JP6107346B2 - Battery manufacturing method and battery - Google Patents

Battery manufacturing method and battery Download PDF

Info

Publication number
JP6107346B2
JP6107346B2 JP2013081401A JP2013081401A JP6107346B2 JP 6107346 B2 JP6107346 B2 JP 6107346B2 JP 2013081401 A JP2013081401 A JP 2013081401A JP 2013081401 A JP2013081401 A JP 2013081401A JP 6107346 B2 JP6107346 B2 JP 6107346B2
Authority
JP
Japan
Prior art keywords
foil
positive electrode
electrode
welded
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013081401A
Other languages
Japanese (ja)
Other versions
JP2014203780A (en
Inventor
幸男 播磨
幸男 播磨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013081401A priority Critical patent/JP6107346B2/en
Publication of JP2014203780A publication Critical patent/JP2014203780A/en
Application granted granted Critical
Publication of JP6107346B2 publication Critical patent/JP6107346B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、正極板のうちアルミニウム箔の箔露出部同士が積層方向に重なる箔重層部を有する電極体と、アルミニウムからなる正極端子部材とを備える電池、及び、このような電池の製造方法に関する。   TECHNICAL FIELD The present invention relates to a battery including an electrode body having a foil multilayer portion in which foil exposed portions of aluminum foil overlap each other in a stacking direction in a positive electrode plate, and a positive electrode terminal member made of aluminum, and a method for manufacturing such a battery. .

近年、ハイブリッド自動車、電気自動車などの車両や、ノート型パソコン、ビデオカムコーダなどのポータブル電子機器の駆動用電源に、充放電可能な電池が利用されている。このような電池に用いる技術として、例えば、特許文献1には、積層したアルミニウム箔をアルミニウムからなるベース板に抵抗溶接する接合方法が開示されている。具体的には、この接合方法は、積層した複数のアルミニウム箔を超音波溶接で仮付けした仮付部を形成する超音波仮付工程と、この仮付部とベース板とを2つの電極で挟み、これら電極に通電して仮付部とベース板とを抵抗溶接する抵抗溶接工程とを備える。   In recent years, a chargeable / dischargeable battery has been used as a driving power source for vehicles such as hybrid vehicles and electric vehicles, and portable electronic devices such as notebook computers and video camcorders. As a technique used for such a battery, for example, Patent Document 1 discloses a joining method in which a laminated aluminum foil is resistance-welded to a base plate made of aluminum. Specifically, this joining method includes an ultrasonic tempering step for forming a temporary attachment portion in which a plurality of laminated aluminum foils are temporarily attached by ultrasonic welding, and the temporary attachment portion and the base plate with two electrodes. And a resistance welding step of energizing these electrodes and resistance welding the temporary attachment portion and the base plate.

特開2010−184260号公報JP 2010-184260 A

ところで、一般に2つの金属部材を抵抗溶接する際には、これらの間にナゲット(2つの金属部材の一部同士が溶融、混合及び固化してできた領域)が形成されるようにして、2つの金属部材を溶接する。形成されるナゲットの大きさが小さいと、2つの金属部材間の溶接強度が低くなるので、溶接強度を確保するためには大きいナゲットを形成することが求められる。一方、ナゲットが大きくなり過ぎるとナゲットから多量の溶融金属が噴出して空孔となり、逆に溶接強度が低下する虞がある。   By the way, in general, when two metal members are resistance-welded, a nugget (a region formed by melting, mixing and solidifying a part of two metal members) is formed between them. Weld two metal parts. If the size of the nugget formed is small, the welding strength between the two metal members will be low, so it is required to form a large nugget in order to ensure the welding strength. On the other hand, if the nugget becomes too large, a large amount of molten metal is ejected from the nugget to become vacancies, and conversely, the welding strength may be reduced.

なお、前述した特許文献1に記載の接合方法に用いる、仮付部(箔重層部)及びベース板(正極端子部材)の各表面には、高抵抗の酸化皮膜(アルミナ皮膜)がそれぞれ存在する。従って、仮付部及びベース板に電流を流して溶接するには、各表面の酸化皮膜の一部を壊す必要があり、抵抗溶接用の電極間に高い電圧を印加する必要がある。   A high resistance oxide film (alumina film) is present on each surface of the temporary attachment part (foil multilayer part) and the base plate (positive electrode terminal member) used in the joining method described in Patent Document 1 described above. . Therefore, in order to weld by applying an electric current to a temporary attachment part and a base board, it is necessary to destroy a part of oxide film of each surface, and it is necessary to apply a high voltage between the electrodes for resistance welding.

一方、特許文献1の接合方法では、仮付部及びベース板の接触面をいずれも平面としているので、溶接場所(電流が流れる部位)が定まらず、最初に酸化皮膜が破壊された1つの部位に集中して電流が流れる。しかも、高電圧としたことに伴う大きな電流が仮付部及びベース板を通じて流れるので、1つのナゲットのみが瞬時に大きくなり易い。このため、ナゲットを積層方向に挟む仮付部或いはベース板の厚みが薄くなり破断しやすくなるため、溶融したアルミニウムがナゲットから仮付部或いはベース板の外側に多量に噴出し易く、仮付部とベース板との間で溶接強度を確保し難い。   On the other hand, in the joining method of Patent Document 1, since the contact surfaces of the temporary attachment portion and the base plate are both flat, the welding location (the portion where the current flows) is not determined, and one portion where the oxide film is destroyed first. Current concentrates on. Moreover, since a large current due to the high voltage flows through the temporary attachment portion and the base plate, only one nugget tends to increase instantaneously. For this reason, since the thickness of the temporary attachment part or base plate which sandwiches the nugget in the stacking direction becomes thin and easily breaks, a large amount of molten aluminum is easily ejected from the nugget to the external side of the temporary attachment part or base plate. It is difficult to secure welding strength between the base plate and the base plate.

本発明は、電極体の箔重層部と正極端子部材とを抵抗溶接で溶接しながらも、これらの間で良好な溶接強度を確保した電池の製造方法、及び、箔重層部と正極端子部材との間で良好な溶接強度を確保した電池を提供することを目的とする。   The present invention relates to a battery manufacturing method that secures a good welding strength between the foil multilayer portion of the electrode body and the positive electrode terminal member by resistance welding, and the foil multilayer portion and the positive electrode terminal member. It aims at providing the battery which ensured favorable welding strength between.

本発明の一態様は、アルミニウム箔を含む正極板を有し、上記正極板のうち上記アルミニウム箔の露出した箔露出部同士が積層方向に重なる箔重層部を有する電極体と、アルミニウムからなる正極端子部材と、を備え、上記箔重層部と上記正極端子部材とが上記積層方向に重ねて抵抗溶接されてなる電池の製造方法であって、上記箔重層部に、互いに重なるアルミニウム箔同士を超音波溶接により上記積層方向に互いに溶着した箔溶着部を成形する箔溶着部成形工程と、上記電極体の上記箔溶着部と上記正極端子部材とを抵抗溶接する抵抗溶接工程と、を備え、上記箔溶着部成形工程は、上記箔溶着部の表面のうち上記積層方向の一方側に位置し、上記正極端子部材と接合する接合予定面の少なくとも一部に、上記積層方向一方側に高位の第1高位部と、上記第1高位部に比して低位で、上記接合予定面内に散点状に配置された複数の第1低位部と、を成形し、上記箔溶着部の表面のうち上記積層方向の他方側に位置し、第1抵抗溶接用電極を当接させる電極当接面の少なくとも一部に、上記積層方向他方側に高位の第2高位部と、上記第2高位部に比して低位で、上記電極当接面のうち、上記第1低位部と上記積層方向に重なる位置にそれぞれ配置された複数の第2低位部と、を成形し、上記抵抗溶接工程は、上記第1抵抗溶接用電極と上記箔溶着部と上記正極端子部材と第2抵抗溶接用電極とをこの順に重ね、上記第1抵抗溶接用電極で上記第2高位部を上記積層方向に押し潰し、上記第2低位部を、複数の上記アルミニウム箔がそれぞれ断面U字状に屈曲されて積層されたU字形状部に成形し、上記第1抵抗溶接用電極と上記箔溶着部との溶着を防止しつつ、流した電流で上記第1低位部にナゲットを生成する電池の製造方法である。 One embodiment of the present invention includes a positive electrode plate including an aluminum foil, an electrode body having a foil multilayer portion in which the exposed foil portions of the aluminum foil overlap each other in the stacking direction, and a positive electrode made of aluminum. Terminal foil, and a method of manufacturing a battery in which the foil layered portion and the positive electrode terminal member are resistance-welded in the stacking direction, and the aluminum foils that overlap each other are superposed on the foil layered portion. A foil welded portion forming step for forming foil welded portions welded to each other in the laminating direction by sonic welding, and a resistance welding step for resistance welding the foil welded portion of the electrode body and the positive electrode terminal member, and The foil welded portion forming step is located on one side in the laminating direction on the surface of the foil welded portion, and at a part of the planned joining surface to be joined with the positive electrode terminal member, A high level part and a plurality of first low level parts arranged in a dotted pattern in the planned joining surface at a lower level than the first high level part, and the above among the surfaces of the foil welded part Positioned on the other side in the stacking direction and on at least a part of the electrode contact surface with which the first resistance welding electrode is contacted, a second high level portion higher on the other side in the stacking direction, and a comparison with the second higher level portion. And forming a plurality of second low-order parts arranged at positions overlapping with each other in the stacking direction in the electrode contact surface, and the resistance welding step includes 1 resistance welding electrode, the foil welded portion, the positive electrode terminal member, and the second resistance welding electrode are stacked in this order, and the second resistance welding electrode is crushed in the laminating direction with the first resistance welding electrode. A plurality of the above-mentioned aluminum foils are bent and laminated in a U-shaped cross section at the second lower portion, respectively. Formed into shaped portion, while preventing the welding between the first resistance welding electrode and the foil welded part, a method for producing a battery for generating a nugget in the first low portion by a current flowed.

上述した電池の製造方法のうち抵抗溶接工程では、箔溶着部の第1高位部を正極端子部材に当接させ電流を流し、第1低位部にナゲットを生成する。
なお、ナゲットが第1低位部に生成される理由として、以下が考えられる。即ち、箔溶着部の第1高位部は、第1低位部ほどには、アルミニウム箔同士が高さ方向(アルミニウム箔の積層方向)に強く圧接されておらず密接して重なっていない。このため、抵抗溶接の際、第1高位部の内部は相対的に積層方向に電流が流れにくいため、第1高位部を流れる電流は、第1高位部の内部を高さ方向(積層方向)に進むのではなく、第1高位部と第1低位部との間に位置して側面あるいは斜面をなすアルミニウム箔を通じて、第1低位部に進み、この第1低位部で積層方向に進む(或いはこの経路を逆に進む)と考えられる。従って、抵抗溶接の際には、第1低位部の周りの側面あるいは斜面に集中して電流が流れて、この部位及び第1低位部が溶融する。また、抵抗溶接工程では、第1高位部を正極端子部材に当接させて溶接を行うため、第1高位部は積層方向に押圧されて、この第1高位部をなしているアルミニウム箔の一部が第1高位部の周囲に拡がり方向に押し出される。そして、押し出されたアルミニウムも、前述した第1高位部と第1低位部との間の側面あるいは斜面で溶融されるので大きなナゲットが生成すると考えられる。
In the resistance welding step of the battery manufacturing method described above, the first high level portion of the foil welded portion is brought into contact with the positive electrode terminal member to pass a current, and a nugget is generated at the first low level portion.
The following can be considered as the reason why the nugget is generated in the first low-order part. That is, in the first high-order part of the foil welded part, the aluminum foils are not strongly pressed in the height direction (the lamination direction of the aluminum foil) and do not overlap closely as the first low-order part. For this reason, during resistance welding, the current inside the first high level portion is relatively difficult to flow in the stacking direction, so that the current flowing through the first high level portion is the height direction (stacking direction) inside the first high level portion. Rather than proceeding to (1), it proceeds to the first lower portion through the aluminum foil having a side surface or a slope located between the first higher portion and the first lower portion, and proceeds in the stacking direction at this first lower portion (or This route is considered to be reversed). Therefore, during resistance welding, current flows in a concentrated manner on the side surface or slope around the first low-order part, and this part and the first low-order part melt. Further, in the resistance welding process, since the first high-order part is brought into contact with the positive electrode terminal member and welding is performed, the first high-order part is pressed in the laminating direction, and one aluminum foil constituting the first high-order part is formed. The part is pushed out in the direction of spreading around the first high-order part. The extruded aluminum is also melted on the side surface or the slope between the first high-order part and the first low-order part, so that it is considered that a large nugget is generated.

その一方、箔溶着部成形工程では、複数の第1低位部が接合予定面内に散点状に配置された箔溶着部を成形する。このため、この箔溶着部の接合予定面を正極端子部材に当接させてこれらを抵抗溶接すると、第1低位部の各位置にナゲットをそれぞれ生成することができる。これにより、箔溶着部と正極端子部材との間で1つのナゲットのみが極端に大きくなるのを防ぐことができ、溶融したアルミニウムがナゲットから噴出するのを抑え、噴出したとしても少量にとどめることができる。   On the other hand, in the foil welded part forming step, a foil welded part in which a plurality of first low-order parts are arranged in a dotted pattern within the planned joining surface is formed. For this reason, a nugget can be produced | generated in each position of a 1st low-order part, if the joining plan surface of this foil welding part is contact | abutted to a positive electrode terminal member, and these are resistance-welded. As a result, only one nugget can be prevented from becoming extremely large between the foil welded portion and the positive electrode terminal member, and molten aluminum can be prevented from being ejected from the nugget, and even if it is ejected, the amount can be kept small. Can do.

また、この抵抗溶接工程では、第1抵抗溶接用電極で複数の第2高位部をそれぞれ積層方向に押し潰すため、各第2高位部のアルミニウム箔を覆う酸化皮膜が破壊されて、電極当接面にアルミニウム(新生面)が複数の箇所で露出する。これにより、第1抵抗溶接用電極と電極当接面(第2高位部)との間の接触抵抗が低くなる上、複数の箇所で接触するので電流が分散して流れ発熱しにくくなるので、抵抗溶接の際の第1抵抗溶接用電極と箔溶着部(電極当接面)との溶着を防ぐことができる。   Moreover, in this resistance welding process, since the plurality of second high-order parts are crushed in the stacking direction by the first resistance welding electrode, the oxide film covering the aluminum foil of each second high-order part is destroyed, and the electrode contact Aluminum (new surface) is exposed on the surface at a plurality of locations. As a result, the contact resistance between the first resistance welding electrode and the electrode contact surface (second high-order part) is lowered, and since the contact is made at a plurality of locations, the current is dispersed and is difficult to generate heat. Welding between the first resistance welding electrode and the foil welded portion (electrode contact surface) during resistance welding can be prevented.

さらに、成形された箔溶着部において、第2低位部は、第1低位部と積層方向に重なる位置に配置されている。なお、抵抗溶接工程において、第1抵抗溶接用電極によって第2高位部が積層方向に押し潰されると、この第2高位部のうち周囲の部分が、第2低位部に向けて移動する。これにより、第2低位部と第2高位部との間で積層されている複数のアルミニウム箔がそれぞれ変形して、断面U字状に屈曲されて積層された部位(U字形状部)となる。
従って、ナゲットとU字形状部とは、積層方向に並ぶことになる。U字形状部は、複数のアルミニウム箔が積層方向に屈曲して積層されているため、アルミニウム箔同士の間に隙間が生じ、熱が積層方向に伝わりにくい。また、同じ枚数のアルミニウム箔を平板状に積層した場合に比して、積層方向の寸法を大きくして、電極当接面をナゲットから離すことができる。これらにより、ナゲットから電極当接面に熱が伝わるのを抑えて、第1抵抗溶接用電極と電極当接面との溶着をさらに抑制することができる。
Furthermore, in the molded foil welded part, the second low-order part is arranged at a position overlapping the first low-order part in the stacking direction. In the resistance welding process, when the second high-order part is crushed in the stacking direction by the first resistance welding electrode, the surrounding part of the second high-order part moves toward the second low-order part. As a result, the plurality of aluminum foils laminated between the second low-level part and the second high-level part are deformed to be bent into a U-shaped cross section (U-shaped part). .
Therefore, the nugget and the U-shaped part are arranged in the stacking direction. In the U-shaped part, since a plurality of aluminum foils are bent and stacked in the stacking direction, a gap is generated between the aluminum foils, and heat is not easily transmitted in the stacking direction. In addition, the electrode contact surface can be separated from the nugget by increasing the dimension in the stacking direction as compared with the case where the same number of aluminum foils are stacked in a flat plate shape. By these, it can suppress that heat transfers from a nugget to an electrode contact surface, and can further suppress welding with the electrode for 1st resistance welding, and an electrode contact surface.

しかも、ナゲットから見て積層方向の電極当接面側に上述のU字形状部が位置するため、ナゲットがU字形状部内を積層方向に成長し難い。U字形状部では、積層されたアルミニウム箔同士の間に隙間が生じているため、積層方向に電流が流れにくいためである。このため、ナゲットは拡がり方向に成長しやすく、正極端子部材と箔重層部(箔溶着部)との界面において、拡がり方向に大きな面積(断面積)のナゲットを介在させることができ、正極端子部材と箔重層部との溶接強度をより高くすることができる。
かくして、箔重層部と正極端子部材との間で良好な溶接強度を確保すると共に、電極当接面から第1抵抗溶接用電極にアルミニウムが付着するのを抑えて電池を製造することができる。
Moreover, since the above-mentioned U-shaped part is located on the electrode contact surface side in the stacking direction when viewed from the nugget, the nugget is difficult to grow in the stacking direction in the U-shaped part. This is because, in the U-shaped part, a gap is generated between the laminated aluminum foils, so that current does not easily flow in the lamination direction. Therefore, the nugget easily grows in the spreading direction, and a nugget having a large area (cross-sectional area) can be interposed in the spreading direction at the interface between the positive electrode terminal member and the foil layered portion (foil welded portion). And the weld strength between the foil layered portion can be further increased.
Thus, it is possible to manufacture a battery while ensuring good welding strength between the foil multi-layer part and the positive electrode terminal member and suppressing adhesion of aluminum from the electrode contact surface to the first resistance welding electrode.

なお、箔溶着部成形工程としては、箔露出部のアルミニウム箔同士を超音波溶接により互いに溶着させて箔溶着部を形成した後に、プレスにより接合予定面に第1高位部及び第1低位部を、電極当接面に第2高位部及び第2低位部をそれぞれ設ける工程が挙げられる。また、超音波溶接に用いるホーンあるいはアンビルに凹凸形状を形成しておき、アルミニウム箔同士を超音波溶接すると同時に、接合予定面に第1高位部及び第1低位部を、電極当接面に第2高位部及び第2低位部をそれぞれ設ける工程も挙げられる。また、第1低位部あるいは第2低位部としては、例えば、円錐形状の凹部、ピラミッド(四角錐)等の多角錐形状の凹部、四角錐台などの錐台形状の凹部などをなす形態が挙げられる。また、接合予定面内における複数の第1低位部の配置としては、例えば、格子状や放射状の配置が挙げられる。   In addition, as the foil welded part forming step, after forming the foil welded part by welding the aluminum foils of the exposed foil part to each other by ultrasonic welding, the first high-order part and the first low-order part are formed on the surfaces to be joined by pressing. And a step of providing the second high-order part and the second low-order part on the electrode contact surface, respectively. In addition, an uneven shape is formed on the horn or anvil used for ultrasonic welding, and the aluminum foils are ultrasonically welded together. At the same time, the first high-order part and the first low-order part are provided on the planned joining surface, and the electrode contact surface is provided with the first high-order part. The process of providing 2 high level part and 2nd low level part is also mentioned, respectively. In addition, examples of the first low-order part or the second low-order part include a conical recess, a polygonal pyramid-shaped recess such as a pyramid (square pyramid), and a truncated cone-shaped recess such as a quadrangular pyramid. It is done. Moreover, as arrangement | positioning of the some 1st low-order part in a joining plan surface, a grid | lattice form and radial arrangement | positioning are mentioned, for example.

さらに、上述の電池の製造方法であって、前記箔溶着部の前記第1低位部及び前記第2低位部はいずれも、錐台形状の凹部の底面をなす形態であり、上記箔溶着部のうち、前記接合予定面から上記第1低位部までの前記積層方向の寸法を第1深さ寸法D1とし、前記電極当接面から上記第2低位部までの上記積層方向の寸法を第2深さ寸法D2としたとき、上記第2深さ寸法D2と上記第1深さ寸法D1との比D2/D1が、0.3≦D2/D1≦0.9の範囲内である電池の製造方法とすると良い。   Furthermore, in the battery manufacturing method described above, the first low-order part and the second low-order part of the foil welded part are each configured to form a bottom surface of a frustum-shaped recess, Of these, the dimension in the stacking direction from the planned joining surface to the first low-order part is defined as a first depth dimension D1, and the dimension in the stacking direction from the electrode contact surface to the second low-order part is defined as a second depth. The battery manufacturing method in which the ratio D2 / D1 of the second depth dimension D2 and the first depth dimension D1 is within the range of 0.3 ≦ D2 / D1 ≦ 0.9 when the thickness dimension D2 is set. And good.

第2低位部の第2深さ寸法D2と、第1低位部の第1深さ寸法D1との比D2/D1が、0.3≦D2/D1≦0.9の範囲内の箔溶着部を用いて抵抗溶接を行うと、電極当接面から第1抵抗溶接用電極にアルミニウムが付着するのを確実に抑制できることが判ってきた。
その一方、比D2/D1が0.3より小さいと、U字形状部が小さくつぶれやすいので、そこに電流が流れやすくなり、ナゲットの積層方向電極当接面側への成長を抑えられず、ナゲットが電極当接面に接近してしまう。このため、抵抗溶接の際、ナゲットの熱が電極当接面に伝わりやすく、第1抵抗溶接用電極と電極当接面とが溶着しやすい。
他方、比D2/D1が0.9より大きい箔溶着部を用いて抵抗溶接すると、比D2/D1が0.9以下の箔溶着部を用いる場合に比べて、第1抵抗溶接用電極と電極当接面との接触面積が小さくなる。これは、第1低位部及び第2低位部がいずれも錐台形状の凹部の底面をなす形態であるため、第1深さ寸法D1が一定で比D2/D1が大きくなると、第2深さ寸法D2が大きくなり、第2低位部を含む錐台形状の凹部が囲む空間もまた大きくなる。これにより、この電極当接面をなす第2高位部の面積が小さくなるためである。このため、抵抗溶接時に流れる電流が電極当接面において分散し難く発熱しやすいため、この電極当接面と第1抵抗溶接用電極とが溶着しやすいと考えられる。
The foil welded portion in which the ratio D2 / D1 between the second depth dimension D2 of the second low-order part and the first depth dimension D1 of the first low-order part is in the range of 0.3 ≦ D2 / D1 ≦ 0.9. It has been found that when resistance welding is carried out using aluminum, adhesion of aluminum from the electrode contact surface to the first resistance welding electrode can be reliably suppressed.
On the other hand, if the ratio D2 / D1 is smaller than 0.3, the U-shaped portion is apt to be crushed small, so that current easily flows there, and the growth of the nugget on the electrode contact surface side in the stacking direction cannot be suppressed. The nugget approaches the electrode contact surface. For this reason, during resistance welding, the heat of the nugget is easily transmitted to the electrode contact surface, and the first resistance welding electrode and the electrode contact surface are easily welded.
On the other hand, when resistance welding is performed using a foil welded portion having a ratio D2 / D1 greater than 0.9, the first resistance welding electrode and electrode are compared with a case where a foil welded portion having a ratio D2 / D1 of 0.9 or less is used. The contact area with the contact surface is reduced. This is because the first low-order part and the second low-order part both form the bottom of the frustum-shaped recess, and therefore when the first depth dimension D1 is constant and the ratio D2 / D1 increases, the second depth The dimension D2 is increased, and the space surrounded by the frustum-shaped recess including the second low-order part is also increased. This is because the area of the second high-order part forming this electrode contact surface is reduced. For this reason, since the electric current which flows at the time of resistance welding is hard to disperse | distribute on an electrode contact surface and it is easy to generate | occur | produce heat, it is thought that this electrode contact surface and the electrode for 1st resistance welding are easy to weld.

これに対し、上述の電池の製造方法では、箔溶着部において比D2/D1が、0.3≦D2/D1≦0.9の範囲内であるため、抵抗溶接の際、電極当接面から第1抵抗溶接用電極にアルミニウムが付着するのを確実に抑えて電池を製造することができる。   On the other hand, in the battery manufacturing method described above, the ratio D2 / D1 is within the range of 0.3 ≦ D2 / D1 ≦ 0.9 at the foil welded portion. A battery can be manufactured while reliably preventing aluminum from adhering to the first resistance welding electrode.

または、本発明の他の一態様は、アルミニウム箔を含む正極板を有し、上記正極板のうち上記アルミニウム箔の露出した箔露出部同士が積層方向に重なる箔重層部を有する電極体と、アルミニウムからなる正極端子部材と、を備え、上記箔重層部と上記正極端子部材とが、上記積層方向に重なる上記箔重層部と上記正極端子部材との間において、上記アルミニウム箔の拡がり方向に散点状に分布する複数のナゲットを介して結合されてなり、上記箔重層部のうち上記積層方向上記正極端子部材側に上記ナゲットが存在する部位はいずれも、複数の上記アルミニウム箔がそれぞれ断面U字状に屈曲されて積層されたU字形状部とされてなる電池である。 Alternatively, another aspect of the present invention includes a positive electrode plate including an aluminum foil, and an electrode body having a foil multilayer portion in which the exposed foil portions of the aluminum foil overlap each other in the stacking direction in the positive electrode plate, includes a positive terminal member made of aluminum, and the foil multilayer portion and the said positive terminal member, between the heavy Naru the foil layer portion and the positive terminal member in the lamination direction, the spreading direction of the aluminum foil The plurality of aluminum foils are cross-sectioned in each of the portions where the nuggets are present on the positive electrode terminal member side in the stacking direction in the foil multi-layered portion, which are combined through a plurality of nuggets distributed in a scattered manner. It is a battery formed into a U-shaped portion bent and stacked in a U-shape.

上述の電池では、箔重層部と正極端子部材とが、アルミニウム箔の拡がり方向に散点状に分布する複数のナゲットを介して結合されてなるため、箔重層部と正極端子部材との間を良好な強度で接合した電池とすることができる。
加えて、箔重層部のうち積層方向にナゲットが存在する部位がいずれも、複数のU字形状部とされている。このU字形状部では、積層されたアルミニウム箔同士の間に隙間が生じており、積層方向に電流が流れにくいため、抵抗溶接の際、ナゲットをU字形状部内の積層方向に成長させるのを抑えて、アルミニウム箔の拡がり方向への成長を促進させることができる。このため、正極端子部材と箔重層部との界面において、拡がり方向に大きな面積(断面積)のナゲットを介在させることができ、正極端子部材と箔重層部とをより高い溶接強度で接合した電池とすることができる。
In the battery described above, the foil multi-layer part and the positive electrode terminal member are bonded via a plurality of nuggets distributed in the form of scattered dots in the spreading direction of the aluminum foil. A battery joined with good strength can be obtained.
In addition, any portion of the foil multilayer portion where nuggets exist in the stacking direction is a plurality of U-shaped portions. In this U-shaped part, there is a gap between the laminated aluminum foils, and it is difficult for current to flow in the stacking direction. Therefore, when resistance welding is performed, the nugget is grown in the stacking direction in the U-shaped part. It is possible to suppress the growth of the aluminum foil in the spreading direction. For this reason, a nugget having a large area (cross-sectional area) can be interposed in the spreading direction at the interface between the positive electrode terminal member and the foil multilayer portion, and the positive electrode terminal member and the foil multilayer portion are joined with higher welding strength. It can be.

実施形態(実施例1〜)にかかる電池の斜視図である。It is a perspective view of the battery concerning embodiment (Examples 1-3 ). 実施形態(実施例1〜)にかかる電池の平面図である。It is a top view of the battery concerning embodiment (Examples 1-3 ). 実施形態(実施例1〜)にかかる電池の説明図(図2のE部の部分拡大図)である。It is explanatory drawing (partial enlarged view of the E section of FIG. 2) of the battery concerning embodiment (Examples 1-3 ). 実施形態(実施例1〜)にかかる電池の断面図(図2のB−B断面)である。It is sectional drawing (BB cross section of FIG. 2) of the battery concerning embodiment (Examples 1-3 ). 実施形態(実施例1〜)にかかる電池の部分拡大断面図(図4のC部)である。It is a partial expanded sectional view (C section of Drawing 4 ) of a battery concerning an embodiment (Examples 1-3 ). 実施形態(実施例1〜)の正極板の斜視図である。It is a perspective view of the positive electrode plate of embodiment (Examples 1-3 ). 実施形態(実施例1〜)にかかる電池の製造方法のうち箔溶着部成形工程の説明図である。It is explanatory drawing of a foil welding part shaping | molding process among the manufacturing methods of the battery concerning embodiment (Examples 1-3 ). 実施形態(実施例1〜)にかかる電池の製造方法のうち箔溶着部成形工程の説明図である。It is explanatory drawing of a foil welding part shaping | molding process among the manufacturing methods of the battery concerning embodiment (Examples 1-3 ). 実施形態(実施例1〜)にかかる電池の製造方法のうち箔溶着部成形工程の説明図である。It is explanatory drawing of a foil welding part shaping | molding process among the manufacturing methods of the battery concerning embodiment (Examples 1-3 ). 実施形態(実施例1〜)にかかる電池の箔溶着部の斜視図である。It is a perspective view of the foil welding part of the battery concerning embodiment (Examples 1-3 ). 実施形態(実施例1〜)にかかる電池の箔溶着部の斜視図である。It is a perspective view of the foil welding part of the battery concerning embodiment (Examples 1-3 ). 実施形態(実施例1〜)にかかる電池の製造方法のうち箔溶着部成形工程の説明図である。It is explanatory drawing of a foil welding part shaping | molding process among the manufacturing methods of the battery concerning embodiment (Examples 1-3 ). 実施形態(実施例1〜)にかかる電池の製造方法のうち抵抗溶接工程の説明図である。It is explanatory drawing of a resistance welding process among the manufacturing methods of the battery concerning embodiment (Examples 1-3 ). 実施形態(実施例1〜)にかかる電池の製造方法のうち抵抗溶接工程の説明図である。It is explanatory drawing of a resistance welding process among the manufacturing methods of the battery concerning embodiment (Examples 1-3 ). 実施形態(実施例1〜)にかかる電池の製造方法のうち抵抗溶接工程の説明図である。It is explanatory drawing of a resistance welding process among the manufacturing methods of the battery concerning embodiment (Examples 1-3 ). 実施形態(実施例1〜)にかかる電池の製造方法のうち抵抗溶接工程の説明図である。It is explanatory drawing of a resistance welding process among the manufacturing methods of the battery concerning embodiment (Examples 1-3 ).

(実施形態)
次に、本発明の実施形態のうちの実施例1について、図面を参照しつつ説明する。まず、本実施例1にかかる電池1について説明する。この電池1は、扁平捲回型の電極体10と、この電極体10をなす正極板20(後述)に抵抗溶接された正極端子構造体60と、電極体10を収容する電池ケース80とを備える密閉型のリチウムイオン二次電池である(図1,2参照)。この電池1は、これらのほかに、電極体10をなす負極板30(後述)に接合(抵抗溶接)された負極端子構造体70を備える。この電池1の正極端子構造体60は、電池ケース80の内圧上昇により電極体10への通電を遮断する通電遮断機構62(後述)を有している(図1,2参照)。
(Embodiment)
Next, Example 1 of the embodiments of the present invention will be described with reference to the drawings. First, the battery 1 according to Example 1 will be described. The battery 1 includes a flat wound electrode body 10, a positive electrode terminal structure 60 that is resistance-welded to a positive electrode plate 20 (described later) that forms the electrode body 10, and a battery case 80 that houses the electrode body 10. This is a sealed lithium ion secondary battery (see FIGS. 1 and 2). In addition to these, the battery 1 includes a negative electrode terminal structure 70 joined (resistance welded) to a negative electrode plate 30 (described later) forming the electrode body 10. The positive electrode terminal structure 60 of the battery 1 has an energization interruption mechanism 62 (described later) that interrupts energization of the electrode body 10 due to an increase in internal pressure of the battery case 80 (see FIGS. 1 and 2).

この電池1をなす電池ケース80は、共にアルミニウム製の、有底矩形箱形の電池ケース本体81と、矩形板状の封口蓋82とを有している。このうち封口蓋82は、電池ケース本体81の開口を閉塞して、この電池ケース本体81に溶接されている。
また、負極端子構造体70は、銅からなり、主として電池ケース80の内部に位置する負極内部端子部材71、同じく銅からなり、電池ケース80の外部に位置する負極外部端子部材78、及び、絶縁性樹脂のガスケット79からなる(図1,2参照)。このうち、ガスケット79は、負極外部端子部材78及び負極内部端子部材71と電池ケース80との間に介在し、これらを絶縁している。また、負極内部端子部材71は、電池ケース80内で、負極板30の負極リード部38f(後述)に接合している一方、電池ケース80の封口蓋82を貫通して、負極外部端子部材78と導通している。
A battery case 80 constituting the battery 1 has a bottomed rectangular box-shaped battery case main body 81 and a rectangular plate-shaped sealing lid 82 both made of aluminum. Among these, the sealing lid 82 closes the opening of the battery case body 81 and is welded to the battery case body 81.
The negative electrode terminal structure 70 is made of copper, and is mainly composed of a negative electrode internal terminal member 71 located inside the battery case 80, a negative electrode external terminal member 78 also made of copper and located outside the battery case 80, and insulation. It consists of a gasket 79 of a conductive resin (see FIGS. 1 and 2). Among these, the gasket 79 is interposed between the negative electrode external terminal member 78 and the negative electrode internal terminal member 71 and the battery case 80 to insulate them. In addition, the negative electrode internal terminal member 71 is joined to a negative electrode lead portion 38 f (described later) of the negative electrode plate 30 in the battery case 80, while penetrating the sealing lid 82 of the battery case 80 to be connected to the negative electrode external terminal member 78. And continuity.

一方、正極端子構造体60は、主として電池ケース80の内部に位置する正極内部端子構造体61、アルミニウムからなり電池ケース80の外部に位置する正極外部端子部材68、及び、絶縁性樹脂のガスケット69からなる(図1,2参照)。このうち、ガスケット69は、負極端子構造体70と同様、正極外部端子部材68及び正極内部端子構造体61と電池ケース80との間に介在し、これらを絶縁している。   On the other hand, the positive electrode terminal structure 60 is mainly composed of a positive electrode internal terminal structure 61 positioned inside the battery case 80, a positive electrode external terminal member 68 made of aluminum and positioned outside the battery case 80, and an insulating resin gasket 69. (See FIGS. 1 and 2). Among these, the gasket 69 is interposed between the positive electrode external terminal member 68 and the positive electrode internal terminal structure 61 and the battery case 80 and insulates them, like the negative electrode terminal structure 70.

また、正極内部端子構造体61は、電極体10の正極箔溶着部12(後述)と抵抗溶接で接合した接合部材63と、この接合部材63と正極外部端子部材68との間に位置する既知の通電遮断機構62とを有する。この通電遮断機構62は、電池ケース80の内圧が上昇して作動圧以上となった場合、正極内部端子構造体61と正極外部端子部材68との間に流れる電流を遮断する構成とされている。
また、接合部材63は、図4に示すように、通電遮断機構62と電気的に接続している、平板板状の本体部63X、及び、この本体部63Xから電極体10側にそれぞれ延出する2つの矩形帯板状の接合部63Y,63Yからなる。2つの接合部63Y,63Yは、扁平形状である電極体10の短径方向(図4中、左右方向)の両外側にそれぞれ位置し、正極箔溶着部12(後述)とそれぞれ接合している。
Further, the positive electrode internal terminal structure 61 is a known member positioned between a bonding member 63 bonded to a positive electrode foil welded portion 12 (described later) of the electrode body 10 by resistance welding and the bonding member 63 and the positive electrode external terminal member 68. And an energization cutoff mechanism 62. The energization cutoff mechanism 62 is configured to cut off the current flowing between the positive electrode internal terminal structure 61 and the positive electrode external terminal member 68 when the internal pressure of the battery case 80 rises to be equal to or higher than the operating pressure. .
Further, as shown in FIG. 4, the joining member 63 is a flat plate-like main body portion 63 </ b> X that is electrically connected to the energization cutoff mechanism 62, and extends from the main body portion 63 </ b> X to the electrode body 10 side. It consists of two rectangular strip-shaped joints 63Y, 63Y. The two joint portions 63Y and 63Y are respectively located on both outer sides in the minor axis direction (left and right direction in FIG. 4) of the electrode body 10 having a flat shape, and are joined to the positive electrode foil weld portion 12 (described later). .

一方、電極体10は、帯状の正極板20及び負極板30が、ポリエチレンからなる帯状のセパレータ(図示しない)を介して扁平形状に捲回されてなる(図1参照)。この電極体10の内部には、有機溶媒にLiPF6を添加した電解液(図示しない)が含浸されている。
なお、この電解液には、正極板20の電位が自身の反応電位以上になった場合に、酸化分解反応及び重合反応が生じてガスを発生するガス発生剤(本実施形態では、ビフェニル)を含む。このため、本実施例1の電池1では、過充電状態となり、さらに正極板20の電位がガス発生剤の反応電位以上となった場合には、電池ケース80内にガスが発生して、電池ケース80の内圧が上昇する。そして、内圧が前述した通電遮断機構62の作動圧を超えると、電極体10への通電が遮断されて、以降の電池1への過充電が抑制される。
On the other hand, the electrode body 10 is formed by winding a belt-like positive electrode plate 20 and a negative electrode plate 30 into a flat shape via a belt-like separator (not shown) made of polyethylene (see FIG. 1). The electrode body 10 is impregnated with an electrolyte solution (not shown) obtained by adding LiPF 6 to an organic solvent.
In addition, in this electrolytic solution, when the potential of the positive electrode plate 20 becomes equal to or higher than its own reaction potential, a gas generating agent (in this embodiment, biphenyl) that generates a gas through an oxidative decomposition reaction and a polymerization reaction occurs. Including. For this reason, in the battery 1 of the first embodiment, when the battery is overcharged and the potential of the positive electrode plate 20 becomes equal to or higher than the reaction potential of the gas generating agent, gas is generated in the battery case 80, and the battery The internal pressure of the case 80 increases. And if an internal pressure exceeds the operating pressure of the electricity supply interruption | blocking mechanism 62 mentioned above, electricity supply to the electrode body 10 will be interrupted | blocked and subsequent overcharge to the battery 1 will be suppressed.

電極体10をなす負極板30は、帯状の負極箔(図示しない)のうち、一方辺に沿う負極リード部38fを残して、その両面に負極活物質層(図示しない)を担持してなる。また正極板20は、図6の斜視図に示すように、長手方向DAに延びる帯状でアルミニウムからなる正極箔28と、この正極箔28(正極箔28の両主面)の短手方向DB一方側(図6中、左上側)に偏って形成され、正極箔28の長手方向DAに延びる帯状の2つの正極活物質層21,21とを有している。これにより、この正極板20は、正極箔28の短手方向DBの他方側(図6中、右下側)に、正極活物質層21から正極箔28が露出した正極リード部28fを有する。   The negative electrode plate 30 constituting the electrode body 10 carries a negative electrode active material layer (not shown) on both sides of the strip-like negative electrode foil (not shown), leaving a negative electrode lead portion 38f along one side. Further, as shown in the perspective view of FIG. 6, the positive electrode plate 20 includes a positive electrode foil 28 made of aluminum in a strip shape extending in the longitudinal direction DA and a short direction DB DB of the positive electrode foil 28 (both main surfaces of the positive electrode foil 28). It has two strip-shaped positive electrode active material layers 21, 21 that are formed to be biased to the side (upper left side in FIG. 6) and extend in the longitudinal direction DA of the positive electrode foil 28. Thus, the positive electrode plate 20 has a positive electrode lead portion 28f where the positive electrode foil 28 is exposed from the positive electrode active material layer 21 on the other side (lower right side in FIG. 6) of the positive electrode foil 28 in the short direction DB.

なお、電極体10は、図2に示すように、軸線方向DX一方(図2中、右方)側に、上述した正極板20の正極リード部28f,28f同士が正極箔28の積層方向DTに重なり合った、断面略長円状の正極箔重層部11を有する。さらに、この正極箔重層部11は、長円の平行部分に正極リード部28fの正極箔28同士を超音波溶接により積層方向DTに互いに溶着させた正極箔溶着部12を含む(図2〜4参照)。   As shown in FIG. 2, the electrode body 10 has the positive electrode lead portions 28 f and 28 f of the positive electrode plate 20 on one side (right side in FIG. 2) on the axial direction DX side. And a positive foil layer 11 having a substantially oval cross section. Furthermore, the positive electrode foil multilayer portion 11 includes a positive electrode foil welded portion 12 in which the positive foils 28 of the positive electrode lead portion 28f are welded to each other in the laminating direction DT by ultrasonic welding in a parallel portion of an ellipse (FIGS. 2 to 4). reference).

本実施例1にかかる電池1では、図3,4に示すように、正極箔重層部11の正極箔溶着部12と前述した正極端子構造体60の接合部材63(接合部63Y)とが抵抗溶接されている。そして、図3(図2のE部の部分拡大図)、及び、図5の断面図(図4のC部の部分拡大断面図)に示すように、正極箔溶着部12と接合部材63(接合部63Y)とは、抵抗溶接の際、これらが溶融してできた複数のナゲットN,Nを介して結合されている。これら複数のナゲットN,Nは、図3に示すように、正極箔28の拡がり方向(図3中、紙面に平行な方向)に散点状(格子状)に分布している。   In the battery 1 according to Example 1, as shown in FIGS. 3 and 4, the positive electrode foil welded portion 12 of the positive foil multilayer portion 11 and the above-described joining member 63 (joint portion 63Y) of the positive electrode terminal structure 60 are resistant. Welded. And as shown in FIG. 3 (partial enlarged view of the E part of FIG. 2) and sectional drawing of FIG. 5 (partial enlarged sectional view of the C part of FIG. 4), the positive electrode foil welding part 12 and the joining member 63 ( The joint 63Y) is joined through a plurality of nuggets N, N formed by melting them during resistance welding. As shown in FIG. 3, the plurality of nuggets N and N are distributed in the form of dots (lattice) in the spreading direction of the positive foil 28 (in the direction parallel to the paper surface in FIG. 3).

また、この電池1は、図5に示すように、正極箔重層部11の正極箔溶着部12のうち、積層方向DTの正極端子構造体60の接合部材63側(図5中、左方)にナゲットNが存在する部位がいずれもU字形状部LUとされている。即ち、正極箔溶着部12において、積層方向DTにナゲットNとU字形状部LUとが並んで配置されている。このU字形状部LUは、正極箔重層部11をなす複数の正極箔28,28がそれぞれ断面U字状に屈曲されて積層された部位である。なお、このU字形状部LUは、後述する抵抗溶接工程において、正極箔溶着部12の第2低位部14E(後述)における周囲の複数の正極箔28,28がそれぞれ変形してできた部位である。   In addition, as shown in FIG. 5, in the battery 1, in the positive electrode foil welded portion 12 of the positive foil laminated portion 11, the joining member 63 side of the positive electrode terminal structure 60 in the stacking direction DT (left side in FIG. 5). Each of the portions where the nugget N exists is a U-shaped portion LU. That is, in the positive electrode foil welded portion 12, the nugget N and the U-shaped portion LU are arranged side by side in the stacking direction DT. The U-shaped portion LU is a portion where a plurality of positive foils 28 and 28 constituting the positive foil multilayer portion 11 are bent and laminated in a U-shaped cross section. The U-shaped portion LU is a portion formed by deforming a plurality of surrounding positive electrode foils 28 and 28 in a second low-order portion 14E (described later) of the positive electrode foil welded portion 12 in a resistance welding process described later. is there.

本実施形態にかかる電池1では、正極箔重層部11の正極箔溶着部12と正極端子構造体60とが、正極箔28の拡がり方向に散点状に分布する複数のナゲットN,Nを介して結合されてなるため、正極箔重層部11(正極箔溶着部12)と正極端子構造体60との間を良好な強度で接合した電池1とすることができる。   In the battery 1 according to this embodiment, the positive electrode foil welded portion 12 of the positive electrode foil multilayer portion 11 and the positive electrode terminal structure 60 are arranged via a plurality of nuggets N, N distributed in the form of dots in the spreading direction of the positive electrode foil 28. Thus, the battery 1 in which the positive foil laminated portion 11 (positive foil welded portion 12) and the positive terminal structure 60 are joined with good strength can be obtained.

加えて、この電池1では、正極箔重層部11(正極箔溶着部12)のうち積層方向DTにナゲットNが存在する部位がいずれも、複数のU字形状部LU,LUとされている。このU字形状部LUでは、積層された正極箔28,28同士の間に隙間が生じており、積層方向DTに電流が流れにくいため、後述する抵抗溶接の際、ナゲットNをU字形状部LU内の積層方向DTに成長させるのを抑えて、正極箔28の拡がり方向への成長を促進させることができる。このため、正極端子構造体60と正極箔重層部11(正極箔溶着部12)との界面において、拡がり方向に大きな面積(断面積)のナゲットNを介在させることができ、正極端子構造体60と正極箔重層部11(正極箔溶着部12)とをより高い溶接強度で接合した電池1とすることができる。   In addition, in the battery 1, the portion where the nugget N is present in the stacking direction DT in the positive foil layered portion 11 (positive foil welded portion 12) is a plurality of U-shaped portions LU, LU. In this U-shaped portion LU, a gap is formed between the stacked positive electrode foils 28 and 28, and it is difficult for current to flow in the stacking direction DT. The growth in the spreading direction of the positive electrode foil 28 can be promoted by suppressing the growth in the stacking direction DT in the LU. For this reason, the nugget N having a large area (cross-sectional area) can be interposed in the spreading direction at the interface between the positive electrode terminal structure 60 and the positive electrode foil multilayer portion 11 (positive electrode foil welded portion 12). And the positive electrode foil multilayer portion 11 (positive electrode foil welded portion 12) can be made into a battery 1 joined with higher welding strength.

次いで、本実施例1にかかる電池1の製造方法について、図7を参照しつつ説明する。まず、それぞれ公知の手法で作製した帯状の正極板20と負極板30との間に、帯状のセパレータを介在させ、これらを捲回軸AXの周りに捲回する。このとき、正極板20の正極リード部28fを捲回軸AXの軸線方向DX一方側(図7中、左方側)に、負極板30の負極リード部38fを軸線方向DX他方側(図7中、右方側)にそれぞれ配置して捲回した。捲回後、扁平形状に変形して扁平捲回型の電極体10とした(図7参照)。この電極体10は、軸線方向DX他方側(図7中、左方側)に正極箔28の正極リード部28f同士が重なる正極箔重層部11を有している。   Next, a method for manufacturing the battery 1 according to Example 1 will be described with reference to FIG. First, a belt-like separator is interposed between the belt-like positive electrode plate 20 and the negative electrode plate 30 each produced by a known method, and these are wound around the winding axis AX. At this time, the positive electrode lead portion 28f of the positive electrode plate 20 is on one side in the axial direction DX of the winding axis AX (left side in FIG. 7), and the negative electrode lead portion 38f of the negative electrode plate 30 is on the other side in the axial direction DX (FIG. 7). Each was placed on the middle and right side) and wound. After winding, the electrode body 10 was deformed into a flat shape to form a flat wound electrode body 10 (see FIG. 7). This electrode body 10 has a positive electrode foil multilayer portion 11 in which the positive electrode lead portions 28f of the positive electrode foil 28 overlap with each other on the other side in the axial direction DX (left side in FIG. 7).

次に、本実施例1にかかる電池1の製造方法のうち箔溶着部成形工程について説明する。この箔溶着部成形工程は、上述の正極箔重層部11に、互いに重なる正極箔28,28同士を超音波溶接により積層方向DTに互いに溶着した正極箔溶着部12を成形する工程である。
この箔溶着部成形工程では、いずれも鋼鉄製の第1ブロック体110及び第2ブロック体120を用いる(図7参照)。このうち、第1ブロック体110は、概略矩形板状で、先端部112が厚み方向に切り欠かれて三角柱状(刃状)の形態を有する。また、第2ブロック体120は、概略矩形板状で厚み方向の一部が切り欠かれた状態の先端面121を有する。
Next, the foil welded part forming step in the method for manufacturing the battery 1 according to the first embodiment will be described. This foil welded portion forming step is a step of forming the positive electrode foil welded portion 12 in which the positive foils 28 and 28 that are overlapped with each other are welded to each other in the stacking direction DT by ultrasonic welding.
In the foil welded part forming step, both the first block body 110 and the second block body 120 made of steel are used (see FIG. 7). Among these, the 1st block body 110 is a substantially rectangular plate shape, and the front-end | tip part 112 is notched in the thickness direction, and has a triangular prism shape (blade shape). Moreover, the 2nd block body 120 has the front end surface 121 of the state by which the one part of the thickness direction was notched by the substantially rectangular plate shape.

この箔溶着部成形工程では、まず、第1ブロック体110を電極体10の正極箔重層部11の中央に挿入する。具体的には、図7に示すように、三角柱状の先端部112を電極体10側に配置した第1ブロック体110を、捲回軸AXに沿って、図7中、左側から右側に移動させる。そして、第1ブロック体110で正極箔重層部11を2つに分ける(図8参照)。これと共に、正極箔重層部11のうち長円の平行部分に外側から第2ブロック体120を押しつける。具体的には、図7に示すように、前述した先端面121を正極箔重層部11のうち長径方向DL(図7中、上下方向)に延びる平行部分に向けて、第2ブロック体120を短径方向DS(図7中、右下側から左上側)に移動させる。これにより、正極箔重層部11のうち長円の平行部分において、正極箔28の正極リード部28f(図8中、左方側)が、第2ブロック体120の先端面121、及び、第1ブロック体110の側面111に挟まれて、積層方向DTに近接した状態にくせ付けされた正極箔近接部12Bが成形される(図8参照)。   In the foil welded part forming step, first, the first block body 110 is inserted into the center of the positive electrode foil multilayer part 11 of the electrode body 10. Specifically, as shown in FIG. 7, the first block body 110 having the triangular columnar tip 112 arranged on the electrode body 10 side is moved from the left side to the right side in FIG. 7 along the winding axis AX. Let And the positive electrode foil multilayer part 11 is divided into two by the 1st block body 110 (refer FIG. 8). At the same time, the second block body 120 is pressed against the parallel part of the ellipse in the positive electrode foil multilayer portion 11 from the outside. Specifically, as shown in FIG. 7, the second block body 120 is placed so that the above-described distal end surface 121 faces the parallel portion extending in the major axis direction DL (vertical direction in FIG. 7) of the positive electrode foil multilayer portion 11. It is moved in the minor axis direction DS (in FIG. 7, from the lower right side to the upper left side). As a result, the positive electrode lead portion 28f (left side in FIG. 8) of the positive electrode foil 28 is connected to the front end surface 121 of the second block body 120 and the first portion in the oblong parallel portion of the positive electrode foil multilayer portion 11. The positive electrode foil proximity portion 12B is formed between the side surfaces 111 of the block body 110 and is brought close to the stacking direction DT (see FIG. 8).

続いて、図9に示すように、正極箔近接部12Bで積層方向DTに重なり合う正極箔28(正極リード部28f)を超音波溶接する。具体的には、ホーン131のホーン加工面132を、これと対向し合うアンビル136のアンビル加工面137に対して平行に振動させる超音波溶接装置130を用いる。
なお、ホーン131の先端面であるホーン加工面132には、四角錐台状に凸の第1凸部133が格子状(具体的には、2列×6列)に複数配置されている。このホーン加工面132における、第1凸部133,133同士間のピッチは0.90mmである。一方、アンビル136のアンビル加工面137にも、四角錐台状に凸の第2凸部138が格子状(具体的には、2列×6列)に複数配置されている。このアンビル加工面137における、第2凸部138,138同士間のピッチは、ホーン加工面132の第1凸部133,133同士間のピッチと同じ0.90mmである。
また、ホーン加工面132の第1凸部133,133と、アンビル加工面137の第2凸部138,138とは、正極箔近接部12Bを挟んで互いに対向しあう(図9参照)。
Subsequently, as shown in FIG. 9, the positive electrode foil 28 (positive electrode lead portion 28f) overlapping in the stacking direction DT at the positive electrode foil proximity portion 12B is ultrasonically welded. Specifically, an ultrasonic welding apparatus 130 that vibrates the horn processed surface 132 of the horn 131 in parallel with the anvil processed surface 137 of the anvil 136 facing the horn processed surface 130 is used.
Note that a plurality of first convex portions 133 that are convex in a quadrangular pyramid shape are arranged in a lattice shape (specifically, 2 rows × 6 rows) on the horn processed surface 132 that is the tip surface of the horn 131. The pitch between the 1st convex parts 133 and 133 in this horn process surface 132 is 0.90 mm. On the other hand, on the anvil machining surface 137 of the anvil 136, a plurality of second convex portions 138 convex in a quadrangular pyramid shape are arranged in a lattice shape (specifically, 2 rows × 6 rows). The pitch between the second convex portions 138 and 138 on the anvil processed surface 137 is 0.90 mm which is the same as the pitch between the first convex portions 133 and 133 on the horn processed surface 132.
Moreover, the 1st convex part 133,133 of the horn process surface 132 and the 2nd convex part 138,138 of the anvil process surface 137 mutually oppose on both sides of the positive electrode foil proximity | contact part 12B (refer FIG. 9).

この超音波溶接装置130のホーン131とアンビル136とで、正極箔近接部12Bを積層方向DTに押圧すると共に、ホーン131から超音波振動を付与して、正極箔近接部12Bの正極箔28を超音波溶接した。これにより、正極箔重層部11に正極箔28,28同士が積層方向DTに互いに溶着し合い一体化した箔溶着部12Cを成形する。   With the horn 131 and the anvil 136 of the ultrasonic welding apparatus 130, the positive foil proximity portion 12B is pressed in the stacking direction DT and ultrasonic vibration is applied from the horn 131 so that the positive foil 28 of the positive foil proximity portion 12B is attached. Ultrasonic welding. As a result, the foil-welded portion 12 </ b> C in which the cathode foils 28, 28 are welded and integrated with each other in the stacking direction DT on the cathode foil multilayer portion 11 is formed.

なお、図10に示すように、この箔溶着部12Cは、自身の表面のうち、短径方向外側DS1(図10中、上側)を向く第1箔溶着表面13に、この短径方向外側DS1に高位の第1高位部13Dと、この第1高位部13Dに比して低位の第1低位部13Eとを成形している。なお、本実施形態では、前述したホーン131の第1凸部133により形成された四角錐台状の窪みの底部を第1低位部13Eとし、窪み同士の間の部位を第1高位部13Dとする(図10参照)。
図10に示すように、第1高位部13Dは、第1箔溶着表面13と同一平面上に位置している。また、第1低位部13Eは、第1高位部13D(第1箔溶着表面13)内に、0.90mmのピッチP1で格子状(具体的には軸線方向DXに2列、長径方向DLに6列)に並んで分布している(図10参照)。また、第1箔溶着表面13から第1低位部13Eまでの積層方向DTの第1深さ寸法D1は、0.40mmである(図12参照)。
As shown in FIG. 10, the foil welded portion 12C has a short-diameter outer side DS1 on the first foil-welded surface 13 facing the outer side DS1 (upper side in FIG. 10) of its own surface. The first high-order part 13D, which is higher than the first high-order part 13D, and the first low-order part 13E, which is lower than the first high-order part 13D, are formed. In the present embodiment, the bottom of the quadrangular pyramid-shaped recess formed by the first convex portion 133 of the horn 131 described above is the first low-order portion 13E, and the portion between the recesses is the first high-order portion 13D. (See FIG. 10).
As shown in FIG. 10, the first high level portion 13 </ b> D is located on the same plane as the first foil welding surface 13. In addition, the first low-order part 13E has a lattice shape (specifically, two rows in the axial direction DX and a long-diameter direction DL) at a pitch P1 of 0.90 mm in the first high-order part 13D (first foil welding surface 13). 6 rows) (see FIG. 10). Moreover, the 1st depth dimension D1 of the lamination direction DT from the 1st foil welding surface 13 to the 1st low-order part 13E is 0.40 mm (refer FIG. 12).

一方、図11に示すように、箔溶着部12Cの表面のうち、短径方向内側DS2(図11中、上側)を向く第2箔溶着表面14に、この短径方向内側DS2に高位の第2高位部14Dと、この第2高位部14Dに比して低位の第2低位部14Eとを成形している。なお、本実施形態では、前述したアンビル136の第2凸部138により形成された四角錐台状の窪みの底部を第2低位部14Eとし、窪み同士の間の部位を第2高位部14Dとする(図11参照)。
図11に示すように、第2高位部14Dは、第2箔溶着表面14と同一平面上に位置している。また、第2低位部14Eは、第2高位部14D(第2箔溶着表面14)内に、第1低位部13Eと同じ0.90mmのピッチP1で格子状(具体的には軸線方向DXに2列、長径方向DLに6列)に並んで分布している(図11参照)。また、第2箔溶着表面14から第2低位部14Eまでの積層方向DTの第2深さ寸法D2は、0.12mmである(図12参照)。
なお、箔溶着部12Cでは、第2箔溶着表面14の第2低位部14Eが、前述した第1箔溶着表面13の第1低位部13Eと積層方向DTに重なる位置に、即ち、第2低位部14Eと第1低位部13Eとは同位相にそれぞれ配置されている(図12,14参照)。
On the other hand, as shown in FIG. 11, among the surfaces of the foil welded portion 12C, the second foil weld surface 14 facing the inner side DS2 (upper side in FIG. 11) faces the second inner side DS2 higher than the inner surface DS2. The second high-order part 14D and the second low-order part 14E which is lower than the second high-order part 14D are formed. In the present embodiment, the bottom of the square frustum-shaped depression formed by the second convex part 138 of the anvil 136 described above is the second low-order part 14E, and the part between the depressions is the second high-order part 14D. (See FIG. 11).
As shown in FIG. 11, the second high-order part 14 </ b> D is located on the same plane as the second foil welding surface 14. In addition, the second low-order part 14E has a lattice shape (specifically in the axial direction DX) at the same pitch P1 of 0.90 mm as the first low-order part 13E in the second high-order part 14D (second foil welding surface 14). 2 rows and 6 rows in the major axis direction DL) (see FIG. 11). Further, the second depth dimension D2 in the stacking direction DT from the second foil welding surface 14 to the second low-order part 14E is 0.12 mm (see FIG. 12).
In the foil welded portion 12C, the second low level portion 14E of the second foil weld surface 14 overlaps the first low level portion 13E of the first foil weld surface 13 in the stacking direction DT, that is, the second low level. The part 14E and the first low-order part 13E are arranged in the same phase (see FIGS. 12 and 14).

次いで、正極箔重層部11の長円の平行部分のうち逆側にも、同様にして箔溶着部12Cを作製する。以上により、2つに分けた正極箔重層部11の長円の平行部分のそれぞれに箔溶着部12C,12Cを形成した電極体10ができあがる(図12参照)。   Next, a foil welded portion 12C is similarly produced on the opposite side of the elliptical parallel portions of the positive electrode foil multilayer portion 11. As a result, the electrode body 10 in which the foil welded portions 12C and 12C are formed on each of the parallel portions of the ellipse of the positive foil layered portion 11 divided into two is completed (see FIG. 12).

次に、本実施例1にかかる電池1の製造方法のうち抵抗溶接工程について説明する。この抵抗溶接工程では、いずれも銅製の第1電極141と第2電極146とを有する既知の抵抗溶接装置140を用いる。この抵抗溶接装置140では、第1電極141の第1電極面142と、第2電極146の先端面をなす第2電極面147とが、同軸上で互いに対向する(図13参照)。なお、第1電極面142及び第2電極面147は、いずれも外周円形でわずかに球面状に膨出している(図15参照)。   Next, the resistance welding process in the manufacturing method of the battery 1 according to the first embodiment will be described. In this resistance welding process, a known resistance welding apparatus 140 having a first electrode 141 and a second electrode 146 made of copper is used. In the resistance welding apparatus 140, the first electrode surface 142 of the first electrode 141 and the second electrode surface 147 forming the tip surface of the second electrode 146 are coaxially opposed to each other (see FIG. 13). Each of the first electrode surface 142 and the second electrode surface 147 has a circular outer periphery and slightly bulges into a spherical shape (see FIG. 15).

抵抗溶接工程では、まず、正極端子構造体60の接合部材63の接合部63Yを、電極体10の正極箔重層部11のうち箔溶着部12Cに当接させる(図13,14参照)。具体的には、予め公知の手法で通電遮断機構62を有する正極端子構造体60を封口蓋82に組み付けておく。そして、正極端子構造体60の2つの接合部63Y,63Yのうち一方を、電極体10に2つある箔溶着部12C,12Cの一方の第1箔溶着表面13に当接させる(図13参照)。これにより、図14に示すように、箔溶着部12Cのうち、第1箔溶着表面13の第1高位部13Dを接合部63Yに当接させる。なお、接合部63Yのうち第1高位部13Dと当接している部位を当接部63YTとする(図14参照)。   In the resistance welding step, first, the joint portion 63Y of the joint member 63 of the positive electrode terminal structure 60 is brought into contact with the foil welded portion 12C of the positive electrode foil multilayer portion 11 of the electrode body 10 (see FIGS. 13 and 14). Specifically, the positive electrode terminal structure 60 having the energization interruption mechanism 62 is assembled to the sealing lid 82 in advance by a known method. Then, one of the two joint portions 63Y and 63Y of the positive electrode terminal structure 60 is brought into contact with one of the first foil weld surfaces 13 of the two foil weld portions 12C and 12C on the electrode body 10 (see FIG. 13). ). Thereby, as shown in FIG. 14, among the foil welded parts 12C, the first high-order part 13D of the first foil welded surface 13 is brought into contact with the joint part 63Y. Note that a portion of the joint portion 63Y that is in contact with the first high-order portion 13D is referred to as a contact portion 63YT (see FIG. 14).

次いで、前述した抵抗溶接装置140を用いて、正極端子構造体60の接合部63Yと、これに当接する箔溶着部12Cとを抵抗溶接する。具体的には、抵抗溶接装置140のうち第1電極141を箔溶着部12Cのうち第2箔溶着表面14側に、また、第2電極146を正極端子構造体60の接合部63Y側にそれぞれ配置する(図15参照)。かくして、第1電極141と箔溶着部12Cと正極端子構造体60の接合部63Yと第2電極146とをこの順に重ねる。
そして、第1電極141と第2電極146とで、箔溶着部12Cと接合部63Yとを正極箔28の積層方向DTに挟圧する。図16に第1電極141と第2電極146とで、箔溶着部12Cと接合部63Yとを挟圧した状態の断面図を示す。第1電極141と第2電極146との挟圧により、第1高位部13Dが接合部63Y(当接部63YT)に圧接する。この状態で第1電極141と第2電極146との間に電流を流して、箔溶着部12Cと接合部63Yとを抵抗溶接した。
Next, using the above-described resistance welding apparatus 140, the joint portion 63Y of the positive electrode terminal structure 60 and the foil welded portion 12C in contact therewith are resistance-welded. Specifically, in the resistance welding apparatus 140, the first electrode 141 is on the second foil welding surface 14 side in the foil welded portion 12C, and the second electrode 146 is on the joint 63Y side of the positive electrode terminal structure 60, respectively. Arrange (see FIG. 15). Thus, the first electrode 141, the foil welded portion 12C, the joint portion 63Y of the positive terminal structure 60, and the second electrode 146 are overlapped in this order.
Then, the first electrode 141 and the second electrode 146 sandwich the foil welded portion 12C and the joining portion 63Y in the stacking direction DT of the positive foil 28. FIG. 16 is a cross-sectional view showing a state in which the first electrode 141 and the second electrode 146 sandwich the foil welded portion 12C and the joint portion 63Y. Due to the clamping pressure between the first electrode 141 and the second electrode 146, the first high-order part 13D is in pressure contact with the joint part 63Y (contact part 63YT). In this state, a current was passed between the first electrode 141 and the second electrode 146 to resistance weld the foil welded part 12C and the joining part 63Y.

但し、箔溶着部12Cの第1高位部13Dは、前述した形成工程において、第1低位部13Eほどには、正極箔28,28同士が高さ方向(正極箔28の積層方向DT)に強く圧接されておらず、密接して重なっていない。このため、第1高位部13Dの内部は相対的に積層方向DTに電流が流れにくいため、第1高位部13Dを流れる電流は、第1高位部13Dの内部を積層方向DTに進むのではなく、第1高位部13Dと第1低位部13Eとの間に位置して斜面13Sをなす正極箔28を通じて、第1低位部13Eに進み、この第1低位部13Eで積層方向DTに進む(或いはこの経路を逆に進む)と考えられる。図16中に電流が進む経路Lを矢印で示す。従って、抵抗溶接の際には、第1低位部13Eの周りの斜面13Sに集中して電流が流れて、この斜面13S及び第1低位部13Eが溶融する。
また、第1高位部13Dを正極端子構造体60に当接させて抵抗溶接を行うため、第1高位部13Dは積層方向DTに押圧されて、この第1高位部13Dをなしている正極箔28の一部が第1高位部13Dの周囲に拡がり方向に押し出される。そして、押し出されたアルミニウム(正極箔28)も、前述した斜面13Sで溶融される。
これら箔溶着部12Cと正極端子構造体60とを抵抗溶接すると、第1箔溶着表面13に複数成形した第1低位部13Eの各位置にナゲットN,Nをそれぞれ生成することができる。これにより、箔溶着部12Cと正極端子構造体60との間で1つのナゲットのみが極端に大きくなるのを防ぐことができ、溶融したアルミニウムがナゲットNから噴出するのを抑え、噴出したとしても少量にとどめることができる。
However, the first high level portion 13D of the foil welded portion 12C is stronger in the height direction (stacking direction DT of the positive foil 28) than the first low level portion 13E in the formation process described above. They are not pressed together and do not overlap closely. For this reason, since current is relatively less likely to flow in the stacking direction DT inside the first high level portion 13D, the current flowing through the first high level portion 13D does not travel in the stacking direction DT inside the first high level portion 13D. The first low-order part 13E is advanced through the positive foil 28 located between the first high-order part 13D and the first low-order part 13E and forming the slope 13S, and the first low-order part 13E proceeds in the stacking direction DT (or This route is considered to be reversed). In FIG. 16, the path L along which the current travels is indicated by an arrow. Therefore, at the time of resistance welding, current flows concentrated on the slope 13S around the first low-order part 13E, and the slope 13S and the first low-order part 13E melt.
Further, in order to perform resistance welding by bringing the first high level portion 13D into contact with the positive electrode terminal structure 60, the first high level portion 13D is pressed in the laminating direction DT to form the first high level portion 13D. A part of 28 is pushed out in the spreading direction around the first high-order part 13D. The extruded aluminum (positive electrode foil 28) is also melted at the slope 13S described above.
When the foil welded portion 12C and the positive electrode terminal structure 60 are resistance-welded, nuggets N and N can be generated at each position of the first low-order portion 13E formed on the first foil welded surface 13. Thereby, it is possible to prevent only one nugget from becoming extremely large between the foil welded portion 12C and the positive electrode terminal structure 60, and even if molten aluminum is prevented from being ejected from the nugget N and ejected. Can be kept in a small amount.

一方、第1電極141と第2電極146との挟圧により、第1電極141で複数の第2高位部14D,14Dをそれぞれ積層方向DTに押し潰すため、各第2高位部14D,14Dの正極箔28を覆う酸化皮膜が破壊されて、第2箔溶着表面14にアルミニウム(新生面)が複数の箇所で露出する。これにより、第1電極141と第2箔溶着表面14との間の接触抵抗が低くなる上、複数の箇所で接触するので電流が分散して流れ発熱しにくくなるので、抵抗溶接工程では、第1電極141と箔溶着部12Cとの溶着を防ぐことができる。   On the other hand, due to the clamping pressure between the first electrode 141 and the second electrode 146, the plurality of second high level portions 14D and 14D are crushed by the first electrode 141 in the stacking direction DT, respectively. The oxide film covering the positive electrode foil 28 is destroyed, and aluminum (new surface) is exposed on the second foil welding surface 14 at a plurality of locations. As a result, the contact resistance between the first electrode 141 and the second foil welding surface 14 is lowered, and since the contact is made at a plurality of locations, the current is dispersed and hardly flows, so in the resistance welding process, Welding between one electrode 141 and the foil welded portion 12C can be prevented.

また、抵抗溶接工程において、第1電極141によって第2高位部14Dが積層方向DTに押し潰されると、この第2高位部14Dのうち周囲の部分が、第2低位部14Eに向けて移動する。これにより、第2低位部14Eと第2高位部14Dとの間で積層されている複数の正極箔28がそれぞれ変形して、断面U字状に屈曲されて積層されたU字形状部LUとなる(図16参照)。
なお、図5に示すように、箔溶着部12Cにおいて、ナゲットNとU字形状部LUとは、積層方向DTに並ぶ。U字形状部LUは、複数の正極箔28が積層方向DTに屈曲して積層されているため、正極箔28,28同士の間に隙間が生じ、熱が積層方向DTに伝わりにくい。また、同じ枚数の正極箔28を平板状に積層した場合に比して、積層方向DTの寸法を大きくして、第2箔溶着表面14をナゲットNから離すことができる。
これらにより、抵抗溶接工程において、ナゲットNから第2箔溶着表面14に熱が伝わるのを抑えて、第1電極141と第2箔溶着表面14との溶着をさらに抑制できる。
In the resistance welding process, when the second high level portion 14D is crushed in the stacking direction DT by the first electrode 141, the surrounding portion of the second high level portion 14D moves toward the second low level portion 14E. . As a result, the plurality of positive foils 28 laminated between the second low-order part 14E and the second high-order part 14D are respectively deformed and bent into a U-shaped cross section, and the U-shaped part LU laminated. (See FIG. 16).
As shown in FIG. 5, in the foil welded portion 12C, the nugget N and the U-shaped portion LU are arranged in the stacking direction DT. In the U-shaped portion LU, since a plurality of positive foils 28 are bent and stacked in the stacking direction DT, a gap is generated between the positive foils 28 and 28 and heat is not easily transmitted to the stacking direction DT. In addition, the second foil welding surface 14 can be separated from the nugget N by increasing the dimension in the stacking direction DT as compared with the case where the same number of positive electrode foils 28 are stacked in a flat plate shape.
By these, in a resistance welding process, it can suppress that heat is transmitted from the nugget N to the 2nd foil welding surface 14, and the welding with the 1st electrode 141 and the 2nd foil welding surface 14 can further be suppressed.

しかも、ナゲットNから見て積層方向DTの第2箔溶着表面14側に上述のU字形状部LUが位置するため、ナゲットNがU字形状部LU内を積層方向DTに成長し難い。U字形状部LUでは、積層された正極箔28,28同士の間に隙間が生じているため、積層方向DTに電流が流れにくいためである。このため、ナゲットNは拡がり方向に成長しやすく、正極端子構造体60と正極箔重層部11(正極箔溶着部12)との界面において、拡がり方向に大きな面積(断面積)のナゲットNを介在させることができ、正極端子構造体60と正極箔重層部11との溶接強度をより高くすることができる。   Moreover, since the U-shaped portion LU is located on the second foil welding surface 14 side in the stacking direction DT as viewed from the nugget N, the nugget N is difficult to grow in the stacking direction DT in the U-shaped portion LU. This is because, in the U-shaped portion LU, a gap is generated between the stacked positive electrode foils 28 and 28, so that current does not easily flow in the stacking direction DT. For this reason, the nugget N tends to grow in the spreading direction, and a nugget N having a large area (cross-sectional area) in the spreading direction is interposed at the interface between the positive electrode terminal structure 60 and the positive electrode foil multilayer portion 11 (positive electrode foil welded portion 12). Therefore, the welding strength between the positive electrode terminal structure 60 and the positive electrode foil multilayer portion 11 can be further increased.

かくして、正極箔重層部11と正極端子構造体60との間で良好な溶接強度を確保すると共に、第2箔溶着表面14から第1電極141にアルミニウムが付着するのを抑えて抵抗溶接できる。   Thus, good welding strength can be ensured between the positive electrode foil multilayer portion 11 and the positive electrode terminal structure 60, and resistance welding can be performed while suppressing adhesion of aluminum from the second foil welding surface 14 to the first electrode 141.

次いで、正極端子構造体60の接合部63Yのうちの他方と、箔溶着部12Cとを、同様にして抵抗溶接した。かくして、正極箔重層部11(正極箔溶着部12)に正極端子構造体60を結合した電極体10ができる。   Subsequently, the other of the joint portions 63Y of the positive electrode terminal structure 60 and the foil welded portion 12C were resistance-welded in the same manner. In this way, the electrode body 10 in which the positive electrode terminal structure 60 is bonded to the positive electrode foil multilayer portion 11 (positive electrode foil welded portion 12) can be obtained.

一方、公知の手法で封口蓋82に組み付けた負極端子構造体70(負極内部端子部材71)を、電極体10の負極板30(負極リード部38f)に接合(抵抗溶接)した。その後、封口蓋82、正極端子構造体60及び負極端子構造体70と一体の電極体10を電池ケース本体81内に収容し、レーザ溶接を用いて、電池ケース本体81と封口蓋82とを隙間なく接合する。次いで、図示しない注液孔から電池ケース80内に電解液を注入した後、注液孔を封止して、本実施例1にかかる電池1が完成する(図1参照)。   On the other hand, the negative electrode terminal structure 70 (negative electrode internal terminal member 71) assembled to the sealing lid 82 by a known method was joined (resistance welding) to the negative electrode plate 30 (negative electrode lead portion 38f) of the electrode body 10. Thereafter, the electrode body 10 integrated with the sealing lid 82, the positive electrode terminal structure 60 and the negative electrode terminal structure 70 is accommodated in the battery case main body 81, and the battery case main body 81 and the sealing lid 82 are separated from each other by laser welding. Join together. Next, after injecting an electrolytic solution into the battery case 80 from a liquid injection hole (not shown), the liquid injection hole is sealed to complete the battery 1 according to Example 1 (see FIG. 1).

ところで、本実施例1にかかる電池1の電極体10と正極端子構造体60との溶接状態を調査した。具体的には、電池1と同様の電池を10個用意し、抵抗溶接した電極体10の正極箔重層部11(正極箔溶着部12)と正極端子構造体60の接合部63Yとの間の溶接強度(剪断方向の引張強度)を、既知の引張試験機を用いてそれぞれ測定した。その結果を表1に示す。なお、この表1では、全て(10個中、10個)の溶接強度(引張強度)が150N以上の場合には、溶接状態欄に「○」印を、5個以上の溶接強度が100N未満の場合には「×」印を、それ以外の結果の場合には「△」印をそれぞれ付した。
また、抵抗溶接時の第1電極141における正極箔の溶着の有無についても、表1に示す。なお、5個以上の電池において、抵抗溶接時に正極箔の溶着があった場合には「有」を、それ以外の結果の場合には「無」をそれぞれ記した。
By the way, the welding state of the electrode body 10 and the positive electrode terminal structure 60 of the battery 1 according to Example 1 was investigated. Specifically, ten batteries similar to the battery 1 are prepared, and between the positive electrode foil multilayer portion 11 (positive electrode foil welded portion 12) of the resistance-welded electrode body 10 and the joint portion 63Y of the positive electrode terminal structure 60. The weld strength (tensile strength in the shear direction) was measured using a known tensile tester. The results are shown in Table 1. In Table 1, when the weld strength (tensile strength) of all (10 out of 10) is 150 N or more, a “◯” mark is displayed in the weld state column, and the weld strength of 5 or more is less than 100 N. In the case of, “x” mark is given, and in the case of other results, “△” mark is given respectively.
Table 1 also shows whether or not the positive electrode foil is welded to the first electrode 141 during resistance welding. In addition, in 5 or more batteries, “Yes” was indicated when the positive electrode foil was welded during resistance welding, and “None” was indicated otherwise.

Figure 0006107346
Figure 0006107346

(実施例2,3、参考例1,2、比較例1〜3)
一方、上述した実施例1の電池1とは異なるが第1低位部と第2低位部とが同位相で配置されている実施例2,3、参考例1,2の各電池のほか、比較例1〜3の各電池を用意した。
具体的には、実施例2の電池は、前述した箔溶着部成形工程において、第2深さ寸法D2をD2=0.36mm、比D2/D1をD2/D1=0.90とした箔溶着部を成形して製造した点で、実施例1の電池1とは異なる(表1参照)。
また、実施例3の電池は、ピッチP1をP1=0.70mm、第2深さ寸法D2をD2=0.20mm、比D2/D1をD2/D1=0.50とした箔溶着部を成形して製造した点で、実施例1の電池1とは異なる(表1参照)。
また、参考例1の電池は、第2深さ寸法D2をD2=0.08mm、比D2/D1をD2/D1=0.20とした箔溶着部を成形して製造した点で、実施例1の電池1とは異なる(表1参照)。
また、参考例2の電池は、第2深さ寸法D2をD2=0.44mm、比D2/D1をD2/D1=1.10とした箔溶着部を成形して製造した点で、実施例1の電池1とは異なる(表1参照)。
一方、比較例1の電池は、第1箔溶着表面に第1高位部及び第1低位部を、第2箔溶着表面に第2高位部及び第2低位部をそれぞれ成形していない箔溶着部を用いてできた電池である。
また、比較例2の電池は、第1箔溶着表面の第1低位部と第2箔溶着表面の第2低位部とが積層方向DTに並んでいない(具体的には、第1低位部と第2低位部とが長径方向DLに互いに1/2ピッチ分ずれており、第2低位部が、第2箔溶着表面のうち、長径方向DLに隣りあう2つの第1低位部の中間部の積層方向DTにあたる部位に配置された)形態の箔溶着部を用いてできた電池である。
さらに、比較例3の電池は、第1箔溶着表面の第1低位部のピッチ(0.60mm)と第2低位部のピッチ(0.90mm)とが異なる形態の箔溶着部を用いてできた電池である。なお、この電池の箔溶着部では、一部の第2低位部が、第1低位部と積層方向DTに重なる位置に、一方、その他の第2低位部は、第1低位部と積層方向DTに重ならないパターンに配置されている。
これら実施例2,3、参考例1,2の各電池及び比較例1〜3の各電池についても、実施例1の電池1と同様にして、電極体(正極箔重層部)と正極端子構造体との溶接状態を調査して、その結果を表1に示す。また、抵抗溶接時の第1電極141における正極箔の溶着の有無についても、表1に示す。
(Examples 2 and 3, Reference Examples 1 and 2 , Comparative Examples 1 to 3)
On the other hand, in addition to the batteries of Examples 1 and 3 and Reference Examples 1 and 2 in which the first low-order part and the second low-order part are arranged in the same phase, but different from the battery 1 of Example 1 described above, Each battery of Examples 1 to 3 was prepared.
Specifically, in the battery of Example 2, in the above-described foil welded part forming step, the second depth dimension D2 is D2 = 0.36 mm, and the ratio D2 / D1 is D2 / D1 = 0.90. It differs from the battery 1 of Example 1 in that the part was manufactured by molding (see Table 1).
In addition, the battery of Example 3 was formed with a foil welded portion where the pitch P1 was P1 = 0.70 mm, the second depth dimension D2 was D2 = 0.20 mm, and the ratio D2 / D1 was D2 / D1 = 0.50. Thus, the battery 1 is different from the battery 1 of Example 1 (see Table 1).
In addition, the battery of Reference Example 1 was produced by molding a foil welded portion in which the second depth dimension D2 was D2 = 0.08 mm and the ratio D2 / D1 was D2 / D1 = 0.20. 1 is different from the battery 1 (see Table 1).
In addition, the battery of Reference Example 2 was obtained by molding a foil welded portion in which the second depth dimension D2 was D2 = 0.44 mm and the ratio D2 / D1 was D2 / D1 = 1.10. 1 is different from the battery 1 (see Table 1).
On the other hand, the battery of Comparative Example 1 is a foil welded part in which the first high-order part and the first low-order part are not formed on the first foil weld surface, and the second high-order part and the second low-order part are not formed on the second foil weld surface, respectively. It is a battery made by using.
Further, in the battery of Comparative Example 2, the first low level portion on the first foil welding surface and the second low level portion on the second foil welding surface are not aligned in the stacking direction DT (specifically, the first low level portion and The second low-order part is shifted by 1/2 pitch in the long-diameter direction DL, and the second low-order part is an intermediate part of two first low-order parts adjacent to the long-diameter direction DL on the second foil welding surface. It is a battery made by using a foil welded portion in a form (arranged in a portion corresponding to the stacking direction DT).
Furthermore, the battery of Comparative Example 3 can be made by using a foil welded portion having a form in which the pitch of the first lower portion (0.60 mm) and the pitch of the second lower portion (0.90 mm) on the surface of the first foil weld are different. Battery. In the foil welded part of the battery, a part of the second low-level part overlaps the first low-level part and the stacking direction DT, while the other second low-level part has the first low-level part and the stacking direction DT. It is arranged in a pattern that does not overlap.
For each of the batteries of Examples 2 and 3 and Reference Examples 1 and 2 and the batteries of Comparative Examples 1 to 3, as in the battery 1 of Example 1, the electrode body (positive foil multilayer part) and the positive terminal structure The welded state with the body was investigated, and the results are shown in Table 1. Table 1 also shows whether or not the positive electrode foil is welded to the first electrode 141 during resistance welding.

表1によれば、第1高位部、第1低位部、第2高位部及び第2低位部を成形していない箔溶着部を用いた比較例1の電池は、電極体(正極箔重層部)と正極端子構造体との溶接強度が低く、また、半数以上で抵抗溶接時に第1電極141に正極箔の溶着が生じている。これは、第1箔溶着表面及び第2箔溶着表面をいずれも平面としているので、抵抗溶接時に電流が流れる部位が定まらず、最初に酸化皮膜が破壊された1つの部位に集中して電流が流れる。しかも、高電圧としたことに伴う大きな電流が電極体(正極箔重層部)と正極端子構造体を通じて流れるので、1つのナゲットのみが瞬時に大きくなり易い。このため、ナゲットを積層方向に挟む正極箔重層部の厚みが薄くなり破断しやすくなるため、溶融したアルミニウムがナゲットから正極箔重層部の外側に多量に噴出し易く、正極箔重層部と正極端子構造体との間で溶接強度を確保し難いためと考えられる。   According to Table 1, the battery of Comparative Example 1 using the foil welded part in which the first high-order part, the first low-order part, the second high-order part, and the second low-order part are not formed is an electrode body (positive foil multilayer part). ) And the positive electrode terminal structure, and more than half of the positive electrode terminal structures are welded to the first electrode 141 during resistance welding. This is because the first foil welding surface and the second foil welding surface are both flat, the portion where current flows during resistance welding is not determined, and the current concentrates on one portion where the oxide film was first destroyed. Flowing. In addition, since a large current due to the high voltage flows through the electrode body (positive foil multilayer) and the positive terminal structure, only one nugget is likely to increase instantaneously. For this reason, since the thickness of the positive electrode foil multilayer part sandwiching the nugget in the laminating direction becomes thin and easily breaks, a large amount of molten aluminum is easily ejected from the nugget to the outside of the positive electrode foil multilayer part. This is thought to be because it is difficult to ensure the welding strength with the structure.

また、第1低位部と第2低位部とが積層方向に重ならない箔溶着部を用いてできた比較例2の電池は、正極箔重層部と正極端子構造体との溶接強度が「△」であるが、比較例1の電池と同様、半数以上で第1電極と正極箔との溶着が生じている。これは、抵抗溶接時に、ナゲットの積層方向DT第2箔溶着表面側にU字形状部が形成されず、平板状に積層した正極箔が位置するため、ナゲットの熱が第1電極141が接する第2箔溶着表面に伝わってしまい、正極箔が溶着したと考えられる。   Further, in the battery of Comparative Example 2 using the foil welded portion in which the first lower portion and the second lower portion do not overlap in the stacking direction, the welding strength between the positive foil laminated portion and the positive terminal structure is “Δ”. However, as in the battery of Comparative Example 1, the first electrode and the positive electrode foil are welded in more than half. This is because, during resistance welding, the U-shaped portion is not formed on the surface side of the welded DT second foil in the nugget, and the positive electrode foil laminated in a flat plate shape is located, so the heat of the nugget is in contact with the first electrode 141. It is considered that the positive foil was welded to the surface of the second foil.

また、第1低位部のピッチと第2低位部のピッチとが異なり、一部の第2低位部が第1低位部と積層方向DTに重なる箔溶着部を用いてできた比較例3の電池もまた、比較例1,2の電池と同様、半数以上で第1電極と正極箔との溶着が生じた。これは、一部のナゲットの積層方向DT第2箔溶着表面側にU字形状部が形成されず、このナゲットの熱が第1電極141が接する第2箔溶着表面に伝わったためである。   In addition, the battery of Comparative Example 3 in which the pitch of the first low-order part and the pitch of the second low-order part are different and a part of the second low-order part is formed using the foil welded part overlapping the first low-order part and the stacking direction DT. In addition, as in the batteries of Comparative Examples 1 and 2, welding of the first electrode and the positive electrode foil occurred in more than half. This is because the U-shaped portion is not formed on the side of the DT second foil weld surface in the stacking direction of some nuggets, and the heat of this nugget is transmitted to the second foil weld surface with which the first electrode 141 is in contact.

これらに対して、第1低位部のピッチと第2低位部のピッチが等しく、これら第1低位部と第2低位部とが積層方向に重なる、第1低位部と第2低位部とが同位相に配置された箔溶着部を用いた実施例1〜3、参考例1,2の各電池(電池1)は、「溶着強度」が「○」であり、正極箔重層部と正極端子構造体との間で良好な溶接強度を確保することができる。 On the other hand, the pitch of the first low level part and the pitch of the second low level part are equal, and the first low level part and the second low level part overlap in the stacking direction. In each of the batteries (battery 1) of Examples 1 to 3 and Reference Examples 1 and 2 using the foil welded portion arranged in phase, the “welding strength” is “◯”, and the positive foil layered portion and the positive electrode terminal structure Good welding strength can be secured between the body and the body.

また、実施例1〜3、参考例1,2の各電池のうち、比D2/D1が0.3≦D2/D1≦0.9の範囲内の箔溶着部を用いてできた実施例1〜3の各電池(電池1)では、第1電極141における溶着の有無が「無」であり、抵抗溶接時に、第2箔溶着表面から第1電極141にアルミニウムが付着するのを確実に抑制できていることが判る。
比D2/D1が0.3より小さい参考例1の電池では、U字形状部が小さくつぶれやすいので、そこに電流が流れやすくなり、ナゲットの積層方向の第2箔溶着表面側への成長を抑えられず、ナゲットが電極当接面に接近してしまう。このため、抵抗溶接の際、ナゲットの熱が第2箔溶着表面に伝わりやすく、第1電極141と第2箔溶着表面とが溶着しやすいと考えられる。
他方、比D2/D1が0.9より大きい箔溶着部を用いた参考例2の電池では、比D2/D1が0.9以下の箔溶着部を用いる実施例1〜3の各電池に比べて、第1電極141と第2箔溶着表面との接触面積が小さくなる。これは、第1低位部及び第2低位部がいずれも錐台形状の凹部の底面をなす形態であるため、第1深さ寸法D1が一定で比D2/D1が大きくなると、第2深さ寸法D2が大きくなり、第2低位部を含む錐台形状の凹部が囲む空間もまた大きくなる。これにより、この第2箔溶着表面をなす第2高位部の面積が小さくなるためである。
これに対し、実施例1〜3の各電池は、比D2/D1が0.3≦D2/D1≦0.9の範囲内の箔溶着部をそれぞれ用いて製造しているため、抵抗溶接の際、第2箔溶着表面から第1電極141にアルミニウムが付着するのを確実に抑えて電池1を製造することができる。
In addition, among the batteries of Examples 1 to 3 and Reference Examples 1 and 2 , Example 1 was made using a foil welded portion in which the ratio D2 / D1 was in the range of 0.3 ≦ D2 / D1 ≦ 0.9. In each of the batteries (batteries 1) to 3, the presence / absence of welding on the first electrode 141 is “none”, and the adhesion of aluminum from the second foil welding surface to the first electrode 141 is reliably suppressed during resistance welding. You can see that it is made.
In the battery of Reference Example 1 in which the ratio D2 / D1 is smaller than 0.3, the U-shaped portion is apt to be crushed small, so that current easily flows there, and the growth of the nugget toward the second foil welding surface side is facilitated. The nugget approaches the electrode contact surface without being suppressed. For this reason, it is considered that the heat of the nugget is easily transmitted to the second foil welding surface during resistance welding, and the first electrode 141 and the second foil welding surface are easily welded.
On the other hand, in the battery of Reference Example 2 using the foil welded portion where the ratio D2 / D1 is greater than 0.9, compared to the batteries of Examples 1 to 3 using the foil welded portion where the ratio D2 / D1 is 0.9 or less. Thus, the contact area between the first electrode 141 and the second foil welding surface is reduced. This is because the first low-order part and the second low-order part both form the bottom of the frustum-shaped recess, and therefore when the first depth dimension D1 is constant and the ratio D2 / D1 increases, the second depth The dimension D2 is increased, and the space surrounded by the frustum-shaped recess including the second low-order part is also increased. This is because the area of the second high-order part forming the second foil welding surface is reduced.
On the other hand, each battery of Examples 1 to 3 is manufactured by using the foil welded portion in which the ratio D2 / D1 is in the range of 0.3 ≦ D2 / D1 ≦ 0.9. At this time, it is possible to manufacture the battery 1 by reliably suppressing aluminum from adhering to the first electrode 141 from the second foil welding surface.

以上において、本発明を実施形態(実施例1〜)に即して説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、実施例1等では、第1低位部,第2低位部を四角錐台形状に窪んだ凹部の底部とした。しかし、例えば、円錐台形状に窪んだ凹部や、ピラミッド(四角錐)や円錐等の錐形状に窪んだ凹部としても良い。また、第1低位部と第2低位部とを同一種の形態(四角錐台形状に窪んだ凹部の底部)とした。しかし、互いに異なる形態としても良い。また、接合予定面において複数の第1低位部を格子状に分布する形態に形成した例を示した。しかしながら、複数の第1低位部を放射状に分布して成形しても良い。
In the above, the present invention has been described with reference to the embodiments (Examples 1 to 3 ). However, the present invention is not limited to the above-described embodiments, and may be appropriately changed without departing from the gist thereof. Needless to say, it can be applied.
For example, in Example 1 or the like, the first low-order part and the second low-order part are the bottoms of the recesses recessed in the shape of a quadrangular pyramid. However, for example, a recess recessed in a truncated cone shape or a recess recessed in a cone shape such as a pyramid (square pyramid) or a cone may be used. Moreover, the 1st low level part and the 2nd low level part were made into the same kind of form (bottom part of the recessed part dented in the shape of a square frustum). However, different forms may be used. Moreover, the example which formed in the form which distributes several 1st low-order part in a grid | lattice form in the joining plan surface was shown. However, the plurality of first low-order portions may be formed by being distributed radially.

1 電池
10 電極体
11 正極箔重層部(箔重層部)
12 正極箔溶着部(箔溶着部)
13 第1箔溶着表面(接合予定面)
13D 第1高位部
13E 第1低位部
14 第2箔溶着表面(電極当接面)
14D 第2高位部
14E 第2低位部
20 正極板
28 正極箔(アルミニウム箔)
60 正極端子構造体(正極端子部材)
141 第1電極(第1抵抗溶接用電極)
146 第2電極(第2抵抗溶接用電極)
D1 第1深さ寸法
D2 第2深さ寸法
DS 短径方向
DT 積層方向
LU U字形状部
N ナゲット
DESCRIPTION OF SYMBOLS 1 Battery 10 Electrode body 11 Positive electrode foil multilayer part (foil multilayer part)
12 Positive foil welded part (foil welded part)
13 First foil weld surface (surface to be joined)
13D 1st high level part 13E 1st low level part 14 2nd foil welding surface (electrode contact surface)
14D 2nd high level part 14E 2nd low level part 20 Positive electrode plate 28 Positive electrode foil (aluminum foil)
60 Positive terminal structure (positive terminal member)
141 First electrode (first resistance welding electrode)
146 Second electrode (second resistance welding electrode)
D1 1st depth dimension D2 2nd depth dimension DS Minor axis direction DT Lamination direction LU U-shaped part N Nugget

Claims (3)

アルミニウム箔を含む正極板を有し、上記正極板のうち上記アルミニウム箔の露出した箔露出部同士が積層方向に重なる箔重層部を有する電極体と、
アルミニウムからなる正極端子部材と、を備え、
上記箔重層部と上記正極端子部材とが上記積層方向に重ねて抵抗溶接されてなる
電池の製造方法であって、
上記箔重層部に、互いに重なるアルミニウム箔同士を超音波溶接により上記積層方向に互いに溶着した箔溶着部を成形する箔溶着部成形工程と、
上記電極体の上記箔溶着部と上記正極端子部材とを抵抗溶接する抵抗溶接工程と、を備え、
上記箔溶着部成形工程は、
上記箔溶着部の表面のうち上記積層方向の一方側に位置し、上記正極端子部材と接合する接合予定面の少なくとも一部に、
上記積層方向一方側に高位の第1高位部と、
上記第1高位部に比して低位で、上記接合予定面内に散点状に配置された複数の第1低位部と、を成形し、
上記箔溶着部の表面のうち上記積層方向の他方側に位置し、第1抵抗溶接用電極を当接させる電極当接面の少なくとも一部に、
上記積層方向他方側に高位の第2高位部と、
上記第2高位部に比して低位で、上記電極当接面のうち、上記第1低位部と上記積層方向に重なる位置にそれぞれ配置された複数の第2低位部と、を成形し、
上記抵抗溶接工程は、
上記第1抵抗溶接用電極と上記箔溶着部と上記正極端子部材と第2抵抗溶接用電極とをこの順に重ね、上記第1抵抗溶接用電極で上記第2高位部を上記積層方向に押し潰し、上記第2低位部を、複数の上記アルミニウム箔がそれぞれ断面U字状に屈曲されて積層されたU字形状部に成形し、上記第1抵抗溶接用電極と上記箔溶着部との溶着を防止しつつ、流した電流で上記第1低位部にナゲットを生成する
電池の製造方法。
An electrode body having a positive electrode plate including an aluminum foil, and having a foil multilayer portion in which the exposed foil portions of the aluminum foil overlap in the stacking direction of the positive electrode plate;
A positive electrode terminal member made of aluminum,
A method for producing a battery in which the foil multilayer portion and the positive electrode terminal member are resistance-welded in the stacking direction,
A foil welded part forming step for forming a foil welded part in which the aluminum foils that overlap each other are welded to each other in the laminating direction by ultrasonic welding on the foil layered part,
A resistance welding step of resistance welding the foil welded part of the electrode body and the positive electrode terminal member,
The foil welded part molding process is as follows:
Located on one side of the laminating direction of the surface of the foil welded portion, at least a part of the planned joining surface to be joined to the positive terminal member
A high first high-order part on one side in the stacking direction;
A plurality of first low-order parts arranged in a dotted pattern in the planned joining surface at a lower position than the first high-order part; and
Located on the other side of the lamination direction of the surface of the foil welded portion, on at least a part of the electrode contact surface that contacts the first resistance welding electrode,
A second high-order portion that is high on the other side in the stacking direction;
Forming a plurality of second low-order parts disposed at positions overlapping with the first low-order part and the stacking direction in the electrode contact surface at a lower position than the second high-order part,
The resistance welding process
The first resistance welding electrode, the foil welded portion, the positive terminal member, and the second resistance welding electrode are stacked in this order, and the second high-order portion is crushed in the stacking direction by the first resistance welding electrode. The second lower portion is formed into a U-shaped portion in which a plurality of the aluminum foils are bent and laminated in a U-shaped cross section , and the first resistance welding electrode and the foil welded portion are welded. A method for manufacturing a battery, wherein a nugget is generated in the first low-order portion with a flowing current while preventing .
請求項1に記載の電池の製造方法であって、
前記箔溶着部の前記第1低位部及び前記第2低位部はいずれも、錐台形状の凹部の底面をなす形態であり、
上記箔溶着部のうち、前記接合予定面から上記第1低位部までの前記積層方向の寸法を第1深さ寸法D1とし、前記電極当接面から上記第2低位部までの上記積層方向の寸法を第2深さ寸法D2としたとき、
上記第2深さ寸法D2と上記第1深さ寸法D1との比D2/D1が、0.3≦D2/D1≦0.9の範囲内である
電池の製造方法。
A battery manufacturing method according to claim 1, comprising:
Each of the first low-order part and the second low-order part of the foil welded part is a form that forms the bottom surface of a frustum-shaped concave part,
Of the foil welded portions, the dimension in the stacking direction from the joining planned surface to the first low-order part is defined as a first depth dimension D1, and the dimension in the stacking direction from the electrode contact surface to the second low-order part is set. When the dimension is the second depth dimension D2,
The battery manufacturing method, wherein a ratio D2 / D1 between the second depth dimension D2 and the first depth dimension D1 is in a range of 0.3 ≦ D2 / D1 ≦ 0.9.
アルミニウム箔を含む正極板を有し、上記正極板のうち上記アルミニウム箔の露出した箔露出部同士が積層方向に重なる箔重層部を有する電極体と、
アルミニウムからなる正極端子部材と、を備え、
上記箔重層部と上記正極端子部材とが、
上記積層方向に重なる上記箔重層部と上記正極端子部材との間において、上記アルミニウム箔の拡がり方向に散点状に分布する複数のナゲットを介して結合されてなり、
上記箔重層部のうち上記積層方向上記正極端子部材側に上記ナゲットが存在する部位はいずれも、複数の上記アルミニウム箔がそれぞれ断面U字状に屈曲されて積層されたU字形状部とされてなる
電池。
An electrode body having a positive electrode plate including an aluminum foil, and having a foil multilayer portion in which the exposed foil portions of the aluminum foil overlap in the stacking direction of the positive electrode plate;
A positive electrode terminal member made of aluminum,
The foil multi-layer part and the positive electrode terminal member are
In between heavy Naru the foil layer portion and the positive terminal member in the stacking direction, it is coupled via a plurality of nuggets distributed in unevenness distribution in the spreading direction of the aluminum foil,
Each of the portions where the nugget is present on the positive electrode terminal member side in the laminating direction in the foil multilayer portion is a U-shaped portion in which a plurality of the aluminum foils are bent and laminated in a U-shaped cross section. Battery.
JP2013081401A 2013-04-09 2013-04-09 Battery manufacturing method and battery Active JP6107346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013081401A JP6107346B2 (en) 2013-04-09 2013-04-09 Battery manufacturing method and battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013081401A JP6107346B2 (en) 2013-04-09 2013-04-09 Battery manufacturing method and battery

Publications (2)

Publication Number Publication Date
JP2014203780A JP2014203780A (en) 2014-10-27
JP6107346B2 true JP6107346B2 (en) 2017-04-05

Family

ID=52354010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013081401A Active JP6107346B2 (en) 2013-04-09 2013-04-09 Battery manufacturing method and battery

Country Status (1)

Country Link
JP (1) JP6107346B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017057200A1 (en) * 2015-09-29 2017-04-06 株式会社Gsユアサ Electricity storage element and method for manufacturing electricity storage element
JP7021564B2 (en) * 2018-03-02 2022-02-17 三洋電機株式会社 Secondary battery and its manufacturing method
EP3909085A1 (en) * 2019-01-08 2021-11-17 Tiveni MergeCo, Inc. Multi-layer contact plate and method thereof
KR102323041B1 (en) * 2019-02-01 2021-11-08 주식회사 엘지에너지솔루션 Electrode Assembly Comprising Different Pressure Welded Part on Weld Surface of Electrode Tab and Ultrasonic Welding Device for Manufacturing the Same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5158435B2 (en) * 2008-09-17 2013-03-06 トヨタ自動車株式会社 Battery and manufacturing method thereof
JP5091171B2 (en) * 2009-02-12 2012-12-05 ナグシステム株式会社 Aluminum foil joining method
JP5564802B2 (en) * 2009-02-17 2014-08-06 トヨタ自動車株式会社 Joint inspection method and joint inspection apparatus
JP5472687B2 (en) * 2009-06-04 2014-04-16 トヨタ自動車株式会社 Secondary battery and manufacturing method thereof
JP5587061B2 (en) * 2009-09-30 2014-09-10 三洋電機株式会社 Energizing block for resistance welding, sealed battery manufacturing method using the energizing block, and sealed battery
WO2012133329A1 (en) * 2011-03-31 2012-10-04 三洋電機株式会社 Method for manufacturing rectangular secondary battery
JP5884908B2 (en) * 2012-06-28 2016-03-15 トヨタ自動車株式会社 Battery manufacturing method

Also Published As

Publication number Publication date
JP2014203780A (en) 2014-10-27

Similar Documents

Publication Publication Date Title
JP5884908B2 (en) Battery manufacturing method
KR100842493B1 (en) Method for welding thin plates of different metal, joined body of thin plates of different metal, electric device, and electric device assembly
US10062873B2 (en) Secondary battery and battery pack using the same
WO2013105630A1 (en) Secondary battery fabrication method, secondary battery, and deposition device
JP5195208B2 (en) Battery and battery manufacturing method
CN105364295B (en) Ultrasonic welding device, method of manufacturing rechargeable battery, and rechargeable battery
JP2014212012A (en) Method of manufacturing secondary battery and secondary battery
KR20160046160A (en) Pouch-type secondary battery and method for manufacturing the same
JP2011119214A (en) Secondary battery
JP6107346B2 (en) Battery manufacturing method and battery
JP7229027B2 (en) Secondary battery and manufacturing method thereof
JP2011092995A (en) Current carrying block for resistance welding, and method for manufacturing sealed battery and sealed battery each using the current carrying block
CN111384426B (en) Secondary battery
JP2015199095A (en) Ultrasonic welding apparatus and method of manufacturing battery
WO2018159197A1 (en) Secondary battery
JP7021564B2 (en) Secondary battery and its manufacturing method
JP6868704B2 (en) Secondary battery
WO2013191218A1 (en) Process for producing stacked aluminum material, process for producing sealed battery containing same, and sealed battery
US10181594B2 (en) Method for manufacturing stacked metal foil, method for manufacturing sealed cell including said method, and sealed cell
JP2020107496A (en) Secondary battery
US11640880B2 (en) Energy storage device
US20230163424A1 (en) Energy storage apparatus and method for manufacturing energy storage apparatus
JP7194600B2 (en) Method for manufacturing secondary battery
KR20120133021A (en) Ultrasonic waves welding apparatus
JP2020119875A (en) Secondary battery and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170220

R151 Written notification of patent or utility model registration

Ref document number: 6107346

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250