JP2017098206A - Secondary electrode having electrode body - Google Patents

Secondary electrode having electrode body Download PDF

Info

Publication number
JP2017098206A
JP2017098206A JP2015232473A JP2015232473A JP2017098206A JP 2017098206 A JP2017098206 A JP 2017098206A JP 2015232473 A JP2015232473 A JP 2015232473A JP 2015232473 A JP2015232473 A JP 2015232473A JP 2017098206 A JP2017098206 A JP 2017098206A
Authority
JP
Japan
Prior art keywords
conductive member
negative electrode
positive electrode
electrode
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015232473A
Other languages
Japanese (ja)
Other versions
JP6681017B2 (en
Inventor
石井 勝
Masaru Ishii
勝 石井
平 齋藤
Taira Saito
平 齋藤
悠史 近藤
Yuji Kondo
悠史 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015232473A priority Critical patent/JP6681017B2/en
Publication of JP2017098206A publication Critical patent/JP2017098206A/en
Application granted granted Critical
Publication of JP6681017B2 publication Critical patent/JP6681017B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a secondary battery capable of suppressing generation of internal short circuit caused by a foreign substance.SOLUTION: The secondary battery solving the problem includes: an electrode body configured by laminating a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode; and an internal member 200 arranged on the outside of the electrode body in a lamination direction. The internal member includes a first conductive member 110 and a second conductive member 120. The first conductive member 110 is conducted to the positive electrode or the negative electrode and the second conductive member 120 is conducted to the positive electrode or the negative electrode not conducted to the first conductive member 110, where the first conductive member 110 has an insulation coat layer 111 on a face opposed to the second conductive member 120 and the Young's modulus of the insulation coat layer 111 of the first conductive member 110 is higher than the Young's modulus of the second conductive member 120.SELECTED DRAWING: Figure 2

Description

本発明は電極体を有する二次電池に関する。   The present invention relates to a secondary battery having an electrode body.

携帯電話、ノート型パソコンなどのモバイル機器に係わる技術開発及び生産増加に伴い、エネルギー源となる二次電池の需要が増加している。特に、電気自動車(EV)、ハイブリッド自動車(HV)、プラグインハイブリッド自動車(PHV)等の車両の駆動用高出力電源として今後ますます需要の増加が期待されている。   With the development of technology and production related to mobile devices such as mobile phones and laptop computers, the demand for secondary batteries as energy sources is increasing. In particular, an increase in demand is expected in the future as a high-output power source for driving vehicles such as electric vehicles (EV), hybrid vehicles (HV), and plug-in hybrid vehicles (PHV).

しかし、従来の二次電池には、外部衝撃によって電池容器が押しつぶされる場合など、二次電池に過度な貫通衝撃が加えられる際には、正極と負極の間のセパレータが破断し、短絡が発生し発熱する虞があった。   However, when the secondary battery is subjected to excessive penetration impact, such as when the battery container is crushed by an external impact, the separator between the positive and negative electrodes breaks and a short circuit occurs. There was a risk of heat generation.

そこで、例えば特許文献1では、電池容器内の電極体の外側に、活物質層を有しない電極(短絡用電極)と、短絡用電極と電極体最外周との間に配置された絶縁層を備える二次電池が提案されている。この二次電池によれば、貫通衝撃が加えられた場合において、短絡用電極と、電極体の最外周に最も近い正極または負極のいずれかの電極との短絡パスを形成することにより発熱を抑制でき、貫通衝撃に対しての二次電池の安全性を向上させることが出来る。   Therefore, in Patent Document 1, for example, an electrode having no active material layer (short-circuit electrode) and an insulating layer disposed between the short-circuit electrode and the outermost periphery of the electrode body are provided outside the electrode body in the battery container. A secondary battery provided has been proposed. According to this secondary battery, when a through impact is applied, heat generation is suppressed by forming a short-circuit path between the short-circuit electrode and either the positive electrode or the negative electrode closest to the outermost periphery of the electrode body. In addition, the safety of the secondary battery against penetration impact can be improved.

特開2013−41824号公報JP 2013-41824 A

しかしながら、例えば、外部衝撃により電池の構成要素同士が接触した場合や電池ケースと電池の蓋体を溶接した際に、微細な金属片などの導電性の異物が電池容器内に発生する虞がある。従来の技術においては、発生した異物が、短絡用電極と、絶縁層との間に混入する虞があり、混入した異物が絶縁層を貫通することによる内部短絡が発生する虞があった。内部短絡が発生すると、短絡電流に伴い、電池の性能低下などが発生する可能性がある。   However, for example, when the battery components come into contact with each other due to external impact or when the battery case and the battery lid are welded, there is a possibility that conductive foreign matters such as fine metal pieces may be generated in the battery container. . In the prior art, the generated foreign matter may be mixed between the short-circuiting electrode and the insulating layer, and an internal short circuit may occur due to the mixed foreign matter penetrating the insulating layer. When an internal short circuit occurs, there is a possibility that the performance of the battery will deteriorate due to the short circuit current.

そこで、本発明は二次電池における上記従来の課題を解決するべく創出されたものであり、異物による内部短絡の発生を抑制した二次電池を提供することを目的とする。   Therefore, the present invention was created to solve the above-described conventional problems in secondary batteries, and an object thereof is to provide a secondary battery in which the occurrence of internal short circuits due to foreign substances is suppressed.

ここに開示される二次電池において、正極と、負極と、正極と負極の間に介在しているセパレータと、を積層した電極体と、前記電極体の積層方向外部に配置された内部部材と、を備える。ここで、前記内部部材は、正極または負極の何れかと導通している第1の導電部材と、第1の導電部材と導通していない、正極または負極のいずれかの電極と導通している第2の導電部材とを有している。なお、第1の導電部材は、第2の導電部材と対向する面に絶縁コート層を有し、前記第1の導電部材の絶縁コート層のヤング率は、前記第2の導電部材のヤング率よりも高いことを特徴とする。   In the secondary battery disclosed herein, an electrode body in which a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode are stacked, and an internal member disposed outside the stacking direction of the electrode body; . Here, the internal member is electrically connected to a first conductive member that is electrically connected to either the positive electrode or the negative electrode, and to a first electrode that is not electrically connected to the first conductive member. 2 conductive members. The first conductive member has an insulating coat layer on a surface facing the second conductive member, and the Young's modulus of the insulating coat layer of the first conductive member is equal to the Young's modulus of the second conductive member. It is characterized by being higher than.

このような構成によれば、前記第1の導電部材と前記第2の導電部材の間に異物が混入した場合であっても、第2の導電部材が変形することによって異物は第2の導電部材に埋もれる形になるため、異物が絶縁コート層を突き破ることを抑制できる。すなわち、異物による内部短絡の発生を抑制することが可能である。よって、異物による内部短絡を抑制できるため、貫通衝撃に対する安全性を向上させることが出来る。   According to such a configuration, even when foreign matter is mixed between the first conductive member and the second conductive member, the second conductive member is deformed so that the foreign matter becomes the second conductive member. Since it becomes a form buried in the member, it is possible to suppress foreign matter from breaking through the insulating coat layer. That is, it is possible to suppress the occurrence of an internal short circuit due to foreign matter. Therefore, internal short circuit due to foreign matter can be suppressed, and safety against penetration impact can be improved.

本発明の一実施形態における二次電池の内部構造を、該二次電池の幅方向より模式的に示す断面図である。It is sectional drawing which shows typically the internal structure of the secondary battery in one Embodiment of this invention from the width direction of this secondary battery. 本発明の一実施形態における二次電池の内部構造を、該二次電池の厚さ方向より模式的に示す断面図である。It is sectional drawing which shows typically the internal structure of the secondary battery in one Embodiment of this invention from the thickness direction of this secondary battery. 本発明の一実施形態における二次電池の内部構造を、該二次電池の厚さ方向より模式的に示す断面図である。It is sectional drawing which shows typically the internal structure of the secondary battery in one Embodiment of this invention from the thickness direction of this secondary battery. 本発明の一実施形態における二次電池の電極体の全体的な構成を示す模式図である。It is a schematic diagram which shows the whole structure of the electrode body of the secondary battery in one Embodiment of this invention. 本発明の一実施形態における二次電池の内部構造を、該二次電池の幅方向より模式的に示す断面図である。It is sectional drawing which shows typically the internal structure of the secondary battery in one Embodiment of this invention from the width direction of this secondary battery. 本発明の実施例と比較例における異物混入時の模式図である。It is the schematic diagram at the time of the foreign material mixing in the Example and comparative example of this invention.

以下、本発明の二次電池の代表的な実施形態につき、図面を用いて詳しく説明する。ここで説明される実施形態は、当然ながら特に本発明を限定することを意図したものではない。また、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。また、各図は模式的に描かれており、例えば、各図における寸法関係(長さ、幅、厚さ等)は実際の寸法関係を反映するものではない。   Hereinafter, typical embodiments of the secondary battery of the present invention will be described in detail with reference to the drawings. The embodiments described herein are, of course, not intended to limit the present invention in particular. Further, matters other than matters specifically mentioned in the present specification and necessary for the implementation of the present invention can be grasped as design matters for those skilled in the art based on the prior art in this field. Each drawing is schematically drawn. For example, the dimensional relationship (length, width, thickness, etc.) in each drawing does not reflect the actual dimensional relationship.

まず、本実施形態に適用される二次電池100の構造について、図1および図2を用いて簡単に説明する。なお、本明細書において「二次電池」とは、正負極間の電荷の移動により充放電が実現される電池を指し、代表的な例としてリチウムイオン二次電池などがあるが、これらの二次電池に限定されるものではない。また、本実施形態において、捲回電極体の例を示すが、本発明はこれに限らず積層型の電極体を用いてもよい。   First, the structure of the secondary battery 100 applied to this embodiment is demonstrated easily using FIG. 1 and FIG. In the present specification, the “secondary battery” refers to a battery that is charged and discharged by the movement of electric charge between the positive and negative electrodes, and a typical example includes a lithium ion secondary battery. It is not limited to the secondary battery. Moreover, in this embodiment, although the example of a wound electrode body is shown, this invention is not restricted to this, You may use a laminated electrode body.

図1に示す二次電池100では、大まかにいって、扁平形状の電極体20と非水電解液(図示せず)と内部部材(図示せず)とが扁平な角形の密閉構造の電池ケース(即ち外装容器)30に収容されている。電池ケース30は、一端(電池の通常の使用状態における上端部に相当する。)に開口部を有する箱形(即ち有底直方体状)のケース本体32と、該ケース本体32の開口部を封止する蓋体34とから構成される。電池ケース30の材質としては、例えば、アルミニウム、ステンレス鋼、ニッケルめっき鋼といった軽量で熱伝導性の良い金属材料が好ましく用いられ得る。   In the secondary battery 100 shown in FIG. 1, roughly speaking, a battery case having a flat square electrode body 20, a non-aqueous electrolyte (not shown), and an internal member (not shown) are flat and square. (That is, the outer container) 30 is accommodated. The battery case 30 has a box-shaped (that is, bottomed rectangular parallelepiped) case main body 32 having an opening at one end (corresponding to the upper end in a normal use state of the battery), and the opening of the case main body 32 is sealed. And a lid 34 to be stopped. As a material of the battery case 30, for example, a light metal material having a good thermal conductivity such as aluminum, stainless steel, or nickel-plated steel can be preferably used.

また、図2に示すように、内部部材は、絶縁コート層を施された第1の導電部材10と、第2の導電部材20とを有している。ここで、第1の導電部材10の絶縁コート層111のヤング率は、第2の導電部材20のヤング率よりも高い。   Further, as shown in FIG. 2, the internal member includes a first conductive member 10 and a second conductive member 20 that are provided with an insulating coat layer. Here, the Young's modulus of the insulating coating layer 111 of the first conductive member 10 is higher than the Young's modulus of the second conductive member 20.

第1の導電部材10や第2の導電部材20の材質としては、導電性を有する物であれば特に制限はないが、好ましくはアルミニウム、ステンレス鋼、ニッケルめっき鋼といった軽量で熱伝導性の良い金属材料が好ましく用いられ得る。また、第1の導電部材10に施される絶縁コート層の材質としては、第2の導電部材20よりもヤング率が高く、かつ絶縁性が高ければ特に制限はないが、シリカガラスやアクリルガラスなどの非晶質固体や、天然ゴムや合成ゴムなどのゴム、エンプラであるポリフェニレンスルファイド(PPS)やフッ素化樹脂共重合体であるペルフルオロアルコキシフッ素樹脂(PFA)などを単独または複合して作成した合成樹脂等が用いられ得る。   The material of the first conductive member 10 and the second conductive member 20 is not particularly limited as long as it has conductivity, but is preferably lightweight and has good thermal conductivity such as aluminum, stainless steel, and nickel-plated steel. Metal materials can be preferably used. The material of the insulating coating layer applied to the first conductive member 10 is not particularly limited as long as the Young's modulus is higher than that of the second conductive member 20 and the insulating property is high, but silica glass or acrylic glass is not limited. Amorphous solids such as natural rubber and synthetic rubber, polyphenylene sulfide (PPS) as an engineering plastic, and perfluoroalkoxy fluororesin (PFA) as a fluorinated resin copolymer. Synthetic resins and the like can be used.

ここで、第1の導電部材10は負極60と、第2の導電部材20は正極50と導通されている。なお、本実施の形態の説明および図2において、第1の導電部材10は、第2の導電部材20よりも電極体との位置が近いように記載されているが、実際はそれに限らず、第1の導電部材10の絶縁コート層が第2の導電部材20に面している限り、第1の導電部材10と第2の導電部材20の位置関係は、入れ替わっていてもよい。   Here, the first conductive member 10 is electrically connected to the negative electrode 60, and the second conductive member 20 is electrically connected to the positive electrode 50. In the description of the present embodiment and in FIG. 2, the first conductive member 10 is described so as to be closer to the electrode body than the second conductive member 20. As long as the insulating coating layer of one conductive member 10 faces the second conductive member 20, the positional relationship between the first conductive member 10 and the second conductive member 20 may be switched.

また、図3に示すように、第1の導電部材10と第2の導電部材20のいずれかは電池ケース30であってもよい。第1の導電部材10と第2の導電部材20のいずれかが電池ケース30の場合、第1の導電部材10と第2の導電部材20のいずれかを新たに用意する必要がなく、第1の導電部材または第2の導電部材の厚み分だけ電池容器内に電極体を充填することができるため、よりエネルギー密度の高い二次電池を得ることが可能である。   Further, as shown in FIG. 3, either the first conductive member 10 or the second conductive member 20 may be a battery case 30. When either the first conductive member 10 or the second conductive member 20 is the battery case 30, it is not necessary to newly prepare either the first conductive member 10 or the second conductive member 20. Since the electrode body can be filled in the battery container by the thickness of the conductive member or the second conductive member, it is possible to obtain a secondary battery with higher energy density.

また、図1に示すように、蓋体34には外部接続用の正極端子42および負極端子44と、電池ケース30の内圧が所定レベル以上に上昇した場合に該内圧を開放するように設定された薄肉の安全弁36と、非水電解液を注入するための注入口(図示せず)が設けられている。また、電池ケース30の内部には電池ケース30の内圧上昇により作動する電流遮断機構(CurrentInterrupt Device、CID)が設けられてもよい。   Further, as shown in FIG. 1, the lid 34 is set to release the internal pressure when the internal pressure of the battery case 30 rises above a predetermined level, and the positive terminal 42 and the negative terminal 44 for external connection. A thin safety valve 36 and an injection port (not shown) for injecting a non-aqueous electrolyte are provided. The battery case 30 may be provided with a current interruption device (CID) that operates when the internal pressure of the battery case 30 increases.

ここに開示される電極体20は、図1、図4に示すように、長尺状の正極集電箔52の片面または両面(ここでは両面)に長手方向に沿って正極活物質層54が形成された正極50と、長尺状の負極集電箔62の片面または両面(ここでは両面)に長手方向に沿って負極活物質層64が形成された負極60とを、2枚の長尺状のセパレータ70を介して積層した積層体が長尺方向に捲回され、扁平形状に成形された形態を有する。   As shown in FIGS. 1 and 4, the electrode body 20 disclosed herein has a positive electrode active material layer 54 along the longitudinal direction on one side or both sides (here, both sides) of an elongated positive electrode current collector foil 52. The formed positive electrode 50 and the negative electrode 60 in which the negative electrode active material layer 64 is formed on one side or both sides (here, both sides) of the long negative electrode current collector foil 62 along the longitudinal direction. The laminated body laminated | stacked through the separator 70 of a shape is wound by the elongate direction, and has the form shape | molded by the flat shape.

電極体20の捲回軸方向の中央部分には、図1および図4に示すように、捲回コア部分(即ち、正極50の正極活物質層54と、負極60の負極活物質層64と、セパレータ70とが積層されてなる積層構造)が形成されている。また、電極体20の捲回軸方向の両端部では、正極活物質層非形成部分52aおよび負極活物質層非形成部分62aの一部が、それぞれ捲回コア部分から外方にはみ出ている。かかる正極側はみ出し部分(正極活物質層非形成部分52a)および負極側はみ出し部分(負極活物質層非形成部分62a)には、正極集電板42aおよび負極集電板44aがそれぞれ付設され、正極端子42および負極端子44とそれぞれ導通している。   As shown in FIG. 1 and FIG. 4, the wound core portion (that is, the positive electrode active material layer 54 of the positive electrode 50, the negative electrode active material layer 64 of the negative electrode 60, and the central portion of the electrode body 20 in the winding axis direction) , A laminated structure in which separators 70 are laminated). In addition, at both ends of the electrode body 20 in the winding axis direction, a part of the positive electrode active material layer non-formed part 52a and a part of the negative electrode active material layer non-formed part 62a protrude outward from the wound core part. The positive electrode side protruding portion (positive electrode active material layer non-forming portion 52a) and the negative electrode side protruding portion (negative electrode active material layer non-forming portion 62a) are respectively provided with a positive electrode current collecting plate 42a and a negative electrode current collecting plate 44a. The terminal 42 and the negative terminal 44 are electrically connected to each other.

正極50を構成する正極集電箔52としては、例えばアルミニウム箔等が挙げられる。正極活物質層54は、少なくとも正極活物質を含有する。かかる正極活物質としては、例えば層状構造やスピネル構造等のリチウム複合金属酸化物(例えば、LiNi1/3Co1/3Mn1/3、LiFePO等)が挙げられる。正極活物質層54は、活物質以外の成分、例えばアセチレンブラック(AB)等のカーボンブラック等の導電材や、ポリフッ化ビニリデン(PVDF)等のバインダ等を含み得る。 Examples of the positive electrode current collector foil 52 constituting the positive electrode 50 include an aluminum foil. The positive electrode active material layer 54 contains at least a positive electrode active material. Examples of the positive electrode active material include lithium composite metal oxides such as a layered structure and a spinel structure (for example, LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiFePO 4, etc.). The positive electrode active material layer 54 may include components other than the active material, for example, a conductive material such as carbon black such as acetylene black (AB), a binder such as polyvinylidene fluoride (PVDF), and the like.

負極60を構成する負極集電箔62としては、例えば銅箔等が挙げられる。負極活物質層64は、例えば、黒鉛、ハードカーボン、等の炭素材料が負極活物質として含有される。負極活物質層64は、活物質以外の成分、例えばスチレンブタジエンゴム(SBR)等のバインダやカルボキシメチルセルロース(CMC)等の増粘剤等を含み得る。   Examples of the negative electrode current collector foil 62 constituting the negative electrode 60 include copper foil. The negative electrode active material layer 64 contains, for example, a carbon material such as graphite or hard carbon as the negative electrode active material. The negative electrode active material layer 64 may include components other than the active material, for example, a binder such as styrene butadiene rubber (SBR), a thickener such as carboxymethyl cellulose (CMC), and the like.

このような正極50、負極60は、例えば以下のようにして作製することができる。まず、正極活物質または負極活物質と必要に応じて用いられる材料とを適当な溶媒(例えば正極活物質であればN−メチル−2−ピロリドンなどの有機溶媒、負極活物質であればイオン交換水などの水系溶媒)に分散させ、ペースト状(スラリー状)の組成物を調製する。次に、該組成物の適当量を正極集電箔52または負極集電箔62の表面に付与した後、乾燥により溶媒を除去することによって形成することができる。また、必要に応じて適当なプレス処理を施すことによって正極活物質層54および負極活物質層64の性状(例えば、平均厚み、活物質密度、空孔率等)を調整し得る。   Such a positive electrode 50 and a negative electrode 60 can be produced as follows, for example. First, a positive electrode active material or a negative electrode active material and a material used as necessary are combined with an appropriate solvent (for example, an organic solvent such as N-methyl-2-pyrrolidone for a positive electrode active material, or ion exchange for a negative electrode active material A paste-like (slurry) composition is prepared by dispersing in an aqueous solvent such as water. Next, the composition can be formed by applying an appropriate amount of the composition to the surface of the positive electrode current collector foil 52 or the negative electrode current collector foil 62 and then removing the solvent by drying. Moreover, the properties (for example, average thickness, active material density, porosity, etc.) of the positive electrode active material layer 54 and the negative electrode active material layer 64 can be adjusted by performing an appropriate press treatment as necessary.

セパレータ70としては、例えばポリエチレン(PE)、ポリプロピレン(PP)、ポリエステル、セルロース、ポリアミド等の樹脂から成る多孔性シート(フィルム)が挙げられる。かかる多孔性シートは、単層構造であってもよく、二層以上の積層構造であってもよい。セパレータ70の表面には、耐熱層(HRL)が設けられていてもよい。   Examples of the separator 70 include a porous sheet (film) made of a resin such as polyethylene (PE), polypropylene (PP), polyester, cellulose, and polyamide. Such a porous sheet may have a single layer structure or a laminated structure of two or more layers. A heat resistant layer (HRL) may be provided on the surface of the separator 70.

非水電解液としては、典型的には有機溶媒(非水溶媒)中に、支持塩を含有させたものを用いることができる。非水溶媒としては、一般的なリチウムイオン二次電池の電解液に用いられる各種のカーボネート類、エーテル類、エステル類、ニトリル類、スルホン類等の有機溶媒を、特に限定なく用いることができる。支持塩としては、例えば、LiPF、LiBF、LiClO等のリチウム塩を好適に用いることができる。 As the nonaqueous electrolytic solution, typically, an organic solvent (nonaqueous solvent) containing a supporting salt can be used. As the non-aqueous solvent, organic solvents such as various carbonates, ethers, esters, nitriles, sulfones and the like used for an electrolyte solution of a general lithium ion secondary battery can be used without particular limitation. As the supporting salt, for example, a lithium salt such as LiPF 6 , LiBF 4 , or LiClO 4 can be suitably used.

なお、上記非水電解液は、上述した非水溶媒、支持塩以外の成分、例えば、ビフェニル(BP)、シクロヘキシルベンゼン(CHB)等のガス発生剤;ホウ素原子および/またはリン原子を含むオキサラト錯体化合物、ビニレンカーボナート(VC)、フルオロエチレンカーボナート(FEC)等の被膜形成剤;分散剤;増粘剤;等の各種添加剤を含み得る。   The non-aqueous electrolyte includes components other than the non-aqueous solvent and the supporting salt described above, for example, a gas generating agent such as biphenyl (BP) and cyclohexylbenzene (CHB); an oxalato complex containing a boron atom and / or a phosphorus atom. Various additives such as a compound, a film forming agent such as vinylene carbonate (VC), fluoroethylene carbonate (FEC); a dispersant; a thickener;

以下、本発明に関する実施例(試験例)を説明するが、本発明をかかる実施例(試験例)に示すものに限定することを意図したものではない。   EXAMPLES Examples (test examples) relating to the present invention will be described below, but the present invention is not intended to be limited to those shown in the examples (test examples).

以下の材料、プロセスによって、第1実施例1および第2実施例に係る電極体を構築した。
<第1実施例>
正極の作製は以下の手順で行った。正極活物質粉末としてのLiNi0.33Co0.33Mn0.33(LNCM)と、導電材としてのABと、バインダとしてのPVDFとを、LNCM:AB:PVDF=90:8:2の質量比でNMPと混合し、スラリー状の正極活物質層形成用組成物を調製した。かかる組成物を、厚み15μmの長尺状のアルミニウム箔(正極集電箔)の両面に帯状に塗布して乾燥、プレスすることにより、正極シートを作製した。なお、上記正極の平均厚みが約65μm(正極活物質層の片面当たりの平均厚みが約25μm)となるように、上記正極活物質層形成用組成物の塗付量およびプレス条件を調整した。
The electrode bodies according to the first example 1 and the second example were constructed by the following materials and processes.
<First embodiment>
The positive electrode was produced by the following procedure. LiNi 0.33 Co 0.33 Mn 0.33 O 2 (LNCM) as a positive electrode active material powder, AB as a conductive material, and PVDF as a binder, LNCM: AB: PVDF = 90: 8: 2 A slurry-like composition for forming a positive electrode active material layer was prepared by mixing with NMP at a mass ratio of The composition was applied to both sides of a 15 μm-thick long aluminum foil (positive electrode current collector foil) in a strip shape, dried and pressed to prepare a positive electrode sheet. The coating amount of the positive electrode active material layer forming composition and the pressing conditions were adjusted so that the average thickness of the positive electrode was about 65 μm (the average thickness per one side of the positive electrode active material layer was about 25 μm).

負極の作製は以下の手順で行った。まず、負極活物質粉末として非晶質炭素で表面がコートされた黒鉛(C)を準備した。そして、かかる黒鉛(C)と、バインダとしてのSBRと、増粘剤としてのCMCとを、C:SBR:CMC=98:1:1の質量比でイオン交換水と混合して、スラリー状の負極活物質層形成用組成物を調製した。かかる組成物を、厚み10μmの長尺状の銅箔(負極集電箔)の両面に帯状に塗布して乾燥、プレスすることにより、負極シートを作製した。なお、上記負極の平均厚みが約80μm(負極活物質層の片面当たりの平均厚みが約35μm)となるように、上記負極活物質層形成用組成物の塗付量およびプレス条件を調整した。   The negative electrode was produced according to the following procedure. First, graphite (C) whose surface was coated with amorphous carbon was prepared as a negative electrode active material powder. And this graphite (C), SBR as a binder, and CMC as a thickener are mixed with ion exchange water at a mass ratio of C: SBR: CMC = 98: 1: 1, A composition for forming a negative electrode active material layer was prepared. This composition was applied to both sides of a long copper foil (negative electrode current collector foil) having a thickness of 10 μm in a strip shape, dried, and pressed to prepare a negative electrode sheet. The amount of the negative electrode active material layer-forming composition applied and the pressing conditions were adjusted so that the average thickness of the negative electrode was about 80 μm (the average thickness per one side of the negative electrode active material layer was about 35 μm).

上記のとおり作製した正極および負極を、多孔質ポリエチレン層の両面に多孔質ポリプロピレン層が形成され、さらに一方のポリプロピレン層の表面にアルミナ粒子とバインダからなる層(所謂、耐熱層)が形成された四層構造のセパレータ2枚を介して長尺方向に重ねあわせ、長尺方向に60回(即ち捲回数が60回)巻き取った(捲回した)。そして、かかる電極体(捲回後の正極、負極およびセパレータ)を、捲回軸に直交する一の方向に押しつぶして拉げることで、扁平形状の電極体を作製した。   In the positive electrode and negative electrode produced as described above, a porous polypropylene layer was formed on both sides of the porous polyethylene layer, and a layer made of alumina particles and a binder (so-called heat resistant layer) was formed on the surface of one of the polypropylene layers. The sheets were overlapped in the longitudinal direction via two separators having a four-layer structure, and wound up (wound) 60 times in the longitudinal direction (that is, the number of times of winding). Then, the electrode body (the positive electrode, the negative electrode, and the separator after winding) was crushed in one direction perpendicular to the winding axis, and a flat electrode body was produced.

次に、内部部材として、厚み10μm、ヤング率が124GPaの銅箔(第1の導電部材10)に厚さ50μm、ヤング率94GPaのシリカガラスコート(絶縁コート層)を施し、その上に、絶縁コート層と対向するように、厚さ15μm、ヤング率69GPaのアルミニウム箔(第2の導電部材20)を重ね、前記電極体の外周1周分以上の長さにおいて切り取った。また、本実施例では、内部部材の長さを前記電極体の外周1周分以上の長さとしたが、電極体を押しつぶした方向(もしくは、電極体の積層方向)と直交する電極体の面をカバーできる大きさであればこの限りではない。   Next, as an internal member, a silica glass coat (insulating coat layer) having a thickness of 50 μm and a Young's modulus of 94 GPa is applied to a copper foil (first conductive member 10) having a thickness of 10 μm and a Young's modulus of 124 GPa. An aluminum foil (second conductive member 20) having a thickness of 15 μm and a Young's modulus of 69 GPa was stacked so as to face the coat layer, and was cut out at a length of one or more circumferences of the outer periphery of the electrode body. In this embodiment, the length of the inner member is set to be equal to or longer than one circumference of the outer periphery of the electrode body, but the surface of the electrode body orthogonal to the direction in which the electrode body is crushed (or the stacking direction of the electrode bodies). This is not necessarily the case as long as it can cover the size.

次に、この第1の導電部材10、第2の導電部材20の順に積層された内部部材を、図2のように電極体20の積層方向外部に配置する。そして、電極体の負極60と第1の導電部材10が、前記電極体の正極50と第2の導電部材20がそれぞれ電気的に接続するように固定した。なお、本実施例では、電気的接続方法として、図5のように負極60と第1の導電部材10を第1の導電部材の接続部材112により固定し、正極50と第2の導電部材を第2の導電部材の接続部材121でそれぞれ溶着させることによって固定するが、本発明はその固定方法に限定されるものではなく、導電性接着剤や、抵抗溶接、超音波溶接などにより集電端子に固定してもよい。また、接続部材を用いずに、導電部材と集電端子を直接接続してもよい。なお、第1の導電部材の接続部材112および第2の導電部材の接続部材121は導電性の材料であれば特に制限はなく、今回はアルミニウム箔を用いた。   Next, the internal members stacked in this order of the first conductive member 10 and the second conductive member 20 are arranged outside the electrode body 20 in the stacking direction as shown in FIG. Then, the negative electrode 60 of the electrode body and the first conductive member 10 were fixed so that the positive electrode 50 of the electrode body and the second conductive member 20 were electrically connected to each other. In this embodiment, as an electrical connection method, the negative electrode 60 and the first conductive member 10 are fixed by the connection member 112 of the first conductive member as shown in FIG. 5, and the positive electrode 50 and the second conductive member are fixed. Although it fixes by making it weld by the connection member 121 of a 2nd electrically-conductive member, this invention is not limited to the fixing method, A current collection terminal by a conductive adhesive, resistance welding, ultrasonic welding, etc. It may be fixed to. Moreover, you may connect a electrically-conductive member and a current collection terminal directly, without using a connection member. The connection member 112 of the first conductive member and the connection member 121 of the second conductive member are not particularly limited as long as they are conductive materials, and this time, aluminum foil was used.

電極体の正極活物質層の非形成部および負極活物質層の非形成部に、それぞれ、正極リード端子および負極リード端子を超音波溶接手段により付設した。その後、かかる電極体および内部部材を非水電解液とともに箱型の電池容器に収容し、電池容器の開口部を気密に封口した。非水電解液としてはECとDMCとEMCとを3:4:3の体積比で含む混合溶媒に支持塩としてのLiPF6を約1mol/リットルの濃度で含有させた非水電解液を41g使用した。このようにして構築した密閉型の角型リチウムイオン二次電池に対し、常法により初期充放電処理(コンディショニング)を行って二次電池を作製した。
<第1比較例>
第1比較例の電池は、内部部材の構成が異なること以外は上記第1 実施例と同様の構成であるので、重複する説明は省略する。
A positive electrode lead terminal and a negative electrode lead terminal were respectively attached to the non-formed part of the positive electrode active material layer and the non-formed part of the negative electrode active material layer of the electrode body by ultrasonic welding means. Thereafter, the electrode body and the internal member were accommodated in a box-shaped battery container together with the non-aqueous electrolyte, and the opening of the battery container was hermetically sealed. As the non-aqueous electrolyte, 41 g of a non-aqueous electrolyte in which LiPF6 as a supporting salt was contained at a concentration of about 1 mol / liter in a mixed solvent containing EC, DMC, and EMC in a volume ratio of 3: 4: 3 was used. . The sealed prismatic lithium ion secondary battery thus constructed was subjected to an initial charge / discharge treatment (conditioning) by a conventional method to produce a secondary battery.
<First comparative example>
Since the battery of the first comparative example has the same configuration as that of the first embodiment except that the configuration of the internal members is different, the overlapping description is omitted.

第1比較例において、内部部材は、厚さ50μmのシリカガラスコート(絶縁コート層)の代わりに厚さ50μmのPPコート(絶縁部材)をアルミニウム箔(第1の導電部材10)に重ねて作製したものである。なお、本比較例における第1の導電部材10のヤング率は124GPaであり、PPコートのヤング率は1GPaであり、第2の導電部材20のヤング率は69GPaである。その他の材料や構成、作製方法は上記第1実施例と同様である。
<第2比較例>
第2比較例の電池は、内部部材の構成が異なること以外は上記第1 実施例と同様の構成であるので、重複する説明は省略する。
In the first comparative example, the internal member is made by stacking a PP coat (insulating member) with a thickness of 50 μm on an aluminum foil (first conductive member 10) instead of a silica glass coat (insulating coat layer) with a thickness of 50 μm. It is a thing. Note that the Young's modulus of the first conductive member 10 in this comparative example is 124 GPa, the Young's modulus of the PP coat is 1 GPa, and the Young's modulus of the second conductive member 20 is 69 GPa. Other materials, configurations, and manufacturing methods are the same as those in the first embodiment.
<Second Comparative Example>
Since the battery of the second comparative example has the same configuration as that of the first embodiment except that the configuration of the internal members is different, the overlapping description is omitted.

第2比較例において、内部部材は、厚さ50μmのシリカガラスコート(絶縁コート層)を施した厚さ50μmのアルミニウム箔(第1の導電部材10)を、厚さ10μmの銅箔(第2の導電部材20)に重ねて作製したものである。なお、本比較例における第1の導電部材10のヤング率は69GPaであり、シリカガラスコートのヤング率は94GPaであり、第2の導電部材20のヤング率は124GPaである。その他の材料や構成、作製方法は上記第1実施例と同様である。   In the second comparative example, the internal member is made of a 50 μm thick aluminum foil (first conductive member 10) applied with a 50 μm thick silica glass coat (insulating coat layer), and a 10 μm thick copper foil (second conductive member). The conductive member 20) is overlaid. The Young's modulus of the first conductive member 10 in this comparative example is 69 GPa, the Young's modulus of the silica glass coat is 94 GPa, and the Young's modulus of the second conductive member 20 is 124 GPa. Other materials, configurations, and manufacturing methods are the same as those in the first embodiment.

次に、電極体の内層方向から数えて、第1の導電部材10、第2の導電部材20の順に積層された内部部材が、電極体の積層方向外部に配置され、電極体の負極と第2の導電部材20とがそれぞれ電気的に接続するように固定した。なお、本実施例では、電気的接続方法として、正極と第1の導電部材を第1の導電部材の接続部材112を用いて、負極と第2の導電部材を第2の導電部材の接続部材121を用いてそれぞれ溶着させることによって固定するが、本発明はその固定方法に限定されるものではなく、導電性接着剤を用いるなどその他の方法を用いて固定してもよい。   Next, counting from the inner layer direction of the electrode body, the internal members laminated in the order of the first conductive member 10 and the second conductive member 20 are arranged outside the electrode body in the lamination direction, and the negative electrode of the electrode body and the second The two conductive members 20 were fixed so as to be electrically connected to each other. In this embodiment, as an electrical connection method, the positive electrode and the first conductive member are connected to the first conductive member using the connection member 112, and the negative electrode and the second conductive member are connected to the second conductive member. Although it fixes by making it weld each using 121, this invention is not limited to the fixing method, You may fix using other methods, such as using a conductive adhesive.

また、電極体に固定した内部部材の絶縁部材と、電池ケースとを接触させた状態で固定した。本実施例では、接着剤を用いて固定したがその固定方法に限定されるものではない。
<強制内部短絡試験>
本発明の電池の効果を調べるために、実施例と比較例の二次電池について、強制内部短絡試験を行った。なお、試験方法は、JISC8714記載の「強制内部短絡試験」に準拠して行った。ただし、ニッケル小片の位置に関しては、第1の導電部材と第2の導電部材との間に設置して実験を行った。その結果を表1に示す。
Moreover, it fixed with the insulating member of the internal member fixed to the electrode body, and the battery case in contact. In this embodiment, fixing is performed using an adhesive, but the fixing method is not limited thereto.
<Forced internal short circuit test>
In order to investigate the effect of the battery of the present invention, a forced internal short-circuit test was performed on the secondary batteries of Examples and Comparative Examples. In addition, the test method was performed based on the "forced internal short circuit test" of JISC8714. However, regarding the position of the nickel piece, the experiment was performed by installing it between the first conductive member and the second conductive member. The results are shown in Table 1.

表1に示すように、実施例1のような第1の導電部材10の絶縁コート層のヤング率が、第2の導電部材20のヤング率より高い場合、内部短絡を抑制できることが確かめられた。   As shown in Table 1, when the Young's modulus of the insulating coating layer of the first conductive member 10 as in Example 1 is higher than the Young's modulus of the second conductive member 20, it was confirmed that an internal short circuit can be suppressed. .

ここで、図6を用いて、実施例1において内部短絡が抑制できたメカニズムについて説明する。図6は、本発明の実施例と比較例における異物混入時の模式図である。   Here, with reference to FIG. 6, a mechanism that can suppress the internal short circuit in the first embodiment will be described. FIG. 6 is a schematic diagram when foreign matter is mixed in the example of the present invention and the comparative example.

図6の(a)比較例1において、第1の導電部材10と第2の導電部材20の間に混入した異物は、電池の充放電に伴う電極体の膨張に伴い、第1の導電部材10の絶縁コート層および第2の導電部材20に押し付けられる。このとき、第1の導電部材10の絶縁コート層のヤング率は第2の導電部材20のヤング率以下であるため、異物は第2の導電部材20と同等、または第1の導電部材10の絶縁コート層に埋没しやすい。すなわち、異物が絶縁コート層を貫通し、異物によって第1の導電部材10と第2の導電部材20が通電する虞がある。よって、第1の導電部材10と第2の導電部材20の間に異物が混入した場合には、異物による短絡が発生した。   In FIG. 6A, in Comparative Example 1, the foreign matter mixed between the first conductive member 10 and the second conductive member 20 is the first conductive member as the electrode body expands as the battery is charged / discharged. 10 insulating coat layers and the second conductive member 20. At this time, since the Young's modulus of the insulating coating layer of the first conductive member 10 is equal to or lower than the Young's modulus of the second conductive member 20, the foreign matter is equal to the second conductive member 20 or the first conductive member 10. It is easy to be buried in the insulating coating layer. That is, there is a possibility that foreign matter penetrates the insulating coat layer, and the first conductive member 10 and the second conductive member 20 are energized by the foreign matter. Therefore, when a foreign substance is mixed between the first conductive member 10 and the second conductive member 20, a short circuit due to the foreign substance has occurred.

一方で、図6の(b)実施例において、第1の導電部材10と第2の導電部材20の間に混入した異物は、電池の充放電に伴う電極体の膨張に伴い、第1の導電部材10の絶縁コート層および第2の導電部材20に押し付けられる。このとき、第1の導電部材10の絶縁コート層のヤング率が第2の導電部材20のヤング率よりも大きいため、異物は第1の導電部材10の絶縁コート層ではなく、第2の導電部材20に埋没する。そのため、異物が絶縁コート層を貫通せず、第1の導電部材10と第2の導電部材20の間に異物が混入した場合であっても、異物による短絡の発生を抑制することが出来る。   On the other hand, in the embodiment shown in FIG. 6B, the foreign matter mixed between the first conductive member 10 and the second conductive member 20 is caused by the expansion of the electrode body accompanying the charging / discharging of the battery. It is pressed against the insulating coat layer of the conductive member 10 and the second conductive member 20. At this time, since the Young's modulus of the insulating coating layer of the first conductive member 10 is larger than the Young's modulus of the second conductive member 20, the foreign matter is not the insulating coating layer of the first conductive member 10, but the second conductive material. It is buried in the member 20. Therefore, even when foreign matter does not penetrate the insulating coat layer and foreign matter is mixed between the first conductive member 10 and the second conductive member 20, occurrence of a short circuit due to the foreign matter can be suppressed.

ここで、絶縁コート層のヤング率は、第2の導電部材のヤング率に比べ、好ましくは1.3倍以上、よりは好ましくは1.36倍以上が好ましい。このような構成によると、より精度よく異物による短絡の発生を抑制することが出来る。   Here, the Young's modulus of the insulating coating layer is preferably 1.3 times or more, more preferably 1.36 times or more, compared to the Young's modulus of the second conductive member. According to such a configuration, occurrence of a short circuit due to a foreign substance can be suppressed with higher accuracy.

以上、本発明の具体例を詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例をさまざまに変形、変更したものが含まれる。   Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.

また、上記実施例では、金属製のパッケージを有する角型電池を採用したが、この形態に限られるものではない。例えば、金属製のパッケージを有する角型電池や円筒型電池、ラミネートフィルムのパッケージを有する電池や合成樹脂製のパッケージを有する電池であってもよい。   Moreover, in the said Example, although the square battery which has metal packages was employ | adopted, it is not restricted to this form. For example, a square battery or a cylindrical battery having a metal package, a battery having a laminate film package, or a battery having a synthetic resin package may be used.

上記実施例の電池では、正極シートの発電領域と露出領域がいずれもアルミニウムで構成されているが、両者ともアルミニウムで構成される必要はない。一般的なリチウム二次電池に適用する場合には、高電位での安定性に優れるアルミニウムが好ましい。   In the battery of the above embodiment, the power generation region and the exposed region of the positive electrode sheet are both made of aluminum, but both need not be made of aluminum. When applied to a general lithium secondary battery, aluminum excellent in stability at a high potential is preferable.

負極シートは、発電領域と露出領域がいずれも銅で構成されているが、両者とも銅で構成される必要はない。これら、電極を構成する金属箔は、導電性をもつ金属であれば特に限定することなく用いることができる。例えば、アルミニウム、銅、チタン、ニッケル、鉄、ステンレス等の金属材料を用いることができる。   In the negative electrode sheet, both the power generation area and the exposed area are made of copper, but both need not be made of copper. These metal foils constituting the electrodes can be used without particular limitation as long as they are conductive metals. For example, metal materials such as aluminum, copper, titanium, nickel, iron, and stainless steel can be used.

本明細書または図面に説明した技術的要素は、単独で或いは各種の組み合わせによって技術的な有用性を発揮するものであり、出願時請求項記載の組み合わせに限定されるものではない。また、本明細書または図面に例示した技術は複数の目的を同時に達成するものであり、そのうち一つの目的を達成すること自体で技術的有用性を持つものである。   The technical elements described in the present specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology exemplified in this specification or the drawings achieves a plurality of objects at the same time, and has technical usefulness by achieving one of the objects.

本明細書または図面に説明した技術的要素は、単独で或いは各種の組み合わせによって技術的な有用性を発揮するものであり、出願時請求項記載の組み合わせに限定されるものではない。また、本明細書または図面に例示した技術は複数の目的を同時に達成するものであり、そのうち一つの目的を達成すること自体で技術的有用性を持つものである。   The technical elements described in the present specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology exemplified in this specification or the drawings achieves a plurality of objects at the same time, and has technical usefulness by achieving one of the objects.

20 電極体
30 電池ケース
32 電池ケース本体
34 蓋体
36 安全弁
42 正極端子
42a 正極集電板
44 負極端子
44a 負極集電板
50 正極
52 正極集電体
52a 正極活物質層非形成部分
54 正極活物質層
60 負極
62 負極集電体
62a 負極活物質層非形成部分
64 負極活物質層
70 セパレータ
100 二次電池
110 第1の導電部材
111 第1の導電部材の絶縁コート層
112 第1の導電部材の接続部材
120 第2の導電部材
121 第2の導電部材の接続部材
130 異物
200 内部部材
DESCRIPTION OF SYMBOLS 20 Electrode body 30 Battery case 32 Battery case main body 34 Lid body 36 Safety valve 42 Positive electrode terminal 42a Positive electrode current collecting plate 44 Negative electrode terminal 44a Negative electrode current collecting plate 50 Positive electrode 52 Positive electrode current collector 52a Positive electrode active material layer non-formation part 54 Positive electrode active material Layer 60 Negative electrode 62 Negative electrode current collector 62a Negative electrode active material layer non-formed portion 64 Negative electrode active material layer 70 Separator 100 Secondary battery 110 First conductive member 111 Insulation coating layer 112 of first conductive member First conductive member Connection member 120 Second conductive member 121 Connection member 130 of second conductive member Foreign matter 200 Internal member

Claims (1)

正極と、負極と、正極と負極の間に介在しているセパレータと、を積層した電極体と、前記電極体の積層方向外部に配置された内部部材と、を備え、
前記内部部材は、第1の導電部材と、第2の導電部材とを含み、
前記第1の導電部材は、正極または負極の何れかと導通しており、前記第2の導電部材は、前記第1の導電部材と導通していない、正極または負極の何れかと導通している二次電池であって、
前記第1の導電部材は、前記第2の導電部材と対向する面に絶縁コート層を有し、
前記第1の導電部材の絶縁コート層のヤング率は、前記第2の導電部材のヤング率よりも高いことを特徴とする二次電池。
An electrode body in which a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode are stacked, and an internal member disposed outside in the stacking direction of the electrode body,
The internal member includes a first conductive member and a second conductive member,
The first conductive member is electrically connected to either the positive electrode or the negative electrode, and the second conductive member is electrically connected to either the positive electrode or the negative electrode that is not electrically connected to the first conductive member. A secondary battery,
The first conductive member has an insulating coat layer on a surface facing the second conductive member,
A secondary battery, wherein the Young's modulus of the insulating coating layer of the first conductive member is higher than the Young's modulus of the second conductive member.
JP2015232473A 2015-11-27 2015-11-27 Secondary battery having electrode body Active JP6681017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015232473A JP6681017B2 (en) 2015-11-27 2015-11-27 Secondary battery having electrode body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015232473A JP6681017B2 (en) 2015-11-27 2015-11-27 Secondary battery having electrode body

Publications (2)

Publication Number Publication Date
JP2017098206A true JP2017098206A (en) 2017-06-01
JP6681017B2 JP6681017B2 (en) 2020-04-15

Family

ID=58818134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015232473A Active JP6681017B2 (en) 2015-11-27 2015-11-27 Secondary battery having electrode body

Country Status (1)

Country Link
JP (1) JP6681017B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111373589A (en) * 2017-11-24 2020-07-03 理百思特有限公司 Electrode assembly having improved safety in use by outermost electrode structure and current collector material, and lithium ion secondary battery having the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09274934A (en) * 1996-04-08 1997-10-21 Toray Ind Inc Nonaqueous electrolyte secondary battery
JPH1173996A (en) * 1997-08-28 1999-03-16 Toray Ind Inc Nonaqueous secondary battery
JP2008293980A (en) * 2007-05-25 2008-12-04 Samsung Sdi Co Ltd Electrode assembly and secondary battery using it
JP2011009182A (en) * 2009-06-24 2011-01-13 Enertech Internatl Inc Unit cell for secondary battery equipped with conductive sheet layer and lithium ion secondary battery using the same
JP2011222537A (en) * 2011-08-09 2011-11-04 Panasonic Corp Lithium secondary battery
JP2011254003A (en) * 2010-06-03 2011-12-15 Fujitsu Ltd Semiconductor device and method for manufacturing the same
JP2015018710A (en) * 2013-07-11 2015-01-29 株式会社豊田自動織機 Power storage device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09274934A (en) * 1996-04-08 1997-10-21 Toray Ind Inc Nonaqueous electrolyte secondary battery
JPH1173996A (en) * 1997-08-28 1999-03-16 Toray Ind Inc Nonaqueous secondary battery
JP2008293980A (en) * 2007-05-25 2008-12-04 Samsung Sdi Co Ltd Electrode assembly and secondary battery using it
JP2011009182A (en) * 2009-06-24 2011-01-13 Enertech Internatl Inc Unit cell for secondary battery equipped with conductive sheet layer and lithium ion secondary battery using the same
JP2011254003A (en) * 2010-06-03 2011-12-15 Fujitsu Ltd Semiconductor device and method for manufacturing the same
JP2011222537A (en) * 2011-08-09 2011-11-04 Panasonic Corp Lithium secondary battery
JP2015018710A (en) * 2013-07-11 2015-01-29 株式会社豊田自動織機 Power storage device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111373589A (en) * 2017-11-24 2020-07-03 理百思特有限公司 Electrode assembly having improved safety in use by outermost electrode structure and current collector material, and lithium ion secondary battery having the same
CN111373589B (en) * 2017-11-24 2024-04-02 理百思特有限公司 Electrode assembly having improved safety in use by outermost electrode structure and current collector material, and lithium ion secondary battery having the same

Also Published As

Publication number Publication date
JP6681017B2 (en) 2020-04-15

Similar Documents

Publication Publication Date Title
KR101802102B1 (en) Electrode and cell having electrode
JP4892893B2 (en) Bipolar battery
US11121439B2 (en) Secondary battery
JP5541957B2 (en) Multilayer secondary battery
JP6210336B2 (en) Secondary battery
JP2013201077A (en) Nonaqueous electrolytic secondary battery
JP2013026123A (en) Secondary battery and electrode plate
JP2016126901A (en) Secondary battery
WO2013047515A1 (en) Non-aqueous electrolyte secondary battery
JP7212629B2 (en) lithium ion secondary battery
JP2011134685A (en) Secondary battery
JP2011048991A (en) Lithium ion secondary battery
WO2015156168A1 (en) Flat-type secondary battery
JP6681017B2 (en) Secondary battery having electrode body
JP2017098207A (en) Secondary battery having electrode body
KR20150122579A (en) Nonaqueous electrolyte secondary battery
JP7285819B2 (en) Non-aqueous electrolyte secondary battery
JP2016225261A (en) Lithium secondary battery
JP2017027837A (en) Lithium ion secondary battery
JP6540476B2 (en) Secondary battery having an electrode body
JP2008311011A (en) Nonaqueous electrolyte secondary battery
CN112563681B (en) Nonaqueous electrolyte secondary battery
JP7430665B2 (en) Secondary battery current collector and its manufacturing method, and secondary battery
JP7240612B2 (en) Method for manufacturing secondary battery
WO2012086514A1 (en) Lithium-ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190319

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200304

R151 Written notification of patent or utility model registration

Ref document number: 6681017

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151