JP2020119875A - Secondary battery and manufacturing method thereof - Google Patents

Secondary battery and manufacturing method thereof Download PDF

Info

Publication number
JP2020119875A
JP2020119875A JP2019012634A JP2019012634A JP2020119875A JP 2020119875 A JP2020119875 A JP 2020119875A JP 2019012634 A JP2019012634 A JP 2019012634A JP 2019012634 A JP2019012634 A JP 2019012634A JP 2020119875 A JP2020119875 A JP 2020119875A
Authority
JP
Japan
Prior art keywords
negative electrode
electrode
current collector
electrode plate
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019012634A
Other languages
Japanese (ja)
Inventor
高林 洋志
Hiroshi Takabayashi
洋志 高林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2019012634A priority Critical patent/JP2020119875A/en
Publication of JP2020119875A publication Critical patent/JP2020119875A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

To provide a highly reliable secondary battery in which a short circuit between a positive electrode plate and a negative electrode plate is suppressed.SOLUTION: A manufacturing method of a secondary battery includes an electrode body including a negative electrode plate and a positive electrode plate, and a negative electrode current collector made of copper or copper alloy electrically connected to the negative electrode plate, and in which the negative electrode plate includes a negative electrode core made of copper or copper alloy, and a negative electrode active material layer formed on the negative electrode core, the electrode body includes a negative electrode core laminate 50 in which negative electrode cores are laminated, and the negative electrode core laminate 50 is bonded to the negative electrode current collector 8, the method including a bonding step of ultrasonically bonding the negative electrode core laminate 50 and the negative electrode current collector to form a bonding portion in a state in which the negative electrode core laminate 50 and the negative electrode current collector 8 are sandwiched by a horn and an anvil, and the anvil is in contact with the negative electrode current collector, a coating step of coating a photocurable resin on the portion in contact with the anvil in the negative electrode current collector 8 in the bonding step, and a curing step of irradiating the photocurable resin with light to cure the photocurable resin.SELECTED DRAWING: Figure 8

Description

本開示は、二次電池及びその製造方法に関する。 The present disclosure relates to a secondary battery and a manufacturing method thereof.

リチウムイオン二次電池等の二次電池は、正極板及び負極板を含む電極体を電解質とともに電池ケース内に収容した構造を有している。電極体を構成する正極板及び負極板は、それぞれ金属製の芯体の表面に活物質層が形成されている。そして、正極板及び負極板のそれぞれに設けられた芯体露出部は、集電体を介して、電池ケースに取り付けられた端子と電気的に接続されている。 A secondary battery such as a lithium ion secondary battery has a structure in which an electrode body including a positive electrode plate and a negative electrode plate is housed together with an electrolyte in a battery case. Each of the positive electrode plate and the negative electrode plate forming the electrode body has an active material layer formed on the surface of a metal core body. The exposed core portions provided on each of the positive electrode plate and the negative electrode plate are electrically connected to a terminal attached to the battery case via a current collector.

芯体と集電体とを接合する方法として、超音波接合により接合する方法が知られている。超音波接合は、積層された芯体と集電体とをホーンとアンビルとで挟み込みながら、超音波による振動エネルギーを接合面に加えることによって行われる。なお、積層された芯体と集電体とを確実に挟み込むために、ホーン及びアンビルの表面には、それぞれ複数の突起部が設けられている。 As a method of joining the core body and the current collector, a method of joining by ultrasonic joining is known. The ultrasonic bonding is performed by applying vibration energy by ultrasonic waves to the bonding surface while sandwiching the laminated core body and current collector with a horn and an anvil. A plurality of protrusions are provided on the surfaces of the horn and the anvil in order to reliably sandwich the laminated core body and current collector.

例えば、特許文献1には、ホーンの表面に設けられた突起部の形状を円弧状にしたり、ホーンの周辺に、突起部が形成されていないマージン領域を設ける方法が開示されている。 For example, Patent Document 1 discloses a method in which the shape of the protrusion provided on the surface of the horn is arcuate, or a margin region where the protrusion is not formed is provided around the horn.

特開2012−125801号公報JP 2012-125801 A

本開示の一つの目的は、正極板と負極板の短絡が抑制された二次電池を提供することである。 One object of the present disclosure is to provide a secondary battery in which a short circuit between a positive electrode plate and a negative electrode plate is suppressed.

本開示の一形態の二次電池の製造方法は、
第1電極板と、
前記第1電極板と極性の異なる第2電極板と、
前記第1電極板と前記第2電極板を含む電極体と、
前記第1電極板に電気的に接続された銅又は銅合金製の第1電極集電体と、を備え、
前記第1電極板は、銅又は銅合金製の第1電極芯体と、前記第1電極芯体上に形成された第1電極活物質層を有し、
前記電極体は、前記第1電極芯体が積層された前記第1電極芯体積層部を有し、
前記第1電極芯体積層部が前記第1電極集電体に接合された二次電池の製造方法であって、
前記第1電極芯体積層部と前記第1電極集電体をホーンとアンビルで挟み込み、前記アンビルが前記第1電極集電体と接する状態で、前記第1電極芯体積層部と前記第1電極集電体を超音波接合して接合部を形成する接合工程と、
前記接合工程において前記第1電極集電体において前記アンビルと接していた部分に光硬化性樹脂を塗布する塗布工程と、
前記光硬化性樹脂に光を照射し光硬化性樹脂を硬化させる硬化工程、を有する。
A method of manufacturing a secondary battery according to an aspect of the present disclosure includes
A first electrode plate,
A second electrode plate having a polarity different from that of the first electrode plate;
An electrode body including the first electrode plate and the second electrode plate;
A first electrode current collector made of copper or a copper alloy electrically connected to the first electrode plate,
The first electrode plate has a first electrode core body made of copper or a copper alloy, and a first electrode active material layer formed on the first electrode core body,
The electrode body has the first electrode core body laminated portion in which the first electrode core body is laminated,
A method of manufacturing a secondary battery, wherein the first electrode core laminated portion is joined to the first electrode current collector,
The first electrode core laminated body and the first electrode current collector are sandwiched between a horn and an anvil, and the first electrode core laminated body and the first electrode core laminated body are in contact with the first electrode current collector. A bonding step of ultrasonically bonding the electrode current collector to form a bonding portion;
An applying step of applying a photo-curable resin to a portion of the first electrode current collector that was in contact with the anvil in the joining step;
A curing step of irradiating the photocurable resin with light to cure the photocurable resin.

本願発明者等は、積層された複数の芯体と集電体とを超音波接合により接合した後に、接合部で発生した金属小片(発塵)を調べていたところ、芯体の膜みよりも大きい金属小片が含まれていることに気がついた。その後の詳細な分析から、このような大きさの金属小片は、芯体から剥がれてできたものではなく、集電体から削り取られてできたものであることが分かった。 The inventors of the present application, after joining a plurality of laminated cores and a current collector by ultrasonic bonding, investigated metal pieces (dust) generated at the joints. I also noticed that it contained a large piece of metal. Subsequent detailed analysis revealed that metal pieces of such a size were not scraped off from the core, but scraped off from the current collector.

集電体が銅又は銅合金製である場合、超音波接合の際に集電体から削り取られた金属小片は銅又は銅合金からなる金属小片(銅片、銅合金片)となる。そして、例えば電解液を電池ケース内に注入する際などに、この銅又は銅合金からなる金属小片が正極板上に移動することがある。正極板上に銅又は銅合金からなる金属小片が存在すると、二次電池の充放電により正極板上の銅又は銅合金からなる金属小片が電解液に溶解するとともに、負極板上でデンドライトに成長する虞がある。その結果、デンドライトがセパレータを突き破り、正極板と負極板との間で内部短絡が発生する虞がある。 When the current collector is made of copper or a copper alloy, the metal pieces scraped off from the current collector during ultrasonic bonding are metal pieces made of copper or a copper alloy (copper pieces, copper alloy pieces). Then, for example, when the electrolytic solution is injected into the battery case, the small metal piece made of copper or copper alloy may move onto the positive electrode plate. When a small piece of copper or copper alloy is present on the positive electrode plate, the small piece of copper or copper alloy on the positive electrode plate dissolves in the electrolyte due to charging/discharging of the secondary battery and grows into dendrites on the negative electrode plate. There is a risk of As a result, dendrites may break through the separator, causing an internal short circuit between the positive electrode plate and the negative electrode plate.

本開示の一形態の二次電池の製造方法では、接合工程において第1電極集電体においてアンビルと接していた部分に光硬化性樹脂を塗布し、この光硬化性樹脂に光を照射し光硬化性樹脂を硬化させる。したがって、接合工程において第1電極集電体においてアンビルと接していた部分が光硬化性樹脂で覆われた状態となる。これにより、銅又は銅合金からなる金属小片ないし銅又は銅合金からなる金属小片となりうるバリを光硬化性樹脂で覆うことができる。よって、銅又は銅合金からなる金属小片、あるいは第1電極集電体から脱離した銅又は銅合金からなるバリが、電極体内に移動することを効果的に抑制できる。したがって、負極板上に銅又は銅合金からなるデンドライトが生じることを抑制できる。よって、正極板と負極板の短絡が抑制された二次電池を提供することができる。なお、第1電極板は正極板であってもよいし、負極板であってもよい。 In the method for manufacturing a secondary battery according to an aspect of the present disclosure, a photocurable resin is applied to a portion of the first electrode current collector that is in contact with the anvil in the joining step, and the photocurable resin is irradiated with light to emit light. Cure the curable resin. Therefore, in the joining step, the portion of the first electrode current collector that was in contact with the anvil is covered with the photocurable resin. This makes it possible to cover the burrs, which may be metal pieces made of copper or copper alloy or metal pieces made of copper or copper alloy, with the photocurable resin. Therefore, it is possible to effectively prevent the small metal pieces made of copper or copper alloy or the burrs made of copper or copper alloy detached from the first electrode current collector from moving into the electrode body. Therefore, it is possible to suppress the generation of dendrites made of copper or a copper alloy on the negative electrode plate. Therefore, it is possible to provide a secondary battery in which a short circuit between the positive electrode plate and the negative electrode plate is suppressed. The first electrode plate may be a positive electrode plate or a negative electrode plate.

接合工程において第1電極集電体においてアンビルと接していた部分には、アンビルによる押圧痕である小さな凹凸が形成される。光硬化性樹脂を塗布することにより、光硬化性樹脂が凹凸の小さな隙間に入り込むようにすることができる。また、その状態で光硬化性樹脂を硬化させることにより、第1電極集電体から光硬化性樹脂が外れることが効果的に抑制される。 In the joining step, a small unevenness, which is a pressing mark due to the anvil, is formed in the portion of the first electrode current collector that was in contact with the anvil. By applying the photocurable resin, the photocurable resin can be made to enter the gaps having small irregularities. Further, by curing the photocurable resin in that state, it is possible to effectively prevent the photocurable resin from coming off the first electrode current collector.

本開示の一形態の二次電池は、
第1電極板と、
前記第1電極板と極性の異なる第2電極板と、
前記第1電極板と前記第2電極板を含む電極体と、
前記第1電極板に電気的に接続された銅又は銅合金製の第1電極集電体と、を備え、
前記第1電極板は、銅又は銅合金製の第1電極芯体と、前記第1電極芯体上に形成された第1電極活物質層を有し、
前記電極体は、前記第1電極芯体が積層された前記第1電極芯体積層部を有し、
前記第1電極芯体積層部が前記第1電極集電体に接合された二次電池であって、
前記第1電極集電体において、前記第1電極芯体積層部が接合された面と反対側の面には凹凸形成部が形成され、
前記凹凸形成部の表面には、光硬化性樹脂からなる層が形成されている。
One form of the secondary battery of the present disclosure is
A first electrode plate,
A second electrode plate having a polarity different from that of the first electrode plate;
An electrode body including the first electrode plate and the second electrode plate;
A first electrode current collector made of copper or a copper alloy electrically connected to the first electrode plate,
The first electrode plate has a first electrode core body made of copper or a copper alloy, and a first electrode active material layer formed on the first electrode core body,
The electrode body has the first electrode core body laminated portion in which the first electrode core body is laminated,
A secondary battery in which the first electrode core laminated portion is joined to the first electrode current collector,
In the first electrode current collector, a concavo-convex forming portion is formed on a surface opposite to a surface on which the first electrode core laminated portion is joined,
A layer made of a photocurable resin is formed on the surface of the unevenness forming portion.

本開示の一形態の二次電池の構成であると、正極板と負極板の短絡が抑制された二次電池を提供することができる。 With the configuration of the secondary battery of one embodiment of the present disclosure, a secondary battery in which short circuit between the positive electrode plate and the negative electrode plate is suppressed can be provided.

本開示によれば、正極板と負極板の短絡が抑制された二次電池を提供することができる。 According to the present disclosure, it is possible to provide a secondary battery in which a short circuit between the positive electrode plate and the negative electrode plate is suppressed.

実施形態に係る角形二次電池の角形外装体の正面部分と絶縁シート正面部分とを取り除いた電池内部を示す模式的な正面図である。FIG. 3 is a schematic front view showing the inside of the battery in which the front portion of the prismatic outer casing and the front portion of the insulating sheet of the prismatic secondary battery according to the embodiment are removed. 実施形態に係る角形二次電池の上面図である。It is a top view of the prismatic secondary battery which concerns on embodiment. (a)は実施形態に係る正極板の平面図である。(b)は実施形態に係る負極板の平面図である。(A) is a top view of the positive electrode plate which concerns on embodiment. FIG. 3B is a plan view of the negative electrode plate according to the embodiment. 実施形態に係る負極集電体と負極芯体積層部の断面図であり、負極集電体と負極芯体積層部をホーンとアンビルで挟み込む前の状態を示す図である。FIG. 4 is a cross-sectional view of a negative electrode current collector and a negative electrode core body laminated portion according to the embodiment, showing a state before the negative electrode current collector and the negative electrode core body laminated portion are sandwiched by a horn and an anvil. 実施形態に係る負極集電体と負極芯体積層部の断面図であり、負極集電体と負極芯体積層部をホーンとアンビルで挟み込んだ後の状態を示す図である。FIG. 3 is a cross-sectional view of a negative electrode current collector and a negative electrode core body laminated portion according to the embodiment, showing a state after the negative electrode current collector and the negative electrode core body laminated portion are sandwiched by a horn and an anvil. 実施形態に係る負極集電体と負極芯体積層部の断面図であり、負極集電体と負極芯体積層部を超音波接合した後の状態を示す図である。FIG. 3 is a cross-sectional view of a negative electrode current collector and a negative electrode core body laminated portion according to the embodiment, showing a state after ultrasonic bonding of the negative electrode current collector and the negative electrode core body laminated portion. 実施形態に係る超音波接合した後の負極集電体と負極芯体積層部の平面図である。FIG. 5 is a plan view of a negative electrode current collector and a negative electrode core body laminated portion after ultrasonic bonding according to the embodiment. (a)は、負極集電体に形成された凹凸形成部の表面に光硬化性樹脂を塗布した状態を示す断面図である。(b)は光硬化性樹脂に光を照射し光硬化性樹脂を硬化させる様子を示す断面図である。FIG. 6A is a cross-sectional view showing a state in which a photocurable resin is applied to the surface of the unevenness forming portion formed on the negative electrode current collector. (B) is sectional drawing which shows a mode that a photocurable resin is irradiated with light and the photocurable resin is cured. 凹凸形成部に光硬化性樹脂を塗布し硬化させた後の負極集電体と負極芯体積層部の平面図である。FIG. 4 is a plan view of the negative electrode current collector and the negative electrode core body laminated portion after the photo-curable resin is applied to the irregularity forming portion and cured. 変形例1に係る負極集電体と負極芯体積層部の断面図であり、負極集電体と負極芯体積層部をホーンとアンビルで挟み込む前の状態を示す図である。FIG. 9 is a cross-sectional view of a negative electrode current collector and a negative electrode core body laminated portion according to Modification 1, showing a state before the negative electrode current collector and the negative electrode core body laminated portion are sandwiched by a horn and an anvil. 変形例1に係る負極集電体と負極芯体積層部の断面図であり、負極集電体と負極芯体積層部をホーンとアンビルで挟み込んだ後の状態を示す図である。FIG. 9 is a cross-sectional view of a negative electrode current collector and a negative electrode core body laminated portion according to Modification 1, showing a state after the negative electrode current collector and the negative electrode core body laminated portion are sandwiched by a horn and an anvil. 変形例1に係る負極集電体と負極芯体積層部の断面図であり、負極集電体と負極芯体積層部を超音波接合した後の状態を示す図である。FIG. 9 is a cross-sectional view of a negative electrode current collector and a negative electrode core body laminated portion according to Modification 1, showing a state after ultrasonic bonding of the negative electrode current collector and the negative electrode core body laminated portion. 変形例1に係る負極集電体と負極芯体積層部の平面図であり、光硬化性樹脂を塗布する前の状態を示す図である。FIG. 9 is a plan view of a negative electrode current collector and a negative electrode core body laminated portion according to Modification Example 1, showing a state before applying a photocurable resin. 変形例1に係る負極集電体と負極芯体積層部の平面図であり、光硬化性樹脂からなる層を形成した後の状態を示す図である。FIG. 9 is a plan view of a negative electrode current collector and a negative electrode core body laminated portion according to Modification 1, showing a state after forming a layer made of a photocurable resin. 図14におけるXV−XVの断面図である。It is sectional drawing of XV-XV in FIG.

以下、本開示の実施形態に係る二次電池としての角形二次電池100について、図面を参照しながら説明する。なお、本開示の範囲は、以下の実施の形態に限定されず、本開示の技術的思想の範囲内で任意に変更可能である。 Hereinafter, a prismatic secondary battery 100 as a secondary battery according to an embodiment of the present disclosure will be described with reference to the drawings. The scope of the present disclosure is not limited to the following embodiments, and can be arbitrarily changed within the scope of the technical idea of the present disclosure.

まず、一実施形態に係る角形二次電池100の構成を説明する。図1及び図2に示すように、角形二次電池100は、上方に開口を有する角形外装体1と、当該開口を封口する封口板2を備える。角形外装体1及び封口板2により電池ケース200が構成される。角形外装体1及び封口板2はそれぞれ金属製であり、例えば、アルミニウム又はアルミニウム合金製であることが好ましい。角形外装体1内には、帯状の正極板と帯状の負極板とが帯状のセパレータを挟んで巻回された偏平状の巻回型の電極体3が非水電解質(図示省略)と共に収容される。角形外装体1と電極体3の間には樹脂製の絶縁シート14が配置されている。封口板2には電池ケース200内の圧力が所定値以上となると破断し、電池ケース200内のガスを電池ケース200外に排出するガス排出弁15が設けられている。また、封口板2に設けられた電解質注液孔16が、封止部材17により封止されている。 First, the configuration of the prismatic secondary battery 100 according to the embodiment will be described. As shown in FIGS. 1 and 2, the prismatic secondary battery 100 includes a prismatic outer casing 1 having an opening at the top, and a sealing plate 2 for sealing the opening. The prismatic outer casing 1 and the sealing plate 2 constitute a battery case 200. The prismatic outer casing 1 and the sealing plate 2 are each made of metal, and are preferably made of, for example, aluminum or aluminum alloy. A flat wound electrode body 3 in which a strip-shaped positive electrode plate and a strip-shaped negative electrode plate are wound with a strip-shaped separator sandwiched therebetween is housed in a rectangular outer package 1 together with a non-aqueous electrolyte (not shown). It An insulating sheet 14 made of resin is arranged between the rectangular outer casing 1 and the electrode body 3. The sealing plate 2 is provided with a gas discharge valve 15 that breaks when the pressure inside the battery case 200 exceeds a predetermined value and discharges the gas inside the battery case 200 to the outside of the battery case 200. Further, the electrolyte injection hole 16 provided in the sealing plate 2 is sealed by the sealing member 17.

図3(a)に示すように、正極板4は、金属製の正極芯体4aと、正極芯体4aの両面に形成された正極活物質層4bを有する。正極板4は、幅方向の端部に、長手方向に沿っ
て、正極芯体4aの両面に正極活物質層4bが形成されていない正極芯体露出部を有する。正極芯体4aは、アルミニウム又はアルミニウム合金製であることが好ましい。正極活物質層4bは、正極活物質を含む。正極活物質としては、例えば、リチウム遷移金属複合酸化物等を用いることができる。また、正極活物質層4bは、バインダー及び導電材を含むことが好ましい。バインダーとしては樹脂製のバインダーが好ましく、例えばポリフッ化ビニリデン等を用いることができる。導電部材としてはカーボンブラック等の炭素材料が好ましい。
As shown in FIG. 3A, the positive electrode plate 4 has a positive electrode core body 4a made of metal and a positive electrode active material layer 4b formed on both surfaces of the positive electrode core body 4a. The positive electrode plate 4 has a positive electrode core exposed portion in which the positive electrode active material layer 4b is not formed on both surfaces of the positive electrode core 4a along the longitudinal direction at the end portion in the width direction. The positive electrode core body 4a is preferably made of aluminum or an aluminum alloy. The positive electrode active material layer 4b contains a positive electrode active material. As the positive electrode active material, for example, a lithium transition metal composite oxide or the like can be used. The positive electrode active material layer 4b preferably contains a binder and a conductive material. A resin binder is preferable as the binder, and for example, polyvinylidene fluoride or the like can be used. A carbon material such as carbon black is preferable as the conductive member.

図3(b)に示すように、負極板5は、金属製の負極芯体5aと、負極芯体5aの両面に形成された負極活物質層5bを有する。負極板5は、幅方向の端部に、長手方向に沿って、負極芯体5aの両面に負極活物質層5bが形成されていない負極芯体露出部が形成されている。負極芯体5aは、銅又は銅合金製であることが好ましい。負極活物質層5bは、負極活物質を含む。負極活物質としては、例えば、黒鉛や非晶質炭素等の炭素材料、シリコンや酸化シリコン等のシリコン材料等を用いることができる。負極活物質層5bは、バインダーを含むことが好ましい。バインダーとしては樹脂製のバインダーが好ましく、例えばスチレンブタジエンゴム(SBR)及びカルボキシメシルセルロース(CMC)を含むことが好ましい。負極活物質層5bは必要に応じて導電材を含んでもよい。 As shown in FIG. 3B, the negative electrode plate 5 has a negative electrode core body 5a made of metal and a negative electrode active material layer 5b formed on both surfaces of the negative electrode core body 5a. The negative electrode plate 5 has, at the end in the width direction, a negative electrode core exposed portion in which the negative electrode active material layers 5b are not formed on both surfaces of the negative electrode core 5a along the longitudinal direction. The negative electrode core body 5a is preferably made of copper or a copper alloy. The negative electrode active material layer 5b contains a negative electrode active material. As the negative electrode active material, for example, a carbon material such as graphite or amorphous carbon, a silicon material such as silicon or silicon oxide, or the like can be used. The negative electrode active material layer 5b preferably contains a binder. As the binder, a resin binder is preferable, and for example, styrene-butadiene rubber (SBR) and carboxymesyl cellulose (CMC) are preferably contained. The negative electrode active material layer 5b may include a conductive material as needed.

巻回型の電極体3は、一方の端部に巻回された正極芯体露出部を有し、他方の端部に巻回された負極芯体露出部を有する。巻回された正極芯体露出部は、正極芯体4aが積層された正極芯体積層部40を構成する。巻回された負極芯体露出部は、負極芯体5aが積層された負極芯体積層部50を構成する。 The spirally wound electrode body 3 has a positive electrode core exposed portion wound at one end and a negative electrode core exposed portion wound at the other end. The wound positive electrode core exposed portion constitutes a positive electrode core laminated portion 40 in which the positive electrode core 4a is laminated. The wound negative electrode core exposed portion constitutes a negative electrode core laminated portion 50 in which the negative electrode core 5a is laminated.

正極芯体積層部40には正極集電体6が接続されている。正極集電体6は封口板2に取り付けられた正極端子7と接続されている。封口板2と正極集電体6の間には樹脂製の内部側絶縁部材10が配置されている。封口板2と正極端子7の間には樹脂製の外部側絶縁部材11が配置されている。内部側絶縁部材10及び外部側絶縁部材11により、正極集電体6及び正極端子7は封口板2と電気的に絶縁されている。正極集電体6及び正極端子7は、金属製であり、例えば、アルミニウム又はアルミニウム合金製であることが好ましい。 The positive electrode current collector 6 is connected to the positive electrode core laminated portion 40. The positive electrode current collector 6 is connected to the positive electrode terminal 7 attached to the sealing plate 2. An inner insulating member 10 made of resin is disposed between the sealing plate 2 and the positive electrode current collector 6. An outer insulating member 11 made of resin is arranged between the sealing plate 2 and the positive electrode terminal 7. The positive electrode current collector 6 and the positive electrode terminal 7 are electrically insulated from the sealing plate 2 by the inner insulating member 10 and the outer insulating member 11. The positive electrode current collector 6 and the positive electrode terminal 7 are preferably made of metal, for example, aluminum or aluminum alloy.

負極芯体積層部50には負極集電体8が接続されている。負極集電体8は封口板2に取り付けられた負極端子9と接続されている。封口板2と負極集電体8の間には樹脂製の内部側絶縁部材12が配置されている。封口板2と負極端子9の間には樹脂製の外部側絶縁部材13が配置されている。内部側絶縁部材12及び外部側絶縁部材13により、負極集電体8及び負極端子9は封口板2と電気的に絶縁されている。負極集電体8及び負極端子9は、金属製であり、例えば、銅又は銅合金製であることが好ましい。また、負極端子9は、銅又は銅合金からなる部分と、アルミニウム又はアルミニウム合金からなる部分を有することが好ましい。そして、銅又は銅合金からなる部分を銅又は銅合金からなる負極集電体8と接続し、アルミニウム又はアルミニウム合金からなる部分が封口板2よりも外部側に露出するようにすることが好ましい。 The negative electrode current collector 8 is connected to the negative electrode core laminated portion 50. The negative electrode current collector 8 is connected to the negative electrode terminal 9 attached to the sealing plate 2. An inner insulating member 12 made of resin is disposed between the sealing plate 2 and the negative electrode current collector 8. An outer insulating member 13 made of resin is arranged between the sealing plate 2 and the negative electrode terminal 9. The negative electrode current collector 8 and the negative electrode terminal 9 are electrically insulated from the sealing plate 2 by the inner insulating member 12 and the outer insulating member 13. The negative electrode current collector 8 and the negative electrode terminal 9 are preferably made of metal, for example, copper or copper alloy. The negative electrode terminal 9 preferably has a portion made of copper or a copper alloy and a portion made of aluminum or an aluminum alloy. Then, it is preferable that the portion made of copper or a copper alloy is connected to the negative electrode current collector 8 made of copper or a copper alloy so that the portion made of aluminum or an aluminum alloy is exposed to the outside of the sealing plate 2.

正極端子7は、封口板2よりも電池外部側に配置される鍔部7aと、鍔部7aの一方の面に形成された挿入部(図示省略)を有する。挿入部が封口板2に設けられた正極端子取り付け孔(図示省略)を貫通し、正極集電体6に接続される。
負極端子9は、封口板2よりも電池外部側に配置される鍔部9aと、鍔部9aの一方の面に形成された挿入部(図示省略)を有する。挿入部が封口板2に設けられた負極端子取り付け孔(図示省略)を貫通し、負極集電体8に接続される。
The positive electrode terminal 7 has a flange portion 7a arranged on the outer side of the battery with respect to the sealing plate 2, and an insertion portion (not shown) formed on one surface of the flange portion 7a. The insertion portion penetrates a positive electrode terminal mounting hole (not shown) provided in the sealing plate 2 and is connected to the positive electrode current collector 6.
The negative electrode terminal 9 has a collar portion 9a arranged on the outer side of the battery with respect to the sealing plate 2, and an insertion portion (not shown) formed on one surface of the collar portion 9a. The insertion portion penetrates a negative electrode terminal mounting hole (not shown) provided in the sealing plate 2 and is connected to the negative electrode current collector 8.

なお、正極集電体6と正極端子7を、他の導電部材を介して電気的に接続してもよい。
また、負極集電体8と負極端子9を、他の導電部材を介して電気的に接続してもよい。
The positive electrode current collector 6 and the positive electrode terminal 7 may be electrically connected via another conductive member.
In addition, the negative electrode current collector 8 and the negative electrode terminal 9 may be electrically connected via another conductive member.

正極集電体6は、封口板2と電極体3の間に配置されるベース部6aと、ベース部6aの端部から電極体3側に延びるリード部6bを有する。ベース部6aに正極端子7が接続されている。リード部6bが正極芯体積層部40に接合されている。リード部6bの幅方向の端部にはリブ6cが設けられる。なお、リブ6cを省略することもできる。
負極集電体8は、封口板2と電極体3の間に配置されるベース部8aと、ベース部8aの端部から電極体3側に延びるリード部8bを有する。ベース部8aに負極端子9が接続されている。リード部8bが負極芯体積層部50に接合されている。リード部8bの幅方向の端部にはリブ8cが設けられている。なお、リブ8cを省略することもできる。
The positive electrode current collector 6 has a base portion 6a arranged between the sealing plate 2 and the electrode body 3, and a lead portion 6b extending from the end of the base portion 6a toward the electrode body 3 side. The positive electrode terminal 7 is connected to the base portion 6a. The lead portion 6b is joined to the positive electrode core laminated portion 40. A rib 6c is provided at the end of the lead portion 6b in the width direction. The rib 6c may be omitted.
The negative electrode current collector 8 has a base portion 8a arranged between the sealing plate 2 and the electrode body 3, and a lead portion 8b extending from the end of the base portion 8a toward the electrode body 3 side. The negative electrode terminal 9 is connected to the base portion 8a. The lead portion 8b is joined to the negative electrode core laminated portion 50. A rib 8c is provided at the end of the lead portion 8b in the width direction. The rib 8c can be omitted.

正極集電体6のリード部6bにおいて、正極芯体積層部40と接合された部分の正極芯体積層部40と接合された面とは反対側の面には、凹凸形成部6xが形成されている。この凹凸形成部6xは、正極集電体6と正極芯体積層部40を超音波接合する際に、正極集電体6にアンビルに設けられたアンビル突起が食い込むことにより形成される。即ち、凹凸形成部6xは、アンビルによる押圧痕である。 In the lead portion 6b of the positive electrode current collector 6, a concavo-convex forming portion 6x is formed on a surface of a portion of the lead portion 6b, which is joined to the positive electrode core body laminated portion 40, opposite to a surface thereof joined to the positive electrode core body laminated portion 40. ing. The concavo-convex forming portion 6x is formed by the anvil projection provided on the anvil of the positive electrode current collector 6 biting into the positive electrode current collector 6 when ultrasonically bonding the positive electrode current collector 6 and the positive electrode core body laminated portion 40. That is, the unevenness forming portion 6x is a pressing mark by the anvil.

負極集電体8のリード部8bにおいて、負極芯体積層部50と接合された部分の負極芯体積層部50と接合された面とは反対側の面には、凹凸形成部8xが形成されている。この凹凸形成部8xは、負極集電体8と負極芯体積層部50を超音波接合する際に、負極集電体8にアンビルに設けられたアンビル突起が食い込むことにより形成される。即ち、凹凸形成部8xは、アンビルによる押圧痕である。 In the lead portion 8b of the negative electrode current collector 8, a concavo-convex forming portion 8x is formed on the surface of the portion bonded to the negative electrode core laminated portion 50 opposite to the surface bonded to the negative electrode core laminated portion 50. ing. The concavo-convex forming portion 8x is formed by the anvil protrusion provided on the anvil in the negative electrode current collector 8 when the negative electrode current collector 8 and the negative electrode core laminate 50 are ultrasonically bonded. That is, the unevenness forming portion 8x is a pressing mark by the anvil.

[封口板への各部品取り付け]
以下に、正極集電体6、正極端子7、負極集電体8及び負極端子9の封口板2への取り付け方法を説明する。
まず、封口板2に設けられた正極端子取り付け孔(図示省略)の周囲において、封口板2の電池外部側に外部側絶縁部材11を配置し、封口板2の内面側に内部側絶縁部材10及び正極集電体6のベース部6aを配置する。次に、正極端子7の挿入部を電池外部側から、外部側絶縁部材11の貫通孔、封口板2の正極端子取り付け孔、内部側絶縁部材10の貫通孔及びベース部6aの貫通孔に挿入し、正極端子7の挿入部の先端側をベース部6a上にカシメる。これにより、正極端子7、外部側絶縁部材11、封口板2、内部側絶縁部材10及び正極集電体6が一体的に固定される。なお、正極端子7の挿入部の先端のカシメられた部分をベース部6aに溶接してもよい。
[Installing each part on the sealing plate]
The method of attaching the positive electrode current collector 6, the positive electrode terminal 7, the negative electrode current collector 8 and the negative electrode terminal 9 to the sealing plate 2 will be described below.
First, around the positive electrode terminal mounting hole (not shown) provided in the sealing plate 2, the outer insulating member 11 is arranged on the battery outer side of the sealing plate 2, and the inner insulating member 10 is arranged on the inner surface side of the sealing plate 2. And the base portion 6a of the positive electrode current collector 6 is arranged. Next, the insertion portion of the positive electrode terminal 7 is inserted from the outside of the battery into the through hole of the outer insulating member 11, the positive electrode terminal mounting hole of the sealing plate 2, the through hole of the inner insulating member 10, and the through hole of the base portion 6a. Then, the tip side of the insertion portion of the positive electrode terminal 7 is crimped onto the base portion 6a. As a result, the positive electrode terminal 7, the outer insulating member 11, the sealing plate 2, the inner insulating member 10 and the positive electrode current collector 6 are integrally fixed. The crimped portion of the tip of the insertion portion of the positive electrode terminal 7 may be welded to the base portion 6a.

同様に、封口板2に設けられた負極端子取り付け孔(図示省略)の周囲において、封口板2の電池外部側に外部側絶縁部材13を配置し、封口板2の電池内部側に内部側絶縁部材12及び負極集電体8のベース部8aを配置する。次に、負極端子9の挿入部を電池外部側から、外部側絶縁部材13の貫通孔、封口板2の負極端子取り付け孔、内部側絶縁部材12の貫通孔及びベース部8aの貫通孔に挿入し、負極端子9の挿入部の先端側をベース部8a上にカシメる。これにより、負極端子9、外部側絶縁部材13、封口板2、内部側絶縁部材12及び負極集電体8が一体的に固定される。なお、負極端子9の挿入部の先端のカシメられた部分をベース部8aに溶接してもよい。 Similarly, around the negative electrode terminal mounting hole (not shown) provided in the sealing plate 2, the outer side insulating member 13 is arranged on the battery outer side of the sealing plate 2, and the inner side insulation is provided on the battery inner side of the sealing plate 2. The member 12 and the base portion 8a of the negative electrode current collector 8 are arranged. Next, the insertion portion of the negative electrode terminal 9 is inserted from the outside of the battery into the through hole of the outer insulating member 13, the negative electrode terminal mounting hole of the sealing plate 2, the through hole of the inner insulating member 12, and the through hole of the base portion 8a. Then, the tip side of the insertion portion of the negative electrode terminal 9 is crimped onto the base portion 8a. As a result, the negative electrode terminal 9, the outer insulating member 13, the sealing plate 2, the inner insulating member 12, and the negative electrode current collector 8 are integrally fixed. The crimped portion of the tip of the insertion portion of the negative electrode terminal 9 may be welded to the base portion 8a.

[角形二次電池100の組立て]
封口板2に取り付けられた正極集電体6と正極芯体積層部40を接合し、封口板2に取り付けられた負極集電体8と負極芯体積層部50を接合する。そして、電極体3を絶縁シート14で覆い、絶縁シート14で覆われた電極体3を角形外装体1に挿入する。そして、封口板2を角形外装体1にレーザー溶接により溶接し、角形外装体1の開口を封口板2で封口する。封口板2の電解質注液孔16から非水電解質を電池ケース200内に注入し
た後、電解質注液孔16を封止部材17で封止する。これにより角形二次電池100となる。
[Assembling the prismatic secondary battery 100]
The positive electrode collector 6 attached to the sealing plate 2 and the positive electrode core laminated portion 40 are joined, and the negative electrode collector 8 attached to the sealing plate 2 and the negative electrode core laminated portion 50 are joined. Then, the electrode body 3 is covered with the insulating sheet 14, and the electrode body 3 covered with the insulating sheet 14 is inserted into the rectangular exterior body 1. Then, the sealing plate 2 is welded to the rectangular exterior body 1 by laser welding, and the opening of the rectangular exterior body 1 is closed by the sealing plate 2. After the nonaqueous electrolyte is injected into the battery case 200 from the electrolyte injection hole 16 of the sealing plate 2, the electrolyte injection hole 16 is sealed with the sealing member 17. As a result, the prismatic secondary battery 100 is obtained.

以下、負極集電体8と負極芯体積層部50の接合方法を例に、集電体と芯体積層部の接合方法を説明する。なお、正極集電体6と正極芯体積層部40の接合も同様の方法で行うことができる。 Hereinafter, the joining method of the current collector and the core body laminated portion will be described by taking the joining method of the negative electrode current collector 8 and the negative electrode core laminated portion 50 as an example. The positive electrode current collector 6 and the positive electrode core laminated portion 40 can be joined by the same method.

[集電体と芯体積層部の接合]
図4に示すように、負極集電体8のリード部8bの一方の面側に負極芯体積層部50を配置する。そして、ホーン90とアンビル91で、負極芯体積層部50とリード部8bを挟み込む。ホーン90は先端に複数のホーン突起90aを有する。そして、ホーン突起90aが負極芯体積層部50と接するようにする。アンビル91は先端に複数のアンビル突起91aを有する。そして、アンビル突起91aがリード部8bと接するようにする。
[Joining the current collector and core laminated part]
As shown in FIG. 4, the negative electrode core laminated portion 50 is arranged on one surface side of the lead portion 8b of the negative electrode current collector 8. Then, the negative electrode core laminated portion 50 and the lead portion 8b are sandwiched between the horn 90 and the anvil 91. The horn 90 has a plurality of horn protrusions 90a at its tip. Then, the horn protrusion 90a is brought into contact with the negative electrode core laminate 50. The anvil 91 has a plurality of anvil protrusions 91a at its tip. Then, the anvil protrusion 91a is brought into contact with the lead portion 8b.

図5に示すように、ホーン90とアンビル91で、負極芯体積層部50とリード部8bを挟み込むことにより、ホーン突起90aが負極芯体積層部50に食い込み、アンビル突起91aがリード部8bに食い込んだ状態とする。そして、ホーン90に超音波振動を与えることにより、図6に示すように負極芯体積層部50における負極芯体5a同士、及び負極芯体積層部50とリード部8bが接合される。これにより、負極芯体積層部50に接合部51が形成される。 As shown in FIG. 5, by sandwiching the negative electrode core laminated portion 50 and the lead portion 8b with the horn 90 and the anvil 91, the horn protrusion 90a bites into the negative electrode core laminated portion 50, and the anvil protrusion 91a extends to the lead portion 8b. It will be in a state of cutting into. Then, by applying ultrasonic vibration to the horn 90, the negative electrode core bodies 5a in the negative electrode core body laminated portion 50, and the negative electrode core body laminated portion 50 and the lead portion 8b are joined together as shown in FIG. As a result, the joint portion 51 is formed in the negative electrode core laminated portion 50.

接合部51の表面には、芯体側凹凸形成部51xが形成される。また、リード部8bには、アンビル91による押圧痕である凹凸形成部8xが形成される。 On the surface of the joint portion 51, the core-side irregularity forming portion 51x is formed. In addition, the lead portion 8b is formed with an unevenness forming portion 8x which is a pressing mark by the anvil 91.

図7は、負極芯体積層部50とリード部8bが超音波接合された後の、リード部8bにおいて負極芯体積層部50が接合される面とは反対側の面の平面図である。リード部8bにおいて接合部51が形成された部分の反対側にはアンビル91による押圧痕である凹凸形成部8xが形成される。 FIG. 7 is a plan view of the surface of the lead portion 8b opposite to the surface to which the negative electrode core laminated portion 50 is bonded, after the negative electrode core stacked portion 50 and the lead portion 8b are ultrasonically bonded. On the side of the lead portion 8b opposite to the portion where the joint portion 51 is formed, a concavo-convex forming portion 8x which is a pressing mark by the anvil 91 is formed.

図8(a)は、図7におけるVIIIa−VIIIaの断面図である。図8(a)に示すように、負極集電体8のリード部8bにおいて凹凸形成部8xが形成された領域に光硬化性樹脂8yを塗布する。そして、図8(b)に示すように、光硬化性樹脂8yに光Lを照射することにより光硬化性樹脂を硬化させる。 FIG. 8A is a sectional view of VIIIa-VIIIa in FIG. 7. As shown in FIG. 8A, the photocurable resin 8y is applied to the region of the lead portion 8b of the negative electrode current collector 8 where the unevenness forming portion 8x is formed. Then, as shown in FIG. 8B, the photocurable resin 8y is irradiated with light L to cure the photocurable resin.

超音波接合の際にリード部8bにおいてアンビル91に押圧された凹凸形成部8xの表面には銅又は銅合金からなるバリが生じるおそれがある。凹凸形成部8xの表面を光硬化性樹脂を塗布し、光硬化性樹脂を硬化させることにより、バリが凹凸形成部8xから脱離し、電極体3内に侵入し正極板4上に移動することを効果的に抑制できる。したがって、負極板上に銅又は銅合金からなるデンドライトが生じることを抑制できる。よって、正極板と負極板の短絡が抑制された二次電池を提供することができる。なお、光硬化性樹脂を用いることにより、熱硬化性樹脂のように硬化させる際に加熱が不要であるため、電極体を構成するセパレータに熱的ダメージを与え難い。 At the time of ultrasonic bonding, burrs made of copper or copper alloy may be generated on the surface of the unevenness forming portion 8x pressed by the anvil 91 in the lead portion 8b. By applying a photocurable resin to the surface of the unevenness forming portion 8x and curing the photocurable resin, burrs are detached from the unevenness forming portion 8x, enter the electrode body 3, and move onto the positive electrode plate 4. Can be effectively suppressed. Therefore, it is possible to suppress the generation of dendrites made of copper or a copper alloy on the negative electrode plate. Therefore, it is possible to provide a secondary battery in which a short circuit between the positive electrode plate and the negative electrode plate is suppressed. By using the photo-curable resin, heating is not required when the resin is cured unlike the thermosetting resin, and thus the separator constituting the electrode body is less likely to be thermally damaged.

なお、図9に示すように、リード部8bにおいて凹凸形成部8x及びその周辺が光硬化性樹脂8yに覆われるようにすることが好ましい。図8(b)は、図9におけるVIIIb−VIIIbの断面図である。 As shown in FIG. 9, it is preferable that the concave-convex forming portion 8x and its periphery in the lead portion 8b be covered with the photocurable resin 8y. FIG. 8B is a cross-sectional view of VIIIb-VIIIb in FIG.

光硬化性樹脂としては、光エネルギーの作用により硬化するものを用いることができる。なお、光硬化性樹脂は、光の照射により硬化する前は液状又はゲル状であることが好ましい。光硬化性樹脂としては、エポキシアクリレート樹脂、ウレタンアクリレート樹脂、
脂環式エポキシ樹脂、およびポリエステルビニルエーテル樹脂からなる群から選ばれる少なくとも一つであることが好ましい。なお、光硬化性樹脂を硬化させるために光硬化性樹脂に照射する光は、光硬化性樹脂を硬化できるものであれば特に限定されない。光としては、例えば紫外線等が考えられる。
As the photocurable resin, one that is cured by the action of light energy can be used. The photocurable resin is preferably liquid or gel before being cured by irradiation with light. As the photocurable resin, epoxy acrylate resin, urethane acrylate resin,
It is preferably at least one selected from the group consisting of an alicyclic epoxy resin and a polyester vinyl ether resin. The light with which the photocurable resin is irradiated to cure the photocurable resin is not particularly limited as long as it can cure the photocurable resin. The light may be ultraviolet light, for example.

[変形例1]
図10〜15に、変形例1に係る負極集電体と負極芯体積層部の接合形態を示す。変形例1では、上述の実施形態とは負極集電体のリード部の形状が異なる。変形例1に係る負極集電体108では、リード部108bにおいて負極芯体積層部50と対向する面とは反対側の面に凹部108dが設けられている。これにより、リード部108bに薄肉部108eが形成されている。負極集電体108は、リード部108bの幅方向の端部にリブ108cを有する。
[Modification 1]
10 to 15 show a bonding form of the negative electrode current collector and the negative electrode core body laminated portion according to the first modification. In Modification 1, the shape of the lead portion of the negative electrode current collector is different from that of the above-described embodiment. In the negative electrode current collector 108 according to the first modification, the concave portion 108d is provided on the surface of the lead portion 108b opposite to the surface facing the negative electrode core laminated portion 50. As a result, the thin portion 108e is formed on the lead portion 108b. The negative electrode current collector 108 has a rib 108c at the widthwise end of the lead portion 108b.

図10に示すように、リード部108bにおいて凹部108dが形成された面とは反対側の面に負極芯体積層部50を配置する。そして、ホーン90及びアンビル91で、負極芯体積層部50とリード部108bを挟み込む。 As shown in FIG. 10, the negative electrode core laminate 50 is arranged on the surface of the lead portion 108b opposite to the surface on which the recess 108d is formed. Then, the negative electrode core laminated portion 50 and the lead portion 108b are sandwiched by the horn 90 and the anvil 91.

図11に示すように、アンビル91がリード部108bに形成された凹部108dの底面に接するようにする。なお、アンビル91のアンビル突起91aが凹部108dの底面に食い込むようにする。 As shown in FIG. 11, the anvil 91 is in contact with the bottom surface of the recess 108d formed in the lead portion 108b. In addition, the anvil protrusion 91a of the anvil 91 is designed to bite into the bottom surface of the recess 108d.

図12に示すように、リード部108bの薄肉部108eにおいて、リード部108bと負極芯体積層部50が接合されている。負極芯体積層部50における負極芯体5a同士、及び負極芯体5aとリード部108bの薄肉部108eが接合されて、接合部51が形成される。リード部108bに形成されるアンビル91の押圧痕である凹凸形成部108xは、凹部108dの底面に形成される。 As shown in FIG. 12, in the thin portion 108e of the lead portion 108b, the lead portion 108b and the negative electrode core laminate portion 50 are joined. The negative electrode core bodies 5a in the negative electrode core body stacked portion 50 are joined together, and the negative electrode core body 5a and the thin portion 108e of the lead portion 108b are joined together to form the joint portion 51. The concavo-convex forming portion 108x, which is a pressing mark of the anvil 91 formed on the lead portion 108b, is formed on the bottom surface of the concave portion 108d.

図13は、負極芯体積層部50とリード部108bが超音波接合された後の、リード部108bにおいて負極芯体積層部50が接合される面とは反対側の面の平面図である。リード部108bにおいて接合部51が形成された部分の反対側にはアンビル91による押圧痕である凹凸形成部108xが形成される。なお、図12は、図13におけるXII−XIIの断面図である。 FIG. 13 is a plan view of the surface of the lead portion 108b opposite to the surface on which the negative electrode core body laminated portion 50 is joined, after the negative electrode core body laminated portion 50 and the lead portion 108b are ultrasonically joined. On the side of the lead portion 108b opposite to the portion where the joint portion 51 is formed, a concavo-convex forming portion 108x which is a pressing mark by the anvil 91 is formed. Note that FIG. 12 is a sectional view taken along line XII-XII in FIG.

次に、図14及び図15に示すように、リード部108bの凹凸形成部8xの表面に光硬化性樹脂108yを塗布し、光硬化性樹脂108yに光を照射し光硬化性樹脂108yを硬化させる。なお、図15は、図14におけるXV−XVの断面図である。 Next, as shown in FIGS. 14 and 15, the photo-curable resin 108y is applied to the surface of the unevenness forming portion 8x of the lead portion 108b, and the photo-curable resin 108y is irradiated with light to cure the photo-curable resin 108y. Let Note that FIG. 15 is a sectional view taken along line XV-XV in FIG. 14.

このような構成であると、凹凸形成部108xの表面を光硬化性樹脂108yを塗布し、光硬化性樹脂108yを硬化させることにより、バリが凹凸形成部108xから脱離し、電極体3内に侵入し正極板4上に移動することを効果的に抑制できる。したがって、負極板上に銅又は銅合金からなるデンドライトが生じることを抑制できる。よって、正極板と負極板の短絡が抑制された二次電池を提供することができる。 With such a configuration, by applying the photocurable resin 108y to the surface of the unevenness forming portion 108x and curing the photocurable resin 108y, burrs are separated from the unevenness forming portion 108x, and the burrs are formed inside the electrode body 3. It is possible to effectively suppress the invasion and movement onto the positive electrode plate 4. Therefore, it is possible to suppress the generation of dendrites made of copper or a copper alloy on the negative electrode plate. Therefore, it is possible to provide a secondary battery in which a short circuit between the positive electrode plate and the negative electrode plate is suppressed.

なお、変形例1のように、負極集電体108のリード部108bに凹部108dを設け、凹部108dの底面に凹凸形成部108xを形成することが好ましい。そして、凹凸形成部108xを覆う光硬化性樹脂108yが凹部108d内に配置されることが好ましい。これにより、製造工程等において光硬化性樹脂108yに何らかの部材が接触し、光硬化性樹脂108yが凹凸形成部108xから剥がれることを抑制できる。また、凹凸形成部108xの表面に光硬化性樹脂108yを塗布する際に、光硬化性樹脂108yを所定の範囲内に留めることができる。 It is preferable that the recess 108d be provided in the lead portion 108b of the negative electrode current collector 108 and the concavo-convex forming portion 108x be formed on the bottom surface of the recess 108d as in Modification 1. Then, it is preferable that the photo-curable resin 108y that covers the concave-convex forming portion 108x is disposed in the concave portion 108d. This can prevent the photocurable resin 108y from coming into contact with the photocurable resin 108y in the manufacturing process or the like and peeling off the photocurable resin 108y from the concave-convex forming portion 108x. Further, when the photocurable resin 108y is applied to the surface of the unevenness forming portion 108x, the photocurable resin 108y can be kept within a predetermined range.

[超音波接合]
集電体と芯体積層部を超音波接合する際の条件は、特に限定されないが、例えば、ホーン荷重を1000N〜2500N(100kgf〜250kgf)、周波数を19kHz〜30kHz、接合時間を200ms〜500msに設定して超音波接合を行ってもよい。また、周波数が20kHzの場合、ホーン振幅を最大振幅(例えば50μm)の50%〜90%としてもよい。芯体積層部に超音波振動が加えられることにより、芯体積層部を構成する芯体の各表面、集電体の表面の酸化膜が摩擦によって取り除かれ、芯体同士が固相接合されると共に、芯体と集電体が固相接合される。
[Ultrasonic bonding]
The conditions for ultrasonically bonding the current collector and the core laminated portion are not particularly limited, but for example, the horn load is 1000 N to 2500 N (100 kgf to 250 kgf), the frequency is 19 kHz to 30 kHz, and the bonding time is 200 ms to 500 ms. It may be set and ultrasonic bonding may be performed. Further, when the frequency is 20 kHz, the horn amplitude may be 50% to 90% of the maximum amplitude (for example, 50 μm). By applying ultrasonic vibration to the core laminated portion, the oxide film on each surface of the core constituting the core laminated portion and the surface of the current collector is removed by friction, and the cores are solid-phase bonded to each other. At the same time, the core and the current collector are solid-phase bonded.

[ブローないし吸引]
芯体積層部と集電体を超音波接合した後、酸化処理を行う前に、凹凸形成部をブローないし吸引することにより、凹凸形成部に付着した金属小片を可能な限り除去することが好ましい。
[Blow or suction]
After ultrasonically bonding the core laminated portion and the current collector, and before performing the oxidation treatment, it is preferable to blow or suck the unevenness forming portion to remove the metal pieces attached to the unevenness forming portion as much as possible. ..

<その他>
上述の実施形態では、二次電池として、偏平状の巻回電極体を有する角形二次電池を例示したが、セパレータを挟んで正極板と負極板とが交互に複数枚積層された積層型の電極体であってもよい。また、電極体における封口板側の端部に正極芯体積層部と負極芯体積層部が配置される構成であってもよい。
<Other>
In the above-described embodiment, as the secondary battery, a rectangular secondary battery having a flat spirally wound electrode body is exemplified, but a positive electrode plate and a negative electrode plate sandwiching a separator are laminated in a plurality of laminated types. It may be an electrode body. Further, the positive electrode core laminated portion and the negative electrode core laminated portion may be arranged at the end of the electrode body on the side of the sealing plate.

正極芯体がアルミニウム又はアルミニウム合金製である場合、正極芯体の厚みは5〜30μmであることが好ましく、10〜20μmであることがより好ましい。また、正極芯体積層部における正極芯体の積層数は10〜100層であることが好ましく、30〜100層がより好ましい。 When the positive electrode core is made of aluminum or an aluminum alloy, the thickness of the positive electrode core is preferably 5 to 30 μm, more preferably 10 to 20 μm. Further, the number of laminated positive electrode cores in the positive electrode core laminated portion is preferably 10 to 100 layers, and more preferably 30 to 100 layers.

負極芯体が銅又は銅合金製である場合、負極芯体の厚みは5〜30μmであることが好ましく、6〜15μmであることがより好ましい。また、負極芯体積層部における負極芯体の積層数は10〜100層であることが好ましく、30〜100層がより好ましい。 When the negative electrode core is made of copper or a copper alloy, the thickness of the negative electrode core is preferably 5 to 30 μm, more preferably 6 to 15 μm. Further, the number of laminated negative electrode cores in the negative electrode core laminated portion is preferably 10 to 100 layers, and more preferably 30 to 100 layers.

正極板、負極板、セパレータ、電解質に関しては、公知の材料を用いることができる。 Known materials can be used for the positive electrode plate, the negative electrode plate, the separator, and the electrolyte.

100・・・角形二次電池
200・・・電池ケース
1・・・角形外装体
2・・・封口板
3・・・電極体
4・・・正極板
4a・・・正極芯体
4b・・・正極活物質層
5・・・負極板
5a・・・負極芯体
5b・・・負極活物質層
6・・・正極集電体
6a・・・ベース部
6b・・・リード部
6c・・・リブ
6x・・・凹凸形成部
7・・・正極端子
7a・・・鍔部
8・・・負極集電体
8a・・・ベース部
8b・・・リード部
8c・・・リブ
8x・・・凹凸形成部
8y・・・光硬化性樹脂
9・・・負極端子
9a・・・鍔部
10・・・内部側絶縁部材
11・・・外部側絶縁部材
12・・・内部側絶縁部材
13・・・外部側絶縁部材
14・・・絶縁シート
15・・・ガス排出弁
16・・・電解質注液孔
17・・・封止部材

50・・・負極芯体積層部
51・・・接合部
51x・・・芯体側凹凸形成部

90・・・ホーン
90a・・・ホーン突起
91・・・アンビル
91a・・・アンビル突起

108・・・負極集電体
108b・・・リード部
108c・・・リブ
108d・・・凹部
108e・・・薄肉部
108x・・・凹凸形成部
108y・・・光硬化性樹脂
100... Square secondary battery 200... Battery case 1... Square exterior body 2... Sealing plate 3... Electrode body 4... Positive electrode plate 4a... Positive electrode core body 4b... Positive electrode active material layer 5... Negative electrode plate 5a... Negative electrode core body 5b... Negative electrode active material layer 6... Positive electrode current collector 6a... Base portion 6b... Lead portion 6c... Rib 6x...unevenness forming part 7...positive electrode terminal 7a...collar part 8...negative electrode current collector 8a...base part 8b...lead part 8c...rib 8x...unevenness forming Part 8y... Photocurable resin 9... Negative electrode terminal 9a... Collar part 10... Inner side insulating member 11... Outer side insulating member 12... Inner side insulating member 13... External Side insulating member 14... Insulating sheet 15... Gas discharge valve 16... Electrolyte injection hole 17... Sealing member

50... Negative electrode core laminated portion 51... Joined portion 51x... Core body side irregularity forming portion

90... Horn 90a... Horn protrusion 91... Anvil 91a... Anvil protrusion

108... Negative electrode current collector 108b... Lead portion 108c... Rib 108d... Recessed portion 108e... Thin portion 108x... Concavo-convex forming portion 108y... Photocurable resin

Claims (4)

第1電極板と、
前記第1電極板と極性の異なる第2電極板と、
前記第1電極板と前記第2電極板を含む電極体と、
前記第1電極板に電気的に接続された銅又は銅合金製の第1電極集電体と、を備え、
前記第1電極板は、銅又は銅合金製の第1電極芯体と、前記第1電極芯体上に形成された第1電極活物質層を有し、
前記電極体は、前記第1電極芯体が積層された前記第1電極芯体積層部を有し、
前記第1電極芯体積層部が前記第1電極集電体に接合された二次電池の製造方法であって、
前記第1電極芯体積層部と前記第1電極集電体をホーンとアンビルで挟み込み、前記アンビルが前記第1電極集電体と接する状態で、前記第1電極芯体積層部と前記第1電極集電体を超音波接合して接合部を形成する接合工程と、
前記接合工程において前記第1電極集電体において前記アンビルと接していた部分に光硬化性樹脂を塗布する塗布工程と、
前記光硬化性樹脂に光を照射し光硬化性樹脂を硬化させる硬化工程、
を有する二次電池の製造方法。
A first electrode plate,
A second electrode plate having a polarity different from that of the first electrode plate;
An electrode body including the first electrode plate and the second electrode plate;
A first electrode current collector made of copper or a copper alloy electrically connected to the first electrode plate,
The first electrode plate has a first electrode core body made of copper or a copper alloy, and a first electrode active material layer formed on the first electrode core body,
The electrode body has the first electrode core body laminated portion in which the first electrode core body is laminated,
A method of manufacturing a secondary battery, wherein the first electrode core laminated portion is joined to the first electrode current collector,
The first electrode core laminated body and the first electrode current collector are sandwiched between a horn and an anvil, and the first electrode core laminated body and the first electrode core laminated body are in contact with the first electrode current collector. A bonding step of ultrasonically bonding the electrode current collector to form a bonding portion;
A coating step of coating a photocurable resin on a portion of the first electrode current collector that was in contact with the anvil in the bonding step;
A curing step of irradiating the photocurable resin with light to cure the photocurable resin,
And a method for manufacturing a secondary battery having.
前記光硬化性樹脂は、エポキシアクリレート樹脂、ウレタンアクリレート樹脂、脂環式エポキシ樹脂、およびポリエステルビニルエーテル樹脂からなる群から選ばれる少なくとも一つである請求項1に記載の二次電池の製造方法。 The method for producing a secondary battery according to claim 1, wherein the photocurable resin is at least one selected from the group consisting of an epoxy acrylate resin, a urethane acrylate resin, an alicyclic epoxy resin, and a polyester vinyl ether resin. 前記接合工程と前記塗布工程の間に、前記第1電極集電体において前記アンビルと接していた部分をブローないし吸引する工程を有する請求項1又は2に記載の二次電池の製造方法。 The method for manufacturing a secondary battery according to claim 1, further comprising a step of blowing or sucking a portion of the first electrode current collector that is in contact with the anvil between the joining step and the applying step. 第1電極板と、
前記第1電極板と極性の異なる第2電極板と、
前記第1電極板と前記第2電極板を含む電極体と、
前記第1電極板に電気的に接続された銅又は銅合金製の第1電極集電体と、を備え、
前記第1電極板は、銅又は銅合金製の第1電極芯体と、前記第1電極芯体上に形成された第1電極活物質層を有し、
前記電極体は、前記第1電極芯体が積層された前記第1電極芯体積層部を有し、
前記第1電極芯体積層部が前記第1電極集電体に接合された二次電池であって、
前記第1電極集電体において、前記第1電極芯体積層部が接合された面と反対側の面には凹凸形成部が形成され、
前記凹凸形成部の表面には、光硬化性樹脂からなる層が形成された二次電池。

A first electrode plate,
A second electrode plate having a polarity different from that of the first electrode plate;
An electrode body including the first electrode plate and the second electrode plate;
A first electrode current collector made of copper or a copper alloy electrically connected to the first electrode plate,
The first electrode plate has a first electrode core body made of copper or a copper alloy, and a first electrode active material layer formed on the first electrode core body,
The electrode body has the first electrode core body laminated portion in which the first electrode core body is laminated,
A secondary battery in which the first electrode core laminated portion is joined to the first electrode current collector,
In the first electrode current collector, a concavo-convex forming portion is formed on a surface opposite to a surface on which the first electrode core laminated portion is joined,
A secondary battery in which a layer made of a photocurable resin is formed on the surface of the unevenness forming portion.

JP2019012634A 2019-01-29 2019-01-29 Secondary battery and manufacturing method thereof Pending JP2020119875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019012634A JP2020119875A (en) 2019-01-29 2019-01-29 Secondary battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019012634A JP2020119875A (en) 2019-01-29 2019-01-29 Secondary battery and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2020119875A true JP2020119875A (en) 2020-08-06

Family

ID=71892123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019012634A Pending JP2020119875A (en) 2019-01-29 2019-01-29 Secondary battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2020119875A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014049311A (en) * 2012-08-31 2014-03-17 Hitachi Vehicle Energy Ltd Square secondary battery
JP2014238915A (en) * 2011-09-30 2014-12-18 三洋電機株式会社 Laminated battery and manufacturing method therefor
JP2015041607A (en) * 2013-08-23 2015-03-02 株式会社リチウムエナジージャパン Power storage element and method of manufacturing power storage element
WO2016208238A1 (en) * 2015-06-25 2016-12-29 Necエナジーデバイス株式会社 Method for manufacturing electrochemical device
JP2017041320A (en) * 2015-08-18 2017-02-23 三洋電機株式会社 Secondary battery and manufacturing method therefor
JP2017117739A (en) * 2015-12-25 2017-06-29 株式会社東芝 battery
WO2017149949A1 (en) * 2016-02-29 2017-09-08 パナソニックIpマネジメント株式会社 Method for manufacturing electrode body, and method for manufacturing nonaqueous electrolyte secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014238915A (en) * 2011-09-30 2014-12-18 三洋電機株式会社 Laminated battery and manufacturing method therefor
JP2014049311A (en) * 2012-08-31 2014-03-17 Hitachi Vehicle Energy Ltd Square secondary battery
JP2015041607A (en) * 2013-08-23 2015-03-02 株式会社リチウムエナジージャパン Power storage element and method of manufacturing power storage element
WO2016208238A1 (en) * 2015-06-25 2016-12-29 Necエナジーデバイス株式会社 Method for manufacturing electrochemical device
JP2017041320A (en) * 2015-08-18 2017-02-23 三洋電機株式会社 Secondary battery and manufacturing method therefor
JP2017117739A (en) * 2015-12-25 2017-06-29 株式会社東芝 battery
WO2017149949A1 (en) * 2016-02-29 2017-09-08 パナソニックIpマネジメント株式会社 Method for manufacturing electrode body, and method for manufacturing nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
US8025202B2 (en) Method for manufacturing sealed battery
JP4401065B2 (en) Secondary battery and manufacturing method thereof
JP7229027B2 (en) Secondary battery and manufacturing method thereof
JP5363404B2 (en) Secondary battery
JP2000285904A (en) Nonaqueous electrolytic battery and manufacture thereof
JP2010003692A (en) Electrode assembly, secondary battery using the same, and manufacturing method for the secondary battery
KR100515833B1 (en) Jelly-roll type electrode assembly and secondary battery applying the same
JP2017041320A (en) Secondary battery and manufacturing method therefor
JP5561507B2 (en) Winding type battery and manufacturing method thereof
JP2012014952A (en) Battery and method of manufacturing the same
KR101222284B1 (en) Battery and method for producing the same
JPWO2017010042A1 (en) Winding battery
WO2013031937A1 (en) Lithium-ion secondary battery
JP3825706B2 (en) Secondary battery
JP2002134094A (en) Enclosed type battery
JP2020119875A (en) Secondary battery and manufacturing method thereof
JP2020102320A (en) Manufacturing method of secondary battery
JP7329538B2 (en) Secondary battery and manufacturing method thereof
JP7361054B2 (en) Secondary battery and its manufacturing method
JP2004152707A (en) Secondary battery and its manufacturing method
JP7194600B2 (en) Method for manufacturing secondary battery
JP5346831B2 (en) Secondary battery and manufacturing method thereof
WO2023276284A1 (en) Electrochemical cell and method for producing same
JP2018037187A (en) Manufacturing method of sealed battery
JP2024008475A (en) battery

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20200611

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220812

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20220818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230207