JP5949535B2 - Secondary battery manufacturing method and secondary battery - Google Patents

Secondary battery manufacturing method and secondary battery Download PDF

Info

Publication number
JP5949535B2
JP5949535B2 JP2012281829A JP2012281829A JP5949535B2 JP 5949535 B2 JP5949535 B2 JP 5949535B2 JP 2012281829 A JP2012281829 A JP 2012281829A JP 2012281829 A JP2012281829 A JP 2012281829A JP 5949535 B2 JP5949535 B2 JP 5949535B2
Authority
JP
Japan
Prior art keywords
current collector
negative electrode
laminated portion
positive electrode
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012281829A
Other languages
Japanese (ja)
Other versions
JP2014127282A (en
Inventor
きよみ 神月
きよみ 神月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012281829A priority Critical patent/JP5949535B2/en
Publication of JP2014127282A publication Critical patent/JP2014127282A/en
Application granted granted Critical
Publication of JP5949535B2 publication Critical patent/JP5949535B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Resistance Welding (AREA)

Description

本発明は,二次電池の製造方法及び二次電池に関し,詳しくは,集電体積層部に集電端子を良好に溶接し得る二次電池の製造方法及び二次電池に関する。   The present invention relates to a method for manufacturing a secondary battery and a secondary battery, and more particularly to a method for manufacturing a secondary battery and a secondary battery capable of satisfactorily welding a current collector terminal to a current collector laminate.

近年,リチウムイオン二次電池などの二次電池は,携帯電話やパーソナルコンピュータ等の電子機器,ハイブリッド自動車や電気自動車等の車両等,多岐にわたる分野で利用されている。特にリチウムイオン二次電池は,エネルギー密度が高いため,各種の機器に搭載する上で好適である。   In recent years, secondary batteries such as lithium ion secondary batteries have been used in various fields such as electronic devices such as mobile phones and personal computers, vehicles such as hybrid cars and electric cars. In particular, a lithium ion secondary battery has a high energy density and is suitable for mounting in various devices.

このような二次電池として,例えば,角型の電池ケースに,扁平形状に捲回された捲回電極体を収容した構成の二次電池が知られている。この二次電池の捲回電極体は,箔状の正極集電体の表面に正極活物質層が形成された正極板,箔状の負極集電体の表面に負極活物質層が形成された負極板,および,正極板と負極板とを絶縁するセパレータを重ねて捲回したものである。この捲回電極体は,正極活物質層の形成されていない正極活物質層非形成部が巻き重ねられてなる正極集電体積層部を,捲回軸方向に沿う一端側に有するとともに,負極活物質層の形成されていない負極活物質層非形成部が巻き重ねられてなる負極集電体積層部を,捲回軸方向に沿う他端側に有している。この正極集電体積層部には,正極集電端子が接合されており,負極集電体積層部には,負極集電端子が接合されている。   As such a secondary battery, for example, a secondary battery having a configuration in which a wound electrode body wound in a flat shape is accommodated in a rectangular battery case is known. The wound electrode body of the secondary battery has a positive electrode plate having a positive electrode active material layer formed on the surface of a foil-shaped positive electrode current collector, and a negative electrode active material layer formed on the surface of the foil-shaped negative electrode current collector. The negative electrode plate and a separator that insulates the positive electrode plate and the negative electrode plate are stacked and wound. This wound electrode body has a positive electrode current collector laminated portion formed by winding a positive electrode active material layer non-formed portion where a positive electrode active material layer is not formed on one end side along the winding axis direction, and a negative electrode A negative electrode current collector laminated portion formed by winding a negative electrode active material layer non-formed portion where no active material layer is formed is provided on the other end side along the winding axis direction. A positive electrode current collector terminal is joined to the positive electrode current collector laminated portion, and a negative electrode current collector terminal is joined to the negative electrode current collector laminated portion.

ここで,負極集電端子は,負極集電体積層部に対して抵抗溶接により接合されている。これは,生産性や経済性を考慮してのことである。抵抗溶接では,負極集電体積層部と負極集電端子とを重ねて,その重ねた部分を,負極集電体積層部側の電極(「積層部側電極」という)と,負極集電端子側の電極(「端子側電極」という)とで挟み込んで加圧するとともに,両電極間に電流を流す。これにより,ジュール熱を発生させて,両電極で挟み込んだ部分を溶融させ,負極集電端子を負極集電体積層部に接合するのである。なお,抵抗溶接には,積層部側電極と端子側電極とからなる一対の電極を有する抵抗溶接機を用いる。   Here, the negative electrode current collector terminal is joined to the negative electrode current collector laminated portion by resistance welding. This is in consideration of productivity and economy. In resistance welding, the negative electrode current collector laminated portion and the negative electrode current collector terminal are overlapped, and the overlapped portion is connected to an electrode on the negative electrode current collector laminated portion side (referred to as “laminated portion side electrode”) and a negative electrode current collector terminal. The electrode is sandwiched between two electrodes (referred to as “terminal electrode”) and pressurized, and a current flows between both electrodes. As a result, Joule heat is generated, the portion sandwiched between both electrodes is melted, and the negative electrode current collector terminal is joined to the negative electrode current collector laminated portion. For resistance welding, a resistance welding machine having a pair of electrodes including a laminated portion side electrode and a terminal side electrode is used.

このような集電体積層部と集電端子との抵抗溶接に関する従来技術として,例えば,下記特許文献1に示す技術が挙げられる。下記特許文献1には,集電体積層部(「正極芯体露出部14」又は「負極芯体露出部」)を2つに分割して,その間に「通電ブロック24A」を配置し,抵抗溶接機の一対の電極(「抵抗溶接用電極31,32」)により,集電体積層部の表面に配した集電端子(正極用集電部材16又は負極用集電部材),集電体積層部,及び通電ブロックを挟み込んで,抵抗溶接を行う技術が開示されている(下記特許文献1の図3参照)。   As a conventional technique related to resistance welding between such a current collector laminated portion and a current collecting terminal, for example, a technique shown in Patent Document 1 below can be cited. In Patent Document 1 below, the current collector laminated portion (“positive electrode core exposed portion 14” or “negative electrode core exposed portion”) is divided into two parts, and an “energization block 24A” is disposed between them, and the resistance Current collecting terminals (positive current collecting member 16 or negative current collecting member) arranged on the surface of the current collector laminated portion by a pair of electrodes of the welding machine ("resistance welding electrodes 31, 32"), current collector A technique for performing resistance welding by sandwiching a laminated portion and a current-carrying block is disclosed (see FIG. 3 of Patent Document 1 below).

特開2011−92995号公報JP 2011-92995 A

ところで,従来から用いられている抵抗溶接機の積層部側電極は,集電体積層部との当接面が,表面粗度(JIS規格の最大粗さRmax)1μm〜10μm程度の面であった。すなわち,当接面はそれほど粗くなかった。なお,図11は,従来の積層部側電極の当接面50の写真である。   By the way, in the conventionally used lamination-side electrode of the resistance welder, the contact surface with the current collector lamination part has a surface roughness (JIS standard maximum roughness Rmax) of about 1 μm to 10 μm. It was. That is, the contact surface was not so rough. FIG. 11 is a photograph of the contact surface 50 of the conventional laminated portion side electrode.

そのため,抵抗溶接時の加圧による,積層部側電極の集電体積層部に対する食い込みは弱かった。詳細には,集電体積層部に,積層部側電極の当接面50(図11)の凹凸が移り込むほど,食い込むものではなかった。従って,積層部側電極が押し当てられても集電体積層部があまり延伸しないため,積層部側電極と集電体積層部との接触面積は小さかった。小さな接触面積で溶接した場合,溶接強度が低くなってしまう。なお,図12は,抵抗溶接により集電体積層部に形成された溶接痕60の写真である。この溶接痕60の表面粗度は,最大粗さRmaxで4μm〜8μmである。   For this reason, the biting into the current collector laminated portion of the laminated portion side electrode due to the pressure applied during resistance welding was weak. In detail, it did not bite to such an extent that the unevenness | corrugation of the contact surface 50 (FIG. 11) of the lamination | stacking part side electrode moved into a collector laminated part. Therefore, even if the laminated portion side electrode is pressed, the current collector laminated portion does not extend so much, and the contact area between the laminated portion side electrode and the current laminated portion is small. If welding is performed with a small contact area, the welding strength will be low. FIG. 12 is a photograph of a welding mark 60 formed on the current collector laminated portion by resistance welding. The surface roughness of the weld mark 60 is 4 μm to 8 μm in terms of the maximum roughness Rmax.

また,食い込みが弱く,集電体積層部を構成する各層の密着性が低いため,接触抵抗が大きかった。そのため,集電体積層部を溶接するために必要とされる大きな電流を流した際に,過度の発熱を招き,これによりスパッタが発生することがあった。さらには,スパッタが積層部側電極に飛散し,これにより集電体積層部が積層部側電極に張り付きやすくなることがあった。その結果,集電体積層部の溶接箇所が破損し,集電体積層部の溶接強度にばらつきが生じることがあった。さらには,積層部側電極が破損し,その寿命が短期化することもあった。   In addition, since the bite was weak and the adhesion of each layer constituting the current collector laminate was low, the contact resistance was high. For this reason, when a large current required for welding the current collector laminated portion is passed, excessive heat generation is caused, which may cause sputtering. Furthermore, the spatter may be scattered on the laminated portion side electrode, which may cause the current collector laminated portion to easily stick to the laminated portion side electrode. As a result, the welded portion of the current collector laminate was damaged, and the welding strength of the current collector laminate could vary. Furthermore, the laminated part side electrode was damaged, and its life could be shortened.

本発明は上記事情に鑑みてなされたものである。すなわち,その課題とするところは,スパッタの発生を招くことなく,集電体積層部と集電端子とを良好に抵抗溶接することが可能な二次電池の製造方法及び二次電池を提供することにある。   The present invention has been made in view of the above circumstances. That is, the subject is to provide a method of manufacturing a secondary battery and a secondary battery capable of satisfactorily resistance-welding the current collector stack and the current collector terminal without causing spattering. There is.

この課題の解決を目的としてなされた本発明の二次電池の製造方法は,
箔状の正極集電体の表面に正極活物質層が形成された正極板,及び,箔状の負極集電体の表面に負極活物質層が形成された負極板,をセパレータと共に捲回することにより,捲回軸方向の両端部のうちの一方の端部に,正極活物質層の形成されていない正極活物質層非形成部が負極板からはみ出た状態で積層された正極集電体積層部を有するとともに,両端部のうちの他方の端部に,負極活物質層の形成されていない負極活物質層非形成部が正極板からはみ出た状態で積層された負極集電体積層部を有する捲回電極体を作製する工程と,
正極集電体積層部又は負極集電体積層部のうち少なくとも一方の極の集電体積層部に,対応する極の集電端子を配置する工程と,
集電体積層部に配置した集電端子に,抵抗溶接用の端子側電極を当接するとともに,集電端子を配置した集電体積層部に,端子側電極と対の積層部側電極を当接することにより,集電端子および集電体積層部を挟み込む工程と,
端子側電極と積層部側電極との間に押圧力を印加しながら抵抗溶接を行う工程と,を含む二次電池の製造方法であって,
積層部側電極として,集電体積層部に対する当接面が,最大粗さ(Rmax)15μm〜25μmの規則的な凹凸形状を有する凹凸面となっているものを用いることを特徴とする。
The manufacturing method of the secondary battery of the present invention made for the purpose of solving this problem is:
A positive electrode plate with a positive electrode active material layer formed on the surface of a foil-shaped positive electrode current collector and a negative electrode plate with a negative electrode active material layer formed on the surface of a foil-shaped negative electrode current collector are wound together with a separator. Thus, a positive electrode current collector in which a positive electrode active material layer non-formed portion where no positive electrode active material layer is formed is stacked at one end of both ends in the winding axis direction so as to protrude from the negative electrode plate A negative electrode current collector laminated part having a laminated part and laminated in a state where a negative electrode active material layer non-formed part on which the negative electrode active material layer is not formed protrudes from the positive electrode plate at the other end part of both end parts Producing a wound electrode body having:
Disposing a current collector terminal of a corresponding electrode on a current collector laminate of at least one of the positive electrode current collector laminate and the negative electrode current collector laminate; and
The terminal electrode for resistance welding is brought into contact with the current collector terminal arranged in the current collector laminated portion, and the current collector laminated portion in which the current collector terminal is arranged is contacted with the laminated portion side electrode paired with the terminal side electrode. A step of sandwiching the current collector terminal and the current collector laminated portion by contacting,
A process of resistance welding while applying a pressing force between the terminal side electrode and the laminated part side electrode,
The laminated portion side electrode is characterized in that the contact surface with the current collector laminated portion is an uneven surface having a regular uneven shape with a maximum roughness (Rmax) of 15 μm to 25 μm.

本発明の二次電池の製造方法で用いる積層部側電極は,集電体積層部への当接面が,表面粗度(最大粗さRmax,JIS規格)15μm〜25μmの規則的な凹凸形状を有する凹凸面である。すなわち,従来よりも当接面が粗い。そのため,抵抗溶接時の加圧により,積層部側電極が集電体積層部に食い込む。この食い込みの程度は,集電体積層部に,積層部側電極の当接面の凹凸が移り込むほどである。なお,集電体積層部に移り込む凹凸の程度は,最大粗さRmaxで9μm〜25μm程度である。このように積層部側電極が集電体積層部に食い込むため,集電体積層部が引き伸ばされる(延伸される)。よって,積層部側電極と,集電体積層部との接触面積が増大する。従って,集電体積層部と集電端子との溶接強度を十分に確保することができる。
また,集電体積層部が引き伸ばされた分,引き伸ばされた箇所(溶接箇所)では集電体積層部の各層が密着して,各層間距離が短くなる。そのため,接触抵抗が小さくなる。従って,溶接箇所に流れる電流の電流密度が大きくなる。すなわち,溶接箇所の通電性が向上する。よって,効率よく発熱するようになるため,従来より小さな電流でも十分な強度で溶接することができる。
また,従来より小さな電流で溶接できるため,大きな電流を流すことに起因する溶接個所の過度な発熱を防ぐことができる。その結果,過度な発熱を原因とするスパッタの発生を防ぐことができる。また,スパッタが積層部側電極に飛散することもないので,集電体積層部の溶接箇所の破損や,積層部側電極の破損も防ぐことができる。
The laminated part side electrode used in the method for producing a secondary battery of the present invention has a regular uneven shape with a surface roughness (maximum roughness Rmax, JIS standard) of 15 μm to 25 μm at the contact surface with the current collector laminated part. It is an uneven surface having That is, the contact surface is rougher than before. For this reason, the laminated portion side electrode bites into the current collector laminated portion due to pressurization during resistance welding. The degree of this biting is such that the unevenness of the contact surface of the laminated portion side electrode moves into the current collector laminated portion. Note that the degree of unevenness transferred to the current collector laminate is about 9 μm to 25 μm in terms of the maximum roughness Rmax. Thus, since the laminated part side electrode bites into the current collector laminated part, the current collector laminated part is stretched (stretched). Therefore, the contact area between the laminated portion side electrode and the current collector laminated portion increases. Therefore, the welding strength between the current collector laminated portion and the current collector terminal can be sufficiently ensured.
In addition, the layers of the current collector laminated portion are in close contact with each other at the stretched portion (welded location) by the amount of the current collector laminated portion being stretched, and the distance between the layers is shortened. Therefore, the contact resistance is reduced. Therefore, the current density of the current flowing through the welded portion is increased. That is, the electrical conductivity of the welding location is improved. Therefore, since heat is generated efficiently, welding can be performed with sufficient strength even with a smaller current than before.
In addition, since welding can be performed with a smaller current than in the past, excessive heat generation at the welding point caused by flowing a large current can be prevented. As a result, it is possible to prevent the occurrence of spatter due to excessive heat generation. Moreover, since spatter does not scatter to the laminated part side electrode, it is possible to prevent damage to the welded part of the current collector laminated part and damage to the laminated part side electrode.

ここで本発明の二次電池の製造方法では,端子側電極と積層部側電極との間に印加する押圧力が,圧力として,142N/mm 〜424N/mm であることが望ましい。
このようにすれば,積層部側電極の当接面を集電体積層部に対して十分に食い込ませることができる。そのため,スパッタの発生を招くことなく,集電体積層部と集電端子とを良好に抵抗溶接することができる。
Here in the secondary battery of the production method of the present invention, the pressing force applied between the terminal-side electrode and the laminated portion side electrode, as the pressure is desirably 142N / mm 2 ~424N / mm 2 .
If it does in this way, the contact surface of the lamination | stacking part side electrode can fully be made to bite with respect to a collector laminated part. Therefore, it is possible to satisfactorily resistance-weld the current collector laminated portion and the current collector terminal without causing spattering.

また本発明に係る二次電池の製造方法では,積層部側電極の当接面が有する規則的な凹凸形状は,当接面の中心から外側に向かって予め定められた間隔で複数の同心円が形成されている形状であることが望ましい。
このようにすれば,他の形状(例えば格子形状やストライプ形状)に凹凸を施した積層部側電極を用いるよりも,溶接強度を高くすることができる。
In the method for manufacturing a secondary battery according to the present invention, the regular uneven shape of the contact surface of the laminated portion side electrode has a plurality of concentric circles at predetermined intervals from the center of the contact surface to the outside. The formed shape is desirable.
In this way, it is possible to increase the welding strength as compared with the case where the laminated portion side electrode in which other shapes (for example, a lattice shape or a stripe shape) are uneven is used.

また本発明に係る二次電池の製造方法では,当接面が有する規則的な凹凸形状は,放電加工により形成されたものであることが望ましい。
放電加工により凹凸形状を施せば,規則的な凹凸形状とすることができるため,抵抗溶接時に流す電流の分散を防いで,良好な溶接を行うことができる。
In the method for manufacturing a secondary battery according to the present invention, it is desirable that the regular uneven shape of the contact surface is formed by electric discharge machining.
If the concave and convex shape is applied by electric discharge machining, a regular concave and convex shape can be obtained, so that the current flowing during resistance welding can be prevented from being dispersed and good welding can be performed.

また本発明に係る二次電池は,箔状の正極集電体の表面に正極活物質層が形成された正極板,及び,箔状の負極集電体の表面に負極活物質層が形成された負極板,をセパレータと共に捲回してなる捲回電極体と,捲回電極体に接合された正負極それぞれの集電端子と,を備える二次電池であって,捲回電極体における捲回軸方向の両端部のうちの一方の端部は,正極活物質層の形成されていない正極活物質層非形成部が負極板からはみ出た状態で積層された正極集電体積層部であり,両端部のうちの他方の端部は,負極活物質層の形成されていない負極活物質層非形成部が正極板からはみ出た状態で積層された負極集電体積層部であり,正極集電体積層部又は負極集電体積層部のうち少なくとも一方の極の集電体積層部は,抵抗溶接により集電端子と接合されており,抵抗溶接により集電体積層部の表面に形成された溶接痕は,その表面粗度が最大粗さ(Rmax)で9μm〜25μmの規則的な凹凸形状であることを特徴とする。   The secondary battery according to the present invention includes a positive electrode plate having a positive electrode active material layer formed on the surface of a foil-shaped positive electrode current collector, and a negative electrode active material layer formed on the surface of the foil-shaped negative electrode current collector. A secondary battery comprising: a wound electrode body formed by winding a negative electrode plate together with a separator; and a current collecting terminal for each of positive and negative electrodes joined to the wound electrode body. One end of the axial end portions is a positive electrode current collector laminated portion laminated in a state where a positive electrode active material layer non-formed portion where a positive electrode active material layer is not formed protrudes from the negative electrode plate, The other end of the two end portions is a negative electrode current collector laminated portion in which a negative electrode active material layer non-formed portion where no negative electrode active material layer is formed is laminated in a state of protruding from the positive electrode plate. The current collector laminate portion of at least one of the electrode laminate portion and the negative electrode current collector laminate portion is collected by resistance welding. The weld mark formed on the surface of the current collector stack by resistance welding is a regular uneven shape with a maximum roughness (Rmax) of 9 μm to 25 μm. Features.

上述した最大粗さ(Rmax)15μm〜25μmの規則的な凹凸形状の当接面をもつ積層部側電極を用いて抵抗溶接した場合,集電体積層部に形成される抵抗溶接の溶接痕は,その表面粗度が最大粗さ(Rmax)で9μm〜25μmの規則的な凹凸形状となる。よって,本発明の二次電池によれば,上記した理由から,溶接不良のない電池が提供されている。また本発明の二次電池は,その製造過程における溶接時のスパッタの発生が抑制されているものであるため,抵抗溶接用の積層部側電極の寿命を長期化させ得る電池である。   When resistance welding is performed using the laminated portion side electrode having a regular uneven contact surface with the maximum roughness (Rmax) of 15 μm to 25 μm, the resistance welding weld trace formed on the current collector laminated portion is The surface roughness is a regular uneven shape having a maximum roughness (Rmax) of 9 μm to 25 μm. Therefore, according to the secondary battery of the present invention, a battery having no poor welding is provided for the reasons described above. In addition, since the secondary battery of the present invention suppresses the occurrence of spatter during welding in the manufacturing process, it is a battery that can prolong the life of the laminated part side electrode for resistance welding.

本発明によれば,スパッタの発生を招くことなく,集電体積層部と集電端子とを良好に抵抗溶接することが可能な二次電池の製造方法及び二次電池が提供されている。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method and secondary battery of a secondary battery which can carry out resistance welding of a collector laminated part and a current collection terminal favorably without causing generation | occurrence | production of a sputter | spatter are provided.

第1実施形態に係る二次電池を示す断面図である。It is sectional drawing which shows the secondary battery which concerns on 1st Embodiment. 同二次電池が備える捲回電極体の構造を示す図である。It is a figure which shows the structure of the winding electrode body with which the secondary battery is equipped. 第1実施形態において抵抗溶接をしている様子を模式的に示す図であり,一対の電極により集電端子及び集電体積層部を挟み込んでいる様子を示す図である。It is a figure which shows a mode that resistance welding is carried out in 1st Embodiment, and is a figure which shows a mode that the collector terminal and the collector laminated part are pinched | interposed by a pair of electrodes. 積層部側電極の当接面を拡大した写真である。It is the photograph which expanded the contact surface of the lamination | stacking part side electrode. 集電体積層部の溶接痕を拡大した写真である。It is the photograph which expanded the welding trace of the collector laminated part. 第2実施形態に係る二次電池を示す断面図である。It is sectional drawing which shows the secondary battery which concerns on 2nd Embodiment. 図6に示すVII-VII断面図である。It is VII-VII sectional drawing shown in FIG. 同二次電池が備える集電端子の斜視図である。It is a perspective view of the current collection terminal with which the secondary battery is provided. 第2実施形態において抵抗溶接をしている様子を模式的に示す図であり,一対の電極により集電端子及び集電体積層部を挟み込んでいる様子を示す図である。It is a figure which shows a mode that resistance welding is performed in 2nd Embodiment, and is a figure which shows a mode that the current collection terminal and the current collector laminated part are inserted | pinched by a pair of electrodes. 図7に示すX-X断面図である。It is XX sectional drawing shown in FIG. 従来技術で用いる抵抗溶接機における積層部側電極の当接面を拡大した写真である。It is the photograph which expanded the contact surface of the lamination | stacking part side electrode in the resistance welding machine used by a prior art. 図11に示す当接面の積層部側電極を用いて抵抗溶接した際の集電体積層部の溶接痕を拡大した写真である。It is the photograph which expanded the welding trace of the collector lamination part at the time of resistance welding using the lamination | stacking part side electrode of the contact surface shown in FIG.

(第1実施形態)
以下,本発明の二次電池を具体化した実施形態について,添付図面を参照しつつ詳細に説明する。図1は,第1実施形態に係る二次電池100の断面図である。第1実施形態に係る二次電池100(以下単に「電池100」ともいう)は,図1に示すように,角型の電池ケース180と,電池ケース180の内部に収容された扁平形状の捲回電極体110とを備える角型のリチウムイオン二次電池である。この電池100は,ハイブリッドカーや電気自動車等の車両や,ハンマードリル等の電池使用機器に動力源として搭載されるものである。なお,本明細書において,特に断りのない限りは,上下左右は,図1を基準にいうものとし,また,図1中紙面手前側を前方,紙面奥側を後方というものとする。
(First embodiment)
Hereinafter, embodiments of the secondary battery of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a cross-sectional view of a secondary battery 100 according to the first embodiment. As shown in FIG. 1, the secondary battery 100 according to the first embodiment (hereinafter also simply referred to as “battery 100”) includes a rectangular battery case 180 and a flat battery case accommodated in the battery case 180. The prismatic lithium ion secondary battery includes a rotating electrode body 110. The battery 100 is mounted as a power source in a vehicle such as a hybrid car or an electric vehicle, or a battery-powered device such as a hammer drill. In this specification, unless otherwise specified, the top, bottom, left, and right refer to FIG. 1, and the front side of the page in FIG. 1 is the front and the back side of the page is the back.

電池ケース180は,アルミニウムからなり,電池ケース本体181及び封口蓋182を有する。このうち,封口蓋182は,矩形板状であり,電池ケース本体181の上部開口を閉塞して,この電池ケース本体181に溶接されている。この封口蓋182には,矩形板状の安全弁197が封着されている。   The battery case 180 is made of aluminum and has a battery case main body 181 and a sealing lid 182. Among these, the sealing lid 182 has a rectangular plate shape, closes the upper opening of the battery case body 181, and is welded to the battery case body 181. A rectangular plate-shaped safety valve 197 is sealed on the sealing lid 182.

電池ケース本体181は,上部を開口させた有底矩形箱形状をなしており,内部に扁平形状の捲回電極体110を収容している。より詳細には,電池ケース本体181は,封口蓋182に対向する矩形板状のケース底壁部181bと,ケース底壁部181bの周縁から上方へ立設する4つのケース側壁部181cとを備えている。   The battery case body 181 has a bottomed rectangular box shape with an open top, and houses a flat wound electrode body 110 therein. More specifically, the battery case main body 181 includes a rectangular plate-like case bottom wall portion 181b facing the sealing lid 182, and four case side wall portions 181c standing upward from the periphery of the case bottom wall portion 181b. ing.

捲回電極体110は,帯状の正極板130及び負極板120が帯状のセパレータ150を介して扁平形状に捲回されてなる捲回型の電極体である。この捲回電極体110は,捲回軸方向AXを水平方向に沿わせた状態で,電池ケース180内に収容されている。正極板130には,クランク状に屈曲した板状の正極集電端子191が超音波溶接により接合されている。また,負極板120には,クランク状に屈曲した板状の負極集電端子192が抵抗溶接により接合されている。負極集電端子の抵抗溶接については,後に詳述する。なお,正極集電端子191は,後述する正極集電体131と同様の材料(本形態では,アルミニウム)からなる。また,負極集電端子192は,後述する負極集電体121と同様の材料(本形態では,銅)からなる。   The wound electrode body 110 is a wound electrode body in which a belt-like positive electrode plate 130 and a negative electrode plate 120 are wound into a flat shape via a belt-like separator 150. The wound electrode body 110 is housed in the battery case 180 in a state where the wound axis direction AX is in the horizontal direction. A plate-like positive current collecting terminal 191 bent in a crank shape is joined to the positive electrode plate 130 by ultrasonic welding. Further, a plate-shaped negative electrode current collecting terminal 192 bent in a crank shape is joined to the negative electrode plate 120 by resistance welding. The resistance welding of the negative electrode current collector terminal will be described in detail later. Note that the positive electrode current collector terminal 191 is made of the same material (aluminum in this embodiment) as the positive electrode current collector 131 described later. The negative electrode current collector terminal 192 is made of the same material (copper in this embodiment) as the negative electrode current collector 121 described later.

正極集電端子191及び負極集電端子192のうち,それぞれの先端に位置する正極外部端子部191a及び負極外部端子部192aは,電池ケース180の封口蓋182を貫通して蓋表面182Aから突出している。正極外部端子部191aと封口蓋182との間,及び,負極外部端子部192aと封口蓋182との間には,それぞれ,電気絶縁性の樹脂からなる絶縁部材195が介在している。   Of the positive electrode current collecting terminal 191 and the negative electrode current collecting terminal 192, the positive electrode external terminal portion 191a and the negative electrode external terminal portion 192a located at the respective tips penetrate the sealing lid 182 of the battery case 180 and protrude from the lid surface 182A. Yes. Insulating members 195 made of an electrically insulating resin are interposed between the positive external terminal portion 191a and the sealing lid 182 and between the negative external terminal portion 192a and the sealing lid 182, respectively.

図2は,捲回電極体110の構造を示す図である。図2に示すように,正極板130は,長手方向DA(図2において上下方向)に沿って延びるアルミニウム箔からなる帯状の正極集電体(正極集電板)131と,この正極集電体131の表面の一部に塗工された正極活物質層132とを含むものである。正極活物質層132は,例えば,コバルト酸リチウム(LiCoO)からなる正極活物質133と,アセチレンブラックからなる導電材と,ポリフッ化ビニリデン(PVDF)からなる結着材とを含んでいる。 FIG. 2 is a view showing the structure of the wound electrode body 110. As shown in FIG. 2, the positive electrode plate 130 includes a strip-shaped positive electrode current collector (positive electrode current collector plate) 131 made of an aluminum foil extending in the longitudinal direction DA (vertical direction in FIG. 2), and the positive electrode current collector. And a positive electrode active material layer 132 coated on a part of the surface of 131. The positive electrode active material layer 132 includes, for example, a positive electrode active material 133 made of lithium cobalt oxide (LiCoO 2 ), a conductive material made of acetylene black, and a binder made of polyvinylidene fluoride (PVDF).

正極集電体131のうち,正極活物質層132が塗工されている部位を,正極活物質層形成部(正極合材層塗工部)131cという。一方,正極活物質層132が塗工されていない部位を,正極活物質層非形成部(正極合材層未塗工部)131bという。正極活物質層非形成部131bは,正極集電体131(正極板130)の幅方向DB(図2において左右方向)の端部(図2において左端部)に位置し,正極集電体131(正極板130)の長手方向DAに沿って帯状に延びている。   A portion of the positive electrode current collector 131 where the positive electrode active material layer 132 is coated is referred to as a positive electrode active material layer forming portion (positive electrode mixture layer coating portion) 131c. On the other hand, a portion where the positive electrode active material layer 132 is not coated is referred to as a positive electrode active material layer non-formed portion (positive electrode mixture layer uncoated portion) 131b. The positive electrode active material layer non-forming part 131b is located at the end (left end in FIG. 2) of the width direction DB (left and right in FIG. 2) of the positive electrode current collector 131 (positive electrode plate 130). It extends in a strip shape along the longitudinal direction DA of the (positive electrode plate 130).

また負極板120は,長手方向DAに沿って延びる銅箔からなる帯状の負極集電体(負極集電板)121と,この負極集電体121の表面の一部に塗工された負極活物質層122とを含むものである。負極活物質層122は,例えば,黒鉛(グラファイト)からなる負極活物質123と,SBRからなる結着剤と,CMCからなる増粘剤とを含んでいる。   The negative electrode plate 120 includes a strip-shaped negative electrode current collector (negative electrode current collector plate) 121 made of a copper foil extending along the longitudinal direction DA, and a negative electrode active material coated on a part of the surface of the negative electrode current collector 121. The material layer 122 is included. The negative electrode active material layer 122 includes, for example, a negative electrode active material 123 made of graphite (graphite), a binder made of SBR, and a thickener made of CMC.

負極集電体121のうち,負極活物質層122が塗工されている部位を,負極活物質層形成部(負極合材層塗工部)121cという。一方,負極集電体121のうち,負極活物質層122が塗工されていない部位を,負極活物質層非形成部(負極合材層未塗工部)121bという。負極活物質層非形成部121bは,負極集電体121(負極板120)の幅方向DBの端部(図2において右端部)に位置し,負極集電体121(負極板120)の長手方向DAに沿って帯状に延びている。   A portion of the negative electrode current collector 121 where the negative electrode active material layer 122 is coated is referred to as a negative electrode active material layer forming portion (negative electrode mixture layer coating portion) 121c. On the other hand, a portion of the negative electrode current collector 121 where the negative electrode active material layer 122 is not coated is referred to as a negative electrode active material layer non-formed portion (negative electrode mixture layer uncoated portion) 121b. The negative electrode active material layer non-forming portion 121b is located at the end portion (right end portion in FIG. 2) of the negative electrode current collector 121 (negative electrode plate 120) in the width direction DB, and the longitudinal direction of the negative electrode current collector 121 (negative electrode plate 120). It extends in a band shape along the direction DA.

またセパレータ150は,例えばポリエチレンからなり,正極板130と負極板120との間に介在して,これらを離間させるものである。なお,このセパレータ150には,図1に示すように,リチウムイオンを有する電解液160が含浸されている。電解液160は,例えば,エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とを,体積比でEC:EMC=3:7に調整した混合有機溶媒に,溶質として六フッ化リン酸リチウム(LiPF)を添加し,リチウムイオン濃度を1mol/Lとした非水電解液である。 The separator 150 is made of polyethylene, for example, and is interposed between the positive electrode plate 130 and the negative electrode plate 120 to separate them. The separator 150 is impregnated with an electrolytic solution 160 having lithium ions as shown in FIG. The electrolyte 160 is, for example, lithium hexafluorophosphate (LiPF) as a solute in a mixed organic solvent in which ethylene carbonate (EC) and ethyl methyl carbonate (EMC) are adjusted to EC: EMC = 3: 7 by volume ratio. 6 ) is a non-aqueous electrolyte with a lithium ion concentration of 1 mol / L.

このように構成された捲回電極体110は,図1に示すように,正極活物質層非形成部131bが負極板120からはみ出た状態で巻き重ねられてなる正極集電体積層部136を,捲回軸方向に沿う一端部(左端部)に有している。正極集電体積層部136は,正極集電端子191の下端部が超音波溶接により溶接されている部分である。図1における符号137は,超音波溶接の溶接痕を示している。この溶接により,正極集電端子191と捲回電極体110とが電気的かつ機械的に接続されている。   As shown in FIG. 1, the wound electrode body 110 configured as described above includes a positive electrode current collector laminated portion 136 formed by winding the positive electrode active material layer non-forming portion 131 b so as to protrude from the negative electrode plate 120. , At one end (left end) along the winding axis direction. The positive electrode current collector laminated portion 136 is a portion where the lower end portion of the positive electrode current collector terminal 191 is welded by ultrasonic welding. The code | symbol 137 in FIG. 1 has shown the welding trace of ultrasonic welding. By this welding, the positive electrode current collecting terminal 191 and the wound electrode body 110 are electrically and mechanically connected.

また,捲回電極体110は,負極活物質層非形成部121bが正極板130からはみ出た状態で巻き重ねられてなる負極集電体積層部126を,捲回軸方向に沿う他端部(右端部)に有している。負極集電体積層部126は,負極集電端子192の下端部が抵抗溶接により溶接されている部分である。図1における符号127は,抵抗溶接の溶接痕を示している。この溶接により,負極集電端子192と捲回電極体110とが電気的かつ機械的に接続されている。   Further, the wound electrode body 110 includes a negative electrode current collector laminated portion 126 formed by winding the negative electrode active material layer non-forming portion 121b in a state of protruding from the positive electrode plate 130, and the other end portion along the winding axis direction ( Right end). The negative electrode current collector laminated portion 126 is a portion where the lower end portion of the negative electrode current collector terminal 192 is welded by resistance welding. Reference numeral 127 in FIG. 1 indicates a welding mark of resistance welding. By this welding, the negative electrode current collector terminal 192 and the wound electrode body 110 are electrically and mechanically connected.

なお,捲回電極体110において,正極集電体積層部136と負極集電体積層部126との間に位置しているのは,発電部116である。発電部116は,正極活物質層形成部131c(正極板130の正極活物質層132が形成されている部分,図2参照)と,負極活物質層形成部121c(負極板120の負極活物質層122が形成されている部分,図2参照)と,セパレータ150とが巻き重ねられている部分である。   In the wound electrode body 110, the power generation unit 116 is located between the positive electrode current collector stacking portion 136 and the negative electrode current collector stacking portion 126. The power generation unit 116 includes a positive electrode active material layer forming unit 131c (a portion where the positive electrode active material layer 132 of the positive electrode plate 130 is formed, see FIG. 2) and a negative electrode active material layer forming unit 121c (a negative electrode active material of the negative electrode plate 120). The portion where the layer 122 is formed (see FIG. 2) and the portion where the separator 150 is wound.

次に,本形態の電池100の製造工程について簡単に説明する。まず,上述のように構成した捲回電極体110,電池ケース本体181,及び,集電端子191,192を組み付けた封口蓋182を用意する。   Next, the manufacturing process of the battery 100 of this embodiment will be briefly described. First, a sealing lid 182 assembled with the wound electrode body 110, the battery case body 181, and the current collecting terminals 191 and 192 configured as described above is prepared.

次に,図1に示すように,正極集電端子191を,捲回電極体110の正極集電体積層部136に超音波溶接により接合する。さらに,負極集電端子192を,捲回電極体110の負極集電体積層部126に抵抗溶接する。   Next, as shown in FIG. 1, the positive electrode current collector terminal 191 is joined to the positive electrode current collector laminated portion 136 of the wound electrode body 110 by ultrasonic welding. Further, the negative electrode current collector terminal 192 is resistance-welded to the negative electrode current collector laminated portion 126 of the wound electrode body 110.

続いて,電池ケース本体181の内部に捲回電極体110を収容すると共に,封口蓋182により電池ケース本体181を閉塞する。そして,封口蓋182と電池ケース本体181を,レーザー溶接により接合する。   Subsequently, the wound electrode body 110 is accommodated in the battery case body 181 and the battery case body 181 is closed by the sealing lid 182. Then, the sealing lid 182 and the battery case body 181 are joined by laser welding.

レーザー溶接により封口蓋182と電池ケース本体181を接合した後は,図示しない注液口を通じて,電解液を電池ケース本体181の内部に注入して,捲回電極体110に含侵させる。そして,注液口に注液栓を挿入することにより,注液口を封止する。その後,所定の処理を行うことで,本形態の電池100(図1参照)が完成する。   After the sealing lid 182 and the battery case body 181 are joined by laser welding, the electrolytic solution is injected into the battery case body 181 through a liquid injection port (not shown) and impregnated in the wound electrode body 110. Then, the liquid injection port is sealed by inserting a liquid injection stopper into the liquid injection port. Thereafter, the battery 100 of this embodiment (see FIG. 1) is completed by performing predetermined processing.

次に,負極集電端子192と負極集電体積層部126との抵抗溶接による接合について詳述する。抵抗溶接とは,図3に示すように,一対の電極(端子側電極20及び積層部側電極30)で,接合対象(負極集電端子192と負極集電体積層部126)を挟み込み,負極集電端子192及び負極集電体積層部126を加圧しながら(負極集電端子192及び負極集電体積層部126に押圧力を印加しながら),両電極20,30間を通電させてジュール熱を発生させることにより,接合対象を溶融させて接合する溶接方法である。なお,負極集電端子192の接合が抵抗溶接によりなされるのは,負極側に使用されている銅は,正極側に使用されているアルミニウムよりも熱伝導率が大きいため,負極集電端子192を良好に接合することができるからである。   Next, the joining of the negative electrode current collector terminal 192 and the negative electrode current collector laminated portion 126 by resistance welding will be described in detail. As shown in FIG. 3, resistance welding includes a pair of electrodes (terminal-side electrode 20 and laminated portion-side electrode 30) sandwiching the objects to be joined (negative electrode collector terminal 192 and negative electrode collector laminated portion 126), and negative electrode While pressurizing the current collector terminal 192 and the negative electrode current collector stacking portion 126 (while applying a pressing force to the negative electrode current collector terminal 192 and the negative electrode current collector stacking portion 126), the electrodes 20 and 30 are energized to generate joules. This is a welding method in which the objects to be joined are melted and joined by generating heat. Note that the negative electrode current collector terminal 192 is joined by resistance welding because copper used on the negative electrode side has a higher thermal conductivity than aluminum used on the positive electrode side. This is because it can be satisfactorily bonded.

ここで,本形態の電池100の製造に用いる抵抗溶接機は,積層部側電極30の負極集電体積層部126に対する当接面31(図3参照)が,最大粗さ(Rmax)15μm〜25μm程度の表面粗度をもつ凹凸面となっている。最大粗さ(Rmax)とは,JIS規格の最大粗さのことである。従来から用いられている抵抗溶接機の積層部側電極の当接面の表面粗度は,最大粗さ(Rmax)1μm〜10μm程度であった。従って,従来のものと比べると,本形態の電池100の製造に用いる抵抗溶接機の積層部側電極30の当接面31は,粗いといえる。   Here, in the resistance welding machine used for manufacturing the battery 100 of the present embodiment, the contact surface 31 (see FIG. 3) of the laminated portion side electrode 30 with respect to the negative electrode current collector laminated portion 126 has a maximum roughness (Rmax) of 15 μm to 15 μm. The surface is uneven with a surface roughness of about 25 μm. The maximum roughness (Rmax) is the maximum roughness of the JIS standard. The surface roughness of the contact surface of the laminated portion side electrode of the resistance welding machine that has been conventionally used was about 1 μm to 10 μm in maximum roughness (Rmax). Therefore, it can be said that the contact surface 31 of the laminated portion side electrode 30 of the resistance welding machine used for manufacturing the battery 100 of this embodiment is rougher than the conventional one.

図4は,本形態の電池100の製造に用いる抵抗溶接機の積層部側電極30の当接面31を,顕微鏡で見た写真である。図11は,従来の抵抗溶接機の集電側電極の当接面50を,顕微鏡で見た写真である。図4および図11から,本形態の電池100の溶接に用いる抵抗溶接機の積層部側電極30の当接面31が,従来の抵抗溶接機の集電側電極の当接面50よりも,凹凸の程度が激しく,粗いことがわかる。この当接面31の凹凸は,放電加工により施したものである。本形態の当接面31の凹凸は,図4に示すように,同心円状に設けられている。詳細には,当接面31の凹凸は,円形の当接面31の中心から径方向外側に向かって0.2mmピッチで複数の同心円が形成されている形状に設けられている。   FIG. 4 is a photograph of the contact surface 31 of the laminated portion side electrode 30 of the resistance welder used for manufacturing the battery 100 of the present embodiment as viewed with a microscope. FIG. 11 is a photograph of the contact surface 50 of the current collecting side electrode of a conventional resistance welder viewed with a microscope. 4 and 11, the contact surface 31 of the laminated portion side electrode 30 of the resistance welder used for welding the battery 100 of this embodiment is more than the contact surface 50 of the current collector side electrode of the conventional resistance welder. It can be seen that the unevenness is severe and rough. The unevenness of the contact surface 31 is formed by electric discharge machining. As shown in FIG. 4, the unevenness of the contact surface 31 of this embodiment is concentrically provided. Specifically, the unevenness of the contact surface 31 is provided in a shape in which a plurality of concentric circles are formed at a pitch of 0.2 mm from the center of the circular contact surface 31 toward the radially outer side.

このような当接面31をもつ積層部側電極30を押し当てて抵抗溶接を行うことにより,負極集電体積層部126には,図1に示す溶接痕127が形成される。図5は,この溶接痕127を顕微鏡で見た写真である。この溶接痕127は,その表面粗度が最大粗さ(Rmax)9μm〜25μmの規則的な凹凸形状である。溶接痕127が最大粗さ(Rmax)9μm〜25μmの規則的な凹凸形状となるのは,抵抗溶接時に,従来技術よりも粗い当接面31をもつ積層部側電極30を負極集電体積層部126の溶接箇所に押し付けると,従来よりも深く食い込むためである。そのため,負極集電体積層部126の溶接箇所に凹凸が移り込むのである。   A welding mark 127 shown in FIG. 1 is formed in the negative electrode current collector laminated portion 126 by pressing the laminated portion side electrode 30 having the contact surface 31 and performing resistance welding. FIG. 5 is a photograph of this weld mark 127 viewed with a microscope. The weld mark 127 has a regular uneven shape with a surface roughness of 9 μm to 25 μm. The reason why the weld mark 127 has a regular uneven shape with a maximum roughness (Rmax) of 9 μm to 25 μm is that the laminated portion side electrode 30 having a contact surface 31 rougher than that of the conventional technique is laminated to the negative electrode current collector during resistance welding. This is because, when pressed against the welded portion of the portion 126, the bite is deeper than before. Therefore, irregularities are transferred to the welded portion of the negative electrode current collector laminated portion 126.

これに対して,従来の抵抗溶接機により抵抗溶接を行った場合には,集電体積層部への凹凸の移り込みの程度は小さい。図12は,従来の抵抗溶接機により抵抗溶接を行うことにより,集電体積層部に形成された溶接痕を顕微鏡で見た写真である。図12に示す溶接痕60の表面粗度は,最大粗さ(Rmax)4μm〜8μmであり,本形態の溶接痕127よりも粗くない。これは,従来の抵抗溶接機における積層部側電極の当接面50(図11)の表面粗度が本形態のように粗くないため,積層部側電極を集電体積層部へ押し付けても,本形態のようには深く食い込まないためである。   On the other hand, when resistance welding is performed by a conventional resistance welding machine, the degree of unevenness transferred to the current collector laminate is small. FIG. 12 is a photograph of a welding trace formed on the current collector laminated portion as seen with a microscope by performing resistance welding with a conventional resistance welder. The surface roughness of the welding mark 60 shown in FIG. 12 is a maximum roughness (Rmax) of 4 μm to 8 μm, which is not rougher than the welding mark 127 of the present embodiment. This is because the surface roughness of the contact surface 50 (FIG. 11) of the laminated portion side electrode in the conventional resistance welding machine is not rough as in the present embodiment, so even if the laminated portion side electrode is pressed against the current collector laminated portion. This is because it does not penetrate deeply as in this embodiment.

次に,本形態の電池100の効果を確認するために行った試験の結果について,下記表1及び表2に基づいて説明する。   Next, the results of tests performed to confirm the effect of the battery 100 of the present embodiment will be described based on Tables 1 and 2 below.

上記表1の実施例1〜12,表2の比較例1〜10は,次のように構成した電池である。
(実施例1)
正極板130として,厚さ15μm程度のアルミニウム箔又はアルミニウム合金箔の正極集電体131に正極活物質層132を形成したものを用意する。
Examples 1 to 12 in Table 1 and Comparative Examples 1 to 10 in Table 2 are batteries configured as follows.
Example 1
The positive electrode plate 130 is prepared by forming a positive electrode active material layer 132 on a positive electrode current collector 131 of an aluminum foil or aluminum alloy foil having a thickness of about 15 μm.

負極板120として,厚さ10μm程度の電界銅箔の負極集電体121に負極活物質層122を形成したものを用意する。   The negative electrode plate 120 is prepared by forming a negative electrode active material layer 122 on a negative electrode current collector 121 of an electric field copper foil having a thickness of about 10 μm.

用意した正極板130と負極板120とを多孔質合成樹脂からなるセパレータ150を介在させて扁平形状に捲回して,電池容量3.6Ahの捲回電極体110を形成する。このとき,捲回電極体110の捲回軸方向に沿う一端部には,正極集電体積層部136が形成され,他端部には,負極集電体積層部126が形成される。   The prepared positive electrode plate 130 and negative electrode plate 120 are wound into a flat shape with a separator 150 made of a porous synthetic resin interposed therebetween to form a wound electrode body 110 having a battery capacity of 3.6 Ah. At this time, the positive electrode current collector laminated portion 136 is formed at one end along the winding axis direction of the wound electrode body 110, and the negative electrode current collector laminated portion 126 is formed at the other end.

さらに,厚さ1.5mm程度のアルミニウムからなる正極集電端子191を用意し,捲回電極体110に沿う形状に曲げ加工するとともに,捲回電極体110の正極集電体積層部136への溶接部分が厚み1mm程度となるようにプレス加工する。   Furthermore, a positive electrode current collector terminal 191 made of aluminum having a thickness of about 1.5 mm is prepared, bent into a shape along the wound electrode body 110, and the wound electrode body 110 is connected to the positive electrode current collector stack portion 136. Press work so that the welded portion has a thickness of about 1 mm.

厚さ1.0mm程度の銅からなる負極集電端子192を用意し,捲回電極体110に沿う形状に曲げ加工するとともに,捲回電極体110の負極集電体積層部126への溶接部分が厚み0.6mm程度となるようにプレス加工する。   A negative electrode current collector terminal 192 made of copper having a thickness of about 1.0 mm is prepared, bent into a shape along the wound electrode body 110, and a welded portion of the wound electrode body 110 to the negative electrode current collector laminated portion 126 Is pressed to a thickness of about 0.6 mm.

正極集電端子191及び負極集電端子192を,アルミニウム製の封口蓋182に組み付ける。そして,負極集電端子192を負極集電体積層部126に抵抗溶接により接合するとともに,正極集電端子191を正極集電体積層部136に超音波溶接により接合する。   The positive electrode current collector terminal 191 and the negative electrode current collector terminal 192 are assembled to an aluminum sealing lid 182. Then, the negative electrode current collector terminal 192 is joined to the negative electrode current collector laminated portion 126 by resistance welding, and the positive electrode current collector terminal 191 is joined to the positive electrode current collector laminated portion 136 by ultrasonic welding.

負極側の抵抗溶接では,抵抗溶接機として,株式会社ナグシステム製のDDCウエルダーNDWS5500−4Mを使用した。この抵抗溶接機の抵抗溶接用電極(積層部側電極30)は,タングステン製で,先端面(当接面31)の直径が3mm程度である。   In resistance welding on the negative electrode side, a DDC welder NDWS5500-4M manufactured by Nag Systems Co., Ltd. was used as a resistance welding machine. The resistance welding electrode (lamination part side electrode 30) of this resistance welder is made of tungsten, and the diameter of the tip surface (contact surface 31) is about 3 mm.

ここで,抵抗溶接用電極(積層部側電極30)の先端面(当接面31)に,放電加工により凹凸を施す。凹凸は,同心円状に設ける。詳細には,凹凸は,先端面(当接面31)の径方向外側に向かって0.2mmピッチで複数の同心円が形成されている形状に設ける(図4参照)。凹凸の程度は,最大粗さRmaxで15μm程度である。この抵抗溶接機を用いて,設定電圧を10V,溶接時間を6時間,一対の電極により負極集電端子192及び負極集電体積層部126へ加える押圧力を3.0kNとして,抵抗溶接を行った。   Here, unevenness is given to the front end surface (contact surface 31) of the resistance welding electrode (laminated portion side electrode 30) by electric discharge machining. Concavities and convexities are provided concentrically. Specifically, the unevenness is provided in a shape in which a plurality of concentric circles are formed at a pitch of 0.2 mm toward the radially outer side of the tip surface (contact surface 31) (see FIG. 4). The degree of unevenness is about 15 μm in terms of the maximum roughness Rmax. Using this resistance welder, resistance welding was performed with a set voltage of 10 V, a welding time of 6 hours, and a pressing force applied to the negative electrode current collector terminal 192 and the negative electrode current collector laminated portion 126 by a pair of electrodes was 3.0 kN. It was.

正極側の超音波溶接では,超音波溶接機として,株式会社日本エマソン製の2000Xdt20:2.5パワーサプライ(2500W)を使用した。この超音波溶接機を用いて,エネルギーを500J,トリガー加圧力を800N,振幅を50%として,超音波溶接を行った。   In ultrasonic welding on the positive electrode side, 2000Xdt20: 2.5 power supply (2500 W) manufactured by Nippon Emerson Co., Ltd. was used as an ultrasonic welding machine. Using this ultrasonic welder, ultrasonic welding was performed with an energy of 500 J, a trigger pressure of 800 N, and an amplitude of 50%.

その後,電池ケース本体181に捲回電極体110を収容するとともに,封口蓋182を電池ケース本体181に対してレーザー溶接により接合した。そして,封口蓋182に形成されている注液孔から電解液160を注入して密封し,電池100を完成させた。   Thereafter, the wound electrode body 110 was accommodated in the battery case body 181 and the sealing lid 182 was joined to the battery case body 181 by laser welding. And the electrolyte solution 160 was inject | poured and sealed from the injection hole formed in the sealing lid 182, and the battery 100 was completed.

(実施例2)
実施例2は,抵抗溶接用電極(積層部側電極30)の先端面(当接面31)に対して放電加工により施した凹凸が,0.2mmピッチの格子形状である点以外は,実施例1と同じである。なお,実施例2の凹凸の程度は,実施例1と同様,最大粗さRmaxで15μm程度である。
(Example 2)
Example 2 was carried out except that the unevenness formed by electric discharge machining on the tip surface (contact surface 31) of the resistance welding electrode (laminated portion side electrode 30) was a grid shape with a pitch of 0.2 mm. Same as Example 1. The degree of unevenness in Example 2 is about 15 μm in maximum roughness Rmax, as in Example 1.

(実施例3)
実施例3は,抵抗溶接用電極(積層部側電極30)の先端面(当接面31)に対して放電加工により施した凹凸が,0.2mmピッチのストライプ形状である点以外は,実施例1と同じである。なお,実施例3の凹凸の程度は,実施例1と同様,最大粗さRmaxで15μm程度である。
Example 3
Example 3 was carried out except that the unevenness formed by electric discharge machining on the tip surface (contact surface 31) of the resistance welding electrode (laminated portion side electrode 30) was a stripe shape with a pitch of 0.2 mm. Same as Example 1. The degree of unevenness in Example 3 is about 15 μm in the maximum roughness Rmax as in Example 1.

(実施例4)
実施例4は,抵抗溶接用電極(積層部側電極30)の先端面(当接面31)に対して放電加工により施した凹凸の程度が,最大粗さRmaxで20μm程度である点以外は,実施例1と同じである。なお,実施例4の凹凸は,実施例1と同様,0.2mmピッチの同心円状である。
Example 4
In Example 4, the degree of unevenness formed by electric discharge machining on the tip surface (contact surface 31) of the resistance welding electrode (laminated portion side electrode 30) is about 20 μm in terms of the maximum roughness Rmax. , The same as in the first embodiment. In addition, the unevenness | corrugation of Example 4 is the concentric form of a 0.2 mm pitch similarly to Example 1. FIG.

(実施例5)
実施例5は,抵抗溶接用電極(積層部側電極30)の先端面(当接面31)に対して放電加工により施した凹凸の程度が,最大粗さRmaxで25μm程度である点以外は,実施例1と同じである。なお,実施例5の凹凸は,実施例1と同様,0.2mmピッチの同心円状である。
(Example 5)
In Example 5, the degree of unevenness formed by electric discharge machining on the tip surface (contact surface 31) of the resistance welding electrode (laminated portion side electrode 30) is about 25 μm in maximum roughness Rmax. , The same as in the first embodiment. In addition, the unevenness | corrugation of Example 5 is the concentric form of a 0.2 mm pitch similarly to Example 1. FIG.

(実施例6)
実施例6は,抵抗溶接用電極(積層部側電極30)の先端面(当接面31)に対して放電加工により施した凹凸が,0.15mmピッチの格子形状である点以外は,実施例1と同じである。なお,実施例6の凹凸の程度は,実施例1と同様,最大粗さRmaxで15μm程度である。
(Example 6)
Example 6 was carried out except that the unevenness formed by electric discharge machining on the tip surface (contact surface 31) of the resistance welding electrode (laminated portion side electrode 30) was a grid shape with a pitch of 0.15 mm. Same as Example 1. The degree of unevenness in Example 6 is about 15 μm in the maximum roughness Rmax as in Example 1.

(実施例7)
実施例7は,抵抗溶接時に負極集電端子191及び負極集電体積層部126に加える荷重(押圧力)を,1.0kNとした点以外は,実施例1と同じである。
(Example 7)
Example 7 is the same as Example 1 except that the load (pressing force) applied to the negative electrode current collector terminal 191 and the negative electrode current collector laminated portion 126 during resistance welding is 1.0 kN.

(実施例8)
実施例8は,抵抗溶接時に負極集電端子191及び負極集電体積層部126に加える荷重(押圧力)を,1.0kNとした点以外は,実施例2と同じである。
(Example 8)
Example 8 is the same as Example 2 except that the load (pressing force) applied to the negative electrode current collector terminal 191 and the negative electrode current collector laminate 126 during resistance welding is 1.0 kN.

(実施例9)
実施例9は,抵抗溶接時に負極集電端子191及び負極集電体積層部126に加える荷重(押圧力)を,1.0kNとした点以外は,実施例3と同じである。
Example 9
Example 9 is the same as Example 3 except that the load (pressing force) applied to the negative electrode current collector terminal 191 and the negative electrode current collector laminate 126 during resistance welding is 1.0 kN.

(実施例10)
実施例10は,抵抗溶接時に負極集電端子191及び負極集電体積層部126に加える荷重(押圧力)を,1.0kNとした点以外は,実施例4と同じである。
(Example 10)
Example 10 is the same as Example 4 except that the load (pressing force) applied to the negative electrode current collector terminal 191 and the negative electrode current collector laminate 126 during resistance welding is 1.0 kN.

(実施例11)
実施例11は,抵抗溶接時に負極集電端子191及び負極集電体積層部126に加える荷重(押圧力)を,1.0kNとした点以外は,実施例5と同じである。
(Example 11)
Example 11 is the same as Example 5 except that the load (pressing force) applied to the negative electrode current collector terminal 191 and the negative electrode current collector laminate 126 during resistance welding is 1.0 kN.

(実施例12)
実施例12は,抵抗溶接時に負極集電端子191及び負極集電体積層部126に加える荷重(押圧力)を,1.0kNとした点以外は,実施例6と同じである。
(Example 12)
Example 12 is the same as Example 6 except that the load (pressing force) applied to the negative electrode current collector terminal 191 and the negative electrode current collector laminated portion 126 during resistance welding is 1.0 kN.

(比較例1)
比較例1は,抵抗溶接用電極(積層部側電極30)の先端面(当接面31)を,研磨紙で研磨することにより,その凹凸の程度を最大粗さRmaxで1μm程度とした点以外は,実施例1と同じである。
(Comparative Example 1)
In Comparative Example 1, the tip surface (contact surface 31) of the resistance welding electrode (laminated portion side electrode 30) was polished with abrasive paper, so that the degree of unevenness was about 1 μm with the maximum roughness Rmax. Except for this, this example is the same as Example 1.

(比較例2)
比較例2は,抵抗溶接用電極(積層部側電極30)の先端面(当接面31)を,研磨紙で研磨することにより,その凹凸の程度を最大粗さRmaxで4μm程度とした点以外は,実施例1と同じである。
(Comparative Example 2)
In Comparative Example 2, the tip surface (contact surface 31) of the resistance welding electrode (lamination portion side electrode 30) was polished with abrasive paper, so that the degree of unevenness was about 4 μm with a maximum roughness Rmax. Other than the above, the second embodiment is the same as the first embodiment.

(比較例3)
比較例3は,抵抗溶接用電極(積層部側電極30)の先端面(当接面31)を,研磨紙で研磨することにより,その凹凸の程度を最大粗さRmaxで10μm程度とした点以外は,実施例1と同じである。
(Comparative Example 3)
In Comparative Example 3, the tip surface (contact surface 31) of the resistance welding electrode (laminated portion side electrode 30) was polished with abrasive paper, so that the degree of unevenness was about 10 μm with a maximum roughness Rmax. Except for this, this example is the same as Example 1.

(比較例4)
比較例4は,抵抗溶接用電極(積層部側電極30)の先端面(当接面31)に対して放電加工により施した凹凸の程度が,最大粗さRmaxで13μm程度である点以外は,実施例1と同じである。なお,比較例4の凹凸は,実施例1と同様,0.2mmピッチの同心円状である。
(Comparative Example 4)
In Comparative Example 4, the degree of unevenness formed by electric discharge machining on the tip surface (contact surface 31) of the resistance welding electrode (laminated portion side electrode 30) is about 13 μm in terms of the maximum roughness Rmax. , The same as in the first embodiment. In addition, the unevenness | corrugation of the comparative example 4 is the concentric form of a 0.2 mm pitch similarly to Example 1. FIG.

(比較例5)
比較例5は,抵抗溶接用電極(積層部側電極30)の先端面(当接面31)に対して放電加工により施した凹凸の程度が,最大粗さRmaxで30μm程度である点以外は,実施例1と同じである。なお,比較例5の凹凸は,実施例1と同様,0.2mmピッチの同心円状である。
(Comparative Example 5)
In Comparative Example 5, the degree of unevenness formed by electric discharge machining on the tip surface (contact surface 31) of the electrode for resistance welding (laminated portion side electrode 30) is about 30 μm at the maximum roughness Rmax. , The same as in the first embodiment. In addition, the unevenness | corrugation of the comparative example 5 is the concentric form of a 0.2 mm pitch similarly to Example 1. FIG.

(比較例6)
比較例6では,抵抗溶接用電極(積層部側電極30)の先端面(当接面31)に,サンドブラスト加工により凹凸を施した。施した凹凸の程度は,最大粗さRmaxで25μm程度である。それ以外は,実施例1と同じである。なお,サンドブラスト加工により施された凹凸は,放電加工により施された凹凸と異なり,規則的な形状ではない。
(Comparative Example 6)
In Comparative Example 6, the tip surface (contact surface 31) of the resistance welding electrode (laminated portion side electrode 30) was roughened by sandblasting. The degree of unevenness applied is about 25 μm with a maximum roughness Rmax. The rest is the same as the first embodiment. In addition, the unevenness | corrugation given by sandblasting is not a regular shape unlike the unevenness | corrugation given by electric discharge machining.

(比較例7)
比較例7は,抵抗溶接時に負極集電端子191及び負極集電体積層部126に加える荷重(押圧力)を,1.0kNとした点以外は,比較例1と同じである。
(Comparative Example 7)
Comparative Example 7 is the same as Comparative Example 1 except that the load (pressing force) applied to the negative electrode current collector terminal 191 and the negative electrode current collector laminated portion 126 during resistance welding is 1.0 kN.

(比較例8)
比較例8は,抵抗溶接時に負極集電端子191及び負極集電体積層部126に加える荷重(押圧力)を,1.0kNとした点以外は,比較例2と同じである。
(Comparative Example 8)
Comparative Example 8 is the same as Comparative Example 2 except that the load (pressing force) applied to the negative electrode current collector terminal 191 and the negative electrode current collector laminated portion 126 during resistance welding is 1.0 kN.

(比較例9)
比較例9は,抵抗溶接時に負極集電端子191及び負極集電体積層部126に加える荷重(押圧力)を,1.0kNとした点以外は,比較例3と同じである。
(Comparative Example 9)
Comparative Example 9 is the same as Comparative Example 3 except that the load (pressing force) applied to the negative electrode current collector terminal 191 and the negative electrode current collector laminated portion 126 during resistance welding is 1.0 kN.

(比較例10)
比較例10は,抵抗溶接時に負極集電端子191及び負極集電体積層部126に加える荷重(押圧力)を,1.0kNとした点以外は,比較例4と同じである。
(Comparative Example 10)
Comparative Example 10 is the same as Comparative Example 4 except that the load (pressing force) applied to the negative electrode current collector terminal 191 and the negative electrode current collector laminated portion 126 during resistance welding is 1.0 kN.

上記表1及び表2について,積層部側電極30の当接面31及び負極集電体積層部126の溶接痕127の最大粗さ(Rmax)の測定は,3Dレーザー顕微鏡を用いて行った。スパッタ発生数とは,溶接箇所外へ飛散した50μm〜200μmのスパッタの数であり,パーティクルカウンター(微粒子測定器)を用いて測定した。溶接強度は,引張試験機に捲回電極体110を固定して,負極集電端子192の上端を掴んで引っ張り上げ,ピーク強度を測定したものである。電極寿命の欄には,溶接回数が100回を迎える毎に抵抗溶接用電極の溶接対象物への当接面にひび割れ等の変化がないかを観察し,変化があったときの回数を記している。   Regarding Table 1 and Table 2, the maximum roughness (Rmax) of the contact surface 31 of the laminated portion side electrode 30 and the weld mark 127 of the negative electrode current collector laminated portion 126 was measured using a 3D laser microscope. The number of spatters generated is the number of sputters of 50 μm to 200 μm scattered outside the welded part, and was measured using a particle counter (fine particle measuring device). The welding strength is obtained by fixing the wound electrode body 110 to a tensile tester, grasping the upper end of the negative electrode current collecting terminal 192 and pulling it up, and measuring the peak strength. In the electrode life column, every time the number of welding reaches 100 times, the contact surface of the resistance welding electrode to the object to be welded is observed for changes such as cracks, and the number of times when there is a change is noted. ing.

初期充放電後の電池電圧不良は,次のようにして発見された電圧不良の電池の個数である。初期充放電として,まず1/5Cの充電レートで2時間,定電流充電をした。次に,10分休止した後,1/5Cの放電レートで電池電圧3.0Vとなるまで定電流放電をした。さらに,10分休止した後,1/3Cの充電レートで電池電圧4.1Vとなるまで定電流充電をし,その後,定電圧で充電電流が2/100Cとなるまで充電をした。続いて,10分休止した後,1/3Cの放電レートで電池電圧3.0Vとなるまで定電流放電をし,その後,定電圧で放電電流が2/100Cとなるまで放電をした。さらに,10分休止した後,1/5Cの充電レートで電池電圧が4.1Vとなるまで定電流充電をした。このような初期充放電を行った電池を,45℃の環境下に24時間置き,24時間経過時の電池電圧(V1とする)を測定した。その後,25℃の環境下に4日間置き,4日間経過時の電池電圧(V2とする)を測定した。そして,V1−V2の値が,予め定められた基準値の範囲内に入っているか否かを判定し,基準値の範囲から外れている場合は,電圧不良の電池とした。V1−V2の値が基準値の範囲から外れてしまうのは,短絡による電圧降下が原因である。   The battery voltage failure after the initial charge / discharge is the number of batteries with a voltage failure found as follows. As the initial charge / discharge, first, constant current charge was performed for 2 hours at a charge rate of 1 / 5C. Next, after resting for 10 minutes, constant current discharge was performed at a discharge rate of 1/5 C until the battery voltage reached 3.0V. Furthermore, after 10 minutes of rest, the battery was charged at a constant current until the battery voltage reached 4.1 V at a charge rate of 1/3 C, and then charged at a constant voltage until the charging current reached 2/100 C. Subsequently, after a pause of 10 minutes, constant current discharge was performed at a discharge rate of 1/3 C until the battery voltage reached 3.0 V, and then discharge was performed at a constant voltage until the discharge current reached 2/100 C. Furthermore, after resting for 10 minutes, constant current charging was performed until the battery voltage reached 4.1 V at a charging rate of 1 / 5C. The battery that had been subjected to such initial charge / discharge was placed in an environment of 45 ° C. for 24 hours, and the battery voltage (referred to as V1) when 24 hours passed was measured. Then, it was left in an environment of 25 ° C. for 4 days, and the battery voltage (referred to as V2) when 4 days passed was measured. Then, it is determined whether or not the value of V1-V2 is within a predetermined reference value range. If the value is outside the reference value range, a battery with a voltage failure is obtained. The reason why the value of V1-V2 deviates from the range of the reference value is due to a voltage drop due to a short circuit.

上記表1及び表2に示す実験結果から次のことがわかる。
実施例1〜12では,スパッタが発生することがなく,比較例1〜4及び7〜10よりも,溶接強度が高く,抵抗溶接機の電極の寿命が長かった。実施例1〜12において,負極集電体積層部126の溶接痕127を観察したところ,いずれの実施例においても,積層部側電極30の当接面31の凹凸が転写されていた。また,負極集電体積層部126の溶接箇所の厚さは,溶接前と比べて薄くなっていた。このことから,抵抗溶接時には,最大粗さ15〜25μmの当接面31が押し付けられることにより,負極集電体積層部126が引き延ばされて,溶接面積が拡大していることがわかる。また,引き延ばされた分,負極集電体積層部126の各層が密着するため,各層の間の接触抵抗は低くなる。そのため,導電性が向上し,強度の高い溶接が可能となったと考えられる。
The following can be understood from the experimental results shown in Tables 1 and 2 above.
In Examples 1-12, spatter did not generate | occur | produce, welding strength was higher than Comparative Examples 1-4 and 7-10, and the lifetime of the electrode of the resistance welder was long. In Examples 1-12, when the welding trace 127 of the negative electrode collector laminated part 126 was observed, the unevenness | corrugation of the contact surface 31 of the laminated part side electrode 30 was transcribe | transferred in any Example. Further, the thickness of the welded portion of the negative electrode current collector laminated portion 126 was thinner than before welding. From this, it can be seen that, during resistance welding, the contact surface 31 having a maximum roughness of 15 to 25 μm is pressed, whereby the negative electrode current collector laminated portion 126 is stretched and the welding area is expanded. Further, since the layers of the negative electrode current collector stack 126 are in close contact with each other, the contact resistance between the layers is lowered. Therefore, it is considered that the conductivity is improved and welding with high strength is possible.

一方,比較例1〜4及び7〜10において,負極集電体積層部126の溶接痕127を観察したところ,積層部側電極30の当接面31の凹凸は転写されておらず,溶接箇所の厚さは各実施例よりも厚く,溶接面積は各実施例よりも小さかった。また溶接箇所を引き剥がして観察したところ,特に,比較例1及び2では,負極集電体積層部126の積層方向の中央部は,溶接されていなかった。また,比較例3及び4では,負極集電端子192と負極集電体積層部126の溶接が弱かった。また,比較例7〜10では,負極集電体積層部126の各層同士の溶接が弱かった。このことから,比較例1〜4及び7〜10では,抵抗溶接時に,最大粗さ13μm以下の当接面31を押し付けても,負極集電体積層部126があまり引き延ばされず,溶接面積が拡大しないことがわかる。そのため,負極集電体積層部126の各層の間の接触抵抗が高く,導電性が実施例よりも悪いと考えられる。その結果,抵抗溶接時に流れる電流の電流密度が低く,十分に発熱しないため,溶接強度が低かったと考えられる。   On the other hand, in Comparative Examples 1-4 and 7-10, when the welding trace 127 of the negative electrode collector laminated part 126 was observed, the unevenness | corrugation of the contact surface 31 of the laminated part side electrode 30 was not transcribe | transferred, but a welding location The thickness of each was thicker than in each example, and the weld area was smaller than in each example. Further, when the welded part was peeled off and observed, in particular, in Comparative Examples 1 and 2, the central part in the stacking direction of the negative electrode current collector stacking part 126 was not welded. In Comparative Examples 3 and 4, the welding of the negative electrode current collector terminal 192 and the negative electrode current collector laminated portion 126 was weak. Further, in Comparative Examples 7 to 10, the welding of each layer of the negative electrode current collector laminated portion 126 was weak. Therefore, in Comparative Examples 1 to 4 and 7 to 10, even when the contact surface 31 having a maximum roughness of 13 μm or less is pressed during resistance welding, the negative electrode current collector laminated portion 126 is not stretched so much and the welding area is increased. It turns out that it does not expand. Therefore, it is considered that the contact resistance between the layers of the negative electrode current collector laminated portion 126 is high and the conductivity is worse than that of the example. As a result, the current density of the current that flows during resistance welding is low and does not generate enough heat.

また,比較例5及び6では,溶接強度は十分に得られたが,抵抗溶接用の電極の表面にスパッタの付着が観察された。比較例5では,積層部側電極30の当接面31の最大粗さが30μmと大きいため,負極集電体積層部126が延伸するにあたって当接面31の凹凸に密着して延伸せず,積層部側電極30の当接面31と負極集電体積層部126との間に隙間が形成されてしまったと考えられる。隙間が形成されてしまうと,積層部側電極30の当接面31と負極集電体積層部126との接触面積が減少してしまうため,局所的に大きな電流が流れて,スパッタが発生したと考えられる。   In Comparative Examples 5 and 6, sufficient welding strength was obtained, but spatter adhesion was observed on the surface of the electrode for resistance welding. In Comparative Example 5, since the maximum roughness of the contact surface 31 of the laminated portion side electrode 30 is as large as 30 μm, the negative electrode current collector laminated portion 126 does not stretch in close contact with the unevenness of the contact surface 31, It is considered that a gap was formed between the contact surface 31 of the laminated portion side electrode 30 and the negative electrode current collector laminated portion 126. If the gap is formed, the contact area between the contact surface 31 of the laminated portion side electrode 30 and the negative electrode current collector laminated portion 126 is reduced, so that a large current flows locally and spatter is generated. it is conceivable that.

また,比較例6では,積層部側電極30の当接面31に形成された凹凸が,サンドブラスト加工により形成された不規則な凹凸であるため,抵抗溶接時に流れる電流が分散されてしまったと考えられる。すなわち,抵抗溶接時に電流が流れやすい箇所と流れにくい箇所ができてしまったと考えられる。そのため,電流が流れやすい箇所が溶融して,スパッタが発生したと考えられる。   Further, in Comparative Example 6, since the irregularities formed on the contact surface 31 of the laminated portion side electrode 30 are irregular irregularities formed by sandblasting, it is considered that the current flowing during resistance welding has been dispersed. It is done. In other words, it is thought that there were places where currents were easy to flow and where currents were difficult to flow during resistance welding. For this reason, it is thought that the part where current easily flows melted and spatter occurred.

さらに,比較例1〜10では,抵抗溶接機の電極の寿命が短い。これは,いずれの比較例も各実施例に比べて電流が効率よく流れないため,抵抗溶接機の電極が発熱して,電極表面の酸化が加速したことが原因であると考えられる。加えて比較例5及び6については,抵抗溶接機の電極へスパッタが付着し,その付着部分を起点とするクラックが発生しやすくなっていることが原因であると考えられる。   Furthermore, in Comparative Examples 1-10, the lifetime of the electrode of a resistance welder is short. This is probably because the current in each of the comparative examples does not flow more efficiently than in each of the examples, and the electrode of the resistance welder generates heat and the oxidation of the electrode surface is accelerated. In addition, it is considered that in Comparative Examples 5 and 6, spatter adheres to the electrodes of the resistance welder, and cracks starting from the adhered portions are likely to occur.

さらにまた,比較例5及び6では,初期充放電後の電圧不良も発生している。これは,発生したスパッタが捲回電極体110へ混入して,短絡をおこし,電圧低下を招いたことが原因だと考えられる。   Furthermore, in Comparative Examples 5 and 6, voltage failure after initial charge / discharge also occurs. This is considered to be because the generated spatter mixed into the wound electrode body 110, causing a short circuit and causing a voltage drop.

以上の実験結果から,抵抗溶接機の積層部側電極30の当接面31を,最大粗さ15μm〜25μm程度の規則的な凹凸形状を有する凹凸面にすれば,良好な溶接を行うことができることがわかった。   From the above experimental results, good welding can be performed if the contact surface 31 of the laminated portion side electrode 30 of the resistance welder is an uneven surface having a regular uneven shape with a maximum roughness of about 15 μm to 25 μm. I knew it was possible.

以上説明したように,本形態に係る電池100の製造方法は,箔状の正極集電体131の表面に正極活物質層132が形成された正極板130,及び,箔状の負極集電体121の表面に負極活物質層122が形成された負極板120,をセパレータ150と共に捲回することにより,捲回軸方向の両端部のうちの一方の端部(図1中の左端部)に,正極活物質層132の形成されていない正極活物質層非形成部131bが負極板120からはみ出た状態で積層された正極集電体積層部136を有するとともに,両端部のうちの他方の端部(図1中の右端部)に,負極活物質層122の形成されていない負極活物質層非形成部121bが正極板130からはみ出た状態で積層された負極集電体積層部126を有する捲回電極体110を作製する工程と,
正極集電体積層部136に,正極集電端子191を配置して,超音波溶接により接合する工程と,
負極集電体積層部126に,負極集電端子192を配置する工程と,
負極集電体積層部126に配置した負極集電端子192に,抵抗溶接用の端子側電極20(図3参照)を当接するとともに,負極集電端子192を配置した負極集電体積層部126に,端子側電極20と対の積層部側電極30(図3参照)を当接することにより,負極集電端子192および負極集電体積層部126を挟み込む工程と,
端子側電極20と積層部側電極30との間に押圧力を印加しながら抵抗溶接を行う工程と,を含んでいる。
そしてこの抵抗溶接に用いられる積層部側電極30には,負極集電体積層部126に対する当接面31が,最大粗さ(Rmax)15μm〜25μmの規則的な凹凸形状を有する凹凸面となっているものが用いられる。
As described above, the method of manufacturing the battery 100 according to this embodiment includes the positive electrode plate 130 in which the positive electrode active material layer 132 is formed on the surface of the foil-shaped positive electrode current collector 131, and the foil-shaped negative electrode current collector. By winding the negative electrode plate 120 having the negative electrode active material layer 122 formed on the surface of 121 together with the separator 150, at one end (left end in FIG. 1) of both ends in the winding axis direction. The positive electrode active material layer non-formed portion 131b in which the positive electrode active material layer 132 is not formed has a positive electrode current collector laminated portion 136 laminated in a state of protruding from the negative electrode plate 120, and the other end of the both ends. Part (right end in FIG. 1) has a negative electrode current collector laminated part 126 in which a negative electrode active material layer non-formed part 121b in which the negative electrode active material layer 122 is not formed is laminated in a state of protruding from the positive electrode plate 130. A wound electrode body 110 is produced. And the extent,
A step of disposing a positive electrode current collector terminal 191 on the positive electrode current collector laminated portion 136 and joining them by ultrasonic welding;
Disposing a negative electrode current collector terminal 192 in the negative electrode current collector stack 126;
The negative electrode current collector laminated portion 126 in which the terminal electrode 20 for resistance welding (see FIG. 3) is brought into contact with the negative electrode current collector terminal 192 arranged in the negative electrode current collector laminated portion 126 and the negative electrode current collector terminal 192 is arranged. And sandwiching the negative electrode current collector terminal 192 and the negative electrode current collector laminated portion 126 by contacting the terminal side electrode 20 and the pair of laminated portion side electrodes 30 (see FIG. 3),
And performing resistance welding while applying a pressing force between the terminal side electrode 20 and the laminated part side electrode 30.
And in the laminated part side electrode 30 used for this resistance welding, the contact surface 31 with respect to the negative electrode collector laminated part 126 becomes an uneven surface having a regular uneven shape with a maximum roughness (Rmax) of 15 μm to 25 μm. Is used.

本形態の電池100の製造方法で用いる積層部側電極30は,負極集電体積層部126への当接面31が,表面粗度(最大粗さRmax)15μm〜25μmの規則的な凹凸形状を有する凹凸面である。すなわち,従来の抵抗溶接機の積層部側電極よりも当接面31が粗い。そのため,抵抗溶接時の加圧により,積層部側電極30が負極集電体積層部126に食い込む。この食い込みの程度は,負極集電体積層部126に,積層部側電極30の当接面31の凹凸が移り込むほどである。なお,負極集電体積層部126に移り込む凹凸の程度は,最大粗さRmaxで9μm〜25μm程度である。このように積層部側電極30が負極集電体積層部126に食い込むため,負極集電体積層部126が引き延ばされる(延伸される)。よって,積層部側電極30と,負極集電体積層部126との接触面積が増大する。従って,負極集電体積層部126と負極集電端子192との溶接強度を十分に確保することができる。   The laminated portion side electrode 30 used in the manufacturing method of the battery 100 of the present embodiment has a regular uneven shape in which the contact surface 31 to the negative electrode current collector laminated portion 126 has a surface roughness (maximum roughness Rmax) of 15 μm to 25 μm. It is an uneven surface having That is, the contact surface 31 is rougher than the laminated portion side electrode of the conventional resistance welder. Therefore, the laminated portion side electrode 30 bites into the negative electrode current collector laminated portion 126 by pressurization during resistance welding. The degree of this biting is such that the unevenness of the contact surface 31 of the laminated portion side electrode 30 moves into the negative electrode current collector laminated portion 126. The degree of unevenness transferred to the negative electrode current collector stack 126 is about 9 to 25 μm in terms of the maximum roughness Rmax. Thus, since the laminated part side electrode 30 bites into the negative electrode current collector laminated part 126, the negative electrode current collector laminated part 126 is extended (stretched). Therefore, the contact area between the laminated portion side electrode 30 and the negative electrode current collector laminated portion 126 increases. Therefore, the welding strength between the negative electrode current collector stack 126 and the negative electrode current collector terminal 192 can be sufficiently secured.

また,負極集電体積層部126が引き伸ばされた分,引き延ばされた箇所(溶接箇所)では負極集電体積層部126の各層が密着して,各層間距離が短くなる。そのため,接触抵抗が小さくなる。従って,溶接箇所に流れる電流の電流密度が大きくなる。すなわち,溶接箇所の通電性が向上する。よって,効率よく発熱するようになるため,従来より小さな電流でも十分な強度で溶接することができる。   Further, the layers of the negative electrode current collector stacking portion 126 are brought into close contact with each other at the extended portion (welded portion) by the amount of the negative electrode current collector stacking portion 126 being stretched, and the distance between the layers is shortened. Therefore, the contact resistance is reduced. Therefore, the current density of the current flowing through the welded portion is increased. That is, the electrical conductivity of the welding location is improved. Therefore, since heat is generated efficiently, welding can be performed with sufficient strength even with a smaller current than before.

また,従来より小さな電流で溶接できるため,大きな電流を流すことに起因する溶接個所の過度な発熱を防ぐことができる。その結果,過度な発熱を原因とするスパッタの発生を防ぐことができる。また,スパッタが積層部側電極30に飛散することもないので,負極集電体積層部126の溶接箇所の破損や,積層部側電極30の破損も防ぐことができる。   In addition, since welding can be performed with a smaller current than in the past, excessive heat generation at the welding point caused by flowing a large current can be prevented. As a result, it is possible to prevent the occurrence of spatter due to excessive heat generation. Moreover, since spatter does not scatter to the laminated portion side electrode 30, damage to the welded portion of the negative electrode current collector laminated portion 126 and damage to the laminated portion side electrode 30 can be prevented.

また,本形態の電池100の製造方法によれば,上記の通りスパッタの飛散を防ぐことができるため,電池100の電圧不良の発生を抑制することができる。
さらには,抵抗溶接に際して電極20,30に従来のような大電流を流す必要がないため,熱衝撃によるクラックの発生を抑制することができ,電極20,30を長寿命化させることができる。
加えて,積層部側電極30の当接面31を最大粗さ(Rmax)を25μm以下としているため,積層部側電極30を負極集電体積層部126に押し付けた際に,当接面31の凹凸部に,負極集電体積層部126が隙間なく密着できる。そのため,抵抗溶接時に流す電流が,溶接箇所の一部に集中するのを防ぐことができ,これにより,スパッタの発生を大幅に抑制することができる。
Moreover, according to the manufacturing method of the battery 100 of this embodiment, since the spatter can be prevented as described above, the occurrence of voltage failure of the battery 100 can be suppressed.
Furthermore, since it is not necessary to pass a large current to the electrodes 20 and 30 during resistance welding, the generation of cracks due to thermal shock can be suppressed, and the life of the electrodes 20 and 30 can be extended.
In addition, since the maximum roughness (Rmax) of the contact surface 31 of the stacked portion side electrode 30 is 25 μm or less, the contact surface 31 is pressed when the stacked portion side electrode 30 is pressed against the negative electrode current collector stacked portion 126. The negative electrode current collector laminated portion 126 can be in close contact with the concavo-convex portion without any gap. For this reason, it is possible to prevent the current flowing during resistance welding from being concentrated on a part of the welded portion, thereby significantly suppressing the generation of spatter.

ここで本形態の電池100の製造方法では,端子側電極20と積層部側電極30との間に印加する押圧力が,1.0kN〜3.0kNであることが望ましい(表1参照)。なお,この押圧力の望ましい範囲は,前述したように,積層部側電極30として,当接面31の直径が3mm程度のものを用いた場合のものである。すなわち,本形態の電池100の製造方法では,端子側電極20と積層部側電極30との間に印加する押圧力が,圧力として,142N/mm 〜424N/mm であることが望ましい。 Here, in the manufacturing method of the battery 100 of this embodiment, it is desirable that the pressing force applied between the terminal side electrode 20 and the laminated portion side electrode 30 is 1.0 kN to 3.0 kN (see Table 1). In addition, the desirable range of this pressing force is a thing when the diameter of the contact surface 31 is about 3 mm as the laminated part side electrode 30 as mentioned above. That is, in the manufacturing method of the battery 100 of the present embodiment, the pressing force applied between the terminal-side electrode 20 and the laminated portion side electrode 30, as the pressure is desirably 142N / mm 2 ~424N / mm 2 .

このようにすれば,積層部側電極30の当接面31を負極集電体積層部126に対して十分に食い込ませることができる。そのため,スパッタの発生を招くことなく,負極集電体積層部126と負極集電端子192とを良好に抵抗溶接することができる。   In this way, the contact surface 31 of the laminated portion side electrode 30 can be sufficiently bite into the negative electrode current collector laminated portion 126. Therefore, the negative electrode current collector stack 126 and the negative electrode current collector terminal 192 can be resistance-welded satisfactorily without causing spatter.

また本形態の電池100の製造方法では,負極集電体積層部126への当接面31に,図4に示すような同心円状の凹凸が施されている積層部側電極30を用いている。そのため,他の形状(格子形状やストライプ形状)に凹凸を施した積層部側電極を用いるよりも,溶接強度を高くすることができる(表1の実施例1〜3参照)   In addition, in the manufacturing method of the battery 100 according to the present embodiment, the laminated portion side electrode 30 having concentric irregularities as shown in FIG. 4 on the contact surface 31 to the negative electrode current collector laminated portion 126 is used. . Therefore, it is possible to increase the welding strength as compared with the case of using the laminated portion side electrode in which the other shapes (lattice shape and stripe shape) are uneven (see Examples 1 to 3 in Table 1).

また本形態の電池100の製造方法では,負極集電体積層部126への当接面31に,放電加工により凹凸が施された積層部側電極30を用いている。放電加工により凹凸を施せば,規則的な凹凸形状とすることができるため,抵抗溶接時に流す電流の分散を防いで,良好な溶接を行うことができる(表1の実施例1および表2の比較例6参照)。   In the method for manufacturing the battery 100 according to this embodiment, the laminated portion side electrode 30 is used in which the contact surface 31 to the negative electrode current collector laminated portion 126 is uneven by electric discharge machining. If irregularities are formed by electric discharge machining, a regular irregular shape can be obtained, so that it is possible to prevent the current flowing during resistance welding from being dispersed and to perform good welding (Examples 1 and 2 in Table 1). (See Comparative Example 6).

(第2実施形態)
以下第2実施形態について,図6〜図10に基づいて説明する。図6に示す第2実施形態に係るリチウムイオン二次電池100A(以下単に「電池100A」ともいう)は,負極集電体積層部126Aが左側面で見て,図7に示すように2つに分割されており,その間に,負極集電端子192Aが配置されている。正極集電体積層部136A(図6参照)についても,同様に2つに分割されており,正極集電端子191A(図6参照)は,その間に配置されている。なお,正極集電端子191Aの正極集電体積層部136Aに対する接合については,負極側と同様であるため,その説明を省略する。なお,他の構成については,第1実施形態の電池100と同様であるため,第1実施形態と同様の符号を付して説明を省略する。
(Second Embodiment)
Hereinafter, a second embodiment will be described with reference to FIGS. A lithium ion secondary battery 100A (hereinafter also simply referred to as “battery 100A”) according to the second embodiment shown in FIG. 6 includes two negative electrode current collector stacking portions 126A as seen from the left side as shown in FIG. The negative electrode current collecting terminal 192A is disposed therebetween. Similarly, the positive electrode current collector laminated portion 136A (see FIG. 6) is also divided into two, and the positive electrode current collector terminal 191A (see FIG. 6) is disposed therebetween. The joining of the positive current collector terminal 191A to the positive current collector laminated portion 136A is the same as that on the negative electrode side, and thus the description thereof is omitted. Since the other configuration is the same as that of the battery 100 of the first embodiment, the same reference numerals as those of the first embodiment are given and description thereof is omitted.

第2実施形態の電池100Aでは,負極集電端子192Aは,図6,7及び8に示すように,左右方向に薄肉とされた板状の延設部193と,延設部193の前後端の下部から右方へ延びる2つの対抗する集電接続部194,194とを備える。集電接続部194,194は,前後方向に薄肉とされた板状である。   In the battery 100A of the second embodiment, as shown in FIGS. 6, 7 and 8, the negative electrode current collecting terminal 192 </ b> A includes a plate-like extending portion 193 that is thin in the left-right direction and front and rear ends of the extending portion 193. Two opposing current collecting connections 194, 194 extending to the right from the lower part. The current collector connection portions 194 and 194 are plate-shaped that are thin in the front-rear direction.

負極集電体積層部126Aは,図7に示すように,前側負極集電体積層部126Aaと,後側負極集電体積層部126Abとに分割されている。負極集電体積層部126Aのうち捲回電極体110の径方向に見て外側に位置する部分を,外側未塗工部128という。また,負極集電体積層部126Aのうち捲回電極体110の径方向に見て内側に位置する部分を,内側未塗工部129という。なお,捲回電極体110の径方向は,捲回電極体110の中心(捲回軸AXの位置)から外側(外周側)に向かう方向である。   As shown in FIG. 7, the negative electrode current collector stack portion 126A is divided into a front negative electrode current collector stack portion 126Aa and a rear negative electrode current collector stack portion 126Ab. A portion of the negative electrode current collector laminated portion 126A located outside as viewed in the radial direction of the wound electrode body 110 is referred to as an outer uncoated portion 128. In addition, a portion of the negative electrode current collector laminated portion 126A that is located on the inner side when viewed in the radial direction of the wound electrode body 110 is referred to as an inner uncoated portion 129. The radial direction of the wound electrode body 110 is a direction from the center (position of the winding axis AX) of the wound electrode body 110 toward the outer side (outer peripheral side).

負極集電端子192Aの2つの集電接続部194,194は,負極集電体積層部126Aの外側未塗工部128の側から溶接されておらず,内側未塗工部129の側から溶接されている(図7参照)。詳細には,2つの集電接続部194,194は,巻き重ねられている負極集電体積層部126Aの中心部に位置する空間内に挿入されており,集電接続部194,194の外側(図7において右側と左側)に位置する内側未塗工部129,129にそれぞれ溶接されている。   The two current collector connecting portions 194, 194 of the negative electrode current collector terminal 192A are not welded from the outer uncoated portion 128 side of the negative electrode current collector stacking portion 126A, but are welded from the inner uncoated portion 129 side. (See FIG. 7). Specifically, the two current collector connection portions 194 and 194 are inserted into a space located at the center of the wound negative electrode current collector laminated portion 126A, and are outside the current collector connection portions 194 and 194. They are welded to the inner uncoated portions 129 and 129 located on the right and left sides in FIG.

このように内側未塗工部129,129の側から負極集電端子192Aを溶接することで,捲回電極体110において相対的に温度が高くなる径方向内側部の熱を,内側未塗工部129を通じて負極集電端子192Aへ伝達(放出)することが可能となっている。そして負極集電端子192Aから,さらに電池外部へ放出することが可能となっている。一方,外側未塗工部128の側から負極集電端子192Aを溶接しないことで,相対的に温度が低くなる径方向外側部の熱が,負極集電端子192Aへ伝達(放出)され難くなる。従って,第2実施形態のリチウムイオン二次電池100Aによれば,捲回電極体110の温度ムラを抑えることができ,その結果,充放電反応のムラを抑えることが可能となっている。   By welding the negative electrode current collector terminal 192A from the inner uncoated portions 129 and 129 in this way, the heat of the radially inner portion where the temperature of the wound electrode body 110 is relatively high is increased. It can be transmitted (released) to the negative electrode current collecting terminal 192A through the portion 129. And it can discharge | release to the battery exterior further from negative electrode current collection terminal 192A. On the other hand, since the negative electrode current collector terminal 192A is not welded from the outer uncoated portion 128 side, the heat at the radially outer portion where the temperature is relatively low is hardly transmitted (released) to the negative electrode current collector terminal 192A. . Therefore, according to the lithium ion secondary battery 100A of the second embodiment, temperature unevenness of the wound electrode body 110 can be suppressed, and as a result, charge / discharge reaction unevenness can be suppressed.

ここで,このリチウムイオン二次電池100Aにおける,負極集電端子192Aの溶接工程について説明する。なお,正極集電端子191Aの溶接工程については負極集電端子192Aと同様である。また,このリチウムイオン二次電池100Aにおける他の製造工程については,第1実施形態のリチウムイオン二次電池100と同様である。   Here, the welding process of the negative electrode current collector terminal 192A in the lithium ion secondary battery 100A will be described. The welding process of the positive electrode current collector terminal 191A is the same as that of the negative electrode current collector terminal 192A. Further, other manufacturing steps in the lithium ion secondary battery 100A are the same as those of the lithium ion secondary battery 100 of the first embodiment.

負極集電端子192Aの溶接工程では,まず,平板形状をなす2つの集電接続部194,194を,巻き重ねられた負極集電体積層部126Aの中心部に位置する空間内に挿入する。言い換えれば,前側負極集電体積層部126Aaと後側負極集電体積層部126Abとの間に挿入する。続いて,図9に示すように,一方の集電接続部194を前側負極集電体積層部126Aaに対して,抵抗溶接により接合する。その後,他方の集電接続部194を後側負極集電体積層部126Abに対して,抵抗溶接により接合する。   In the welding process of the negative electrode current collector terminal 192A, first, two current collector connection portions 194 and 194 having a flat plate shape are inserted into a space located at the center of the wound negative electrode current collector laminated portion 126A. In other words, it is inserted between the front negative electrode current collector stack portion 126Aa and the rear negative electrode current collector stack portion 126Ab. Subsequently, as shown in FIG. 9, one current collector connecting portion 194 is joined to the front negative electrode current collector laminated portion 126Aa by resistance welding. Thereafter, the other current collector connection portion 194 is joined to the rear negative electrode current collector laminated portion 126Ab by resistance welding.

ここで抵抗溶接に用いる抵抗溶接機は,積層部側電極30A及び端子側電極20Aを備えており,この積層部側電極30Aの当接面31Aには,放電加工により凹凸が形成されている。凹凸は,第1実施形態と同様,同心円状に形成されている。凹凸の程度は,最大粗さRmaxで15μm〜20μm程度である。これは,従来用いていた抵抗溶接機の積層部側電極の表面粗度よりも粗い。なお,第2実施形態では,負極集電体積層部126Aを2つに分けている分,抵抗溶接の際に抵抗溶接用の一対の電極により挟み込む負極集電体積層部126Aの厚さが,第1実施形態の負極集電体積層部126よりも薄い。そのため,積層部側電極30Aに形成する凹凸の表面粗度を第1実施形態よりも低くしているのである。分割した負極集電体積層部126Aの厚さによっては,積層部側電極30Aに形成する凹凸の表面粗度をRmax10μm程度まで下げてもよい。   Here, the resistance welding machine used for resistance welding includes the laminated portion side electrode 30A and the terminal side electrode 20A, and the contact surface 31A of the laminated portion side electrode 30A is formed with irregularities by electric discharge machining. The irregularities are formed concentrically as in the first embodiment. The degree of unevenness is about 15 μm to 20 μm in terms of the maximum roughness Rmax. This is rougher than the surface roughness of the laminate side electrode of the resistance welding machine used conventionally. In the second embodiment, the thickness of the negative electrode current collector laminated portion 126A sandwiched between a pair of resistance welding electrodes during resistance welding is divided by the amount of the negative electrode current collector laminated portion 126A divided into two. It is thinner than the negative electrode current collector lamination portion 126 of the first embodiment. Therefore, the surface roughness of the unevenness formed on the stacked portion side electrode 30A is made lower than that in the first embodiment. Depending on the thickness of the divided negative electrode current collector laminated portion 126A, the surface roughness of the unevenness formed on the laminated portion side electrode 30A may be lowered to about Rmax 10 μm.

このような抵抗溶接機を用いて抵抗溶接を行うと,図10に示すように,前側負極集電体積層部126Aa及び後側負極集電体積層部126Abの溶接箇所は,それぞれ,各層の密着性が高まって良好に溶接される結果,内側へ向かって突出する。なお,前側負極集電体積層部126Aa及び後側負極集電体積層部126Abの各溶接痕127Aには,積層部側電極30Aの当接面31Aに施された凹凸が移り込んでおり,各溶接痕127Aの表面粗度は最大粗さRmaxで9μm〜15μm程度となっている。   When resistance welding is performed using such a resistance welder, as shown in FIG. 10, the welding positions of the front negative electrode current collector stack portion 126 </ b> Aa and the rear negative electrode current collector stack portion 126 </ b> Ab are in close contact with each other. As a result of improved weldability and good welding, it protrudes inward. The unevenness applied to the contact surface 31A of the laminated portion side electrode 30A is transferred to each welding mark 127A of the front negative electrode current collector laminated portion 126Aa and the rear negative electrode current collector laminated portion 126Ab. The surface roughness of the weld mark 127A is about 9 μm to 15 μm in terms of the maximum roughness Rmax.

以上説明した第2実施形態においても,第1実施形態と同様の効果が奏される。   Also in the second embodiment described above, the same effects as in the first embodiment are exhibited.

(その他の変更例)
以上,本発明を実施形態に即して説明したが,本発明は上述の実施形態に限定されるものではなく,その要旨を逸脱しない範囲で,適宜変更して適用できることは言うまでもない。例えば,上記実施形態では,二次電池として,リチウムイオン二次電池を例示したが,例えばニッケル水素二次電池等の他の種類の二次電池などにも,本発明の技術的思想を適用できる。
(Other changes)
As mentioned above, although this invention was demonstrated according to embodiment, it cannot be overemphasized that this invention is not limited to the above-mentioned embodiment, It can change suitably and apply in the range which does not deviate from the summary. For example, in the above embodiment, a lithium ion secondary battery is exemplified as the secondary battery. However, the technical idea of the present invention can be applied to other types of secondary batteries such as a nickel hydride secondary battery. .

また実施形態では,集電端子191,192は,外部端子部191a,192aを含むものであったが,含んでいないものであってもよい。すなわち,電池ケース180の外部に露出する外部端子部と別体で,電池ケース180の内部に配置する集電端子を設けて,電池ケースの内部又は外部にて,外部端子部と集電端子とを電気的に接合するものでもよい。   In the embodiment, the current collecting terminals 191 and 192 include the external terminal portions 191a and 192a, but may not include the external terminal portions 191a and 192a. In other words, a current collecting terminal disposed inside the battery case 180 is provided separately from the external terminal portion exposed to the outside of the battery case 180, and the external terminal portion and the current collecting terminal are provided inside or outside the battery case. May be electrically joined.

また実施形態では,負極集電端子192を抵抗溶接により溶接し,正極集電端子191を超音波溶接により溶接したが,正極集電端子191を抵抗溶接により正極集電体積層部136に溶接してもよい。この場合も,図3及び図4に示すような,積層部側電極30の当接面31の表面粗度が従来よりも粗いものを用いて抵抗溶接を行うことにより,実施形態の負極側と同様に,従来よりも良好な溶接を行うことができる。   In the embodiment, the negative electrode current collector terminal 192 is welded by resistance welding and the positive electrode current collector terminal 191 is welded by ultrasonic welding. However, the positive electrode current collector terminal 191 is welded to the positive electrode current collector laminated portion 136 by resistance welding. May be. Also in this case, by performing resistance welding using a material whose surface roughness of the contact surface 31 of the laminated portion side electrode 30 is rougher than the conventional one as shown in FIG. 3 and FIG. Similarly, welding can be performed better than before.

また実施形態では,積層部側電極30の当接面には,放電加工により同心円状(図4参照)の凹凸を施したが,施す凹凸が規則的なものであれば,格子形状やストライプ形状など他の形状の凹凸であってもよい。ストライプ形状は,縦,横,斜めのいずれであってもよい。   In the embodiment, the contact surface of the laminated portion side electrode 30 has concentric irregularities (see FIG. 4) by electric discharge machining. However, if the irregularities to be applied are regular, a lattice shape or a stripe shape is used. Other irregularities may be used. The stripe shape may be vertical, horizontal, or diagonal.

20…端子側電極
30…積層部側電極
31…当接面
100…電池(非電解質二次電池)
110…捲回電極体
120…負極板
121…負極集電体
121b…負極活物質層非形成部
122…負極活物質層
126…負極集電体積層部
127…溶接痕
130…正極板
131…正極集電体
131b…正極活物質層非形成部
132…正極活物質層
136…正極集電体積層部
150…セパレータ
191…正極集電端子
192…負極集電端子
20 ... Terminal side electrode 30 ... Laminate side electrode 31 ... Contact surface 100 ... Battery (non-electrolyte secondary battery)
DESCRIPTION OF SYMBOLS 110 ... Winding electrode body 120 ... Negative electrode plate 121 ... Negative electrode collector 121b ... Negative electrode active material layer non-formation part 122 ... Negative electrode active material layer 126 ... Negative electrode collector laminated part 127 ... Weld trace 130 ... Positive electrode plate 131 ... Positive electrode Current collector 131b ... Positive electrode active material layer non-forming part 132 ... Positive electrode active material layer 136 ... Positive electrode current collector laminated part 150 ... Separator 191 ... Positive electrode current collector terminal 192 ... Negative electrode current collector terminal

Claims (5)

箔状の正極集電体の表面に正極活物質層が形成された正極板,及び,箔状の負極集電体の表面に負極活物質層が形成された負極板,をセパレータと共に捲回することにより,捲回軸方向の両端部のうちの一方の端部に,前記正極活物質層の形成されていない正極活物質層非形成部が前記負極板からはみ出た状態で積層された正極集電体積層部を有するとともに,前記両端部のうちの他方の端部に,前記負極活物質層の形成されていない負極活物質層非形成部が前記正極板からはみ出た状態で積層された負極集電体積層部を有する捲回電極体を作製する工程と,
前記正極集電体積層部又は前記負極集電体積層部のうち少なくとも一方の極の集電体積層部に,対応する極の集電端子を配置する工程と,
前記集電体積層部に配置した前記集電端子に,抵抗溶接用の端子側電極を当接するとともに,前記集電端子を配置した前記集電体積層部に,前記端子側電極と対の積層部側電極を当接することにより,前記集電端子および前記集電体積層部を挟み込む工程と,
前記端子側電極と前記積層部側電極との間に押圧力を印加しながら抵抗溶接を行う工程と,を含む二次電池の製造方法であって,
前記積層部側電極として,前記集電体積層部に対する当接面が,最大粗さ(Rmax)15μm〜25μmの規則的な凹凸形状を有する凹凸面となっているものを用いることを特徴とする二次電池の製造方法。
A positive electrode plate with a positive electrode active material layer formed on the surface of a foil-shaped positive electrode current collector and a negative electrode plate with a negative electrode active material layer formed on the surface of a foil-shaped negative electrode current collector are wound together with a separator. Thus, a positive electrode collector in which a positive electrode active material layer non-formed portion where the positive electrode active material layer is not formed protrudes from the negative electrode plate at one end of both ends in the winding axis direction. A negative electrode having an electric body laminated portion and laminated with a negative electrode active material layer non-formed portion in which the negative electrode active material layer is not formed protruding from the positive electrode plate at the other end of the both end portions Producing a wound electrode body having a current collector laminate;
Disposing a current collector terminal of a corresponding electrode on a current collector laminate of at least one of the positive electrode current collector laminate or the negative electrode current collector laminate; and
A terminal electrode for resistance welding is brought into contact with the current collector terminal arranged in the current collector laminated portion, and a pair of the terminal side electrode is laminated on the current collector laminated portion in which the current collector terminal is arranged. A step of sandwiching the current collector terminal and the current collector laminated portion by contacting a portion side electrode;
A step of performing resistance welding while applying a pressing force between the terminal side electrode and the laminated portion side electrode, and a method of manufacturing a secondary battery,
The laminated part side electrode is characterized in that the contact surface with the current collector laminated part is an irregular surface having a regular irregular shape with a maximum roughness (Rmax) of 15 μm to 25 μm. A method for manufacturing a secondary battery.
請求項1に記載の二次電池の製造方法であって,
前記端子側電極と前記積層部側電極との間に印加する押圧力が,圧力として,142N/mm 〜424N/mm であることを特徴とする二次電池の製造方法。
A method of manufacturing a secondary battery according to claim 1,
The pressing force applied between the terminal side electrode and the laminated portion side electrode, as a pressure, a manufacturing method of a secondary battery, which is a 142N / mm 2 ~424N / mm 2 .
請求項1又は請求項2に記載の二次電池の製造方法であって,
前記当接面が有する規則的な凹凸形状は,当接面の中心から外側に向かって予め定められた間隔で複数の同心円が形成されている形状であることを特徴とする二次電池の製造方法。
A method of manufacturing a secondary battery according to claim 1 or claim 2,
The regular uneven shape of the contact surface is a shape in which a plurality of concentric circles are formed at predetermined intervals from the center of the contact surface toward the outside. Method.
請求項1から請求項3までのいずれかに記載の二次電池の製造方法であって,
前記当接面が有する規則的な凹凸形状は,放電加工により形成されたものであることを特徴とする二次電池の製造方法。
A method for manufacturing a secondary battery according to any one of claims 1 to 3,
The method for manufacturing a secondary battery, wherein the regular uneven shape of the contact surface is formed by electric discharge machining.
箔状の正極集電体の表面に正極活物質層が形成された正極板,及び,箔状の負極集電体の表面に負極活物質層が形成された負極板,をセパレータと共に捲回してなる捲回電極体と,
前記捲回電極体に接合された正負極それぞれの集電端子と,を備える二次電池であって,
前記捲回電極体における捲回軸方向の両端部のうちの一方の端部は,前記正極活物質層の形成されていない正極活物質層非形成部が前記負極板からはみ出た状態で積層された正極集電体積層部であり,
前記両端部のうちの他方の端部は,前記負極活物質層の形成されていない負極活物質層非形成部が前記正極板からはみ出た状態で積層された負極集電体積層部であり,
前記正極集電体積層部又は前記負極集電体積層部のうち少なくとも一方の極の集電体積層部は,抵抗溶接により前記集電端子と接合されており,
前記抵抗溶接により前記集電体積層部の表面に形成された溶接痕は,その表面粗度が最大粗さ(Rmax)で9μm〜25μmの規則的な凹凸形状であることを特徴とする二次電池。
A positive electrode plate having a positive electrode active material layer formed on the surface of a foil-like positive electrode current collector and a negative electrode plate having a negative electrode active material layer formed on the surface of a foil-like negative electrode current collector are wound together with a separator. A wound electrode body,
A positive and negative current collector terminal joined to the wound electrode body, and a secondary battery comprising:
One end of both ends in the winding axis direction of the wound electrode body is laminated in a state where the positive electrode active material layer non-formed portion where the positive electrode active material layer is not formed protrudes from the negative electrode plate. A positive electrode current collector laminate,
The other end of the both end portions is a negative electrode current collector laminated portion laminated in a state where the negative electrode active material layer non-formed portion where the negative electrode active material layer is not formed protrudes from the positive electrode plate,
The current collector laminated portion of at least one of the positive electrode current collector laminated portion or the negative electrode current collector laminated portion is joined to the current collecting terminal by resistance welding,
The welding mark formed on the surface of the current collector laminated portion by the resistance welding has a regular uneven shape having a maximum surface roughness (Rmax) of 9 μm to 25 μm. battery.
JP2012281829A 2012-12-25 2012-12-25 Secondary battery manufacturing method and secondary battery Active JP5949535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012281829A JP5949535B2 (en) 2012-12-25 2012-12-25 Secondary battery manufacturing method and secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012281829A JP5949535B2 (en) 2012-12-25 2012-12-25 Secondary battery manufacturing method and secondary battery

Publications (2)

Publication Number Publication Date
JP2014127282A JP2014127282A (en) 2014-07-07
JP5949535B2 true JP5949535B2 (en) 2016-07-06

Family

ID=51406633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012281829A Active JP5949535B2 (en) 2012-12-25 2012-12-25 Secondary battery manufacturing method and secondary battery

Country Status (1)

Country Link
JP (1) JP5949535B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3377406D1 (en) * 1982-03-04 1988-08-25 Elpatronic Ag Electric resistance welding process for welding aluminium pieces, and apparatus and electrode therefor
GB8528049D0 (en) * 1985-11-14 1985-12-18 Alcan Int Ltd Resistance welding of aluminium
JP2000288744A (en) * 1999-04-06 2000-10-17 Akihiro Saito Electrode chip, and its forming cutter
JP4919317B2 (en) * 2005-11-09 2012-04-18 ダイハツ工業株式会社 Spot welding method
JP5287181B2 (en) * 2008-11-28 2013-09-11 トヨタ自動車株式会社 Battery and battery manufacturing method

Also Published As

Publication number Publication date
JP2014127282A (en) 2014-07-07

Similar Documents

Publication Publication Date Title
JP5137918B2 (en) Secondary battery manufacturing method and secondary battery
JP5587061B2 (en) Energizing block for resistance welding, sealed battery manufacturing method using the energizing block, and sealed battery
JP5190491B2 (en) Secondary battery
JP5137530B2 (en) Secondary battery and manufacturing method thereof
JP5470142B2 (en) Secondary battery and manufacturing method thereof
JP2014212012A (en) Method of manufacturing secondary battery and secondary battery
CN110948111B (en) Composite welding method for tab of soft package lithium ion battery
JP5137516B2 (en) Sealed battery
KR101116533B1 (en) Secondary battery and method of manufacturing the same
KR101222284B1 (en) Battery and method for producing the same
KR20120007467A (en) Square-sealed type secondary battery and manufacturing method thereof
JP5198134B2 (en) Method for manufacturing cylindrical battery
JP5384071B2 (en) Sealed battery
JP6072676B2 (en) Method for manufacturing prismatic secondary battery
JP2008258145A (en) Secondary battery and method for manufacturing the secondary battery
JP2018077959A (en) Power storage device and manufacturing method of power storage device
KR20150035070A (en) Secondary Battery with Electrode Tab Having Low Resistance
JP2001283824A (en) Lithium secondary battery
JP2014022153A (en) Electricity storage device
JP5949535B2 (en) Secondary battery manufacturing method and secondary battery
JP2016091670A (en) Cylindrical secondary battery
KR102468048B1 (en) Cylindrical Battery Cell Having Low Resistance
CN104393347A (en) Manufacturing method of novel lithium ion battery
JP2014056672A (en) Power storage device and manufacturing method of power storage device
JP2010165689A (en) Cylindrical battery and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160523

R151 Written notification of patent or utility model registration

Ref document number: 5949535

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250