JP2011171079A - Battery cell - Google Patents

Battery cell Download PDF

Info

Publication number
JP2011171079A
JP2011171079A JP2010032953A JP2010032953A JP2011171079A JP 2011171079 A JP2011171079 A JP 2011171079A JP 2010032953 A JP2010032953 A JP 2010032953A JP 2010032953 A JP2010032953 A JP 2010032953A JP 2011171079 A JP2011171079 A JP 2011171079A
Authority
JP
Japan
Prior art keywords
current collecting
negative electrode
positive
positive electrode
electrode current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010032953A
Other languages
Japanese (ja)
Inventor
Shingo Sato
真吾 佐藤
Seiichi Hikata
誠一 日方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010032953A priority Critical patent/JP2011171079A/en
Publication of JP2011171079A publication Critical patent/JP2011171079A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To prevent damage of a current collecting tub when external forces such as vibrations or impacts are applied in a battery cell in which the current collecting tub extended from a plurality of electrodes is used. <P>SOLUTION: The battery cell includes: electrode group 2 that is wound squamously and in whorl; a plurality sheet of positive electrode current collecting tubs 6c that are extended from a plurality of portions in one end face of a positive collector 6a of a positive electrode 6;and a plurality of sheet of negative electrode current collecting tubs 7c that are extended from a plurality of portions in one end face of a negative collector 7a of a negative electrode 7, wherein the electrode group 2 has: bent sides 65 occupying both ends in a long side direction on the end face; and an unbent side 67 sandwiched by the bent sides 65, and the positive electrode current collecting tubs 6c are located at one of the bent side 65, the negative electrode current collecting tubs 7c are located at the other of the bent side 65 and moreover, both ends parallel to an extended direction of the positive electrode current collecting tubs 6c and the negative electrode tubs 7c. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電池に関するものである。   The present invention relates to a battery.

近年、電子機器の発達に伴い、小型で軽量かつエネルギー密度が高く、更に繰り返し充放電が可能な非水電解質二次電池としてリチウム二次電池が発達してきた。また、最近では、ハイブリッド車や電気自動車に搭載する車載用二次電池、電力平準化に使用される電力貯蔵用二次電池として好適な、急速充電および高出力放電が可能な非水電解質二次電池の開発が要望されている。   In recent years, with the development of electronic devices, lithium secondary batteries have been developed as non-aqueous electrolyte secondary batteries that are small, lightweight, have high energy density, and can be repeatedly charged and discharged. Recently, non-aqueous electrolyte secondary batteries capable of rapid charging and high output discharge, suitable for in-vehicle secondary batteries mounted on hybrid vehicles and electric vehicles, and secondary batteries for power storage used for power leveling. Development of batteries is desired.

非水電解質二次電池において優れた急速充電性能および高出力放電性能を得るためには、効率よく電流を取り出す必要がある。そのためには電極の複数箇所から集電タブを導出させ、これら集電タブをリードを介して外部端子と電気的接続することが望ましい。   In order to obtain excellent rapid charge performance and high output discharge performance in a nonaqueous electrolyte secondary battery, it is necessary to efficiently extract current. For this purpose, it is desirable to lead out current collecting tabs from a plurality of locations of the electrodes and to electrically connect these current collecting tabs to external terminals via leads.

特許文献1は、正極板の長手方向に間隔をあけて複数の正極集電タブが固着されており、負極板の長手方向に間隔をあけて複数の負極集電タブが固着されており、正極板及び負極板が巻回された状態において、これら複数の正極集電タブと複数の負極集電タブとが、それぞれセパレータを介して対向して配置することによって、高出力を得ることを可能にしたリチウム二次電池を開示している。   In Patent Document 1, a plurality of positive electrode current collecting tabs are fixed at intervals in the longitudinal direction of the positive electrode plate, and a plurality of negative electrode current collecting tabs are fixed at intervals in the longitudinal direction of the negative electrode plate. In a state where the plate and the negative electrode plate are wound, it is possible to obtain a high output by arranging the plurality of positive electrode current collecting tabs and the plurality of negative electrode current collecting tabs so as to face each other via separators. A lithium secondary battery is disclosed.

特許文献2は、非水電解質二次電池において、正極および負極のそれぞれについて、電気を取り出すための集電タブを長さ300mm毎に少なくとも1箇所設けることにより、発熱や分極の問題を低減可能であることを開示している。   In Patent Document 2, in a non-aqueous electrolyte secondary battery, the problem of heat generation and polarization can be reduced by providing at least one current collecting tab for extracting electricity for each of the positive electrode and the negative electrode for every 300 mm in length. It is disclosed.

特許文献3にも、電極の複数箇所からタブを導出させた電池が開示されている。   Patent Document 3 also discloses a battery in which tabs are derived from a plurality of positions of electrodes.

しかしながら、特許文献1〜3のように、電極の複数箇所から集電タブを導出させると、電池に外部から振動や衝撃が加わった際に集電タブの一部が損傷するという問題がある。   However, as in Patent Documents 1 to 3, if the current collecting tab is led out from a plurality of positions of the electrode, there is a problem that a part of the current collecting tab is damaged when vibration or impact is applied to the battery from the outside.

特開平11−111340号公報JP-A-11-111340 特開2006−260786号公報JP 2006-260786 A 特開2001−85042号公報JP 2001-85042 A

本発明は、電極の複数箇所から延出された集電タブを用いる電池における振動や衝撃等の外力が加わった際の集電タブの損傷を防止することを目的とする。   An object of the present invention is to prevent damage to a current collecting tab when an external force such as vibration or impact is applied to a battery using the current collecting tab extended from a plurality of positions of an electrode.

本発明の第1実施形態において、容器と、前記容器内に収納され、正極、負極、及び、前記正極と前記負極の間に配置されたセパレータを含み、扁平の渦巻き状に捲回された電極群と、前記正極の正極集電体の一方の端面において複数箇所から延出された、複数枚の正極集電タブと、前記負極の負極集電体の一方の端面において複数箇所から延出された、複数枚の負極集電タブと、前記容器の開口部を塞ぐ蓋と、前記蓋に設けられ、前記正極集電タブと電気的に接続された正極端子と、前記蓋に設けられ、前記負極集電タブと電気的に接続された負極端子とを備え、前記電極群が、その端面における長辺方向の両端部を占める湾曲部と該湾曲部に挟まれた非湾曲部を有し、前記正極集電タブが一方の前記湾曲部に位置し、前記負極集電タブが他方の前記湾曲部に位置し、さらに、前記正極集電タブ及び前記負極集電タブの延出方向に平行な両端が、それぞれ前記非湾曲部に位置することを特徴とする電池が提供される。   In the first embodiment of the present invention, a container, an electrode housed in the container, including a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode, and wound in a flat spiral shape A plurality of positive electrode current collector tabs extending from a plurality of locations on one end surface of the positive electrode current collector of the group, and a plurality of positive electrode current collector tabs extending from a plurality of locations on one end surface of the negative electrode current collector of the negative electrode Further, a plurality of negative electrode current collecting tabs, a lid for closing the opening of the container, a positive electrode terminal provided on the lid and electrically connected to the positive electrode current collecting tab, provided on the lid, A negative electrode terminal electrically connected to the negative electrode current collector tab, the electrode group has a curved portion occupying both ends in the long side direction on the end surface, and a non-curved portion sandwiched between the curved portions, The positive electrode current collecting tab is located in one of the curved portions, and the negative electrode current collecting tab is There is provided a battery characterized in that both ends of the positive electrode current collecting tab and the negative electrode current collecting tab parallel to the extending direction of the positive electrode current collecting tab and the negative electrode current collecting tab are located in the non-curved part. .

本発明の第2実施形態において、前記正極における前記正極集電タブ間の距離並びに前記負極における前記負極集電タブ間の距離は、それぞれ、下記(1)式で表されることを特徴とする電池が提供される。
2nπd (1)
但し、nは、前記電極群の内周側から数えた前記正極集電タブの位置または前記負極集電タブの位置であり、dは、前記正極の厚さ、前記負極の厚さ、及び、前記セパレータの厚さの2倍値の合計であり、πは、円周率である。
2nd Embodiment of this invention WHEREIN: The distance between the said positive electrode current collection tabs in the said positive electrode and the distance between the said negative electrode current collection tabs in the said negative electrode are respectively represented by following (1) Formula, It is characterized by the above-mentioned. A battery is provided.
2nπd (1)
However, n is the position of the said positive electrode current collection tab counted from the inner peripheral side of the said electrode group, or the position of the said negative electrode current collection tab, d is the thickness of the said positive electrode, the thickness of the said negative electrode, and It is the sum of twice the thickness of the separator, and π is the circumference.

本発明によれば、電極の複数箇所から延出された集電タブを用いる電池に振動や衝撃等の外力が加わった際の集電タブの損傷を防止することができる。   ADVANTAGE OF THE INVENTION According to this invention, damage to the current collection tab when external force, such as a vibration and an impact, is applied to the battery using the current collection tab extended from the several places of an electrode can be prevented.

第1の実施形態の電池の要部についての分解斜視図。The disassembled perspective view about the principal part of the battery of 1st Embodiment. 図1の電池の製造過程を示す分解斜視図。FIG. 2 is an exploded perspective view showing a manufacturing process of the battery of FIG. 1. 第1の実施形態の電池の電極群の展開図。The expanded view of the electrode group of the battery of 1st Embodiment. 電極群の端面における湾曲部と非湾曲部を示す上面模式図。The upper surface schematic diagram which shows the curved part and non-curved part in the end surface of an electrode group. 一つの態様における電池の電極群の上面模式図。The upper surface schematic diagram of the electrode group of the battery in one aspect. 他の態様における電池の電極群の上面模式図。The upper surface schematic diagram of the electrode group of the battery in another aspect. 他の態様における電池の電極群の上面模式図。The upper surface schematic diagram of the electrode group of the battery in another aspect. 第2の実施形態の電池の正負極を示す平面図。The top view which shows the positive / negative electrode of the battery of 2nd Embodiment. 比較例1の電池の電極群の上面模式図。The upper surface schematic diagram of the electrode group of the battery of the comparative example 1. FIG. 比較例2の電池の電極群の上面模式図。The upper surface schematic diagram of the electrode group of the battery of the comparative example 2. FIG. 比較例3の電池の電極群の上面模式図。The upper surface schematic diagram of the electrode group of the battery of the comparative example 3. FIG.

以下、本発明の実施形態に係る電池を、図面を参照して説明する。なお、本発明は、これら実施形態に限られるものではない。   Hereinafter, a battery according to an embodiment of the present invention will be described with reference to the drawings. Note that the present invention is not limited to these embodiments.

(第1の実施形態)
第1の実施形態として角型非水電解質二次電池を例に説明する。図1は、密閉型の角型非水電解質二次電池の分解斜視図である。この電池は、容器1と、容器1内に収納される電極群2と、容器1内に収容される非水電解液(図示しない)と、容器1の開口部を塞ぐ蓋3と、蓋3に備えられる正極端子50並びに負極端子5とを有する。
(First embodiment)
A square nonaqueous electrolyte secondary battery will be described as an example as the first embodiment. FIG. 1 is an exploded perspective view of a sealed prismatic non-aqueous electrolyte secondary battery. This battery includes a container 1, an electrode group 2 housed in the container 1, a nonaqueous electrolyte solution (not shown) housed in the container 1, a lid 3 that closes the opening of the container 1, and a lid 3 A positive electrode terminal 50 and a negative electrode terminal 5.

容器1は、有底角筒形状をなし、例えば、アルミニウム、アルミニウム合金、鉄あるいはステンレスなどの金属から形成された外装缶である。   The container 1 has a bottomed rectangular tube shape, and is an outer can formed from, for example, a metal such as aluminum, an aluminum alloy, iron, or stainless steel.

電極群2は、正極、負極、及び、正極と負極の間に配置されたセパレータ59を含む。電極群2は、正極と負極との間にセパレータ59を挟んで渦巻状に捲回した後、全体を加圧成形することにより扁平形状にされる。   The electrode group 2 includes a positive electrode, a negative electrode, and a separator 59 disposed between the positive electrode and the negative electrode. The electrode group 2 is formed into a flat shape by winding the separator 59 between the positive electrode and the negative electrode in a spiral shape and then press-molding the whole.

図3に、電極群2の展開図を示す。正極6は、帯状の集電体6aと、集電体6aの少なくとも一方の面に形成された正極活物質層6bと、正極集電体6aの長辺の複数箇所から短辺方向に延出した短冊状の正極集電タブ6cとを有する。負極7も正極6と同様な形状を有し、帯状の負極集電体7aと、負極集電体7aの少なくとも一方の面に形成された負極活物質層7bと、集電体7aの長辺の複数箇所から短辺方向に延出した短冊状の負極集電タブ7cとを有する。渦巻状に捲回された電極群は、止めテープ58によって固定される。   FIG. 3 shows a development view of the electrode group 2. The positive electrode 6 extends in the short side direction from a strip-shaped current collector 6a, a positive electrode active material layer 6b formed on at least one surface of the current collector 6a, and a plurality of long sides of the positive electrode current collector 6a. And a strip-shaped positive electrode current collecting tab 6c. The negative electrode 7 has the same shape as the positive electrode 6, and includes a strip-shaped negative electrode current collector 7 a, a negative electrode active material layer 7 b formed on at least one surface of the negative electrode current collector 7 a, and a long side of the current collector 7 a And a strip-like negative electrode current collecting tab 7c extending in the short side direction. The electrode group wound in a spiral shape is fixed by a stop tape 58.

正負極集電タブ6c,7cは、それぞれ、集電体を打ち抜き加工することにより形成されてよい。集電体及び集電タブは、例えば金属箔から形成される。金属箔の厚さすなわち集電タブ1枚当たりの厚さは、5μm以上50μm以下にすることが望ましい。厚さを5μm以上にすることによって、製造時の集電体や集電タブの破断が防止され、かつ高い集電効率を実現することが可能となる。また、大電流が流れたときの集電タブの溶解を回避することができる。また、厚さを50μm以下にすることによって、電極群の厚さ増加を抑えつつ、電極群を構成する周数を増加させることができる。好ましくは、金属箔の厚さは、10μm以上20μm以下である。金属箔の材料は、正極6や負極7に使用する活物質の種類により変わり得るものではあるが、例えば、アルミニウム、アルミニウム合金、銅又は銅合金を用いることができる。   The positive and negative electrode current collecting tabs 6c and 7c may be formed by punching a current collector, respectively. The current collector and the current collection tab are formed from, for example, a metal foil. The thickness of the metal foil, that is, the thickness per current collecting tab is desirably 5 μm or more and 50 μm or less. By setting the thickness to 5 μm or more, it is possible to prevent the current collector and the current collection tab from being broken at the time of manufacture and to achieve high current collection efficiency. Moreover, dissolution of the current collecting tab when a large current flows can be avoided. Further, by setting the thickness to 50 μm or less, it is possible to increase the number of circumferences constituting the electrode group while suppressing an increase in the thickness of the electrode group. Preferably, the thickness of the metal foil is not less than 10 μm and not more than 20 μm. Although the material of metal foil can change with the kind of active material used for the positive electrode 6 or the negative electrode 7, aluminum, aluminum alloy, copper, or a copper alloy can be used, for example.

図1に示すように、正極集電タブ6cは、電極群2の湾曲に沿って湾曲し、重ね合わされた状態で、電極群2の一方の端面から延出されている。正極集電タブ6cの重ね合わされた部分は正極保護リード8で挟持される。正極保護リード8は、U字状、二つに折り曲げられた形状、又は集電タブ側が開放された矩形状であってよい。同様に、負極集電タブ7cは、電極群2の湾曲に沿って湾曲し、重ね合わされた状態で、電極群2の一方の端面から延出されている。負極集電タブ7cの重ね合わされた部分は負極保護リード9で挟持される。負極保護リード9は、U字状、二つに折り曲げられた形状、又は集電タブ側が開放された矩形状であってよい。   As shown in FIG. 1, the positive electrode current collecting tab 6 c is curved along the curvature of the electrode group 2, and extends from one end face of the electrode group 2 in a superposed state. The overlapped portion of the positive electrode current collecting tab 6 c is sandwiched between positive electrode protection leads 8. The positive electrode protection lead 8 may have a U shape, a shape bent in two, or a rectangular shape in which the current collecting tab side is opened. Similarly, the negative electrode current collecting tab 7c is curved along the curve of the electrode group 2 and extends from one end face of the electrode group 2 in a superposed state. The overlapped portion of the negative electrode current collecting tab 7 c is sandwiched between the negative electrode protection leads 9. The negative electrode protection lead 9 may be U-shaped, bent into two, or rectangular with the current collecting tab side open.

正極保護リード8と正極集電タブ6cとの電気的接続並びに負極保護リード9と負極集電タブ7cとの電気的接続は、例えば、レーザー溶接、超音波接合、抵抗溶接等の方法が用いられるが、超音波接合が好ましい。正負極保護リード8、9は、それぞれ、正負極の集電タブ6c、7cと同じ材料から形成されていることが望ましい。また、正負極保護リード8,9の厚さは、正負極集電タブ6c,7cの1枚当たりの厚さの3倍より大きくすることが望ましい。より好ましい範囲は0.05mm以上0.6mm以下で、さらに好ましい範囲は0.1mm以上0.5mm以下である。   For the electrical connection between the positive electrode protection lead 8 and the positive electrode current collection tab 6c and the electrical connection between the negative electrode protection lead 9 and the negative electrode current collection tab 7c, methods such as laser welding, ultrasonic bonding, and resistance welding are used. However, ultrasonic bonding is preferred. The positive and negative electrode protective leads 8 and 9 are preferably made of the same material as the positive and negative current collecting tabs 6c and 7c, respectively. Further, it is desirable that the thickness of the positive and negative electrode protective leads 8 and 9 is larger than three times the thickness of each of the positive and negative electrode current collecting tabs 6c and 7c. A more preferable range is 0.05 mm or more and 0.6 mm or less, and a further preferable range is 0.1 mm or more and 0.5 mm or less.

容器1の開口部は封口部材10によって封止される。封口部材10は、正負極端子50、5、ガスケット11、蓋3、正負極絶縁体53,54、正負極リード51,52、及び正負極保護リード8,9を含む。蓋3の外面には、ガスケット11を収容するための矩形状の凹部15が設けられている。一方の凹部15に正極端子50が収容され、かつ他方の凹部15に負極端子5が収容される。各凹部15には、貫通孔16が設けられている。蓋3には、電解液の注液口17が開口されており、電解液の注液後に封止蓋18で封止される。   The opening of the container 1 is sealed with a sealing member 10. The sealing member 10 includes positive and negative terminals 50 and 5, a gasket 11, a lid 3, positive and negative electrode insulators 53 and 54, positive and negative electrode leads 51 and 52, and positive and negative electrode protection leads 8 and 9. A rectangular recess 15 for accommodating the gasket 11 is provided on the outer surface of the lid 3. The positive electrode terminal 50 is accommodated in one recess 15 and the negative electrode terminal 5 is accommodated in the other recess 15. Each recess 15 is provided with a through hole 16. An electrolyte solution injection port 17 is opened in the lid 3, and is sealed with a sealing lid 18 after the electrolyte solution is injected.

正極リード51は、正極端子50の軸部の取付孔としての貫通孔51aを持つ矩形板状であってよい。負極リード52は、負極端子5の軸部の取付孔としての貫通孔52aを持つ矩形板状であってよい。正極リード51及び負極リード52は、容器1内に位置する。正極リード51には、正極集電タブ6cの先端を挟持している正極保護リード8が電気的接続を保った状態で固定される。一方、負極リード52には、負極集電タブ7cの先端を挟持している負極保護リード9が電気的接続を保った状態で固定される。   The positive electrode lead 51 may have a rectangular plate shape having a through hole 51 a as an attachment hole of the shaft portion of the positive electrode terminal 50. The negative electrode lead 52 may have a rectangular plate shape having a through hole 52 a as an attachment hole of the shaft portion of the negative electrode terminal 5. The positive electrode lead 51 and the negative electrode lead 52 are located in the container 1. The positive electrode protection lead 8 holding the tip of the positive electrode current collecting tab 6c is fixed to the positive electrode lead 51 in a state in which electrical connection is maintained. On the other hand, to the negative electrode lead 52, the negative electrode protection lead 9 holding the tip of the negative electrode current collecting tab 7c is fixed in a state where electrical connection is maintained.

正極の内部絶縁体53は、蓋3の貫通孔16及び正極リード51の貫通孔51aと連通する貫通孔53aを有する矩形板状であってよい。正極の内部絶縁体53は、蓋3の内面と正極リード51の間に配置され、蓋3と正極リード51とを絶縁している。   The positive inner insulator 53 may have a rectangular plate shape having a through hole 53 a that communicates with the through hole 16 of the lid 3 and the through hole 51 a of the positive electrode lead 51. The positive inner insulator 53 is disposed between the inner surface of the lid 3 and the positive electrode lead 51 to insulate the lid 3 and the positive electrode lead 51.

負極の内部絶縁体54は、蓋3の貫通孔16及び負極リード52の貫通孔52aと連通する貫通孔54aと、蓋3の注液口17と連通する貫通孔54bとを有する矩形板状であってよい。負極の内部絶縁体54は、蓋3の内面と負極リード52の間に配置され、蓋3と負極リード52とを絶縁している。   The negative electrode inner insulator 54 is a rectangular plate having a through hole 54 a communicating with the through hole 16 of the lid 3 and the through hole 52 a of the negative electrode lead 52, and a through hole 54 b communicating with the liquid injection port 17 of the lid 3. It may be. The negative inner insulator 54 is disposed between the inner surface of the lid 3 and the negative electrode lead 52 to insulate the lid 3 from the negative electrode lead 52.

負極端子5はリベット形状をしており、具体的には、フランジ部5aと、フランジ部5aから延出した軸部5bとを有する。軸部5bは、蓋3の貫通孔16にガスケット11を介して挿入され、内部絶縁体54の貫通孔54a及び負極リード52の貫通孔52aにも挿入され、これらにカシメ固定されている。一方、正極端子50は、リベット形状をしており、具体的には、フランジ部50aと、フランジ部50aから延出した軸部50bとを有する。正極端子50の軸部50bは、蓋3の貫通孔16にガスケット11を介して挿入され、内部絶縁体53の貫通孔53a及び正極リード51の貫通孔51aにも挿入され、これらにカシメ固定されている。これにより、正負極端子50,5と蓋3は、絶縁性と気密性が確保された状態で固定され、さらに正極端子50と正極リード51は、電気的接続が確保された状態で固定される。負極端子5と負極リード52も、電気的接続が確保された状態で固定される。   The negative electrode terminal 5 has a rivet shape, and specifically includes a flange portion 5a and a shaft portion 5b extending from the flange portion 5a. The shaft portion 5 b is inserted into the through hole 16 of the lid 3 via the gasket 11, and is also inserted into the through hole 54 a of the internal insulator 54 and the through hole 52 a of the negative electrode lead 52, and is caulked and fixed thereto. On the other hand, the positive electrode terminal 50 has a rivet shape, and specifically includes a flange portion 50a and a shaft portion 50b extending from the flange portion 50a. The shaft portion 50b of the positive electrode terminal 50 is inserted into the through hole 16 of the lid 3 via the gasket 11, and is also inserted into the through hole 53a of the internal insulator 53 and the through hole 51a of the positive electrode lead 51, and is caulked and fixed thereto. ing. Thus, the positive and negative terminals 50 and 5 and the lid 3 are fixed in a state where insulation and airtightness are ensured, and the positive terminal 50 and the positive electrode lead 51 are fixed in a state where electrical connection is ensured. . The negative electrode terminal 5 and the negative electrode lead 52 are also fixed in a state where electrical connection is ensured.

蓋3は、矩形板状をなし、容器1の開口部に例えばレーザーでシーム溶接される。蓋3は、例えば、アルミニウム、アルミニウム合金、鉄あるいはステンレスなどの金属から形成される。蓋3と容器1は、同じ種類の金属から形成されることが望ましい。   The lid 3 has a rectangular plate shape, and is seam welded to the opening of the container 1 with, for example, a laser. The lid 3 is made of a metal such as aluminum, aluminum alloy, iron or stainless steel, for example. The lid 3 and the container 1 are preferably formed from the same type of metal.

ガスケット11は、例えば、ポリプロピレン(PP)、熱可塑性フッ素樹脂等から形成される。熱可塑性フッ素樹脂としては、例えば、テトラフルオロエチレン−パーフルオロアルコキシエチレン共重合体(PFA)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)等を挙げることができる。   The gasket 11 is formed from, for example, polypropylene (PP), thermoplastic fluororesin, or the like. Examples of the thermoplastic fluororesin include tetrafluoroethylene-perfluoroalkoxyethylene copolymer (PFA) and tetrafluoroethylene-hexafluoropropylene copolymer (FEP).

正極端子50及び負極端子5は、例えば、アルミニウムあるいはアルミニウム合金から形成される。なお、負極活物質に炭素系材料を使用するリチウムイオン二次電池の場合、正極端子の材料は一般的に、アルミニウムあるいはアルミニウム合金が使用され、負極端子の材料は、銅、ニッケル、ニッケルメッキされた鉄などの金属が使用される。   The positive electrode terminal 50 and the negative electrode terminal 5 are made of, for example, aluminum or an aluminum alloy. In the case of a lithium ion secondary battery using a carbon-based material for the negative electrode active material, the material of the positive electrode terminal is generally aluminum or an aluminum alloy, and the material of the negative electrode terminal is copper, nickel, nickel plated. Metal such as iron is used.

正極リード8は、導電材料から形成され、その材質は、正極活物質の種類により変更されるものではあるが、例えば、アルミニウム、アルミニウム合金を使用することができる。   The positive electrode lead 8 is formed of a conductive material, and the material is changed depending on the type of the positive electrode active material. For example, aluminum or aluminum alloy can be used.

負極リード9は、導電材料から形成され、その材質は負極活物質の種類に合わせて変更されるが、負極活物質がチタン酸リチウムの場合、アルミニウムもしくはアルミニウム合金を使用することができる。   The negative electrode lead 9 is formed of a conductive material, and the material is changed according to the type of the negative electrode active material. When the negative electrode active material is lithium titanate, aluminum or an aluminum alloy can be used.

図1における正負極集電タブ6c、7cは、正負極保護リード8,9によって挟持させるために加圧成形された後の形状を示している。加圧成形される前の正負極集電タブ6c、7cは、捲回電極群2の湾曲に従ったU字形状を有しており、図2に示すように、捲回電極群2の湾曲部及び非湾曲部に位置している。   The positive and negative electrode current collecting tabs 6 c and 7 c in FIG. 1 show the shape after being pressure-molded so as to be sandwiched between the positive and negative electrode protection leads 8 and 9. The positive and negative electrode current collecting tabs 6c and 7c before being pressure-formed have a U shape in accordance with the curvature of the wound electrode group 2, and as shown in FIG. And the non-curved portion.

ここで、捲回電極群2の湾曲部及び非湾曲部について、図4を参照して説明する。図4は、捲回電極群2の上面模式図である。捲回電極群2において、巻き始め部分から1周して該巻き始め部分に達するまでを最内周とする。最内周内の内側において、捲回電極群2の長辺方向と平行な長さのうち、最大の長さを非湾曲部長さ66とする。捲回電極群2において、長手方向の寸法が非湾曲部長さ66で規定された厚さ方向の領域を非湾曲部67とし、非湾曲部67以外の部分、即ち、捲回電極群2の端面における長辺方向の両端部を湾曲部65とする。なお、非湾曲部長さ66は、巻芯の長径に相当する長さである。   Here, the curved portion and the non-curved portion of the wound electrode group 2 will be described with reference to FIG. FIG. 4 is a schematic top view of the wound electrode group 2. In the wound electrode group 2, the innermost circumference is defined as one turn from the winding start portion and reaching the winding start portion. Of the length parallel to the long side direction of the wound electrode group 2 on the inner side of the innermost circumference, the maximum length is defined as a non-curved portion length 66. In the wound electrode group 2, a region in the thickness direction whose longitudinal dimension is defined by the non-curved portion length 66 is defined as a non-curved portion 67, and a portion other than the non-curved portion 67, that is, an end face of the wound electrode group 2. Both end portions in the long-side direction are defined as curved portions 65. The non-curved portion length 66 is a length corresponding to the major axis of the core.

正極集電タブ6cは、一方の湾曲部65に位置し、負極集電タブは他方の湾曲部65に位置する。さらに、正極集電タブ及び負極集電タブは、延出方向に平行な両端が、それぞれ非湾曲部に存在するように配置される。ここで、集電タブの延出方向に平行な両端を便宜的に左右の両端と称する。   The positive electrode current collecting tab 6 c is located on one curved portion 65, and the negative electrode current collecting tab is located on the other curved portion 65. Further, the positive electrode current collecting tab and the negative electrode current collecting tab are arranged so that both ends parallel to the extending direction are present in the non-curved portion, respectively. Here, both ends parallel to the extending direction of the current collecting tab are referred to as left and right ends for convenience.

上記のような電極群の模式図を図5〜7に示す。図5に示すように、非湾曲部67における集電タブの長さは、左右両端で同じであることが好ましい。言い換えると、集電タブの左右両端は、非湾曲部長さ66に相当する直線を含み、且つ、電極群の厚さ方向と直交する基準面に対して、対称に配置されることが好ましい。或いは、図6に示すように、集電タブの左右両端は、非湾曲部長さ66の面に対して非対称に配置されてもよい。また或いは、図7に示すように、一方の集電タブ(例えば正極集電タブ6c)が非湾曲部長さ66の面に対して非対称に配置され、他方の集電タブ(例えば負極集電タブ7c)が非湾曲部長さ66の面に対して対称に配置されてもよい。   Schematic diagrams of the electrode group as described above are shown in FIGS. As shown in FIG. 5, the length of the current collecting tab in the non-curved portion 67 is preferably the same at the left and right ends. In other words, the left and right ends of the current collecting tab are preferably arranged symmetrically with respect to a reference plane that includes a straight line corresponding to the non-curved portion length 66 and is orthogonal to the thickness direction of the electrode group. Alternatively, as shown in FIG. 6, the left and right ends of the current collecting tab may be disposed asymmetrically with respect to the surface of the non-curved portion length 66. Alternatively, as shown in FIG. 7, one current collecting tab (for example, positive current collecting tab 6c) is disposed asymmetrically with respect to the surface of the non-curved portion length 66, and the other current collecting tab (for example, negative current collecting tab). 7c) may be arranged symmetrically with respect to the surface of the non-curved portion length 66.

正負極集電タブ6c、7cを捲回電極群2の湾曲部65及び非湾曲部67に配置することにより、非湾曲部67のみに集電タブを配置する従来の電池と比較して、タブの長さを左右方向において十分に確保することができる。また、正負極集電タブ6c、7cをU字形状とすることにより、集電タブ自体の強度を向上させることができる。よって、電池に振動や衝撃等の外力が加わった際の集電タブの損傷や破断を減少させることができる。このような本実施形態に従えば、振動に強く、量産性に優れた電池を提供することができる。   By arranging the positive and negative current collecting tabs 6c and 7c on the curved portion 65 and the non-curved portion 67 of the wound electrode group 2, the tabs are compared with the conventional battery in which the current collecting tab is arranged only on the non-curved portion 67. Can be sufficiently secured in the left-right direction. Moreover, the intensity | strength of current collection tab itself can be improved by making positive / negative electrode current collection tabs 6c and 7c into a U shape. Therefore, damage or breakage of the current collecting tab when an external force such as vibration or impact is applied to the battery can be reduced. According to this embodiment, a battery that is resistant to vibration and excellent in mass productivity can be provided.

上記の正負極集電タブ6c、7cは、内部短絡を防止するため互いに接触しないように配置される。   The positive and negative current collecting tabs 6c and 7c are arranged so as not to contact each other in order to prevent an internal short circuit.

なお、図1に示す電池は、説明の便宜上、スペーサを省略しているが、正負極集電タブ6c,7cと容器1との接触を防止するためのスペーサを備えてもよい。例えば、電極群2の上端面における正負極集電タブ6c,7cを間に挟んで、一方側に第1のスペーサを配置し、他方側に第2のスペーサを配置することができる。   The battery shown in FIG. 1 omits the spacer for convenience of explanation, but may include a spacer for preventing contact between the positive and negative current collecting tabs 6 c and 7 c and the container 1. For example, the first spacer can be disposed on one side and the second spacer can be disposed on the other side with the positive and negative current collecting tabs 6c and 7c on the upper end surface of the electrode group 2 interposed therebetween.

上記第1の実施形態では、正極及び負極双方の外部端子が蓋にカシメで固定されている構造としたが、負極端子が蓋にカシメで固定されており、正極リードは、蓋に直接溶接で取り付けられている構造としてもよい。或いは、正極の外部端子が蓋にカシメで固定されており、負極リードは、蓋に直接溶接で取り付けられている構造としてもよい。或いは、正負極リード及び正負極保護リードを備えず、正負極端子と正負極集電タブとが直接、電気的に接続されている構造であってもよい。   In the first embodiment, the external terminals of both the positive electrode and the negative electrode are fixed to the lid by caulking, but the negative electrode terminal is fixed to the lid by caulking, and the positive electrode lead is directly welded to the lid. It is good also as an attached structure. Alternatively, the external terminal of the positive electrode may be fixed to the lid by caulking, and the negative electrode lead may be directly attached to the lid by welding. Alternatively, the positive and negative electrode leads and the positive and negative electrode current collecting tabs may be directly connected to each other without the positive and negative electrode leads and the positive and negative electrode protection leads.

以下、第1実施形態で用いた正極6、負極7、セパレータ59及び電解液について説明する。   Hereinafter, the positive electrode 6, the negative electrode 7, the separator 59, and the electrolytic solution used in the first embodiment will be described.

正極は、例えば、正極活物質を含むスラリーを集電体に塗着することにより作製される。正極活物質としては、特に限定されるものではないが、リチウムを吸蔵放出できる酸化物や硫化物、ポリマーなどが使用できる。好ましい活物質としては、高い正極電位が得られるリチウムマンガン複合酸化物、リチウムニッケル複合酸化物、リチウムコバルト複合酸化物、リチウム燐酸鉄等が挙げられる。   The positive electrode is produced, for example, by applying a slurry containing a positive electrode active material to a current collector. Although it does not specifically limit as a positive electrode active material, The oxide, sulfide, polymer, etc. which can occlude / release lithium can be used. Preferable active materials include lithium manganese composite oxide, lithium nickel composite oxide, lithium cobalt composite oxide, lithium iron phosphate, and the like that can obtain a high positive electrode potential.

負極は、負極活物質を含むスラリーを集電体に塗着することにより作製される。負極活物質としては、特に限定されるものではないが、リチウムを吸蔵放出できる金属酸化物、金属硫化物、金属窒化物、合金、炭素等が使用でき、好ましくは、リチウムイオンの吸蔵放出電位が金属リチウム電位に対して0.4V以上貴となる物質である。このようなリチウムイオン吸蔵放出電位を有する負極活物質は、アルミニウムもしくはアルミニウム合金とリチウムとの合金反応を抑えられることから、負極集電体および負極関連構成部材へのアルミニウムもしくはアルミニウム合金の使用を可能とする。たとえば、チタン酸化物、リチウムチタン酸化物、タングステン酸化物、アモルファススズ酸化物、スズ珪素酸化物、酸化珪素などがあり、中でもリチウムチタン複合酸化物が好ましい。   The negative electrode is produced by applying a slurry containing a negative electrode active material to a current collector. The negative electrode active material is not particularly limited, and metal oxides, metal sulfides, metal nitrides, alloys, carbon, and the like that can occlude and release lithium can be used. It is a substance that becomes noble 0.4 V or more with respect to the metallic lithium potential. Since the negative electrode active material having such a lithium ion storage / release potential can suppress the alloy reaction between aluminum or an aluminum alloy and lithium, it is possible to use aluminum or an aluminum alloy for a negative electrode current collector and a negative electrode related component. And For example, there are titanium oxide, lithium titanium oxide, tungsten oxide, amorphous tin oxide, tin silicon oxide, silicon oxide, etc. Among them, lithium titanium composite oxide is preferable.

セパレータとしては、微多孔性の膜、織布、不織布、これらのうち同一材または異種材の積層物等を用いることができる。セパレータを形成する材料としては、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合ポリマー、エチレン−ブテン共重合ポリマー等を挙げることができる。   As the separator, a microporous film, a woven fabric, a non-woven fabric, a laminate of the same material or different materials among these can be used. Examples of the material for forming the separator include polyethylene, polypropylene, ethylene-propylene copolymer, and ethylene-butene copolymer.

電解液は、非水溶媒に電解質(例えば、リチウム塩)を溶解させることにより調製された非水電解液が用いられる。非水溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、γ−ブチロラクトン(γ−BL)、スルホラン、アセトニトリル、1,2−ジメトキシエタン、1,3−ジメトキシプロパン、ジメチルエーテル、テトラヒドロフラン(THF)、2−メチルテトラヒドロフラン等を挙げることができる。非水溶媒は、単独で使用しても、2種以上混合して使用してもよい。   As the electrolytic solution, a nonaqueous electrolytic solution prepared by dissolving an electrolyte (for example, lithium salt) in a nonaqueous solvent is used. Examples of the non-aqueous solvent include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), γ-butyrolactone (γ -BL), sulfolane, acetonitrile, 1,2-dimethoxyethane, 1,3-dimethoxypropane, dimethyl ether, tetrahydrofuran (THF), 2-methyltetrahydrofuran and the like. Nonaqueous solvents may be used alone or in combination of two or more.

電解質としては、例えば、過塩素酸リチウム(LiClO4)、六フッ過リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)、六フッ化砒素リチウム(LiAsF6)、トリフルオロメタスルホン酸リチウム(LiCF3SO3)等のリチウム塩を挙げることができる。電解質は単独で使用しても、2種以上混合して使用してもよい。電解質の非水溶媒に対する溶解量は、0.2mol/L〜3mol/Lとすることが望ましい。 Examples of the electrolyte include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium arsenic hexafluoride (LiAsF 6 ), and trifluorometa. A lithium salt such as lithium sulfonate (LiCF 3 SO 3 ) can be given. The electrolyte may be used alone or in combination of two or more. The amount of electrolyte dissolved in the non-aqueous solvent is desirably 0.2 mol / L to 3 mol / L.

(第2の実施形態)
第2の実施形態として、タブの位置ずれが少ない量産性に優れた非水電解質電池を説明する。このような実施形態によれば、集電タブを上記第1実施形態で説明したように所定の位置において電極群2の厚さ方向に積層する際に、タブの位置ずれを少なくすることができる。
(Second Embodiment)
As a second embodiment, a non-aqueous electrolyte battery that is excellent in mass productivity with little misalignment of tabs will be described. According to such an embodiment, when the current collecting tab is laminated in the thickness direction of the electrode group 2 at a predetermined position as described in the first embodiment, the tab misalignment can be reduced. .

第2の実施形態で用いる正極及び負極の一例を図8に示す。図8に示すように、正極6(負極7)は、正極集電体(負極集電体)と、正極集電体(負極集電体)から複数延出した帯状の正極集電タブ6c1〜6c6(負極集電タブ7c1〜7c6)と、正極集電体(負極集電体)の両面に形成された正極活物質含有層6b(負極活物質含有層7b)とを具備する。正極6における正極集電タブ6c1〜6c6間の距離d1〜d5及び負極7における負極集電タブ7c1〜7c6間の距離d1〜d5は、電極群2の内周側から外周側に向かって増加しており、下記(1)式で表される。 An example of the positive electrode and the negative electrode used in the second embodiment is shown in FIG. As shown in FIG. 8, the positive electrode 6 (negative electrode 7) includes a positive electrode current collector (negative electrode current collector) and a plurality of strip-like positive electrode current collector tabs 6c 1 extending from the positive electrode current collector (negative electrode current collector). To 6c 6 (negative electrode current collecting tabs 7c 1 to 7c 6 ) and a positive electrode active material-containing layer 6b (negative electrode active material-containing layer 7b) formed on both surfaces of the positive electrode current collector (negative electrode current collector). . The distance d 1 to d 5 between the negative electrode current collector tab 7c 1 ~7c 6 at a distance d 1 to d 5 and the negative electrode 7 between the positive electrode current collector tabs 6c 1 ~6c 6 in the positive electrode 6, the inner peripheral side of the electrode group 2 It increases toward the outer peripheral side, and is expressed by the following formula (1).

2nπd (1)
但し、nは電極群2の内周側から数えた正極集電タブ位置か、電極群2の内周側から数えた負極集電タブ位置と等しい。換言すれば、距離を規定する両端の正極(負極)タブのうち、電極群の外周側に位置する正極(負極)タブの位置をnとする。dは正極6の厚さと負極7の厚さとセパレータの厚さの2倍値の合計値で、πは円周率である。正極6、負極7及びセパレータの厚さはアップライトゲージで測定される。
2nπd (1)
However, n is equal to the positive electrode current collecting tab position counted from the inner peripheral side of the electrode group 2 or the negative electrode current collecting tab position counted from the inner peripheral side of the electrode group 2. In other words, of the positive electrode (negative electrode) tabs at both ends that define the distance, the position of the positive electrode (negative electrode) tab located on the outer peripheral side of the electrode group is n. d is the sum of the thickness of the positive electrode 6, the thickness of the negative electrode 7, and the thickness of the separator, and π is the circumference. The thicknesses of the positive electrode 6, the negative electrode 7, and the separator are measured with an upright gauge.

例えば、正極集電タブ6c1が正極1の巻き始めに位置し、正極集電タブ6c1と正極集電タブ6c2間の距離をd1とする。距離d1は、nが2であるため、4πdで表される。正極集電タブ6c2と正極集電タブ6c3間の距離d2は、nが3であるため、6πdで表される。正極集電タブ6c3と正極集電タブ6c4間の距離d3は、nが4であるため、8πdで表される。また、正極集電タブ6c4と正極集電タブ6c5間の距離d4は、nが5であるため、10πdで表される。さらに、正極集電タブ6c5と正極集電タブ6c6間の距離d5は、nが6であるため、12πdで表される。負極7の場合も同様である。 For example, the positive electrode current collector tab 6c 1 is positioned at the beginning of winding of the positive electrode 1, and the distance between the positive electrode current collector tab 6c 1 and the positive electrode current collector tab 6c 2 is d 1 . The distance d 1 is represented by 4πd because n is 2. The distance d 2 between the positive electrode current collector tab 6c 2 and the positive electrode current collector tab 6c 3 is represented by 6πd because n is 3. The distance d 3 between the positive electrode current collecting tab 6c 3 and the positive electrode current collecting tab 6c 4 is represented by 8πd because n is 4. Further, the distance d 4 between the positive current collecting tab 6c 4 and the positive current collecting tab 6c 5 is expressed by 10πd because n is 5. Further, the distance d 5 between the positive electrode current collecting tab 6c 5 and the positive electrode current collecting tab 6c 6 is represented by 12πd because n is 6. The same applies to the negative electrode 7.

上述した図8に示す構成の正極及び負極の間にセパレータを介在して渦巻状に捲回した後、プレスにより扁平形状とし、図1に示すような電極群2を得ることによって、電極群2の片側の端面から正極集電タブ6c1〜6c6及び負極集電タブ7c1〜7c6を突出させ、かつ正極集電タブ6c1〜6c6の位置と、負極集電タブ7c1〜7c6の位置とを揃えることができる。その結果、急速充電および高出力放電を実現できる非水電解質電池の量産性が改善される。また、電極群の周数を増やしても電極群の厚さに不具合を生じさせることも解消される。 After the separator is interposed between the positive electrode and the negative electrode having the configuration shown in FIG. 8 and wound in a spiral shape, a flat shape is formed by pressing to obtain an electrode group 2 as shown in FIG. The positive electrode current collecting tabs 6c 1 to 6c 6 and the negative electrode current collecting tabs 7c 1 to 7c 6 are projected from the end surface on one side of the electrode, and the positions of the positive electrode current collecting tabs 6c 1 to 6c 6 and the negative electrode current collecting tabs 7c 1 to 7c Can align with 6 position. As a result, the mass productivity of the nonaqueous electrolyte battery capable of realizing rapid charging and high output discharge is improved. Further, even if the number of circumferences of the electrode group is increased, it is possible to eliminate a problem in the thickness of the electrode group.

正極集電タブ間の距離及び負極集電タブ間の距離は、300mm以下にすることが望ましい。   The distance between the positive electrode current collecting tabs and the distance between the negative electrode current collecting tabs are desirably 300 mm or less.

正極集電タブ及び負極集電タブの幅は製造する電池の容量、形状によって任意に決定されるが、通常5mm〜300mmである事が好ましい。幅を5mm以上にすることによって、大電流が流れたときにタブ部での抵抗上昇を抑制して集電効率を上げるとともにタブの溶解を抑制する事ができる。   The widths of the positive electrode current collecting tab and the negative electrode current collecting tab are arbitrarily determined depending on the capacity and shape of the battery to be produced, but are usually preferably 5 mm to 300 mm. By setting the width to 5 mm or more, it is possible to suppress an increase in resistance at the tab portion when a large current flows to increase current collection efficiency and to suppress dissolution of the tab.

以下、本発明の実施例を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

(実施例1)
正負極集電タブを図5のように配置させて捲回電極群を作製し、これを用いて非水電解質二次電池を作製した。
Example 1
Positive and negative electrode current collecting tabs were arranged as shown in FIG. 5 to produce a wound electrode group, and a non-aqueous electrolyte secondary battery was produced using this.

コバルト酸リチウムを主成分とする塗液を調製した。調製した塗液を正極集電体であるアルミニウム箔(厚さ15μm)の両面に塗工し、乾燥させて、正極を作製した。   A coating liquid mainly composed of lithium cobaltate was prepared. The prepared coating solution was applied to both sides of an aluminum foil (thickness: 15 μm) as a positive electrode current collector and dried to produce a positive electrode.

チタン酸リチウムを主成分とする塗液を調製した。調製した塗液を負極集電体であるアルミニウム箔(厚さ15μm)の両面に塗工し、乾燥させて、負極を作製した。   A coating liquid mainly composed of lithium titanate was prepared. The prepared coating solution was applied to both sides of an aluminum foil (thickness 15 μm) as a negative electrode current collector and dried to produce a negative electrode.

作製した正極及び負極それぞれについて、集電タブが成形できるように設計した型をセットしたプレス機で40回打抜いた。このとき、正負極の移動量を2πdで表される値で増加させながら打抜いた。打抜いた正負極をローラープレスにより、所定の密度になるようにプレスし、正極及び負極を得た。正極及び負極それぞれにおいて、集電タブ間の距離は電極群の内周側から外周側に向かって2πdで表されるピッチ量(Δ)ずつ増加している。セパレータは、厚さ30μmの樹脂製セパレータを用意した。正極の厚さは150μmであり、負極の厚さは180μmであった。正負極の集電タブの幅は40mmとした。   About each of the produced positive electrode and negative electrode, it punched 40 times with the press which set the type | mold designed so that a current collection tab could be shape | molded. At this time, punching was performed while increasing the amount of movement of the positive and negative electrodes by a value represented by 2πd. The punched positive and negative electrodes were pressed to a predetermined density by a roller press to obtain a positive electrode and a negative electrode. In each of the positive electrode and the negative electrode, the distance between the current collecting tabs increases by a pitch amount (Δ) represented by 2πd from the inner peripheral side to the outer peripheral side of the electrode group. As the separator, a resin separator having a thickness of 30 μm was prepared. The thickness of the positive electrode was 150 μm, and the thickness of the negative electrode was 180 μm. The width of the positive and negative current collecting tabs was 40 mm.

上記正極と負極の間にセパレータを介在させて40周捲回することにより、円筒状の捲回電極群を作製した。次いで、これを約80℃で加熱プレスすることにより扁平形状に成型し、絶縁テープで固定して、扁平形状の捲回電極群を作製した。この実施例1では、正極及び負極集電タブが、電極群の湾曲部及び非湾曲部に位置し、且つ、非湾曲部において、集電タブの左右両端が対称となるように捲回した。電極群の厚さは約28.8mmであった。   A cylindrical wound electrode group was fabricated by winding a separator between the positive electrode and the negative electrode for 40 turns. Next, this was heated and pressed at about 80 ° C. to form a flat shape and fixed with an insulating tape to produce a flat wound electrode group. In Example 1, the positive electrode and the negative electrode current collecting tabs were wound so that the left and right ends of the current collecting tabs were symmetrical in the non-curved portion, which were positioned in the curved portion and the non-curved portion of the electrode group. The thickness of the electrode group was about 28.8 mm.

正負極集電タブを正負極端子の付いた封口部材の正負極リードにレーザー溶接によって固定した。正負極リードの付いた電極群を外装缶に挿入し、蓋と外装缶をレーザー溶接して、外装缶を封口した。蓋に開けてある注入口から非水電解液を注液し、封止栓を挿入し、レーザー溶接によって封口をし、非水電解質二次電池を作製した。   The positive and negative electrode current collecting tabs were fixed to the positive and negative electrode leads of the sealing member with the positive and negative electrode terminals by laser welding. The electrode group with positive and negative electrode leads was inserted into the outer can, and the lid and the outer can were laser welded to seal the outer can. A non-aqueous electrolyte was injected from the inlet opened in the lid, a sealing plug was inserted, and sealing was performed by laser welding to produce a non-aqueous electrolyte secondary battery.

(実施例2)
正負極集電タブを図6のように配置させた他は、実施例1と同様に非水電解質二次電池を作製した。この実施例2の電極群では、正極及び負極集電タブが、電極群の湾曲部及び非湾曲部に位置し、且つ、非湾曲部において、集電タブの左右両端が非対称となるように配置されている。正負極の集電タブの幅は60mmとした。
(Example 2)
A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the positive and negative electrode current collecting tabs were arranged as shown in FIG. In the electrode group of Example 2, the positive and negative electrode current collecting tabs are positioned at the curved and non-curved portions of the electrode group, and the left and right ends of the current collecting tabs are asymmetric at the non-curved portion. Has been. The width of the positive and negative current collecting tabs was 60 mm.

(実施例3)
正負極集電タブを図7のように配置させた他は、実施例1と同様に非水電解質二次電池を作製した。この実施例3の電極群では、負極集電タブは、実施例1と同様に非湾曲部において左右両端が対称となるように配置されている。一方、正極集電タブは、実施例2と同様に、非湾曲部において左右両端が非対称となるように配置されている。正極集電タブの幅は60mmとし、負極集電タブの幅は40mmとした。
(Example 3)
A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the positive and negative electrode current collecting tabs were arranged as shown in FIG. In the electrode group of Example 3, the negative electrode current collecting tabs are arranged so that the left and right ends are symmetric in the non-curved portion as in Example 1. On the other hand, the positive electrode current collecting tab is arranged so that the left and right ends are asymmetric in the non-curved portion, as in the second embodiment. The width of the positive electrode current collecting tab was 60 mm, and the width of the negative electrode current collecting tab was 40 mm.

(比較例1)
正負極集電タブを図9のように配置させた他は、実施例1と同様に非水電解質二次電池を作製した。この比較例1の電極群では、正極及び負極集電タブの一方の端部は非湾曲部に位置するが、他方の端部が湾曲部に位置しており、全体的にほとんど湾曲しないように配置されている。正負極の集電タブの幅は15mmとした。
(Comparative Example 1)
A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the positive and negative electrode current collecting tabs were arranged as shown in FIG. In the electrode group of Comparative Example 1, one end of the positive electrode and the negative electrode current collecting tab is located in the non-curved portion, but the other end is located in the curved portion so that the entire portion hardly bends. Has been placed. The width of the positive and negative current collecting tabs was 15 mm.

(比較例2)
正負極集電タブを図10のように配置させた他は、実施例1と同様に非水電解質二次電池を作製した。この比較例2の電極群では、正極及び負極集電タブの一方の端部は非湾曲部に位置するが、他方の端部が湾曲部に位置している。湾曲部に位置する端部は、一部が湾曲するよう配置されている。正負極の集電タブの幅は20mmとした。
(Comparative Example 2)
A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the positive and negative electrode current collecting tabs were arranged as shown in FIG. In the electrode group of Comparative Example 2, one end of the positive and negative current collecting tabs is located in the non-curved part, but the other end is located in the curved part. The end portion located in the bending portion is arranged so that a part thereof is bent. The width of the positive and negative current collecting tabs was 20 mm.

(比較例3)
正負極集電タブを図11のように配置させた他は、実施例1と同様に非水電解質二次電池を作製した。この比較例2の電極群では、正極及び負極集電タブの両端が共に、非湾曲部ではなく湾曲部に位置している。正負極の集電タブの幅は15mmとした。
(Comparative Example 3)
A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the positive and negative electrode current collecting tabs were arranged as shown in FIG. In the electrode group of Comparative Example 2, both ends of the positive electrode and the negative electrode current collecting tab are located in the curved portion instead of the non-curved portion. The width of the positive and negative current collecting tabs was 15 mm.

(振動試験)
実施例1〜3及び比較例1〜3の電池を5個ずつ用意し、UN試験(リチウム電池及びリチウムイオン電池の輸送に関する手引書)記載の振動試験を実施した。その結果を下記表1に示す。

Figure 2011171079
(Vibration test)
Five batteries of Examples 1 to 3 and Comparative Examples 1 to 3 were prepared, and the vibration test described in the UN test (guidance on transport of lithium batteries and lithium ion batteries) was performed. The results are shown in Table 1 below.
Figure 2011171079

実施例1〜3の電池は、正負極集電タブに破断が生じなかった。一方、比較例1〜3の電池では、正負極集電タブに破断が生じた。比較例1及び2の電池は、正負極集電タブがU字形状ではないために引っ張り強度が低く、その結果、破断が生じたものと考えられる。比較例3の電池では、正負極集電タブはU字に近い形状をしているものの、左右方向の長さが不足しているために強度が低いと考えられる。   In the batteries of Examples 1 to 3, the positive and negative electrode current collecting tabs did not break. On the other hand, in the batteries of Comparative Examples 1 to 3, the positive and negative electrode current collecting tabs were broken. The batteries of Comparative Examples 1 and 2 have low tensile strength because the positive and negative electrode current collecting tabs are not U-shaped, and as a result, it is considered that breakage occurred. In the battery of Comparative Example 3, although the positive and negative electrode current collecting tabs have a shape close to a U-shape, it is considered that the strength is low because the length in the left-right direction is insufficient.

以上説明したように本発明の実施形態により、衝撃等による集電タブの破断が発生しない、良好な二次電池を提供できる。   As described above, according to the embodiment of the present invention, it is possible to provide a good secondary battery in which the current collecting tab is not broken by an impact or the like.

前述した実施例では非水電解液を用いた電池を例えに説明したが、非水電解液の代わりに固体電解質やポリマー電解質を用いた電池についても当然適応可能である。さらに正負極活物質に関してもこの限りでなく、他の活物質を用いることができる。   In the above-described embodiments, the battery using the non-aqueous electrolyte is described as an example, but the present invention can naturally be applied to a battery using a solid electrolyte or a polymer electrolyte instead of the non-aqueous electrolyte. Furthermore, the positive and negative electrode active materials are not limited to this, and other active materials can be used.

なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.

1…容器、2…電極群、3…蓋、5…負極端子、6…正極、6a…正極集電体、6b…正極活物質層、6c…正極集電タブ、7…負極、7a…負極集電体、7b…負極活物質層、7c…負極集電タブ、8…正極保護リード、9…負極保護リード、10…封口部材、50…正極端子、51…正極リード、52…負極リード、53,54…絶縁体、58…止めテープ、59…セパレータ、65…湾曲部、66…非湾曲部長さ、67…非湾曲部。   DESCRIPTION OF SYMBOLS 1 ... Container, 2 ... Electrode group, 3 ... Cover, 5 ... Negative electrode terminal, 6 ... Positive electrode, 6a ... Positive electrode collector, 6b ... Positive electrode active material layer, 6c ... Positive electrode current collection tab, 7 ... Negative electrode, 7a ... Negative electrode Current collector, 7b ... negative electrode active material layer, 7c ... negative electrode current collecting tab, 8 ... positive electrode protective lead, 9 ... negative electrode protective lead, 10 ... sealing member, 50 ... positive electrode terminal, 51 ... positive electrode lead, 52 ... negative electrode lead, 53, 54 ... Insulator, 58 ... Stopping tape, 59 ... Separator, 65 ... Curved part, 66 ... Non-curved part length, 67 ... Non-curved part.

Claims (8)

容器と、
前記容器内に収納され、正極、負極、及び、前記正極と前記負極の間に配置されたセパレータを含み、扁平の渦巻き状に捲回された電極群と、
前記正極の正極集電体の一方の端面において複数箇所から延出された、複数枚の正極集電タブと、
前記負極の負極集電体の一方の端面において複数箇所から延出された、複数枚の負極集電タブと、
前記容器の開口部を塞ぐ蓋と、
前記蓋に設けられ、前記正極集電タブと電気的に接続された正極端子と、
前記蓋に設けられ、前記負極集電タブと電気的に接続された負極端子とを備え、
前記電極群が、その端面における長辺方向の両端部を占める湾曲部と該湾曲部に挟まれた非湾曲部を有し、前記正極集電タブが一方の前記湾曲部に位置し、前記負極集電タブが他方の前記湾曲部に位置し、さらに、前記正極集電タブ及び前記負極集電タブの延出方向に平行な両端が、それぞれ前記非湾曲部に位置することを特徴とする電池。
A container,
An electrode group housed in the container, including a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode, and wound in a flat spiral shape;
A plurality of positive electrode current collector tabs extending from a plurality of locations on one end face of the positive electrode current collector of the positive electrode;
A plurality of negative electrode current collector tabs extending from a plurality of locations on one end face of the negative electrode current collector of the negative electrode;
A lid that closes the opening of the container;
A positive terminal provided on the lid and electrically connected to the positive current collecting tab;
A negative electrode terminal provided on the lid and electrically connected to the negative electrode current collecting tab;
The electrode group has a curved portion occupying both ends in the long side direction on an end surface thereof and a non-curved portion sandwiched between the curved portions, and the positive electrode current collecting tab is located on one of the curved portions, and the negative electrode A current collecting tab is located on the other curved portion, and further, both ends of the positive current collecting tab and the negative current collecting tab parallel to the extending direction are located on the non-curved portion, respectively. .
前記正極集電タブと前記負極集電タブが互いに接触しないことを特徴とする、請求項1に記載の電池。   The battery according to claim 1, wherein the positive current collecting tab and the negative current collecting tab do not contact each other. 前記正極集電タブ及び前記負極集電タブの少なくとも一方の、延出方向に平行な両端が、前記非湾曲部において対称的に配置されることを特徴とする、請求項1又は2に記載の電池。   The both ends parallel to the extending direction of at least one of the positive electrode current collecting tab and the negative electrode current collecting tab are arranged symmetrically in the non-curved portion. battery. 前記正極における前記正極集電タブ間の距離並びに前記負極における前記負極集電タブ間の距離は、それぞれ、下記(1)式で表されることを特徴とする請求項1〜3の何れか一項に記載の電池:
2nπd (1)
但し、
nは、前記電極群の内周側から数えた前記正極集電タブの位置または前記負極集電タブの位置であり、
dは、前記正極の厚さ、前記負極の厚さ、及び、前記セパレータの厚さの2倍値の合計であり、
πは、円周率である。
The distance between the said positive electrode current collection tabs in the said positive electrode and the distance between the said negative electrode current collection tabs in the said negative electrode are respectively represented by following (1) Formula, The any one of Claims 1-3 characterized by the above-mentioned. Battery described in the section:
2nπd (1)
However,
n is the position of the positive electrode current collecting tab or the position of the negative electrode current collecting tab counted from the inner peripheral side of the electrode group;
d is the sum of the thickness of the positive electrode, the thickness of the negative electrode, and twice the thickness of the separator;
π is the circumference ratio.
前記正極集電タブ及び前記負極集電タブの厚さが、5μm以上50μm以下の範囲内であることを特徴とする、請求項1〜4の何れか一項に記載の電池。   5. The battery according to claim 1, wherein thicknesses of the positive electrode current collecting tab and the negative electrode current collecting tab are in a range of 5 μm to 50 μm. 前記正極集電タブ及び前記負極集電タブの個数が、前記電極群の捲回数と同一であることを特徴とする請求項1〜5の何れか一項に記載の非水電解質電池。   The number of the said positive electrode current collection tab and the said negative electrode current collection tab is the same as the number of times of the said electrode group, The nonaqueous electrolyte battery as described in any one of Claims 1-5 characterized by the above-mentioned. 前記正極集電タブ及び前記負極集電タブの少なくとも一方が、アルミニウム又はアルミニウム合金から成ることを特徴とする請求項1〜6の何れか一項に記載の電池。   The battery according to any one of claims 1 to 6, wherein at least one of the positive electrode current collecting tab and the negative electrode current collecting tab is made of aluminum or an aluminum alloy. 前記正極集電タブ及び前記負極集電タブの少なくとも一方が、銅又は銅合金から成ることを特徴とする、請求項1〜7の何れか一項に記載の非水電解質電池。   The nonaqueous electrolyte battery according to any one of claims 1 to 7, wherein at least one of the positive electrode current collecting tab and the negative electrode current collecting tab is made of copper or a copper alloy.
JP2010032953A 2010-02-17 2010-02-17 Battery cell Pending JP2011171079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010032953A JP2011171079A (en) 2010-02-17 2010-02-17 Battery cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010032953A JP2011171079A (en) 2010-02-17 2010-02-17 Battery cell

Publications (1)

Publication Number Publication Date
JP2011171079A true JP2011171079A (en) 2011-09-01

Family

ID=44684998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010032953A Pending JP2011171079A (en) 2010-02-17 2010-02-17 Battery cell

Country Status (1)

Country Link
JP (1) JP2011171079A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014149996A (en) * 2013-02-01 2014-08-21 Gs Yuasa Corp Battery
WO2015119027A1 (en) * 2014-02-05 2015-08-13 住友電気工業株式会社 Power storage device
WO2016076108A1 (en) * 2014-11-10 2016-05-19 日立オートモティブシステムズ株式会社 Prismatic secondary battery
CN105826514A (en) * 2015-01-28 2016-08-03 三星Sdi株式会社 Electrode assembly and rechargeable battery having electrode tab
JP2016189247A (en) * 2015-03-30 2016-11-04 三洋電機株式会社 Square secondary battery and battery pack using the same
JPWO2014188501A1 (en) * 2013-05-21 2017-02-23 日立オートモティブシステムズ株式会社 Non-aqueous electrolyte secondary battery
WO2017055057A1 (en) * 2015-09-28 2017-04-06 Robert Bosch Gmbh Method for producing an electrode composite
US9799875B2 (en) 2015-01-28 2017-10-24 Samsung Sdi Co., Ltd. Electrode assembly and rechargeable battery having electrode tab
US9825274B2 (en) 2015-01-28 2017-11-21 Samsung Sdi Co., Ltd. Electrode assembly and rechargeable battery having electrode tab
US9929394B2 (en) 2015-08-19 2018-03-27 Samsung Sdi Co., Ltd. Secondary battery
JP2019204799A (en) * 2015-03-30 2019-11-28 三洋電機株式会社 Square secondary battery and battery pack using the same
JP2021120961A (en) * 2019-09-04 2021-08-19 三洋電機株式会社 Square secondary battery and battery pack using the same
JP2022079233A (en) * 2020-11-16 2022-05-26 プライムプラネットエナジー&ソリューションズ株式会社 Method for manufacturing non-aqueous electrolyte secondary battery
JP2022105101A (en) * 2017-12-01 2022-07-12 寧徳新能源科技有限公司 Revolving battery cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008226625A (en) * 2007-03-12 2008-09-25 Toshiba Corp Rolled electrode battery, and its manufacturing method
JP2010272513A (en) * 2009-05-20 2010-12-02 Sb Limotive Co Ltd Secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008226625A (en) * 2007-03-12 2008-09-25 Toshiba Corp Rolled electrode battery, and its manufacturing method
WO2008126538A1 (en) * 2007-03-12 2008-10-23 Kabushiki Kaisha Toshiba Wound type electrode battery, and its manufacturing method
JP2010272513A (en) * 2009-05-20 2010-12-02 Sb Limotive Co Ltd Secondary battery

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014149996A (en) * 2013-02-01 2014-08-21 Gs Yuasa Corp Battery
JPWO2014188501A1 (en) * 2013-05-21 2017-02-23 日立オートモティブシステムズ株式会社 Non-aqueous electrolyte secondary battery
WO2015119027A1 (en) * 2014-02-05 2015-08-13 住友電気工業株式会社 Power storage device
WO2016076108A1 (en) * 2014-11-10 2016-05-19 日立オートモティブシステムズ株式会社 Prismatic secondary battery
JPWO2016076108A1 (en) * 2014-11-10 2017-07-06 日立オートモティブシステムズ株式会社 Prismatic secondary battery
US9825274B2 (en) 2015-01-28 2017-11-21 Samsung Sdi Co., Ltd. Electrode assembly and rechargeable battery having electrode tab
EP3051610A3 (en) * 2015-01-28 2016-11-09 Samsung SDI Co., Ltd. Electrode assembly and rechargeable battery having electrode tab
JP2016139596A (en) * 2015-01-28 2016-08-04 三星エスディアイ株式会社Samsung SDI Co., Ltd. Electrode assembly having electrode tab and secondary battery
US9786897B2 (en) 2015-01-28 2017-10-10 Samsung Sdi Co., Ltd. Electrode assembly and rechargeable battery having electrode tab
US9799875B2 (en) 2015-01-28 2017-10-24 Samsung Sdi Co., Ltd. Electrode assembly and rechargeable battery having electrode tab
CN105826514A (en) * 2015-01-28 2016-08-03 三星Sdi株式会社 Electrode assembly and rechargeable battery having electrode tab
CN105826514B (en) * 2015-01-28 2020-12-08 三星Sdi株式会社 Electrode assembly having electrode tab and rechargeable battery
JP2016189247A (en) * 2015-03-30 2016-11-04 三洋電機株式会社 Square secondary battery and battery pack using the same
US11862762B2 (en) 2015-03-30 2024-01-02 Sanyo Electric Co., Ltd. Prismatic secondary battery and assembled battery using the same
US11165125B2 (en) 2015-03-30 2021-11-02 Sanyo Electric Co., Ltd. Prismatic secondary battery and assembled battery using the same
JP2019204799A (en) * 2015-03-30 2019-11-28 三洋電機株式会社 Square secondary battery and battery pack using the same
US11569552B2 (en) 2015-03-30 2023-01-31 Sanyo Electric Co., Ltd. Prismatic secondary battery and assembled battery using the same
US9929394B2 (en) 2015-08-19 2018-03-27 Samsung Sdi Co., Ltd. Secondary battery
CN108055875A (en) * 2015-09-28 2018-05-18 罗伯特·博世有限公司 For manufacturing the method for electrode complex
CN108055875B (en) * 2015-09-28 2021-07-20 罗伯特·博世有限公司 Method for producing electrode composite
WO2017055057A1 (en) * 2015-09-28 2017-04-06 Robert Bosch Gmbh Method for producing an electrode composite
JP2022105101A (en) * 2017-12-01 2022-07-12 寧徳新能源科技有限公司 Revolving battery cell
JP2021120961A (en) * 2019-09-04 2021-08-19 三洋電機株式会社 Square secondary battery and battery pack using the same
JP7160457B2 (en) 2019-09-04 2022-10-25 三洋電機株式会社 Prismatic secondary battery and assembled battery using the same
JP2022180650A (en) * 2019-09-04 2022-12-06 三洋電機株式会社 Square secondary battery and battery pack using the same
JP7453307B2 (en) 2019-09-04 2024-03-19 三洋電機株式会社 Prismatic secondary battery and assembled battery using the same
JP2022079233A (en) * 2020-11-16 2022-05-26 プライムプラネットエナジー&ソリューションズ株式会社 Method for manufacturing non-aqueous electrolyte secondary battery
JP7249982B2 (en) 2020-11-16 2023-03-31 プライムプラネットエナジー&ソリューションズ株式会社 Method for manufacturing non-aqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP2011171079A (en) Battery cell
US10115937B2 (en) Battery including branched current collector sections
US8815426B2 (en) Prismatic sealed secondary cell and method of manufacturing the same
JP5618515B2 (en) battery
JP4659861B2 (en) Flat secondary battery and manufacturing method thereof
JP6058400B2 (en) Non-aqueous electrolyte secondary battery
JP6293501B2 (en) Secondary battery and method for manufacturing secondary battery
US8313851B2 (en) Lithium rechargeable battery
JP2011049065A (en) Nonaqueous electrolyte battery and method of manufacturing the same
JP5591566B2 (en) battery
JP5566651B2 (en) Battery and manufacturing method thereof
JP2011071109A (en) Battery
JP2009277443A (en) Rectangular battery
JP5958712B2 (en) Square battery
EP2827409B1 (en) Battery and battery pack
US20140023913A1 (en) Prismatic secondary battery
WO2015186834A1 (en) Secondary battery
JP2012195122A (en) Nonaqueous electrolyte secondary battery
JP2017004640A (en) Secondary battery
JP2010086775A (en) Secondary battery
KR100601561B1 (en) Jelly-roll type electrode assembly and Cylindrical Li Secondary battery with the same
US20130004815A1 (en) Battery and manufacturing method thereof
US20230223668A1 (en) Secondary battery
JP2017098206A (en) Secondary electrode having electrode body
WO2012086514A1 (en) Lithium-ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121210

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131205

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131212

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131224

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140109

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140310

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140408