collector laminated portion 136 are satisfactorily solid-phased. Join. That is, the adjacent layers 138 of the positive electrode current collector stacked portion 136 can be firmly bonded. As a result, a highly reliable secondary battery that can stably exhibit high output can be obtained.

(抵抗溶接)
続いて,上記のように第1溶接痕領域10および第2溶接痕領域20を形成した正極集電体積層部136に,正極集電端子191を抵抗溶接(スポット溶接)にて接合する。抵抗溶接をするにあたり,まず,抵抗溶接装置を用意する。図8に示すように,抵抗溶接装置50は,正極集電体積層部136に当接する第1電極52および正極集電端子191に当接する第2電極55からなる一対の電極51を備えるものである。
(Resistance welding)
Subsequently, the positive electrode current collector terminal 191 is joined by resistance welding (spot welding) to the positive electrode current collector laminated portion 136 in which the first weld mark region 10 and the second weld mark region 20 are formed as described above. First, prepare resistance welding equipment for resistance welding. As shown in FIG. 8, the resistance welding apparatus 50 includes a pair of electrodes 51 including a first electrode 52 that abuts on the positive electrode current collector laminated portion 136 and a second electrode 55 that abuts on the positive electrode current collector terminal 191. is there.

この抵抗溶接装置50を用いた抵抗溶接では,図8に示すように一対の電極51(第1電極52及び第2電極55)で接合対象(正極集電端子191と正極集電体積層部136)を挟み込む。この挟み込みは,正極集電体積層部136の第1溶接痕領域10及び第2溶接痕領域20が一対の電極51間に位置するように行う。また,正極集電体積層部136の第2溶接痕領域20と正極集電端子191の接合箇所が接するように行う。   In resistance welding using this resistance welding apparatus 50, as shown in FIG. 8, a pair of electrodes 51 (first electrode 52 and second electrode 55) are joined (positive current collector terminal 191 and positive current collector laminated portion 136). ). This sandwiching is performed so that the first welding trace region 10 and the second welding trace region 20 of the positive electrode current collector laminated portion 136 are positioned between the pair of electrodes 51. Moreover, it carries out so that the junction location of the 2nd welding trace area | region 20 of the positive electrode collector lamination part 136 and the positive electrode current collection terminal 191 may contact | connect.

すなわち図8に示す状態では,正極集電体積層部136の前面136a(接合面の裏側の面)における第1溶接痕領域10を含む領域に,第1電極52の先端面(接合対象との接触端面)52aが当接している。また正極集電体積層部136の後面136b(接合面に相当)における第2溶接痕領域20を含む領域に,正極集電端子191が当接している。さらに正極集電端子191における第2溶接痕領域20と接している領域の裏側の領域に,第2電極55の先端面(接合対象との接触端面)55aが当接している。   That is, in the state shown in FIG. 8, the front end surface of the first electrode 52 (with the object to be joined) is located in the region including the first welding mark region 10 on the front surface 136 a (the surface on the back side of the bonding surface) of the positive electrode current collector stack 136. Contact end face) 52a is in contact. In addition, the positive electrode current collector terminal 191 is in contact with a region including the second welding mark region 20 on the rear surface 136b (corresponding to the bonding surface) of the positive electrode current collector stack 136. Further, the tip surface (contact end surface with the object to be joined) 55a of the second electrode 55 is in contact with the region on the back side of the region of the positive electrode current collecting terminal 191 that is in contact with the second welding mark region 20.

本実施形態では,上記した状態となるように一対の電極51間に正極集電体積層部136及び正極集電端子191を挟み込んで,正極集電体積層部136及び正極集電端子191を加圧する(正極集電体積層部136及び正極集電端子191に押圧力を印加する)。そしてこれに伴い,両電極52,55間を通電する。これにより,接合対象(正極集電体積層部136及び正極集電端子191)にジュール熱を発生させて接合対象を溶融させることにより,正極集電体積層部136と正極集電端子191とを接合する。   In the present embodiment, the positive electrode current collector laminated portion 136 and the positive electrode current collector terminal 191 are sandwiched between the pair of electrodes 51 so as to be in the above-described state, and the positive electrode current collector laminated portion 136 and the positive electrode current collector terminal 191 are added. Pressure is applied (pressing force is applied to the positive electrode current collector laminated portion 136 and the positive electrode current collector terminal 191). And along with this, between the electrodes 52 and 55, it supplies with electricity. As a result, Joule heat is generated in the objects to be joined (the positive current collector laminated portion 136 and the positive current collector terminal 191) to melt the joined object, thereby connecting the positive current collector laminated portion 136 and the positive current collector terminal 191. Join.

図12は,接合後の正極集電体積層部136と正極集電端子191を示している。図12に示すように,接合後の正極集電体積層部136の図中上面(前面136a)は,第1電極52が押し付けられていたため凹んでいる。また正極集電体積層部136と正極集電端子191との境界部分には,ナゲット70が形成されている。ナゲット70は,抵抗溶接により溶融した接合対象(正極集電体積層部136及び正極集電端子191)が凝固したものである。実施形態では,図12に示すような良好なサイズのナゲット70がバラツキなく複数形成されている。これは以下の理由による。   FIG. 12 shows the positive electrode current collector laminated portion 136 and the positive electrode current collector terminal 191 after bonding. As shown in FIG. 12, the upper surface (front surface 136 a) of the positive electrode current collector stack 136 after bonding is recessed because the first electrode 52 is pressed. A nugget 70 is formed at the boundary between the positive electrode current collector stack 136 and the positive electrode current collector terminal 191. The nugget 70 is obtained by solidifying the objects to be joined (positive electrode current collector laminated portion 136 and positive electrode current collector terminal 191) melted by resistance welding. In the embodiment, a plurality of good-sized nuggets 70 as shown in FIG. 12 are formed without variation. This is due to the following reason.

すなわち実施形態では,図9に示すように,第1溶接痕領域10および第2溶接痕領域20の直径d1は,第1電極52の接触端面52a及び第2電極55の接触端面55aの直径d2よりも小さい。すなわち図10に示すように,第1溶接痕領域10全体の面積S1は,第1電極52の接触端面52aの面積Aに比して小さい(A>S1)。しかも図10に示すように,第1溶接痕領域10は,その周縁10aが第1電極52の周縁52bの内側に位置するように,第1電極52と接している。そのため抵抗溶接時には電流が凹部12のある第1溶接痕領域10全体に均等に流れる。なお図11に示すように,第2溶接痕領域20の面積(第1溶接痕領域10の面積S1と等しい)も,第2電極55の接触端面55aの面積(第1電極52の接触端面52aの面積Aと等しい)に比して小さく,第2溶接痕領域20は,その周縁20aが第2電極55の周縁55bの内側に位置するように,第2電極55と接している。   That is, in the embodiment, as shown in FIG. 9, the diameter d1 of the first welding scar region 10 and the second welding scar region 20 is equal to the diameter d2 of the contact end surface 52a of the first electrode 52 and the contact end surface 55a of the second electrode 55. Smaller than. That is, as shown in FIG. 10, the area S1 of the entire first welding mark region 10 is smaller than the area A of the contact end face 52a of the first electrode 52 (A> S1). Moreover, as shown in FIG. 10, the first welding mark region 10 is in contact with the first electrode 52 so that the peripheral edge 10 a is located inside the peripheral edge 52 b of the first electrode 52. Therefore, during resistance welding, the current flows evenly over the entire first welding mark region 10 having the recess 12. As shown in FIG. 11, the area of the second welding trace region 20 (equal to the area S1 of the first welding trace region 10) is also the area of the contact end face 55a of the second electrode 55 (contact end face 52a of the first electrode 52). The second welding scar region 20 is in contact with the second electrode 55 such that the peripheral edge 20a is located inside the peripheral edge 55b of the second electrode 55.

加えて,抵抗溶接時における正極集電体積層部136と第1電極52との接触面積(当接面積)S2(図10のハッチング箇所参照)は,正極集電体積層部136と正極集電端子191との接触面積(当接面積)S3(図11のハッチング箇所参照)よりも大きい(S2>S3)。より詳細には,S2とS3との比(S2/S3)は,1<S2/S3<6の範囲にある。従って,抵抗溶接時には,正極集電体積層部136と第1電極52との接触抵抗に比して,正極集電体積層部136と正極集電端子191との接触抵抗の方が適度に大きくなる。接触抵抗とは,接触面における電気抵抗である。なお第1溶接痕領域10には凹部12が形成されている分,S2は,S1よりも小さくなっている(S2<S1)。   In addition, the contact area (contact area) S2 between the positive electrode current collector laminate 136 and the first electrode 52 during resistance welding (see the hatched portion in FIG. 10) is the positive electrode current collector laminate 136 and the positive electrode current collector. It is larger than the contact area (contact area) S3 with the terminal 191 (see the hatched portion in FIG. 11) (S2> S3). More specifically, the ratio of S2 to S3 (S2 / S3) is in the range of 1 <S2 / S3 <6. Therefore, at the time of resistance welding, the contact resistance between the positive electrode current collector laminate portion 136 and the positive electrode current collector terminal 191 is appropriately larger than the contact resistance between the positive electrode current collector laminate portion 136 and the first electrode 52. Become. Contact resistance is the electrical resistance at the contact surface. Note that S2 is smaller than S1 because the recess 12 is formed in the first welding mark region 10 (S2 <S1).

その結果,正極集電体積層部136と正極集電端子191との接触部分が適度に高い温度に発熱して溶融する。そのため図12に示すように,良好なサイズのナゲット70がバラツキなく複数形成され,正極集電体積層部136と正極集電端子191とが高い接合強度で良好に接合されるのである。一方,正極集電体積層部136と第1電極52との接触部分の発熱は抑えられる。そのため,正極集電端子191が第1電極52に付着してしまうことがないのである。   As a result, the contact portion between the positive electrode current collector laminated portion 136 and the positive electrode current collector terminal 191 generates heat to an appropriately high temperature and melts. For this reason, as shown in FIG. 12, a plurality of good-sized nuggets 70 are formed without variation, and the positive electrode current collector laminated portion 136 and the positive electrode current collector terminal 191 are favorably bonded with high bonding strength. On the other hand, heat generation at the contact portion between the positive electrode current collector stack 136 and the first electrode 52 is suppressed. Therefore, the positive electrode current collecting terminal 191 does not adhere to the first electrode 52.

次に,本形態の電池100の製造方法(特に正極集電体積層部136と正極集電端子191との接合方法)の効果を確認するために行った試験の結果について,下記表1に基づいて説明する。   Next, the results of tests conducted to confirm the effects of the method for manufacturing the battery 100 of the present embodiment (particularly, the method for bonding the positive electrode current collector stacking portion 136 and the positive electrode current collector terminal 191) are shown in Table 1 below. I will explain.

Figure 2014212012
Figure 2014212012

この実験では,厚さ15μmのアルミニウム箔を40枚積層したものを用意し,これを40mm×30mmのサイズにカットして,正極集電体積層部136のテストピースとした。また,正極集電端子191のテストピースとして,厚さ1.5mmのアルミニウム板を用意した。   In this experiment, 40 aluminum foils having a thickness of 15 μm were laminated, and the aluminum foil was cut into a size of 40 mm × 30 mm to obtain a test piece for the positive electrode current collector lamination part 136. In addition, an aluminum plate having a thickness of 1.5 mm was prepared as a test piece for the positive electrode current collecting terminal 191.

用意したアルミニウム箔の積層体に対して,次のように超音波溶接を行った。すなわち,上記した超音波溶接装置40を用いて,ホーン41の振幅を80μm,振動エネルギーを100J(ジュール),加圧力を1000N(ニュートン)として超音波溶接を行った。   The prepared aluminum foil laminate was subjected to ultrasonic welding as follows. That is, ultrasonic welding was performed using the ultrasonic welding apparatus 40 described above, with the horn 41 having an amplitude of 80 μm, vibration energy of 100 J (joule), and pressure of 1000 N (Newton).

表1に示す各実施例及び各比較例では,超音波溶接におけるアンビル45の凸部46のピッチP2(図5参照)及びホーン41の凸部42のピッチP1(図4参照)を変えている。アンビル45のピッチP2を変えると,面積S2(図10参照)が変わる。また,ホーン41のピッチP1を変えると,面積S3(図11参照)が変わる。アンビルピッチP2と面積S2との関係は,下記表2の通りである。またホーンピッチP1と面積S3との関係は,下記表3の通りである。   In each example and each comparative example shown in Table 1, the pitch P2 (see FIG. 5) of the convex portion 46 of the anvil 45 and the pitch P1 (see FIG. 4) of the convex portion 42 of the horn 41 are changed in ultrasonic welding. . Changing the pitch P2 of the anvil 45 changes the area S2 (see FIG. 10). Further, when the pitch P1 of the horn 41 is changed, the area S3 (see FIG. 11) is changed. The relationship between the anvil pitch P2 and the area S2 is as shown in Table 2 below. The relationship between the horn pitch P1 and the area S3 is as shown in Table 3 below.

Figure 2014212012
Figure 2014212012

Figure 2014212012
Figure 2014212012

具体的には表1に示す各実施例及び各比較例では,アンビルピッチP2及びホーンピッチP1を次のように設定した。
実施例1:
アンビルピッチP2:0.9mm(S2:3.4mm
ホーンピッチ P1:1.0mm(S3:3.1mm
実施例2
アンビルピッチP2:0.7mm(S2:5.1mm
ホーンピッチ P1:1.2mm(S3:1.8mm
実施例3
アンビルピッチP2:0.4mm(S2:7.0mm
ホーンピッチ P1:1.3mm(S3:1.2mm
実施例4
アンビルピッチP2:0mm即ち凸部46なしの平坦面(S2:9.6mm
ホーンピッチ P1:1.2mm(S3:1.8mm
実施例5
アンビルピッチP2:0.7mm(S2:5.1mm
ホーンピッチ P1:1.2mm(S3:1.8mm
比較例1
アンビルピッチP2:1.0mm(S2:3.1mm
ホーンピッチ P1:0.9mm(S3:3.4mm
比較例2
アンビルピッチP2:0.1mm(S2:8.5mm
ホーンピッチ P1:1.3mm(S3:1.4mm
Specifically, in each example and each comparative example shown in Table 1, the anvil pitch P2 and the horn pitch P1 were set as follows.
Example 1:
Anvil pitch P2: 0.9 mm (S2: 3.4 mm 2 )
Horn pitch P1: 1.0 mm (S3: 3.1 mm 2 )
Example 2
Anvil pitch P2: 0.7 mm (S2: 5.1 mm 2 )
Horn pitch P1: 1.2 mm (S3: 1.8 mm 2 )
Example 3
Anvil pitch P2: 0.4 mm (S2: 7.0 mm 2 )
Horn pitch P1: 1.3 mm (S3: 1.2 mm 2 )
Example 4
Anvil pitch P2: 0 mm, that is, a flat surface without the convex portion 46 (S2: 9.6 mm 2 )
Horn pitch P1: 1.2 mm (S3: 1.8 mm 2 )
Example 5
Anvil pitch P2: 0.7 mm (S2: 5.1 mm 2 )
Horn pitch P1: 1.2 mm (S3: 1.8 mm 2 )
Comparative Example 1
Anvil pitch P2: 1.0 mm (S2: 3.1 mm 2 )
Horn pitch P1: 0.9 mm (S3: 3.4 mm 2 )
Comparative Example 2
Anvil pitch P2: 0.1 mm (S2: 8.5 mm 2 )
Horn pitch P1: 1.3 mm (S3: 1.4 mm 2 )

このような超音波溶接により,正極集電体積層部136のテストピースであるアルミニウム箔の積層体の表裏の表面に,第1溶接痕領域10(図10参照)を形成するとともに第2溶接痕領域20(図11参照)を形成した。   By such ultrasonic welding, the first weld mark region 10 (see FIG. 10) is formed on the front and back surfaces of the aluminum foil laminate, which is a test piece of the positive electrode current collector laminate 136, and the second weld trace is formed. Region 20 (see FIG. 11) was formed.

そしてこの超音波溶接後,アルミニウム箔の積層体に対して,正極集電端子191のテストピースであるアルミニウム板を抵抗溶接にて接合した。この抵抗溶接は,次のように行った。すなわち,上記した抵抗溶接装置50を用いて,第1電極52の加圧力を2.5kN(キロニュートン)に固定し,アルミニウム箔の積層体からアルミニウム板へ向かって電流が流れるように通電して,抵抗溶接を行った。   And after this ultrasonic welding, the aluminum plate which is a test piece of the positive electrode current collection terminal 191 was joined to the laminated body of aluminum foil by resistance welding. This resistance welding was performed as follows. That is, by using the resistance welding apparatus 50 described above, the applied pressure of the first electrode 52 is fixed to 2.5 kN (kilonewton), and energization is performed so that current flows from the aluminum foil laminate toward the aluminum plate. Resistance welding was performed.

その後,この抵抗溶接について評価した。評価項目は,上記表1に示すように,「溶接強度」,「電極への付着」,及び「スパッタの飛散」である。各評価項目の評価結果を示す上記表1中の「◎」,「○」,及び「×」の意味は,次の通りである。なお,この実験では,各実施例及び各比較例に示す条件での接合を10回ずつ行っている。
溶接強度
◎:10回中全てが200N(ニュートン)以上の溶接強度を示した
○:10回中全てが150N以上の溶接強度を示した
×:10回中5回以上が100N未満の溶接強度を示した
電極への付着
○:10回中全てがアルミニウム箔の積層体と第1電極52との付着なし
×:10回中5回以上がアルミニウム箔の積層体と第1電極52との付着あり
スパッタの飛散
○:10回中全てがスパッタの飛散なし
×:10回中5回以上がスパッタの飛散あり
Then, this resistance welding was evaluated. The evaluation items are “welding strength”, “adhesion to electrode”, and “spatter scattering” as shown in Table 1 above. The meanings of “◎”, “◯”, and “×” in the above Table 1 showing the evaluation results of each evaluation item are as follows. In this experiment, bonding was performed 10 times under the conditions shown in each example and each comparative example.
Weld strength ◎: All 10 times showed a weld strength of 200 N (Newton) or more ○: All 10 times showed a weld strength of 150 N or more ×: 5 times or more of 10 times showed a weld strength of less than 100 N Adhesion to the indicated electrode ○: No adhesion between the aluminum foil laminate and the first electrode 52 during 10 times ×: Adhesion between the aluminum foil laminate and the first electrode 52 during 5 or more times Spatter scattering ○: No spatter scattering in 10 times ×: Spatter scattering in 5 times or more out of 10 times

上記表1に示す実施例1〜5は,S2とS3の比(S2/S3)が1より大きく6未満,すなわち1<S2/S3<6のケースである。これらの各実施例では,「溶接強度」,「電極への付着」,及び「スパッタの飛散」の全ての項目について良好な結果が得られた。但し,実施例5では,形成されたナゲットのサイズが実施例1〜4に比して小さかった(すなわち小径であった)。そのため実施例5は,実施例1〜4に比して溶接強度が低かった。   Examples 1 to 5 shown in Table 1 above are cases where the ratio of S2 to S3 (S2 / S3) is greater than 1 and less than 6, that is, 1 <S2 / S3 <6. In each of these examples, good results were obtained for all items of “welding strength”, “adhesion to electrodes”, and “spatter scattering”. However, in Example 5, the size of the formed nugget was smaller than that of Examples 1 to 4 (that is, it had a small diameter). Therefore, the weld strength of Example 5 was lower than that of Examples 1 to 4.

この実施例5は,第1電極52の接触端面52aの面積Aに比して,第1溶接痕領域の面積S1が大きい,すなわちA<S1のケースである。他の実施例(実施例1〜4)は,A>S1である。具体的には図13に示すように,第1電極52の接触端面52aの直径d2よりも,アルミニウム箔の積層体136A(正極集電体積層部136のテストピース)に形成された第1溶接痕領域10Aの直径d11の方が大きい。そのため図14に示すように,第1電極52の接触端面52aの面積Aよりも,第1溶接痕領域10Aの面積S1の方が大きい。またこのケースでは図15に示すように,第2電極55の接触端面55aの面積(Aと同じ)よりも,第2溶接痕領域20Aの面積(S1と同じ)の方が大きい。   The fifth embodiment is a case where the area S1 of the first welding mark region is larger than the area A of the contact end face 52a of the first electrode 52, that is, A <S1. In other examples (Examples 1 to 4), A> S1. Specifically, as shown in FIG. 13, the first welding formed on the aluminum foil laminated body 136A (the test piece of the positive electrode current collector laminated portion 136) rather than the diameter d2 of the contact end face 52a of the first electrode 52. The diameter d11 of the scar region 10A is larger. Therefore, as shown in FIG. 14, the area S1 of the first welding mark region 10A is larger than the area A of the contact end face 52a of the first electrode 52. In this case, as shown in FIG. 15, the area of the second welding mark region 20A (same as S1) is larger than the area of the contact end face 55a of the second electrode 55 (same as A).

このような条件で溶接すると,図16に示すように積層体136Aとアルミニウム板191A(正極集電端子191のテストピース)との境界部分に形成されるナゲット70Aが,図12に示すナゲット70と比べて小さくなる。これは,第1溶接痕領域10Aが第1電極52の接触端面52aよりも大きくなったことにより,第1電極52の接触端面52aの全域が第1溶接痕領域10Aと当接するようになったため,第1溶接痕領域10Aを流れる電流の電流密度が図8に示すケースよりも低下して,積層体136A及びアルミニウム板191Aが発熱し難くなり,その溶融が不十分になったためである。特にこのケースでは,第1電極52の接触端面52aの周縁52b(図14参照)と第1溶接痕領域10Aとの接触箇所に形成されるナゲット70B(図16参照)が,著しく小さくなる。これは,接触端面52aの周縁52bと第1溶接痕領域10Aの凹部12Aが鉛直方向に沿って重なることで,その箇所を十分に押さえ込むことができなくなるからである。実施例5ではこのようなことが起こるため,実施例1〜4に比して溶接強度が小さくなるのである。   When welding is performed under such conditions, as shown in FIG. 16, the nugget 70A formed at the boundary portion between the laminated body 136A and the aluminum plate 191A (the test piece of the positive electrode current collecting terminal 191) becomes the nugget 70 shown in FIG. Smaller than that. This is because the entire area of the contact end face 52a of the first electrode 52 comes into contact with the first weld trace area 10A because the first weld trace area 10A is larger than the contact end face 52a of the first electrode 52. This is because the current density of the current flowing through the first welding mark region 10A is lower than that in the case shown in FIG. 8, and the laminated body 136A and the aluminum plate 191A are less likely to generate heat, and their melting becomes insufficient. Particularly in this case, the nugget 70B (see FIG. 16) formed at the contact point between the peripheral edge 52b (see FIG. 14) of the contact end surface 52a of the first electrode 52 and the first welding mark region 10A is remarkably reduced. This is because the peripheral edge 52b of the contact end surface 52a and the concave portion 12A of the first welding mark region 10A overlap along the vertical direction, so that the portion cannot be sufficiently pressed down. Since this occurs in the fifth embodiment, the welding strength is smaller than in the first to fourth embodiments.

また上記表1に示す比較例1は,S2/S3が1以下(S2/S3≦1)のケースである。すなわち,S2≦S3のケースである。具体的には図17に示すように,図8に示すものとは逆で,アルミニウム箔の積層体136B(正極集電体積層部136のテストピース)に形成された第1溶接痕領域10Bの凹部12Bよりも,第2溶接痕領域20Bの凹部22Bの方が小さくその数が多くなっている。   Further, Comparative Example 1 shown in Table 1 is a case where S2 / S3 is 1 or less (S2 / S3 ≦ 1). That is, this is a case of S2 ≦ S3. Specifically, as shown in FIG. 17, the reverse of what is shown in FIG. 8, the first welding mark region 10 </ b> B formed in the aluminum foil laminate 136 </ b> B (the test piece of the positive electrode current collector laminate 136). The number of the concave portions 22B of the second welding mark region 20B is smaller than the number of the concave portions 12B.

このような条件で溶接すると,図18に示すように抵抗溶接により形成されたナゲット70Cが,図12に示すものと比べて小さくなるとともに,その位置が第1電極52の方に偏る。これは,積層体136Bとアルミニウム板191B(正極集電端子191のテストピース)との接触抵抗が積層体136Bと第1電極52との接触抵抗に比して小さくなるため,積層体136Bとアルミニウム板191Bの境界で発熱し難くなり,その溶融が不十分になったためである。一方,積層体136Bと第1電極52の境界では発熱し易くなる。そのため,積層体136Bにおける第1電極52側が溶融して,積層体136Bと第1電極52とが接合する不具合も生じてしまう。なお図18中の一点鎖線は,接合されてしまった箇所を示している。従って比較例1では,表1に示すように,溶接強度が「×」,電極への付着が「×」となるのである。なお比較例1では,スパッタの飛散はない。   When welding is performed under such conditions, the nugget 70C formed by resistance welding as shown in FIG. 18 becomes smaller than that shown in FIG. 12, and its position is biased toward the first electrode 52. This is because the contact resistance between the laminated body 136B and the aluminum plate 191B (the test piece of the positive electrode current collecting terminal 191) is smaller than the contact resistance between the laminated body 136B and the first electrode 52. This is because it becomes difficult to generate heat at the boundary of the plate 191B and its melting becomes insufficient. On the other hand, heat is easily generated at the boundary between the stacked body 136 </ b> B and the first electrode 52. For this reason, the first electrode 52 side of the stacked body 136B is melted, and a problem that the stacked body 136B and the first electrode 52 are joined also occurs. In addition, the dashed-dotted line in FIG. 18 has shown the location joined. Therefore, in Comparative Example 1, as shown in Table 1, the welding strength is “x” and the adhesion to the electrode is “x”. In Comparative Example 1, there is no spatter scattering.

また上記表1に示す比較例2は,S2/S3が6以上(S2/S3≧6)のケースである。すなわち,S2に比してS3が過度に小さいケースである。具体的には図19に示すように,図8に示すものに比して,アルミニウム箔の積層体136C(正極集電体積層部136のテストピース)に形成された第2溶接痕領域20Cの凹部22Cが大きくなりその数が少なくなっている。   Moreover, the comparative example 2 shown in the said Table 1 is a case where S2 / S3 is 6 or more (S2 / S3> = 6). That is, S3 is excessively small compared to S2. Specifically, as shown in FIG. 19, compared with the one shown in FIG. 8, the second weld trace region 20 </ b> C formed in the aluminum foil laminate 136 </ b> C (the test piece of the positive electrode current collector laminate 136). The number of recesses 22C is increased and the number thereof is decreased.

このような条件で溶接すると,図20に示すように抵抗溶接により形成されたナゲット70Dが,図12に示すものと比べて大きくなる。これは,積層体136Cとアルミニウム板191C(正極集電端子191のテストピース)との接触抵抗が図8に示すものに比して大きくなり過ぎ,積層体136Cとアルミニウム板191Cの境界で過度に発熱し,その溶融が過度なものとなったためである。その結果,溶融したアルミニウムが噴き出し(スパッタが飛散し),ナゲット70Dに肉の欠けた欠肉部71が生じている。また噴出したアルミニウムが第1電極52に付着して凝固することにより,積層体136Cが第1電極52に接合される不具合が生じている。図20中の一点鎖線は接合されてしまった箇所を示している。従って比較例2では,表1に示すように,電極への付着が「×」,スパッタの飛散が「×」となるのである。なお比較例第2では,溶接強度は「○」である。これは,欠肉部71が生じることで溶接強度が下がり,「◎」の溶接強度を確保できなかったためである。   When welding is performed under such conditions, the nugget 70D formed by resistance welding as shown in FIG. 20 becomes larger than that shown in FIG. This is because the contact resistance between the laminated body 136C and the aluminum plate 191C (the test piece of the positive electrode current collecting terminal 191) is too large compared to that shown in FIG. 8, and excessively at the boundary between the laminated body 136C and the aluminum plate 191C. This was due to heat generation and excessive melting. As a result, molten aluminum is ejected (spatter is scattered), and a lacking portion 71 lacking in meat is generated in the nugget 70D. Further, the ejected aluminum adheres to the first electrode 52 and solidifies, thereby causing a problem that the stacked body 136C is joined to the first electrode 52. The one-dot chain line in FIG. 20 shows the part where it has joined. Therefore, in Comparative Example 2, as shown in Table 1, adhesion to the electrode is “x” and spatter scattering is “x”. In the second comparative example, the welding strength is “◯”. This is because the weld strength decreases due to the occurrence of the lacking portion 71 and the weld strength of “の” cannot be secured.

なお表1中の最下段に先行技術として示す例は,正極集電体積層部の表裏の表面に凹部がないケース(S2/S3=1のケース)である。このようなケースでは,溶接強度,電極への付着,及びスパッタの飛散の全ての項目が「×」となる。   The example shown as the prior art at the bottom in Table 1 is a case where there are no recesses on the front and back surfaces of the positive electrode current collector stack (S2 / S3 = 1 case). In such a case, all items of welding strength, adhesion to electrodes, and spatter scattering are “x”.

上記のような実験結果から次のことがわかる。すなわち実施例1〜5のように,S2/S3が1より大きく6未満(1<S2/S3<6)となるように第1溶接痕領域10及び第2溶接痕領域20を形成すれば,良好な接合を行うことができることがわかる。詳細には,溶接強度が強く,電極へ正極集電体積層部136が付着することもなく,スパッタが飛散することもないことがわかる。そして特にA>S1としたときには(実施例1〜4参照),抵抗溶接により形成されるナゲット70が適切なサイズでバラツキのないものとなり,溶接強度が高くなることがわかる。   The following can be understood from the experimental results as described above. That is, as in Examples 1 to 5, if the first welding trace region 10 and the second welding trace region 20 are formed so that S2 / S3 is greater than 1 and less than 6 (1 <S2 / S3 <6), It can be seen that good bonding can be performed. Specifically, it can be seen that the welding strength is strong, the positive electrode current collector laminated portion 136 does not adhere to the electrode, and the spatter does not scatter. In particular, when A> S1 (see Examples 1 to 4), it can be seen that the nugget 70 formed by resistance welding has an appropriate size and no variation, and the welding strength increases.

ここで,1<S2/S3<6となるよう第1溶接痕領域10及び第2溶接痕領域20を形成して抵抗溶接を行うと,抵抗溶接後の第1溶接痕領域10における凹んでいない箇所の面積(凹部12を除く面積)S4(図21のハッチング箇所参照)と,溶接後の第2溶接痕領域20におけるナゲット70でない箇所の面積(ナゲット70を除く面積)S5(図22のハッチング箇所参照)との比(S4/S5)は,表1に示すように,1<S4/S5<2の関係となる。従って抵抗溶接後の電池100において「1<S4/S5<2」の関係が成立していれば,上述したような良好な接合がなされた接合強度の高い電池であるといえる。なお,抵抗溶接前には「1<S2/S3<6」の範囲にあったものが,抵抗溶接後には「1<S4/S5<2」の範囲に変わるのは,次のような理由による。   Here, when resistance welding is performed by forming the first welding trace region 10 and the second welding trace region 20 so that 1 <S2 / S3 <6, there is no depression in the first welding trace region 10 after resistance welding. The area of the part (area excluding the recess 12) S4 (see the hatched part in FIG. 21) and the area of the part other than the nugget 70 in the second weld mark region 20 after welding (area excluding the nugget 70) S5 (hatched in FIG. As shown in Table 1, the ratio (S4 / S5) with respect to (refer to the location) has a relationship of 1 <S4 / S5 <2. Therefore, if the relationship of “1 <S4 / S5 <2” is established in the battery 100 after resistance welding, it can be said that the battery has high bonding strength in which good bonding as described above is performed. The reason why the range of “1 <S2 / S3 <6” before resistance welding changes to the range of “1 <S4 / S5 <2” after resistance welding is as follows. .

すなわち抵抗溶接を行うと,第1溶接痕領域10は抵抗溶接による発熱で軟化する。そのため,抵抗溶接後の第1溶接痕領域10における凹んでいない箇所の面積S4(図21参照)は,抵抗溶接前の第1溶接痕領域10における凹んでいない箇所の面積(凹部12を除く面積)S2(図10参照)に比して増加する(表1参照)。また抵抗溶接を行うと,第2溶接痕領域20では凹部22(図11参照)を中心にナゲット70(図12,図22参照)が形成される。そのため,抵抗溶接後の第2溶接痕領域20におけるナゲット70でない箇所の面積S5(図22参照)は,抵抗溶接前の第2溶接痕領域20における凹んでいない箇所の面積(凹部22を除く面積)S3に比して増加する(表1参照)。なお図22は,抵抗溶接後の第2溶接痕領域20の状態を示す図であり,第2溶接痕領域20を図12のA−A断面で見た図である。   That is, when resistance welding is performed, the first welding mark region 10 is softened by heat generated by resistance welding. Therefore, the area S4 (see FIG. 21) of the non-recessed portion in the first welding mark region 10 after resistance welding is the area (the area excluding the recess 12) of the non-recessed portion in the first welding mark region 10 before resistance welding. ) Increased compared to S2 (see FIG. 10) (see Table 1). Further, when resistance welding is performed, a nugget 70 (see FIGS. 12 and 22) is formed around the recess 22 (see FIG. 11) in the second welding mark region 20. Therefore, the area S5 (refer to FIG. 22) of the portion other than the nugget 70 in the second welding trace region 20 after resistance welding is the area (the area excluding the recess 22) of the non-recessed portion in the second welding trace region 20 before resistance welding. ) Increased compared to S3 (see Table 1). FIG. 22 is a diagram showing a state of the second welding scar region 20 after resistance welding, and is a diagram of the second welding scar region 20 as seen in the AA cross section of FIG.

これらの結果,抵抗溶接前の「1<S2/S3<6」という関係は,表1に示すように抵抗溶接後には「1<S4/S5<2」という関係へ変わるのである。従って,抵抗溶接後に「1<S4/S5<2」の関係が成り立っている電池は,抵抗溶接時には「1<S2/S3<6」という関係が成り立っていたということであり,正極集電体積層部136と正極集電端子191とが良好に接合された電池ということである。ちなみにS4は,第1溶接痕領域10に凹部12が形成されている場合にはS1未満(S1>S4)となり,第1溶接痕領域10に凹部12が形成されていない場合にはS1と等しく(S1=S4)なる。   As a result, the relationship “1 <S2 / S3 <6” before resistance welding changes to the relationship “1 <S4 / S5 <2” after resistance welding as shown in Table 1. Therefore, a battery in which the relationship of “1 <S4 / S5 <2” is established after resistance welding is that the relationship of “1 <S2 / S3 <6” is established at the time of resistance welding. This is a battery in which the laminated portion 136 and the positive electrode current collecting terminal 191 are well bonded. Incidentally, S4 is less than S1 (S1> S4) when the concave portion 12 is formed in the first welding trace region 10, and is equal to S1 when the concave portion 12 is not formed in the first welding trace region 10. (S1 = S4).

なお表1に示す比較例1では,抵抗溶接後のS4/S5は1以下(S4/S5≦1)となっている。従って,S4/S5≦1の電池は,図18に示すような接合状態にあり,良好な接合がなされていない電池ということである。また比較例2では,抵抗溶接後のS4/S5は2以上(S4/S5≧2)となっている。従って,S4/S5≧2の電池は,図20に示すような接合状態にあり,良好な接合がなされていない電池ということである。   In Comparative Example 1 shown in Table 1, S4 / S5 after resistance welding is 1 or less (S4 / S5 ≦ 1). Therefore, the battery of S4 / S5 ≦ 1 is in a joined state as shown in FIG. 18, and is not a good joined battery. In Comparative Example 2, S4 / S5 after resistance welding is 2 or more (S4 / S5 ≧ 2). Therefore, a battery with S4 / S5 ≧ 2 is in a joined state as shown in FIG. 20, and is not a good joined battery.

以上詳細に説明したように,実施形態の二次電池100の製造方法は,次の1〜3に示す工程を含んでいる。
[1.準備工程]正極集電体131に正極活物質層132が塗工された正極塗工部131aと正極集電体131に正極活物質層132が塗工されていない正極非塗工部131bとを含む正極板130,負極集電体121に負極活物質層122が塗工された負極塗工部121aと負極集電体121に負極活物質層122が塗工されていない負極非塗工部121bとを含む負極板120,及び,正極塗工部131aと負極塗工部121aとの間に介在するセパレータ150を含み,正極非塗工部131bが負極板120からはみ出た状態で積層された正極集電体積層部136を一端に有するとともに,負極非塗工部121bが正極板130からはみ出た状態で積層された負極集電体積層部126を他端に有する捲回電極体110を用意する工程。
[2.凹部形成工程]アンビル45と複数の凸部42を有するホーン41とを備える超音波溶接装置40を用いて,ホーン41が有する複数の凸部42を押し当てるようにアンビル45とホーン41との間に正極集電体積層部136を挟み込みつつ,ホーン41を振動させることにより,正極集電体積層部136におけるアンビル45との接触面(前面136a)に第1溶接痕領域10を形成するとともに,正極集電体積層部136におけるホーン41との接触面(後面136b)に凹部22のある第2溶接痕領域20を形成する工程。
[3.抵抗溶接工程]正極集電体積層部136における少なくとも第2溶接痕領域20を含む領域に正極集電端子191を当接させつつ,第1電極52と第2電極55からなる一対の電極51を備える抵抗溶接装置50を用いて第1溶接痕領域10及び第2溶接痕領域20が一対の電極51の間に位置するように正極集電体積層部136と正極集電端子191とを一対の電極51で挟み込んで抵抗溶接を行う工程。
As described above in detail, the method for manufacturing the secondary battery 100 of the embodiment includes the following steps 1 to 3.
[1. Preparation Step] A positive electrode coated portion 131a in which the positive electrode current collector 131 is coated with the positive electrode active material layer 132 and a positive electrode non-coated portion 131b in which the positive electrode current collector 131 is not coated with the positive electrode active material layer 132 The negative electrode coating part 121a in which the negative electrode active material layer 122 was coated on the positive electrode plate 130, the negative electrode current collector 121, and the negative electrode non-coated part 121b in which the negative electrode current collector 121 was not coated with the negative electrode active material layer 122 And a separator 150 interposed between the positive electrode coating part 131a and the negative electrode coating part 121a, and a positive electrode laminated with the positive electrode non-coating part 131b protruding from the negative electrode plate 120 A wound electrode body 110 having a current collector laminated portion 136 at one end and having a negative electrode current collector laminated portion 126 laminated at the other end with the negative electrode non-coated portion 121b protruding from the positive electrode plate 130 is prepared. Process.
[2. Concave forming step] Using an ultrasonic welding apparatus 40 including an anvil 45 and a horn 41 having a plurality of convex portions 42, the space between the anvil 45 and the horn 41 so as to press the plurality of convex portions 42 included in the horn 41. In addition, the horn 41 is vibrated while sandwiching the positive electrode current collector laminated portion 136 between the first current collector trace portion 136 and the contact surface (front surface 136a) with the anvil 45 in the positive electrode current collector laminated portion 136. A step of forming the second welding mark region 20 having the recess 22 on the contact surface (rear surface 136b) with the horn 41 in the positive electrode current collector laminated portion 136.
[3. Resistance Welding Step] A pair of electrodes 51 composed of the first electrode 52 and the second electrode 55 is formed while the positive electrode current collector terminal 191 is brought into contact with the region including at least the second welding mark region 20 in the positive electrode current collector laminated portion 136. Using the resistance welding apparatus 50 provided, a pair of the positive electrode current collector laminated portion 136 and the positive electrode current collector terminal 191 are placed so that the first welding scar region 10 and the second welding scar region 20 are positioned between the pair of electrodes 51. A process of performing resistance welding by sandwiching the electrodes 51.

そして上記の凹部形成工程では,次の式(1)及び(2)が満たされるように,第1溶接痕領域10及び第2溶接痕領域20を形成している。
S1≧S2 …(1)
1<S2/S3<6…(2)
S1:形成予定の第1溶接痕領域10の面積(図10参照)
S2:形成予定の第1溶接痕領域10と,その第1溶接痕領域10が抵抗溶接工程で当接する予定の第1電極52との抵抗溶接工程における接触面積(図10参照)
S3:形成予定の第2溶接痕領域20と,その第2溶接痕領域20が抵抗溶接工程で当接する予定の正極集電端子191との抵抗溶接工程における接触面積(図11参照)
In the recess forming step, the first welding trace region 10 and the second welding trace region 20 are formed so that the following expressions (1) and (2) are satisfied.
S1 ≧ S2 (1)
1 <S2 / S3 <6 (2)
S1: Area of the first welding mark region 10 to be formed (see FIG. 10)
S2: Contact area in the resistance welding process between the first welding trace area 10 to be formed and the first electrode 52 that the first welding trace area 10 is scheduled to contact in the resistance welding process (see FIG. 10).
S3: Contact area in the resistance welding process between the second welding trace area 20 to be formed and the positive electrode current collector terminal 191 to which the second welding trace area 20 is scheduled to contact in the resistance welding process (see FIG. 11).

このような実施形態の二次電池100の製造方法では,抵抗溶接前に,超音波溶接にて正極集電体積層部136に凹部22のある第2溶接痕領域20を形成している。そして抵抗溶接工程では,一対の電極51の間に第2溶接痕領域20を位置させている。この第2溶接痕領域20と正極集電端子191との接触面積S3は,第1溶接痕領域10と第1電極52との接触面積S2よりも小さい。そのため,抵抗溶接を行うにあたり,正極集電体積層部136における正極集電端子191との接触面の接触抵抗が,正極集電体積層部136における第1電極52との接触面の接触抵抗よりも大きくなる。よって,正極集電体積層部136と正極集電端子191との接触面に十分なジュール熱を発生させることができる。従って,正極集電体積層部136と正極集電端子191とを十分に溶融することができる。その結果,適切なサイズのナゲット70を形成することができ,正極集電体積層部136と正極集電端子191とを強固に接合することができる(十分な溶接強度で接合することができる)。   In the manufacturing method of the secondary battery 100 of such an embodiment, the second welding mark region 20 having the recess 22 is formed in the positive electrode current collector laminated portion 136 by ultrasonic welding before resistance welding. In the resistance welding process, the second welding mark region 20 is positioned between the pair of electrodes 51. The contact area S3 between the second welding trace region 20 and the positive electrode current collector terminal 191 is smaller than the contact area S2 between the first welding trace region 10 and the first electrode 52. For this reason, when performing resistance welding, the contact resistance of the contact surface with the positive electrode current collector terminal 191 in the positive electrode current collector stacking portion 136 is greater than the contact resistance of the contact surface with the first electrode 52 in the positive electrode current collector stacking portion 136. Also grows. Therefore, sufficient Joule heat can be generated on the contact surface between the positive electrode current collector laminated portion 136 and the positive electrode current collector terminal 191. Therefore, the positive electrode current collector laminated portion 136 and the positive electrode current collector terminal 191 can be sufficiently melted. As a result, the nugget 70 having an appropriate size can be formed, and the positive electrode current collector laminated portion 136 and the positive electrode current collector terminal 191 can be firmly bonded (bonding can be performed with sufficient welding strength). .

しかも,1≧S2/S3とした場合には正極集電体積層部136と第1電極52との接触面の接触抵抗が高くなり過ぎて,その接触面の温度が高くなり過ぎることにより,正極集電体積層部136が過剰に溶融して第1電極52と接合してしまうおそれがある(図18参照)。しかしながら,実施形態の製造方法では1<S2/S3としているため,このような不具合が生じない。   In addition, when 1 ≧ S2 / S3, the contact resistance of the contact surface between the positive electrode current collector stack 136 and the first electrode 52 becomes too high, and the temperature of the contact surface becomes too high. There is a possibility that the current collector stack 136 is excessively melted and joined to the first electrode 52 (see FIG. 18). However, since 1 <S2 / S3 in the manufacturing method of the embodiment, such a problem does not occur.

また,S2/S3≧6とした場合には正極集電体積層部136と正極集電端子191との接触面の接触抵抗が高くなり過ぎて,その接触面の温度が高くなり過ぎることにより正極集電体積層部136が過剰に溶融し,図20に示すように,溶融した正極集電体積層部136が噴き出して第1電極52と接合したり欠肉部71のあるナゲット70Dが形成されたりするおそれがある。しかしながら,実施形態の製造方法ではS2/S3<6としているため,このような不具合が生じない。   In addition, when S2 / S3 ≧ 6, the contact resistance of the contact surface between the positive electrode current collector stack 136 and the positive electrode current collector terminal 191 becomes too high, and the temperature of the contact surface becomes too high. As shown in FIG. 20, the current collector laminated portion 136 is melted excessively, and the molten positive electrode current collector laminated portion 136 is ejected to join the first electrode 52 or to form the nugget 70D having the lacking portion 71. There is a risk of However, in the manufacturing method of the embodiment, since S2 / S3 <6, such a problem does not occur.

また上記した二次電池100の製造方法における凹部形成工程では,アンビル45として複数の凸部46を有するものを用い,アンビル45が有する複数の凸部46を押し当てるようにアンビル45とホーン41との間に正極集電体積層部136を挟み込み,凹部12のある第1溶接痕領域10を形成している。   Moreover, in the recessed part formation process in the manufacturing method of the above-mentioned secondary battery 100, what has the some convex part 46 is used as the anvil 45, and the anvil 45, the horn 41, and so on are pressed against the some convex part 46 which the anvil 45 has. The positive electrode current collector laminated portion 136 is sandwiched between them to form the first weld mark region 10 having the recess 12.

よって,抵抗溶接時における第1溶接痕領域10と第1電極52との接触面積S2を,第1溶接痕領域10の面積S1よりも小さくすることができる(S1>S2)。そのため,S1=S2とした場合に比して,正極集電体積層部136と第1電極52との接触面の接触抵抗を大きくすることができる。その結果,正極集電体積層部136の発熱を促進して良好な溶接を行うことができる。なお,上記式(2)が満たされている限り,正極集電体積層部136と第1電極52とが接合してしまうほど,正極集電体積層部136が溶融することはない。   Therefore, the contact area S2 between the first welding trace region 10 and the first electrode 52 during resistance welding can be made smaller than the area S1 of the first welding trace region 10 (S1> S2). Therefore, the contact resistance of the contact surface between the positive electrode current collector stack 136 and the first electrode 52 can be increased as compared with the case where S1 = S2. As a result, heat generation of the positive electrode current collector laminated portion 136 can be promoted and good welding can be performed. In addition, as long as the said Formula (2) is satisfy | filled, the positive electrode collector lamination part 136 is not melted so that the positive electrode collector lamination part 136 and the 1st electrode 52 will join.

ここで上記した二次電池100の製造方法における凹部形成工程では,ホーン41が有する複数の凸部42のピッチP1(図4参照)を大きくすることにより接触面積S3を小さくすることができ,ホーン41が有する複数の凸部42のピッチP1を小さくすることにより接触面積S3を大きくすることができる(上記表3参照)。このようにして接触面積S3の大きさを調整すれば,他のパラメータ(超音波溶接におけるホーン41の押圧力,振動周波数,及び溶接時間等)を変更するのに比して,上記した式(2)を満たす第2溶接痕領域20を確実に形成することができる。   In the recess forming step in the method for manufacturing the secondary battery 100 described above, the contact area S3 can be reduced by increasing the pitch P1 (see FIG. 4) of the plurality of protrusions 42 of the horn 41. The contact area S3 can be increased by reducing the pitch P1 of the plurality of convex portions 42 included in 41 (see Table 3 above). If the size of the contact area S3 is adjusted in this way, the above formula (in comparison with changing other parameters (pressing force of the horn 41, vibration frequency, welding time, etc. in ultrasonic welding)) ( The second weld mark region 20 that satisfies 2) can be reliably formed.

また上記した二次電池100の製造方法における凹部形成工程では,アンビル45が有する複数の凸部46のピッチP2(図5参照)を大きくすることにより接触面積S2を小さくすることができ,アンビル45が有する複数の凸部46のピッチP2を小さくすることにより接触面積S2を大きくすることができる(上記表2参照)。このようにして接触面積S2の大きさを調整すれば,他のパラメータ(超音波溶接におけるホーン41の押圧力,振動周波数,及び,溶接時間等)を変更するのに比して,上記した式(1)及び式(2)を満たす第1溶接痕領域10を確実に形成することができる。   Moreover, in the recessed part formation process in the manufacturing method of the above-mentioned secondary battery 100, the contact area S2 can be made small by enlarging pitch P2 (refer FIG. 5) of the some convex part 46 which the anvil 45 has, and the anvil 45 The contact area S2 can be increased by reducing the pitch P2 of the plurality of convex portions 46 included in (see Table 2 above). If the size of the contact area S2 is adjusted in this way, the above formula is compared to changing other parameters (such as the pressing force of the horn 41 in ultrasonic welding, the vibration frequency, and the welding time). The 1st welding trace area | region 10 which satisfy | fills (1) and Formula (2) can be formed reliably.

また上記した二次電池100の製造方法における凹部形成工程では,次の式(3)が満たされるように第1溶接痕領域10を形成している。
A>S1…(3)
A:抵抗溶接工程で用いる予定の第1電極52における接合対象(正極集電体積層部136)に接触する端面52aの面積
Moreover, in the recessed part formation process in the manufacturing method of the above-mentioned secondary battery 100, the 1st welding trace area | region 10 is formed so that following Formula (3) may be satisfy | filled.
A> S1 (3)
A: Area of the end surface 52a in contact with the joining target (the positive electrode current collector laminated portion 136) in the first electrode 52 to be used in the resistance welding process

A≦S1とした場合には,第1溶接痕領域10に流れる電流の電流密度が低下する。そのため,正極集電体積層部136を十分に溶融することができなくなる。その結果,図12に示すナゲット70よりも小さなナゲット70A(図16参照)が形成される。また,第1溶接痕領域10における第1電極52の周縁52bとの接触部位では,第1溶接痕領域10の凹部12のために第1電極52の周縁52bが第1溶接痕領域10と接しない箇所が生じる。そのため,第1電極52が正極集電体積層部136を十分に押圧することができず,その箇所に形成されるナゲット70Bは他のナゲット70Aよりもさらに小さいものとなってしまう。これらの原因によりA≦S1とした場合には,正極集電体積層部136と正極集電端子191との接合強度が低下する。しかしながら上記の製造方法ではA>S1としているため,このような不具合は生じない。   In the case of A ≦ S1, the current density of the current flowing through the first welding mark region 10 decreases. Therefore, the positive electrode current collector laminated portion 136 cannot be sufficiently melted. As a result, a nugget 70A (see FIG. 16) smaller than the nugget 70 shown in FIG. 12 is formed. Further, at the contact portion with the peripheral edge 52 b of the first electrode 52 in the first welding trace area 10, the peripheral edge 52 b of the first electrode 52 is in contact with the first welding trace area 10 because of the concave portion 12 of the first welding trace area 10. The part which does not occur arises. Therefore, the 1st electrode 52 cannot fully press the positive electrode collector lamination part 136, and the nugget 70B formed in the location will become smaller than other nuggets 70A. For these reasons, when A ≦ S1, the bonding strength between the positive electrode current collector stack 136 and the positive electrode current collector terminal 191 decreases. However, since A> S1 in the above manufacturing method, such a problem does not occur.

また上記した二次電池100の製造方法における準備工程では,正極集電体131としてアルミニウム箔を用い,凹部形成工程では,正極集電体積層部136に第1溶接痕領域10及び第2溶接痕領域20を形成し,抵抗溶接工程では,正極集電体積層部136にアルミニウム製の正極集電端子191を接合している。アルミニウムは例えば銅などの他の金属よりも熱伝導率が低いため,銅と比べると抵抗溶接には不向きである。またアルミニウムは表面に電気抵抗の高い酸化被膜が存在するため,そのまま抵抗溶接を行うと正極集電体積層部136と抵抗溶接装置50の第1電極52とが溶着するおそれがある。しかしながら上記した二次電池100の製造方法では,超音波溶接によりアルミニウム箔である正極集電体積層部136に凹部22を施すことにより正極集電体積層部136と正極集電端子191との接触面の接触抵抗を大きくしている。そのため,抵抗溶接であっても十分に正極集電体積層部136を発熱させて溶融させることができる。また超音波溶接によりアルミニウム箔の酸化被膜が破壊されるため,正極集電体積層部136と第1電極52の溶着を防ぐことができる。その結果,正極集電体積層部136と第1電極52の溶着を防ぎつつ,十分な強度で正極集電体積層部136と正極集電端子191とを接合することができる。   In the preparation step in the manufacturing method of the secondary battery 100 described above, an aluminum foil is used as the positive electrode current collector 131, and in the concave portion formation step, the first welding mark region 10 and the second welding mark are formed on the positive electrode current collector laminated portion 136. The region 20 is formed, and in the resistance welding process, the positive electrode current collector terminal 191 made of aluminum is joined to the positive electrode current collector laminated portion 136. Aluminum has a lower thermal conductivity than other metals such as copper, so it is not suitable for resistance welding compared to copper. Further, since aluminum has an oxide film with high electrical resistance on the surface, if resistance welding is performed as it is, the positive electrode current collector laminated portion 136 and the first electrode 52 of the resistance welding apparatus 50 may be welded. However, in the manufacturing method of the secondary battery 100 described above, the contact between the positive electrode current collector stack 136 and the positive electrode current collector terminal 191 is obtained by applying the recess 22 to the positive electrode current collector stack 136 that is an aluminum foil by ultrasonic welding. The contact resistance of the surface is increased. Therefore, even with resistance welding, the positive electrode current collector laminated portion 136 can be sufficiently heated and melted. Further, since the oxide film of the aluminum foil is broken by ultrasonic welding, it is possible to prevent the positive electrode current collector laminated portion 136 and the first electrode 52 from being welded. As a result, it is possible to join the positive current collector stack 136 and the positive current collector terminal 191 with sufficient strength while preventing the welding of the positive current collector stack 136 and the first electrode 52.

なお,銅に比して抵抗溶接に不向きなアルミニウム製の正極集電体積層部136と正極集電端子191との接合に抵抗溶接を用いるのは,次のようなメリットがあるからである。すなわち,近年の正極集電端子には,異常時に電流を遮断するための電流遮断機構を組み込んだ構成のものがある。このような正極集電端子を超音波溶接により正極集電体積層部136と接合すると,溶接時に超音波により電流遮断機構に力が加わり,電流遮断機構に不具合が生じるおそれがある。しかし超音波溶接ではなく抵抗溶接を用いれば,このような不具合が生じることなく,電流遮断機構を有した正極集電端子と正極集電体積層部136とを接合することができるのである。   The reason why the resistance welding is used for joining the positive electrode current collector laminated portion 136 made of aluminum, which is not suitable for resistance welding compared to copper, and the positive electrode current collecting terminal 191 is as follows. That is, some recent positive electrode current collecting terminals have a structure incorporating a current interrupting mechanism for interrupting current in the event of an abnormality. When such a positive electrode current collector terminal is joined to the positive electrode current collector laminated portion 136 by ultrasonic welding, a force is applied to the current interruption mechanism by the ultrasonic wave during welding, and there is a possibility that a problem occurs in the current interruption mechanism. However, if resistance welding is used instead of ultrasonic welding, the positive current collector terminal having the current interrupt mechanism and the positive current collector laminated portion 136 can be joined without causing such a problem.

以上,本発明を実施形態に即して説明したが,本発明は上述の実施形態に限定されるものではなく,その要旨を逸脱しない範囲で,適宜変更して適用できることは言うまでもない。例えば,上記実施形態では,二次電池として,リチウムイオン二次電池を例示したが,例えばニッケル水素二次電池等の他の種類の二次電池などにも,本発明の技術的思想を適用できる。   As mentioned above, although this invention was demonstrated according to embodiment, it cannot be overemphasized that this invention is not limited to the above-mentioned embodiment, It can change suitably and apply in the range which does not deviate from the summary. For example, in the above embodiment, a lithium ion secondary battery is exemplified as the secondary battery. However, the technical idea of the present invention can be applied to other types of secondary batteries such as a nickel hydride secondary battery. .

また実施形態では,集電端子191,192は,外部端子部191a,192aを含むものであったが,含んでいないものであってもよい。すなわち,電池ケース180の外部に露出する外部端子部と別体で,電池ケース180の内部に配置する集電端子を設けて,電池ケースの内部又は外部にて,外部端子部と集電端子とを電気的に接合するものでもよい。   In the embodiment, the current collecting terminals 191 and 192 include the external terminal portions 191a and 192a, but may not include the external terminal portions 191a and 192a. In other words, a current collecting terminal disposed inside the battery case 180 is provided separately from the external terminal portion exposed to the outside of the battery case 180, and the external terminal portion and the current collecting terminal are provided inside or outside the battery case. May be electrically joined.

また実施形態では,負極集電体積層部126には超音波溶接を行わず,負極集電体積層部126と負極集電端子192とを抵抗溶接で接合した。しかしながら,正極集電体積層部136にしたのと同様の超音波溶接を負極集電体積層部126に対しても行い,正極集電体積層部136と正極集電端子191とを接合したのと同様の抵抗溶接にて,負極集電体積層部126と負極集電端子192とを接合してもよい。   In the embodiment, the negative electrode current collector laminated portion 126 is not subjected to ultrasonic welding, and the negative electrode current collector laminated portion 126 and the negative electrode current collector terminal 192 are joined by resistance welding. However, ultrasonic welding similar to that performed for the positive electrode current collector layered portion 136 was also performed on the negative electrode current collector layered portion 126, and the positive electrode current collector stacked portion 136 and the positive electrode current collector terminal 191 were joined. The negative electrode current collector laminated portion 126 and the negative electrode current collector terminal 192 may be joined by resistance welding similar to the above.

また実施形態では,アンビル45の先端面45aに凸部46を設け,凹部12のある第1溶接痕領域10を形成したが,アンビル45の先端面45aを凸部46のないフラットな面(平坦面)とし,凹部12のない第1溶接痕領域10(S1=S2の第1溶接痕領域10)を形成してもよい。第1溶接痕領域10に凹部12が形成されていなくても,上記式(1)及び式(2)が満たされている限り,良好な接合を行うことができるからである(表1の実施例4参照)。なおこの場合,抵抗溶接後の第1溶接痕領域10はS1=S4となっている。   In the embodiment, the convex portion 46 is provided on the tip surface 45a of the anvil 45 to form the first weld mark region 10 having the concave portion 12. However, the tip surface 45a of the anvil 45 is flat with no flat portion (flat surface). 1st welding trace area | region 10 (1st welding trace area | region 10 of S1 = S2) without the recessed part 12 may be formed. This is because even if the concave portion 12 is not formed in the first weld mark region 10, as long as the above formulas (1) and (2) are satisfied, good bonding can be performed (the implementation of Table 1). (See Example 4). In this case, the first welding mark region 10 after resistance welding is S1 = S4.

また実施形態では,前記第1溶接痕領域10全体の大きさと前記第2溶接痕領域20全体の大きさは同じであるが,異なっていてもよい。また実施形態では,角形の電池100としたが,円筒型の電池としてもよい。また実施形態では,電極体として,正極板130と負極板120とセパレータ150とが巻き重ねられた捲回型の捲回電極体110を用いたが,正極板と負極板とセパレータとが積み重ねられた積層型の電極体を用いてもよい。   In the embodiment, the overall size of the first welding scar region 10 and the overall size of the second welding scar region 20 are the same, but may be different. In the embodiment, the prismatic battery 100 is used, but a cylindrical battery may be used. In the embodiment, a wound-type wound electrode body 110 in which the positive electrode plate 130, the negative electrode plate 120, and the separator 150 are wound is used as the electrode body, but the positive electrode plate, the negative electrode plate, and the separator are stacked. Alternatively, a laminated electrode body may be used.

10…第1溶接痕領域
20…第2溶接痕領域
40…超音波溶接装置
41…アンビル
42…凸部
45…ホーン
46…凸部
50…抵抗溶接装置
51…一対の電極
52…第1電極
55…第2電極
100…電池
110…捲回電極体
120…負極板
121…負極集電体
121a…負極塗工部
121b…負極非塗工部
122…負極活物質層
126…負極集電体積層部
130…正極板
131…正極集電体
131a…正極塗工部
131b…正極非塗工部
132…正極活物質層
136…正極集電体積層部
136a…前面
136b…後面
150…セパレータ
191…正極集電端子
192…負極集電端子
DESCRIPTION OF SYMBOLS 10 ... 1st welding trace area | region 20 ... 2nd welding trace area | region 40 ... Ultrasonic welding apparatus 41 ... Anvil 42 ... Convex part 45 ... Horn 46 ... Convex part 50 ... Resistance welding apparatus 51 ... Pair of electrodes 52 ... 1st electrode 55 ... second electrode 100 ... battery 110 ... wound electrode body 120 ... negative electrode plate 121 ... negative electrode current collector 121a ... negative electrode coating part 121b ... negative electrode non-coating part 122 ... negative electrode active material layer 126 ... negative electrode current collector laminate part DESCRIPTION OF SYMBOLS 130 ... Positive electrode plate 131 ... Positive electrode collector 131a ... Positive electrode coating part 131b ... Positive electrode non-coating part 132 ... Positive electrode active material layer 136 ... Positive electrode collector laminated part 136a ... Front surface 136b ... Rear surface 150 ... Separator 191 ... Positive electrode collector Electrical terminal 192 ... Negative current collector terminal

Claims (7)

正極集電体に正極活物質層が塗工された正極塗工部と前記正極集電体に前記正極活物質層が塗工されていない正極非塗工部とを含む正極板,負極集電体に負極活物質層が塗工された負極塗工部と前記負極集電体に前記負極活物質層が塗工されていない負極非塗工部とを含む負極板,及び,前記正極塗工部と前記負極塗工部との間に介在するセパレータを含み,前記正極非塗工部が前記負極板からはみ出た状態で積層された正極集電体積層部を一端に有するとともに,前記負極非塗工部が前記正極板からはみ出た状態で積層された負極集電体積層部を他端に有する電極体を用意する準備工程と,
アンビルと複数の凸部を有するホーンとを備える超音波溶接装置を用いて,前記ホーンが有する複数の凸部を押し当てるように前記アンビルと前記ホーンとの間に前記正極集電体積層部又は前記負極集電体積層部のうち一方の極の集電体積層部を挟み込みつつ,前記ホーンを振動させることにより,前記集電体積層部におけるアンビルとの接触面に第1溶接痕領域を形成するとともに,前記集電体積層部におけるホーンとの接触面に凹部のある第2溶接痕領域を形成する凹部形成工程と,
前記集電体積層部における少なくとも前記第2溶接痕領域を含む領域にその集電体積層部に対応する極の集電端子を当接させつつ,第1電極と第2電極からなる一対の電極を備える抵抗溶接装置を用いて前記第1溶接痕領域及び前記第2溶接痕領域が前記一対の電極の間に位置するように前記集電体積層部と前記集電端子とを前記一対の電極で挟み込んで抵抗溶接を行う抵抗溶接工程と,をこの順に含み,
前記凹部形成工程では,次の式(1)及び(2)が満たされるように,前記第1溶接痕領域及び前記第2溶接痕領域を形成することを特徴とする二次電池の製造方法。
S1≧S2 …(1)
1<S2/S3<6…(2)
S1:形成予定の前記第1溶接痕領域の面積
S2:形成予定の前記第1溶接痕領域と,その第1溶接痕領域が前記抵抗溶接工程で当接する予定の前記第1電極との前記抵抗溶接工程における接触面積
S3:形成予定の前記第2溶接痕領域と,その第2溶接痕領域が前記抵抗溶接工程で当接する予定の前記集電端子との前記抵抗溶接工程における接触面積
A positive electrode plate, a negative electrode current collector, comprising a positive electrode coated portion in which a positive electrode active material layer is coated on a positive electrode current collector and a positive electrode non-coated portion in which the positive electrode current collector is not coated with the positive electrode active material layer A negative electrode plate comprising: a negative electrode coated portion coated with a negative electrode active material layer; and a negative electrode non-coated portion where the negative electrode current collector is not coated with the negative electrode active material layer; and the positive electrode coated Including a separator interposed between the negative electrode coating portion and the negative electrode coating portion, the positive electrode non-coating portion being laminated in a state protruding from the negative electrode plate at one end, and the negative electrode non-coating portion A preparation step of preparing an electrode body having, at the other end, a negative electrode current collector laminated portion laminated in a state where the coating portion protrudes from the positive electrode plate;
Using an ultrasonic welding apparatus including an anvil and a horn having a plurality of convex portions, the positive electrode current collector laminated portion or the positive electrode current collector stack portion between the anvil and the horn so as to press the plurality of convex portions of the horn Forming a first weld mark region on the contact surface with the anvil in the current collector laminate portion by vibrating the horn while sandwiching the current collector laminate portion of one of the negative electrode current collector laminate portions And forming a second weld trace region having a recess on the contact surface with the horn in the current collector laminate,
A pair of electrodes composed of a first electrode and a second electrode while contacting a current collector terminal of a pole corresponding to the current collector laminate portion in a region including at least the second welding mark region in the current collector laminate portion The pair of electrodes is connected to the current collector laminated portion and the current collector terminal so that the first welding mark area and the second welding mark area are positioned between the pair of electrodes using a resistance welding apparatus comprising: A resistance welding process in which resistance welding is performed by sandwiching between
In the recess forming step, the first welding trace region and the second welding trace region are formed so that the following expressions (1) and (2) are satisfied.
S1 ≧ S2 (1)
1 <S2 / S3 <6 (2)
S1: Area of the first welding trace area to be formed S2: Resistance of the first welding trace area to be formed and the first electrode to which the first welding trace area is abutted in the resistance welding process Contact area in the welding process S3: Contact area in the resistance welding process between the second welding trace region to be formed and the current collector terminal with which the second welding trace region is scheduled to abut in the resistance welding process
請求項1に記載の二次電池の製造方法であって,
前記凹部形成工程では,前記ホーンが有する複数の凸部のピッチを大きくすることにより前記接触面積S3を小さくし,前記ホーンが有する複数の凸部のピッチを小さくすることにより前記接触面積S3を大きくすることを特徴とする二次電池の製造方法。
A method of manufacturing a secondary battery according to claim 1,
In the recess forming step, the contact area S3 is reduced by increasing the pitch of the plurality of protrusions included in the horn, and the contact area S3 is increased by decreasing the pitch of the plurality of protrusions included in the horn. A method for manufacturing a secondary battery.
請求項1又は請求項2に記載の二次電池の製造方法であって,
前記凹部形成工程では,前記アンビルとして複数の凸部を有するものを用い,前記アンビルが有する複数の凸部を押し当てるように前記アンビルと前記ホーンとの間に前記集電体積層部を挟み込み,凹部のある前記第1溶接痕領域を形成することを特徴とする二次電池の製造方法。
A method of manufacturing a secondary battery according to claim 1 or claim 2,
In the concave portion forming step, the anvil having a plurality of convex portions, the current collector laminated portion is sandwiched between the anvil and the horn so as to press the plural convex portions of the anvil, A method for manufacturing a secondary battery, comprising forming the first welding mark region having a recess.
請求項3に記載の二次電池の製造方法であって,
前記凹部形成工程では,前記アンビルが有する複数の凸部のピッチを大きくすることにより前記接触面積S2を小さくし,前記アンビルが有する複数の凸部のピッチを小さくすることにより前記接触面積S2を大きくすることを特徴とする二次電池の製造方法。
A method of manufacturing a secondary battery according to claim 3,
In the recess forming step, the contact area S2 is reduced by increasing the pitch of the plurality of protrusions included in the anvil, and the contact area S2 is increased by decreasing the pitch of the plurality of protrusions included in the anvil. A method for manufacturing a secondary battery.
請求項1から請求項4までのいずれか一項に記載の二次電池の製造方法において,
前記凹部形成工程では,次の式(3)がさらに満たされるように,前記第1溶接痕領域を形成することを特徴とする二次電池の製造方法。
A>S1…(3)
A:前記抵抗溶接工程で用いる予定の前記第1電極における接合対象に接触する端面の面積
In the manufacturing method of the secondary battery as described in any one of Claim 1- Claim 4,
In the recess forming step, the first welding mark region is formed so that the following expression (3) is further satisfied.
A> S1 (3)
A: The area of the end surface in contact with the joining target in the first electrode scheduled to be used in the resistance welding process
請求項1から請求項5までのいずれか一項に記載の二次電池の製造方法であって,
前記準備工程では,前記正極集電体としてアルミニウム箔を用い,
前記凹部形成工程では,前記正極集電体積層部に前記第1溶接痕領域及び前記第2溶接痕領域を形成し,
前記抵抗溶接工程では,前記正極集電体積層部にアルミニウム製の正極集電端子を接合する
ことを特徴とする二次電池の製造方法。
A method for manufacturing a secondary battery according to any one of claims 1 to 5,
In the preparation step, an aluminum foil is used as the positive electrode current collector,
In the recess forming step, the first welding trace region and the second welding trace region are formed in the positive electrode current collector laminated portion,
In the resistance welding step, a positive electrode current collector terminal made of aluminum is joined to the positive electrode current collector laminated portion.
正極集電体に正極活物質層が塗工された正極塗工部と前記正極集電体に前記正極活物質層が塗工されていない正極非塗工部とを含む正極板,負極集電体に負極活物質層が塗工された負極塗工部と前記負極集電体に前記負極活物質層が塗工されていない負極非塗工部とを含む負極板,及び,前記正極塗工部と前記負極塗工部との間に介在するセパレータを含み,前記正極非塗工部が前記負極板からはみ出た状態で積層された正極集電体積層部を一端に有するとともに,前記負極非塗工部が前記正極板からはみ出た状態で積層された負極集電体積層部を他端に有する電極体と,
前記正極集電体積層部に接合された正極集電端子と,
前記負極集電体積層部に接合された負極集電端子と,を備え,
前記正極集電体積層部又は前記負極集電体積層部のうち少なくともいずれか一方の極の集電体積層部は,前記正極集電端子又は前記負極集電端子のうち当該集電体積層部に対応する極の集電端子との接合面の裏側の面に,凹部のある又は前記凹部のない第1溶接痕領域を有するとともに,前記接合面に,ナゲットの形成された第2溶接痕領域を有するものであり,
前記第1溶接痕領域及び前記第2溶接痕領域は,次の式(4)及び(5)を満たしているものであることを特徴とする二次電池。
S1≧S4 …(4)
1<S4/S5<2…(5)
S1:前記第1溶接痕領域の面積
S4:前記第1溶接痕領域における凹んでいない箇所の面積
S5:前記第2溶接痕領域における前記ナゲットでない箇所の面積
A positive electrode plate, a negative electrode current collector, comprising a positive electrode coated portion in which a positive electrode active material layer is coated on a positive electrode current collector and a positive electrode non-coated portion in which the positive electrode current collector is not coated with the positive electrode active material layer A negative electrode plate comprising: a negative electrode coated portion coated with a negative electrode active material layer; and a negative electrode non-coated portion where the negative electrode current collector is not coated with the negative electrode active material layer; and the positive electrode coated Including a separator interposed between the negative electrode coating portion and the negative electrode coating portion, the positive electrode non-coating portion being laminated in a state protruding from the negative electrode plate at one end, and the negative electrode non-coating portion An electrode body having, on the other end, a negative electrode current collector laminated portion laminated in a state where the coating portion protrudes from the positive electrode plate;
A positive current collector terminal joined to the positive current collector laminated portion;
A negative electrode current collector terminal joined to the negative electrode current collector laminate,
The current collector laminate portion of at least one of the positive electrode current collector laminate portion and the negative electrode current collector laminate portion is the current collector laminate portion of the positive electrode current collector terminal or the negative electrode current collector terminal. And a second welding trace region where a nugget is formed on the joint surface, the first welding trace region having a recess or not having the recess on the back surface of the joint surface with the current collector terminal of the electrode corresponding to Having
The secondary battery, wherein the first welding mark area and the second welding mark area satisfy the following expressions (4) and (5).
S1 ≧ S4 (4)
1 <S4 / S5 <2 (5)
S1: Area of the first welding mark area S4: Area of a non-dented area in the first welding mark area S5: Area of a non-nugget area in the second welding mark area
JP2013087312A 2013-04-18 2013-04-18 Method of manufacturing secondary battery and secondary battery Pending JP2014212012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013087312A JP2014212012A (en) 2013-04-18 2013-04-18 Method of manufacturing secondary battery and secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013087312A JP2014212012A (en) 2013-04-18 2013-04-18 Method of manufacturing secondary battery and secondary battery

Publications (1)

Publication Number Publication Date
JP2014212012A true JP2014212012A (en) 2014-11-13

Family

ID=51931620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013087312A Pending JP2014212012A (en) 2013-04-18 2013-04-18 Method of manufacturing secondary battery and secondary battery

Country Status (1)

Country Link
JP (1) JP2014212012A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017057200A1 (en) * 2015-09-29 2017-04-06 株式会社Gsユアサ Electricity storage element and method for manufacturing electricity storage element
WO2017098690A1 (en) * 2015-12-10 2017-06-15 パナソニックIpマネジメント株式会社 Cell
WO2018159197A1 (en) * 2017-02-28 2018-09-07 日立オートモティブシステムズ株式会社 Secondary battery
JP2018185955A (en) * 2017-04-25 2018-11-22 トヨタ自動車株式会社 Sealed battery
WO2019069659A1 (en) * 2017-10-02 2019-04-11 日立オートモティブシステムズ株式会社 Secondary battery
CN110224176A (en) * 2018-03-02 2019-09-10 三洋电机株式会社 Secondary cell and its manufacturing method
JP2020518963A (en) * 2018-01-09 2020-06-25 エルジー・ケム・リミテッド Electrode assembly including a plastic member applied to an electrode tab lead joint and a secondary battery including the same
US20210119305A1 (en) * 2019-02-01 2021-04-22 Lg Chem, Ltd. Electrode Assembly Configured Such that Pressure Welding Portions of Electrode Tab Welding Portions Have Different Sizes and Ultrasonic Welding Apparatus Configured to Manufacture the Same
CN112825381A (en) * 2019-11-19 2021-05-21 深圳市海鸿新能源技术有限公司 Pole piece of secondary battery, preparation method of pole piece and secondary battery
CN113348573A (en) * 2019-01-29 2021-09-03 三洋电机株式会社 Secondary battery and method for manufacturing same
US20220241890A1 (en) * 2019-07-31 2022-08-04 Vehicle Energy Japan Inc. Ultrasonic horn, secondary battery, and method for manufacturing secondary battery
JPWO2022180737A1 (en) * 2021-02-25 2022-09-01
US11469443B2 (en) * 2019-02-08 2022-10-11 Sanyo Electric Co., Ltd. Electricity storage element including stacked metal foils joined to lead by second joint within first joint, method of manufacturing electricity storage element, joining method, and joint assembly
WO2024098529A1 (en) * 2022-11-08 2024-05-16 厦门海辰储能科技股份有限公司 Connecting piece design method, connecting piece, energy storage device, and electric device

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017057200A1 (en) * 2015-09-29 2017-04-06 株式会社Gsユアサ Electricity storage element and method for manufacturing electricity storage element
WO2017098690A1 (en) * 2015-12-10 2017-06-15 パナソニックIpマネジメント株式会社 Cell
JPWO2017098690A1 (en) * 2015-12-10 2018-09-27 パナソニックIpマネジメント株式会社 battery
WO2018159197A1 (en) * 2017-02-28 2018-09-07 日立オートモティブシステムズ株式会社 Secondary battery
JP2018185955A (en) * 2017-04-25 2018-11-22 トヨタ自動車株式会社 Sealed battery
WO2019069659A1 (en) * 2017-10-02 2019-04-11 日立オートモティブシステムズ株式会社 Secondary battery
JPWO2019069659A1 (en) * 2017-10-02 2020-10-15 ビークルエナジージャパン株式会社 Rechargeable battery
JP2020518963A (en) * 2018-01-09 2020-06-25 エルジー・ケム・リミテッド Electrode assembly including a plastic member applied to an electrode tab lead joint and a secondary battery including the same
CN110224176A (en) * 2018-03-02 2019-09-10 三洋电机株式会社 Secondary cell and its manufacturing method
JP2019153438A (en) * 2018-03-02 2019-09-12 三洋電機株式会社 Secondary battery and method of manufacturing the same
JP7021564B2 (en) 2018-03-02 2022-02-17 三洋電機株式会社 Secondary battery and its manufacturing method
CN113348573A (en) * 2019-01-29 2021-09-03 三洋电机株式会社 Secondary battery and method for manufacturing same
JP2021515957A (en) * 2019-02-01 2021-06-24 エルジー・ケム・リミテッド Electrode assemblies with different pressure weld sizes for electrode tab welds and ultrasonic welding equipment for manufacturing them
US20210119305A1 (en) * 2019-02-01 2021-04-22 Lg Chem, Ltd. Electrode Assembly Configured Such that Pressure Welding Portions of Electrode Tab Welding Portions Have Different Sizes and Ultrasonic Welding Apparatus Configured to Manufacture the Same
JP7062202B2 (en) 2019-02-01 2022-05-06 エルジー エナジー ソリューション リミテッド Electrode assembly with different pressure contact size of electrode tab weld and ultrasonic welding equipment to manufacture it
US11469443B2 (en) * 2019-02-08 2022-10-11 Sanyo Electric Co., Ltd. Electricity storage element including stacked metal foils joined to lead by second joint within first joint, method of manufacturing electricity storage element, joining method, and joint assembly
US20220241890A1 (en) * 2019-07-31 2022-08-04 Vehicle Energy Japan Inc. Ultrasonic horn, secondary battery, and method for manufacturing secondary battery
CN112825381A (en) * 2019-11-19 2021-05-21 深圳市海鸿新能源技术有限公司 Pole piece of secondary battery, preparation method of pole piece and secondary battery
JPWO2022180737A1 (en) * 2021-02-25 2022-09-01
WO2022180737A1 (en) * 2021-02-25 2022-09-01 株式会社 東芝 Battery and method for manufacturing battery
CN115244779A (en) * 2021-02-25 2022-10-25 株式会社东芝 Battery and method for manufacturing battery
JP7379713B2 (en) 2021-02-25 2023-11-14 株式会社東芝 Batteries and battery manufacturing methods
CN115244779B (en) * 2021-02-25 2024-05-14 株式会社东芝 Battery and method for manufacturing battery
WO2024098529A1 (en) * 2022-11-08 2024-05-16 厦门海辰储能科技股份有限公司 Connecting piece design method, connecting piece, energy storage device, and electric device

Similar Documents

Publication Publication Date Title
JP2014212012A (en) Method of manufacturing secondary battery and secondary battery
US8025202B2 (en) Method for manufacturing sealed battery
US9819027B2 (en) Method for producing battery and battery
JP5587061B2 (en) Energizing block for resistance welding, sealed battery manufacturing method using the energizing block, and sealed battery
US20110195288A1 (en) Sealed battery and method for fabricating the same
JP6363893B2 (en) Secondary battery
US8257861B2 (en) Sealed battery
JP2015199095A (en) Ultrasonic welding apparatus and method of manufacturing battery
JP2010232164A (en) Method of manufacturing square-shaped secondary battery
CN111384426B (en) Secondary battery
US20120121954A1 (en) Hermetically sealed battery and method for manufacturing the same
JP6072676B2 (en) Method for manufacturing prismatic secondary battery
WO2013191218A1 (en) Process for producing stacked aluminum material, process for producing sealed battery containing same, and sealed battery
JP2019153438A (en) Secondary battery and method of manufacturing the same
JP2020102320A (en) Manufacturing method of secondary battery
JP6107346B2 (en) Battery manufacturing method and battery
JP2020004643A (en) Power storage device
JP7329538B2 (en) Secondary battery and manufacturing method thereof
JP7205723B2 (en) Ultrasonic bonding method
JP2017080792A (en) Manufacturing method for weld structure
CN111384425A (en) Secondary battery
JP2014056672A (en) Power storage device and manufacturing method of power storage device
JP5949535B2 (en) Secondary battery manufacturing method and secondary battery
WO2020137715A1 (en) Electrode plate and secondary battery using same
KR20240024034A (en) Ultrasonic welding device and ultrasonic welding system