JP2011071109A - Battery - Google Patents

Battery Download PDF

Info

Publication number
JP2011071109A
JP2011071109A JP2010185570A JP2010185570A JP2011071109A JP 2011071109 A JP2011071109 A JP 2011071109A JP 2010185570 A JP2010185570 A JP 2010185570A JP 2010185570 A JP2010185570 A JP 2010185570A JP 2011071109 A JP2011071109 A JP 2011071109A
Authority
JP
Japan
Prior art keywords
negative electrode
positive
positive electrode
current collecting
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010185570A
Other languages
Japanese (ja)
Other versions
JP5558265B2 (en
Inventor
Hideyuki Ishii
秀幸 石井
Naganori Kashiwazaki
永記 柏▲崎▼
Yasutake Kurata
健剛 倉田
Tatsuya Shinoda
達也 篠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010185570A priority Critical patent/JP5558265B2/en
Publication of JP2011071109A publication Critical patent/JP2011071109A/en
Application granted granted Critical
Publication of JP5558265B2 publication Critical patent/JP5558265B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery increasing an energy density by housing more flat-type electrode groups in an outer can and having structure for efficiently collecting current by decreasing resistance in the connecting part of a positive electrode lead and that of a negative electrode lead. <P>SOLUTION: The battery is equipped with: positive and negative current collecting tabs 8a, 9a spirally projected from both end surfaces of a flat electrode group 2; a positive electrode nipping member 12 having first and second nipping sections 12a, 12b nipping each bundle of two bundles laminated in the thickness direction of the electrode group, the positive current collecting tab being separated into the two bundles; a negative electrode nipping member 11 having first and second nipping sections 11a, 11b nipping each bundle of two bundles laminated in the thickness direction of the electrode group the negative current collecting tabs being separated into the two bundles; the positive electrode lead 3 having current collecting parts 3c, 3d bifurcating from a connection part electrically connected to a positive terminal 6 and nipping the positive electrode nipping member; and the negative electrode lead 4 having current collecting parts 4c, 4d bifurcating from a connection part electrically connected to a negative terminal 7 and nipping the negative electrode nipping member. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明の実施形態は、電池に関し、特に、偏平形状に捲回された偏平型電極群と、前記電極群からの電気エネルギーを集電するリードと、挟持板とを有する密閉型の角型二次電池に関する。   An embodiment of the present invention relates to a battery, and in particular, a sealed square two-piece having a flat electrode group wound in a flat shape, a lead for collecting electric energy from the electrode group, and a sandwiching plate. Next battery.

近年、携帯電話やパーソナルコンピュータなどの電子機器の進歩に伴い、これら機器に使用される二次電池は、小型化、軽量化が求められてきた。それに応え得るエネルギー密度の高い二次電池として、リチウムイオン二次電池が挙げられる。一方、電気自動車、ハイブリッド自動車、電動バイク、フォークリフトなどに代表される大型、大容量電源として、鉛蓄電池、ニッケル水素電池等の二次電池が使われているが、最近ではエネルギー密度の高いリチウムイオン二次電池の採用に向けての開発が盛んになっている。それに応え得るリチウムイオン二次電池の開発は、高寿命、安全性などを配慮しながら、大型化、大容量化の開発が行われている。   In recent years, with the advancement of electronic devices such as mobile phones and personal computers, secondary batteries used in these devices have been required to be smaller and lighter. As a secondary battery having a high energy density that can respond to this, a lithium ion secondary battery can be given. On the other hand, secondary batteries such as lead-acid batteries and nickel-metal hydride batteries are used as large-scale, large-capacity power sources such as electric vehicles, hybrid vehicles, electric motorcycles, and forklifts. Recently, lithium ions with high energy density are used. Development toward the adoption of secondary batteries is thriving. Lithium-ion secondary batteries that can respond to these demands have been developed for larger sizes and larger capacities while taking into consideration the long life and safety.

密閉型二次電池の形状として、円筒形や角形などが一般的であるが、特に角形の密閉型二次電池は、機器に搭載するに際してスペース効率が優れている点で注目されている。   As the shape of the sealed secondary battery, a cylindrical shape or a rectangular shape is generally used. In particular, the rectangular sealed secondary battery is attracting attention because it is excellent in space efficiency when mounted on a device.

密閉型二次電池では、例えば、電極活物質層を金属箔の両面に形成した帯状の正極および負極が、帯状のセパレータを介して偏平形状に捲回された偏平型電極群を用いる。偏平型電極群が発生する電気エネルギーを外部へ取り出すには、偏平型電極群の電極活物質層が形成されていない金属箔を正極及び負極ともに形成し、その部分にリード等を接合して電気エネルギーを取り出すことが知られている。更に集電効率を高める為、各金属箔は積層して束ねた状態で接合されリード等の溶接を行うことが、例えば特許文献1,2に開示されている。   In a sealed secondary battery, for example, a flat electrode group in which a belt-like positive electrode and a negative electrode having electrode active material layers formed on both surfaces of a metal foil are wound into a flat shape via a belt-like separator is used. In order to extract the electric energy generated by the flat electrode group to the outside, a metal foil on which the electrode active material layer of the flat electrode group is not formed is formed on both the positive electrode and the negative electrode. It is known to extract energy. Further, for example, Patent Documents 1 and 2 disclose that in order to further improve the current collection efficiency, the metal foils are joined in a state of being stacked and bundled, and welding of leads and the like is performed.

ところで、電池のエネルギー密度を高める為に、偏平型電極群を外装缶の中により多く収納する必要がある。また、電気エネルギーを集電するリードや接合部には大電流が流れることにより発熱が生じやすく、最悪は過熱焼損の恐れもある。   By the way, in order to increase the energy density of the battery, it is necessary to accommodate more flat electrode groups in the outer can. In addition, a large current flows through the leads and joints that collect electrical energy, and heat is likely to be generated. In the worst case, there is a risk of overheating and burning.

しかしながら、特許文献1,2に記載の電池は、これらの要求を十分に満たしていない。   However, the batteries described in Patent Documents 1 and 2 do not sufficiently satisfy these requirements.

特許第4134521号公報Japanese Patent No. 4134521 特開2003−197174号公報JP 2003-197174 A

本発明の実施形態は、偏平型電極群を外装缶の中により多く収納しエネルギー密度を高めること、正負極リードの接合部等の抵抗を抑え効率よく集電できる構造を兼ね備えた電池を提供するものである。   Embodiments of the present invention provide a battery having a structure capable of efficiently collecting electricity by increasing the energy density by storing a larger number of flat electrode groups in an outer can and suppressing the resistance of the joints of positive and negative electrode leads. Is.

本発明の実施形態の電池は、正極集電体を含む正極と、負極集電体を含む負極が、セパレータを介して偏平形状に捲回された偏平型電極群と、
前記電極群の一方の端面から渦巻状に突出した前記正極集電体からなる正極集電タブと、
前記電極群の他方の端面から渦巻状に突出した前記負極集電体からなる負極集電タブと、
前記正極集電タブを前記電極群の厚さ方向に積層された二つの束に分け、それぞれの束を挟持する第1、第2の挟持部と、前記第1の挟持部と前記第2の挟持部を電気的に接続する連結部とを有する導電性の正極挟持部材と、
前記負極集電タブを前記電極群の厚さ方向に積層された二つの束に分け、それぞれの束を挟持する第1、第2の挟持部と、前記第1の挟持部と前記第2の挟持部を電気的に接続する連結部とを有する導電性の負極挟持部材と、
前記電極群が収納される外装缶と、
前記外装缶の開口部に取り付けられ、正極端子及び負極端子を有する蓋と、
前記正極端子と電気的に接続される接続部と、前記接続部から二股に分岐して前記正極挟持部材を挟み、一方が前記正極挟持部材の前記第1の挟持部の外側の面に接合され、かつ他方が前記第2の挟持部の外側の面に接合される集電部とを有する正極リードと、
前記負極端子と電気的に接続される接続部と、前記接続部から二股に分岐して前記負極挟持部材を挟み、一方が前記負極挟持部材の前記第1の挟持部の外側の面に接合され、かつ他方が前記第2の挟持部の外側の面に接合される集電部とを有する負極リードと
を備えることを特徴とする。
A battery according to an embodiment of the present invention includes a positive electrode including a positive electrode current collector, and a flat electrode group in which a negative electrode including a negative electrode current collector is wound into a flat shape via a separator,
A positive electrode current collector tab comprising the positive electrode current collector projecting spirally from one end face of the electrode group;
A negative electrode current collector tab comprising the negative electrode current collector projecting spirally from the other end face of the electrode group;
The positive electrode current collecting tab is divided into two bundles stacked in the thickness direction of the electrode group, and first and second sandwiching portions for sandwiching each bundle, the first sandwiching portion, and the second sandwiching portion. A conductive positive electrode clamping member having a coupling portion for electrically connecting the clamping portion;
The negative electrode current collecting tab is divided into two bundles stacked in the thickness direction of the electrode group, and first and second sandwiching portions for sandwiching each bundle, the first sandwiching portion, and the second sandwiching portion. A conductive negative electrode clamping member having a coupling part for electrically connecting the clamping part;
An outer can in which the electrode group is stored;
A lid attached to the opening of the outer can and having a positive terminal and a negative terminal;
A connecting portion electrically connected to the positive electrode terminal; and a bifurcated branch from the connecting portion to sandwich the positive electrode holding member; one of the positive electrode holding members is joined to an outer surface of the first holding portion; And a positive electrode lead having a current collector joined to the outer surface of the second sandwiching part on the other side,
A connecting portion that is electrically connected to the negative electrode terminal, and bifurcated from the connecting portion to sandwich the negative electrode holding member, and one of them is joined to the outer surface of the first holding portion of the negative electrode holding member And a negative electrode lead having a current collector joined to the outer surface of the second clamping part.

本発明の実施形態によれば、偏平型電極群を外装缶の中により多く収納しエネルギー密度を高めること、正負極リードの接合部等の抵抗を抑え効率よく集電できる構造を兼ね備えた電池を提供することができる。   According to the embodiment of the present invention, a battery having a structure capable of collecting more flat type electrode groups in an outer can and increasing the energy density, and efficiently collecting current while suppressing resistance such as a junction of positive and negative electrode leads. Can be provided.

第1の実施形態の角型二次電池を示す展開斜視図。FIG. 2 is an exploded perspective view showing the prismatic secondary battery according to the first embodiment. 図1の電池の外観を示す斜視図。The perspective view which shows the external appearance of the battery of FIG. 図1の電池に用いられる電極群の展開斜視図。The expansion | deployment perspective view of the electrode group used for the battery of FIG. 図1のIV−IV線に沿う断面を矢印方向から見た拡大断面図。The expanded sectional view which looked at the cross section along the IV-IV line of FIG. 1 from the arrow direction. 電極群における正負極集電タブの積層状態を示す模式図。The schematic diagram which shows the lamination | stacking state of the positive / negative electrode current collection tab in an electrode group. 図1の電池における超音波溶接を従来の電池と比較するための模式図。The schematic diagram for comparing the ultrasonic welding in the battery of FIG. 1 with the conventional battery. 第2の実施形態の電池の部分分解斜視図。The partial exploded perspective view of the battery of a 2nd embodiment. パルス充放電試験のプログラムを示す概念図。The conceptual diagram which shows the program of a pulse charging / discharging test. STEP4のパルス充放電における恒温槽、正極端子、負極端子、外装缶中央部の温度の経時変化を示すグラフ。The graph which shows the time-dependent change of the temperature of the thermostat in the pulse charge / discharge of STEP4, a positive electrode terminal, a negative electrode terminal, and an outer can center part. STEP4のパルス充放電におけるセルの電流及び電圧の経時変化を示すグラフ。The graph which shows the time-dependent change of the electric current and voltage of a cell in the pulse charge / discharge of STEP4. STEP5のパルス充放電における恒温槽、正極端子、負極端子、外装缶中央部の温度の経時変化を示すグラフ。The graph which shows the time-dependent change of the temperature of the thermostat in the pulse charge / discharge of STEP5, a positive electrode terminal, a negative electrode terminal, and an outer can center part. STEP5のパルス充放電におけるセルの電流及び電圧の経時変化を示すグラフ。The graph which shows the time-dependent change of the electric current and voltage of a cell in the pulse charge / discharge of STEP5.

本発明では、前述した課題を解決する為に、電極群の一方の端面から正極集電タブを渦巻状に突出させ、かつ他方の端面から負極集電タブを渦巻状に突出させ、さらに正負極の集電タブそれぞれを電極群の厚さ方向に積層された二つの束に分け、一方の束を挟持部材の第1の挟持部で挟持すると共に、他方の束を挟持部材の第2の挟持部で挟持する。正負極集電タブには、活物質層が形成されていない集電体部分を使用するが、上記構成により、正負極集電タブのセパレータから突出させる幅方向の長さを短く抑えることができる。   In the present invention, in order to solve the above-described problem, the positive electrode current collecting tab is protruded spirally from one end face of the electrode group, and the negative electrode current collecting tab is protruded spirally from the other end face. Each of the current collecting tabs is divided into two bundles stacked in the thickness direction of the electrode group, one bundle is sandwiched by the first sandwiching portion of the sandwiching member, and the other bundle is sandwiched by the second sandwiching member of the sandwiching member Hold between the parts. The positive and negative electrode current collector tab uses a current collector portion on which no active material layer is formed, but with the above configuration, the length in the width direction protruding from the separator of the positive and negative electrode current collector tab can be kept short. .

蓋に設ける正負極端子と電気的に接続される正負極リードは、正負極端子との接続部と、接続部から二股に分岐し、その間に挟持部材を挟む集電部とを有する。集電部の一方が挟持部材の第1の挟持部の外側の面に接合され、かつ他方が第2の挟持部の外側の面に接合される。このような構造の正負極リードは、偏平型電極群の厚さの範囲以内に配置することができる。   The positive and negative electrode leads electrically connected to the positive and negative electrode terminals provided on the lid have a connection portion with the positive and negative electrode terminals, and a current collecting portion that branches into two branches from the connection portion and sandwiches a holding member therebetween. One of the current collectors is joined to the outer surface of the first clamping part of the clamping member, and the other is joined to the outer surface of the second clamping part. The positive and negative electrode leads having such a structure can be disposed within the thickness range of the flat electrode group.

以上のことから外装缶内部のスペースを効率よく使用することができ、偏平型電極群の正極及び負極の活物質層が塗布された電極部の塗布幅を外装缶内部で、より幅広く確保することができる。これにより、角型二次電池のエネルギー密度を向上することができる。   From the above, the space inside the outer can can be used efficiently, and a wider application width of the electrode part coated with the active material layer of the positive electrode and the negative electrode of the flat electrode group can be secured inside the outer can. Can do. Thereby, the energy density of a square-type secondary battery can be improved.

また、挟持部材の第1の挟持部と第2の挟持部が連結部によって電気的に接続されていると共に、第1,第2の挟持部それぞれに正負極リードが接合されているため、偏平型電極群に対し厚さ方向に均等な位置にリードとの接合部を2箇所設けられることで集電バランスのよい状態を形成できる。   In addition, since the first clamping portion and the second clamping portion of the clamping member are electrically connected by the connecting portion, and the positive and negative electrode leads are joined to the first and second clamping portions, respectively, By providing two joints with leads at equal positions in the thickness direction with respect to the mold electrode group, a state of good current collection balance can be formed.

さらに、挟持部材の第1の挟持部と第2の挟持部が連結部によって連結されていることで、第1の挟持部と第2の挟持部の間に空間を確保することができ、正負極リードと挟持部材と正負極集電タブとを超音波溶接する際にも、超音波溶接ホーンもしくはアンビルを確実に第1の挟持部と第2の挟持部の間の空間に挿入し配置することができ、超音波溶接を容易に行うことができる。尚、当該空間には、溶接条件により超音波溶接ホーンもしくはアンビルどちらが配置されてもよい。   Further, since the first clamping part and the second clamping part of the clamping member are connected by the connecting part, a space can be secured between the first clamping part and the second clamping part, Even when the negative electrode lead, the clamping member, and the positive and negative current collecting tabs are ultrasonically welded, the ultrasonic welding horn or anvil is securely inserted and arranged in the space between the first clamping portion and the second clamping portion. And ultrasonic welding can be easily performed. In the space, either an ultrasonic welding horn or an anvil may be arranged depending on welding conditions.

(第1の実施形態)
以下、本発明の実施形態に係わる電池を図面を参照して説明する。なお、本発明は、これら実施形態に限られるものではない。
(First embodiment)
Hereinafter, a battery according to an embodiment of the present invention will be described with reference to the drawings. Note that the present invention is not limited to these embodiments.

図1及び図2に示す電池20は、密閉型の角型非水電解質二次電池である。電池20は、外装缶1と、外装缶1内に収容される偏平型電極群2と、外装缶1内に位置する正負極リード3,4と、外装缶1の開口部に取り付けられた蓋5と、蓋5に設けられた正負極端子6,7とを有する。   The battery 20 shown in FIGS. 1 and 2 is a sealed prismatic non-aqueous electrolyte secondary battery. The battery 20 includes an outer can 1, a flat electrode group 2 housed in the outer can 1, positive and negative leads 3 and 4 positioned in the outer can 1, and a lid attached to the opening of the outer can 1. 5 and positive and negative terminals 6 and 7 provided on the lid 5.

外装缶1は、有底角筒形状をなし、例えば、アルミニウム、アルミニウム合金、鉄あるいはステンレスなどの金属から形成される。電解液(図示しない)は、外装缶1内に収容され、偏平型電極群2に含浸されている。   The outer can 1 has a bottomed rectangular tube shape, and is formed of a metal such as aluminum, an aluminum alloy, iron, or stainless steel, for example. An electrolytic solution (not shown) is accommodated in the outer can 1 and impregnated in the flat electrode group 2.

図3に示すように、偏平型電極群2は、正極8と負極9がその間にセパレータ10を介して偏平形状に捲回されたものである。正極8は、例えば金属箔からなる帯状の正極集電体と、正極集電体の長辺に平行な一端部からなる正極集電タブ8aと、少なくとも正極集電タブ8aの部分を除いて正極集電体に形成された正極活物質層8bとを含む。一方、負極9は、例えば金属箔からなる帯状の負極集電体と、負極集電体の長辺に平行な一端部からなる負極集電タブ9aと、少なくとも負極集電タブ9aの部分を除いて負極集電体に形成された負極活物質層9bとを含む。   As shown in FIG. 3, the flat electrode group 2 includes a positive electrode 8 and a negative electrode 9 wound in a flat shape with a separator 10 therebetween. The positive electrode 8 includes a strip-shaped positive electrode collector made of, for example, metal foil, a positive electrode current collector tab 8a formed of one end parallel to the long side of the positive electrode current collector, and at least the positive electrode current collector tab 8a. And a positive electrode active material layer 8b formed on the current collector. On the other hand, the negative electrode 9 excludes, for example, a strip-shaped negative electrode current collector made of a metal foil, a negative electrode current collection tab 9a composed of one end parallel to the long side of the negative electrode current collector, and at least a portion of the negative electrode current collection tab 9a. And a negative electrode active material layer 9b formed on the negative electrode current collector.

このような正極8、セパレータ10及び負極9は、正極集電タブ8aが電極群の捲回軸方向にセパレータ10から突出し、かつ負極集電タブ9aがこれとは反対方向にセパレータ10から突出するよう、正極8及び負極9の位置をずらして捲回されている。このような捲回により、電極群2は、図1に示すように、一方の端面から渦巻状に捲回された正極集電タブ8aが突出し、かつ他方の端面から渦巻状に捲回された負極集電タブ9aが突出している。   In the positive electrode 8, the separator 10, and the negative electrode 9, the positive electrode current collecting tab 8 a protrudes from the separator 10 in the winding axis direction of the electrode group, and the negative electrode current collecting tab 9 a protrudes from the separator 10 in the opposite direction. Thus, the positive electrode 8 and the negative electrode 9 are wound with the positions shifted. As a result of such winding, as shown in FIG. 1, the electrode group 2 has the positive electrode current collecting tab 8a wound in a spiral shape from one end face, and is wound in a spiral form from the other end face. The negative electrode current collection tab 9a protrudes.

図4に示すように、負極集電タブ9aは、電極群の厚さ方向Tに積層された二つの束に分けられている。具体的には、電極群2の中心付近の捲き芯空間を境にし、片側半分ずつを厚さ方向に積層し、負極集電タブ9aの束を二つ形成する。導電性の負極挟持部材11は、略コの字状をした第1,第2の挟持部11a,11bと、第1の挟持部11aと第2の挟持部11bとを電気的に接続する連結部11cとを有する。連結部11cは、第1の挟持部11aと第2の挟持部11bの間に位置し、第1の挟持部11aと第2の挟持部11bが電極群2の厚さ方向に連なるように第1の挟持部11aと第2の挟持部11bとを連結する。   As shown in FIG. 4, the negative electrode current collecting tab 9 a is divided into two bundles stacked in the thickness direction T of the electrode group. Specifically, two halves of the negative electrode current collecting tabs 9a are formed by laminating the halves on one side in the thickness direction with the core space near the center of the electrode group 2 as a boundary. The electroconductive negative electrode clamping member 11 is a connection that electrically connects the first and second clamping parts 11a and 11b, which are substantially U-shaped, and the first clamping part 11a and the second clamping part 11b. Part 11c. The connecting part 11c is located between the first holding part 11a and the second holding part 11b, and the first holding part 11a and the second holding part 11b are connected to each other in the thickness direction of the electrode group 2. The 1 clamping part 11a and the 2nd clamping part 11b are connected.

負極集電タブ9aの一方の束は、第1の挟持部11aに挟まれ、第1の挟持部11aによって保持される。負極集電タブ9aの他方の束は、第2の挟持部11bに挟まれ、第2の挟持部11bによって保持される。負極集電タブ9aと第1,第2の挟持部11a,11bとの接合方法は、特に限定されるものではないが、例えば超音波溶接が挙げられる。   One bundle of the negative electrode current collecting tabs 9a is sandwiched between the first sandwiching portions 11a and held by the first sandwiching portions 11a. The other bundle of the negative electrode current collecting tabs 9a is sandwiched between the second sandwiching portions 11b and held by the second sandwiching portions 11b. Although the joining method of the negative electrode current collection tab 9a and the 1st, 2nd clamping parts 11a and 11b is not specifically limited, For example, ultrasonic welding is mentioned.

一方、正極集電タブ8aは、負極集電タブ9aの場合と同様な方法で、電極群の厚さ方向Tに積層された二つの束に分けられている。導電性の正極挟持部材12は、図1に示すように、略コの字状をした第1,第2の挟持部12a,12b(12aは図示せず)と、第1の挟持部12aと第2の挟持部12bとを電気的に接続する連結部(図示しない)とを有する。連結部は、第1の挟持部12aと第2の挟持部12bの間に位置し、第1の挟持部12aと第2の挟持部12bが電極群2の厚さ方向に連なるように第1の挟持部12aと第2の挟持部12bとを連結する。   On the other hand, the positive electrode current collecting tab 8a is divided into two bundles stacked in the thickness direction T of the electrode group in the same manner as the case of the negative electrode current collecting tab 9a. As shown in FIG. 1, the conductive positive electrode clamping member 12 includes first and second clamping parts 12a and 12b (12a not shown) having a substantially U-shape, a first clamping part 12a, It has a connection part (not shown) which electrically connects the 2nd clamping part 12b. The connecting portion is located between the first sandwiching portion 12a and the second sandwiching portion 12b, and the first sandwiching portion 12a and the second sandwiching portion 12b are connected to each other in the thickness direction of the electrode group 2. The clamping part 12a and the second clamping part 12b are connected.

正極集電タブ8aの一方の束は、第1の挟持部12aに挟まれ、第1の挟持部12aによって保持される。正極集電タブ8aの他方の束は、第2の挟持部12bに挟まれ、第2の挟持部12bによって保持される。負極集電タブ9aと第1,第2の挟持部12a,12bとの接合方法は、特に限定されるものではないが、例えば超音波溶接が挙げられる。   One bundle of the positive electrode current collecting tabs 8a is sandwiched between the first sandwiching portions 12a and held by the first sandwiching portions 12a. The other bundle of the positive electrode current collecting tabs 8a is sandwiched between the second sandwiching portions 12b and held by the second sandwiching portions 12b. Although the joining method of the negative electrode current collection tab 9a and the 1st, 2nd clamping parts 12a and 12b is not specifically limited, For example, ultrasonic welding is mentioned.

負極リード4は、図1に示すように、負極端子7と電気的に接続するための接続プレート4aと、接続プレート4aに開口された貫通孔4bと、接続プレート4aから二股に分岐し、下方に延出した短冊状の集電部4c、4dとを有する。一方、正極リード3は、正極端子6と電気的に接続するための接続プレート3aと、接続プレート3aに開口された貫通孔3bと、接続プレート3aから二股に分岐し、下方に延出した短冊状の集電部3c、3dとを有する。   As shown in FIG. 1, the negative electrode lead 4 has a connection plate 4a for electrical connection with the negative electrode terminal 7, a through hole 4b opened in the connection plate 4a, and a bifurcated branch from the connection plate 4a. Strip-shaped current collectors 4c and 4d. On the other hand, the positive electrode lead 3 has a connection plate 3a for electrical connection with the positive electrode terminal 6, a through hole 3b opened in the connection plate 3a, and a strip that branches off from the connection plate 3a and extends downward. Current collectors 3c and 3d.

負極リード4は、図1及び図4に示すように、集電部4c、4dの間に負極挟持部材11を挟んでいる。集電部4cは、負極挟持部材11の第1の挟持部11aの外側の面に配置されている。一方、集電部4dは、第2の挟持部11bの外側の面に配置される。ここで、第1,第2の挟持部11a,11bの外側の面は、負極集電タブ9aの束の最外周側の面である。第1の挟持部11aに挟持された負極集電タブ9a間、負極集電タブ9aの束と第1の挟持部11a、第1の挟持部11aと集電部4cとは、例えば超音波溶接によって接合される。一方、第2の挟持部11bに挟持された負極集電タブ9a間、負極集電タブ9aの束と第2の挟持部11b、第2の挟持部11bと集電部4dとは、例えば超音波溶接によって接合される。これにより、電極群2の負極9と負極リード4が負極集電タブ9aを介して電気的に接続される。   As shown in FIGS. 1 and 4, the negative electrode lead 4 sandwiches the negative electrode clamping member 11 between the current collectors 4 c and 4 d. The current collector 4 c is disposed on the outer surface of the first clamping part 11 a of the negative electrode clamping member 11. On the other hand, the current collector 4d is disposed on the outer surface of the second clamping unit 11b. Here, the outer surfaces of the first and second holding portions 11a and 11b are the outermost surfaces of the bundle of the negative electrode current collecting tabs 9a. Between the negative electrode current collecting tabs 9a held between the first holding parts 11a, a bundle of the negative electrode current collecting tabs 9a and the first holding parts 11a, the first holding part 11a and the current collecting part 4c are, for example, ultrasonic welding. Joined by. On the other hand, between the negative electrode current collecting tabs 9a held between the second holding parts 11b, a bundle of the negative electrode current collecting tabs 9a, the second holding part 11b, the second holding part 11b, and the current collecting part 4d are, for example, super Joined by sonic welding. Thereby, the negative electrode 9 and the negative electrode lead 4 of the electrode group 2 are electrically connected via the negative electrode current collection tab 9a.

正極リード3は、負極リード4の場合と同様に、集電部3c、3dの間に正極挟持部材12を挟んでいる。集電部3cは、正極挟持部材12の第1の挟持部12aの外側の面に配置されている。集電部3dは、第2の挟持部12bの外側の面に配置されている。ここで、第1,第2の挟持部12a,12bの外側の面は、正極集電タブ8aの束の最外周側の面である。第1の挟持部12aに挟持された正極集電タブ8a間、正極集電タブ8aの束と第1の挟持部12a、第1の挟持部12aと集電部3cとは、例えば超音波溶接によって接合される。一方、第2の挟持部12bに挟持された正極集電タブ8a間、正極集電タブ8aの束と第2の挟持部12b、第2の挟持部12bと集電部3dとは、例えば超音波溶接によって接合される。これにより、電極群2の正極8と正極リード3が正極集電タブ8aを介して電気的に接続される。   As in the case of the negative electrode lead 4, the positive electrode lead 3 sandwiches the positive electrode clamping member 12 between the current collectors 3 c and 3 d. The current collector 3 c is disposed on the outer surface of the first clamping part 12 a of the positive electrode clamping member 12. The current collector 3d is disposed on the outer surface of the second clamping unit 12b. Here, the outer surfaces of the first and second holding portions 12a and 12b are the outermost surfaces of the bundle of the positive electrode current collecting tabs 8a. Between the positive electrode current collecting tabs 8a held between the first holding parts 12a, a bundle of the positive electrode current collecting tabs 8a and the first holding parts 12a, and the first holding part 12a and the current collecting part 3c are, for example, ultrasonic welding. Joined by. On the other hand, between the positive electrode current collector tabs 8a sandwiched between the second sandwiching parts 12b, a bundle of the positive electrode current collector tabs 8a and the second sandwiching part 12b, the second sandwiching part 12b and the current collector part 3d are, for example, super Joined by sonic welding. Thereby, the positive electrode 8 and the positive electrode lead 3 of the electrode group 2 are electrically connected via the positive electrode current collection tab 8a.

正負極挟持部材11,12は、例えば金属などの導電性材料から形成することができる。   The positive and negative electrode clamping members 11 and 12 can be formed of a conductive material such as metal, for example.

正極挟持部材12の第1、第2の挟持部12a,12bの厚さは正極リード3の厚さよりも薄く、かつ負極挟持部材11の第1、第2の挟持部11a,11bの厚さは負極リード4の厚さよりも薄いことが望ましい。これにより、第1、第2の挟持部によって集電タブの束を挟持しやすく、また溶接しやすくなるため、第1、第2の挟持部と集電タブとの接合部の抵抗を低くすることができる。   The thickness of the first and second clamping portions 12a and 12b of the positive electrode clamping member 12 is thinner than the thickness of the positive electrode lead 3, and the thickness of the first and second clamping portions 11a and 11b of the negative electrode clamping member 11 is as follows. It is desirable that the thickness of the negative electrode lead 4 is smaller. As a result, the bundle of current collecting tabs can be easily clamped and welded by the first and second clamping portions, so that the resistance of the joint portion between the first and second clamping portions and the current collecting tab is lowered. be able to.

ところで、図1に示すように、負極端子7は、絶縁ガスケット13を介して蓋5に例えばかしめ固定によって取り付けられている。負極端子7は、負極リード4の貫通孔4bにもかしめ固定によって電気的に接続されている。これにより、負極端子7は、負極リード4を介して電極群2の負極9と電気的に接続される。一方、正極端子6は、絶縁ガスケット14を介して蓋5に例えばかしめ固定によって取り付けられている。正極端子6は、正極リード3の貫通孔3bにもかしめ固定によって電気的に接続されている。これにより、正極端子6は、正極リード3を介して電極群2の正極8と電気的に接続される。   By the way, as shown in FIG. 1, the negative electrode terminal 7 is attached to the lid 5 via an insulating gasket 13 by, for example, caulking. The negative electrode terminal 7 is also electrically connected to the through hole 4b of the negative electrode lead 4 by caulking. As a result, the negative electrode terminal 7 is electrically connected to the negative electrode 9 of the electrode group 2 via the negative electrode lead 4. On the other hand, the positive electrode terminal 6 is attached to the lid 5 through an insulating gasket 14 by, for example, caulking. The positive electrode terminal 6 is also electrically connected to the through hole 3b of the positive electrode lead 3 by caulking. Thereby, the positive electrode terminal 6 is electrically connected to the positive electrode 8 of the electrode group 2 through the positive electrode lead 3.

蓋5は、図2に示すように、外装缶1の開口部に例えばレーザーでシーム溶接によって取り付けられている。蓋5は、例えば、アルミニウム、アルミニウム合金、鉄あるいはステンレスなどの金属から形成される。蓋5と外装缶1は、同じ種類の金属から形成されることが望ましい。   As shown in FIG. 2, the lid 5 is attached to the opening of the outer can 1 by, for example, laser seam welding. The lid 5 is made of, for example, a metal such as aluminum, an aluminum alloy, iron, or stainless steel. The lid 5 and the outer can 1 are preferably formed from the same type of metal.

図5に示すように、金属箔からなる集電タブ8a(9a)を複数枚を束ねた積層面Aに集電用の正負極リード等を接合する場合、束ねた集電タブの積層面Aは、平面部分A2のみが形成されることが理想ではあるものの、束ねて積層することで最外周の集電タブ8a(9a)と最内周の集電タブ8a(9a)同士のずれA1が発生する。例えば、偏平型電極群2の集電タブ8a(9a)の全てを一度に束ねた状態で集電用リード等を接合しようとする場合、集電タブ同士のずれA1は、集電タブ8a(9a)の長さBより偏平型電極群2の厚みCが大きいほど、集電タブ同士のずれA1の割合が大きくなり、束ねた集電タブの積層端部は段差状になってしまうことで平面部分A2がほとんどできず、良好な積層面Aが形成できない。それを回避するには、例えば集電タブ8a(9a)の長さBを長くすることで平面部分A2の割合を多く形成させることは可能だが、集電タブ8a(9a)の長さBが長くなれば、外装缶1の内部でその分が占めるスペースを確保しなくてはならず、偏平型電極群2の占める割合が減ることとなりスペース効率が悪くエネルギー密度としては低下する方向となる。   As shown in FIG. 5, when a current collecting tab 8a (9a) made of metal foil is bonded to a laminated surface A in which a plurality of current collecting tabs 8a (9a) are bundled, a current collecting tab laminated surface A is joined. Although it is ideal that only the plane portion A2 is formed, the deviation A1 between the outermost current collecting tab 8a (9a) and the innermost current collecting tab 8a (9a) is reduced by bundling and stacking. appear. For example, when a current collecting lead or the like is to be joined in a state where all of the current collecting tabs 8a (9a) of the flat electrode group 2 are bundled at a time, the deviation A1 between the current collecting tabs is the current collecting tab 8a ( As the thickness C of the flat electrode group 2 is larger than the length B of 9a), the ratio of the deviation A1 between the current collecting tabs is increased, and the stacked end portions of the bundled current collecting tabs are stepped. The plane portion A2 can hardly be formed, and a good laminated surface A cannot be formed. In order to avoid this, for example, it is possible to increase the proportion of the plane portion A2 by increasing the length B of the current collecting tab 8a (9a), but the length B of the current collecting tab 8a (9a) is If it becomes longer, the space occupied by the inside of the outer can 1 must be secured, and the proportion occupied by the flat electrode group 2 decreases, resulting in poor space efficiency and a decrease in energy density.

では、集電タブ8a(9a)の長さBを極力短くした状態で同様の状態を形成させるには、集電タブ8a(9a)のすべてを一度に束ねずに、例えば、図4に示すように集電タブ8a(9a)を複数枚ずつに分けて束ねることで、集電タブ同士のずれA1を抑え且つ、平面部分A2の割合を多く形成することで接合面としては良好な状態を形成できる。それは、束ねる箇所増やせば増やすほど束ねた集電タブ同士のずれA1は少なくなるが、束ねる箇所を数箇所も設けてしまった場合、実際にはその部分に集電用リード等を接合させることが困難になってしまうケースが多い。部品点数も増え、接合方法も複雑化し組み立て性に欠けるものとなり、またその分スペースを確保することにも繋がりスペース効率的にも有用ではなくなってしまうほか、コストアップ要因にもなってしまう。   Then, in order to form the same state with the length B of the current collecting tab 8a (9a) as short as possible, the current collecting tabs 8a (9a) are not bundled all at once, for example, as shown in FIG. In this way, the current collecting tabs 8a (9a) are divided into a plurality of sheets and bundled, thereby suppressing the deviation A1 between the current collecting tabs and forming a large proportion of the plane portion A2 so that the bonding surface has a good state. Can be formed. That is, as the number of places to be bundled increases, the deviation A1 between the bundled current collecting tabs decreases. However, if several places to be bundled are provided, the current collecting lead or the like may actually be joined to that part. In many cases, it becomes difficult. The number of parts increases, the joining method becomes complicated, and the assemblability is lacking. In addition, space is secured, and space efficiency becomes unusable, and the cost increases.

これらのことを鑑みると、偏平型電極群2の集電タブ8a(9a)を束ねる箇所は、正極及負極それぞれ2箇所ずつ設けることが集電の効率や組立て性、部品形状の簡素化等から、最も簡便で良好な状態を形成すると言える。   In view of these matters, the current collecting tabs 8a (9a) of the flat-type electrode group 2 are provided at two locations each of the positive electrode and the negative electrode in view of the efficiency of current collection, ease of assembly, simplification of component shape, etc. It can be said that the most convenient and favorable state is formed.

正負極集電タブ8a,9aそれぞれを、偏平型電極群2の厚さ方向の片側半分ずつに束ね、正負極それぞれについて2つずつ束を形成する。これらの束を正負極挟持部材の第1,第2の挟持部により挟み込み保持することで、偏平型電極群2の厚さの範囲内にスペースを確保できる。このスペースを有効的に利用し、正極リード3及び負極リード4を、束ねられた集電タブに沿うように電極群2の厚さ方向に配置することで、別に集電用リードを引き回す為のスペースを確保しなくてもよく、結果、偏平型電極群2の外装缶1の内部で占める体積割合を大きくすることができる。例えば、集電用リード等を偏平型電極群の幅方向の側面に配置した構造の二次電池もあるが、当然その場合は偏平型電極群の両端に、集電用リード等を引き回す為のスペース確保が必要となる。それらに比べても、本発明による正負極リード3,4の配置は、スペース的にも有効であることが明らかである。   Each of the positive and negative electrode current collecting tabs 8a and 9a is bundled in one half of the flat electrode group 2 in the thickness direction, and two bundles are formed for each of the positive and negative electrodes. A space can be secured within the thickness range of the flat electrode group 2 by sandwiching and holding these bundles by the first and second clamping portions of the positive and negative electrode clamping members. By effectively using this space and arranging the positive electrode lead 3 and the negative electrode lead 4 in the thickness direction of the electrode group 2 along the bundled current collecting tabs, it is possible to separately route the current collecting leads. It is not necessary to secure a space, and as a result, the volume ratio of the flat electrode group 2 in the outer can 1 can be increased. For example, there is a secondary battery having a structure in which current collecting leads and the like are arranged on the side surface in the width direction of the flat electrode group. Naturally, in that case, for collecting the current collecting leads etc. at both ends of the flat electrode group Space must be secured. Compared to these, it is clear that the arrangement of the positive and negative electrode leads 3 and 4 according to the present invention is also effective in terms of space.

尚、正負極リード3,4の幅及び厚み寸法は、偏平型電極群2の厚さの範囲内に確保したスペースに収納できる寸法であれば、電気的にも機械的にも十分機能を果たすことができる。 If the width and thickness of the positive and negative electrode leads 3 and 4 are dimensions that can be accommodated in a space secured within the thickness range of the flat electrode group 2, the electrical and mechanical functions can be sufficiently achieved. be able to.

また、正負極集電タブ8a,9aを偏平型電極群2の厚さ方向の片側半分ずつに分けて束ねた状態にすることで、電極群2の両端面のセパレータ10から突出した正負極集電タブ8a,9aの長さBは、前述の理由から正負極集電タブ8a,9a全てを一度に束ねた状態よりも短く抑えることができる。正負極リード3,4等の接合に必要な正負極集電タブ8a,9aの長さBを最小限に抑えることでその分、偏平型電極群2の正極8及び負極9の電極活物質層が塗布された電極部の幅方向を広げることができる。   Further, the positive and negative electrode current collecting tabs 8 a and 9 a are divided into a half on one side in the thickness direction of the flat electrode group 2, and are bundled so that the positive and negative electrode current collector tabs protruding from the separators 10 on both end faces of the electrode group 2 are collected. The length B of the electric tabs 8a and 9a can be kept shorter than the state where all of the positive and negative electrode current collecting tabs 8a and 9a are bundled at a time for the above-described reason. By minimizing the length B of the positive and negative electrode current collecting tabs 8a and 9a necessary for bonding the positive and negative electrode leads 3 and 4, etc., the electrode active material layers of the positive electrode 8 and the negative electrode 9 of the flat electrode group 2 The width direction of the electrode part coated with can be expanded.

さらに、正極リード3の集電部3c、3dは、正極挟持部材12の第1,第2の挟持部12a,12bにおける正極集電タブ8aの積層面の外側に位置する面に配置され、かつ負極リード4の集電部4c、4dは、負極挟持部材11の第1,第2の挟持部11a,11bにおける負極集電タブ9aの積層面の外側に位置する面に配置される。この配置により、正負極リード3,4を偏平型電極群2の厚さの範囲以内に配置することができる。また、このような構造の正負極リード3,4は、偏平型電極群2の厚さ方向に対して1箇所だけでなく2箇所の挟持部材との接合部を持つことで、捲回状態にある偏平型電極群2の正負極の電極部(活物質が保持されている部分)に対し、半周ずつ均等な位置に接合部を持つことまたその分集電距離も短くなることで集電バランスのよい状態となる。   Furthermore, the current collecting portions 3c and 3d of the positive electrode lead 3 are disposed on the surface located outside the laminated surface of the positive electrode current collecting tabs 8a in the first and second holding portions 12a and 12b of the positive electrode holding member 12, and The current collecting portions 4c and 4d of the negative electrode lead 4 are arranged on the surface located outside the laminated surface of the negative electrode current collecting tabs 9a in the first and second holding portions 11a and 11b of the negative electrode holding member 11. With this arrangement, the positive and negative electrode leads 3 and 4 can be arranged within the thickness range of the flat electrode group 2. In addition, the positive and negative leads 3 and 4 having such a structure are not wound at one place in the thickness direction of the flat electrode group 2, and have a joint portion with two sandwiching members, so that the wound state can be obtained. With respect to the positive and negative electrode portions (portions where the active material is held) of a flat electrode group 2, the current collection balance is reduced by having joints at equal positions on a semicircular basis and by reducing the current collection distance accordingly. It will be in good condition.

また、リードの集電部が正負極それぞれについて2本に分岐され2箇所に分散して挟持部材に接合されることで、大電流を流した場合の発熱に対しても、各接合部及びリード自身に熱が集中しにくい構造となり、電気的特性としても良好な状態が維持できる。また、正負極リード3,4の形状は、二股に分岐している部分も含めて一体型の形状となっており、正極端子6あるいは負極端子7との接合部から挟持部材11,12との接合部の間には、ほかに接合部を設けていないことから電気的、機械的にも信頼性のある構造と言える。   In addition, the current collector of the lead is split into two for each of the positive and negative electrodes, and is dispersed at two locations and joined to the clamping member, so that each joint and lead can be protected against heat generation when a large current is passed. It has a structure in which heat is difficult to concentrate on itself, and can maintain a good electrical property. Further, the positive and negative leads 3 and 4 are formed in an integrated shape including a bifurcated portion, and are connected to the clamping members 11 and 12 from the joint with the positive terminal 6 or the negative terminal 7. Since no other joints are provided between the joints, it can be said that the structure is electrically and mechanically reliable.

さらに、正負極挟持部材11,12における第1の挟持部材11a,12aと第2の挟持部材11b,12bとが連結部により略コの字状に連結されていることで、第1の挟持部材11a,12aと第2の挟持部材11b,12bとの間に空間を確保することができ、正負極リード3,4と超音波溶接する際にも、超音波溶接ホーンもしくはアンビルを確実に当該空間に挿入し配置するができるので、超音波溶接も容易に行うことができる。また、複数枚の集電タブを第1,第2の挟持部により挟み込んで超音波溶接することで、超音波の振幅エネルギーを集電タブが直接受けて溶融した集電タブがちぎれ飛散するようなこともなく良好な接合部を形成することができる。   Further, the first clamping member 11a, 12a and the second clamping member 11b, 12b in the positive and negative electrode clamping members 11, 12 are connected to each other in a substantially U-shape by the connecting portion. 11a, 12a and the second clamping member 11b, 12b can be secured between the positive and negative leads 3 and 4, and the ultrasonic welding horn or anvil is securely attached to the space. Therefore, ultrasonic welding can be easily performed. In addition, by sandwiching a plurality of current collecting tabs by the first and second clamping portions and performing ultrasonic welding, the current collecting tabs directly receive the amplitude energy of ultrasonic waves so that the melted current collecting tabs are torn and scattered. A good joint can be formed without any problems.

ここで、超音波溶接とは、材料同士の接合界面を加圧し酸化皮膜を除去し原子間距離まで接合界面を近づけて、ホーンからの振動エネルギーを的確伝え溶接することである。よって、互いの材料がホーン又はアンビルとの接触面で滑らずに且つずれずに、接合界面に振動エネルギーが的確に伝わることが重要となり、ホーンやアンビルの接触面の形状は、滑り防止や把持力維持のために山形状の凹凸を設けることが一般的である。   Here, the ultrasonic welding is to perform welding by accurately transmitting vibration energy from the horn by pressurizing the bonding interface between materials, removing the oxide film, and bringing the bonding interface close to the interatomic distance. Therefore, it is important that the vibration energy is accurately transmitted to the joint interface without slipping and slipping on the contact surface with the horn or anvil, and the shape of the contact surface of the horn or anvil is anti-slip or gripping. In order to maintain force, it is common to provide mountain-shaped irregularities.

図6の(a)は、図1の電池における正負極リード3,4の集電部3c(4c)と第1の挟持部11a,12aとの超音波溶接の一実施形態を示す。ホーンとアンビルの配置関係は内外どちらでもよいが、図6の(a)では、内側にホーン21、外側にアンビル22が配置されている。一方、図6(b)は、特許文献2のように、リード23と、発電要素24の端面から突出した複数枚の集電金属箔25とを重ね合わせたものを、挟持板26における板面が向かい合った対向部間に挟みこんだ場合を示す。   FIG. 6A shows an embodiment of ultrasonic welding between the current collecting part 3c (4c) of the positive and negative electrode leads 3 and 4 and the first clamping parts 11a and 12a in the battery of FIG. The horn and the anvil may be arranged either inside or outside, but in FIG. 6A, the horn 21 is arranged inside and the anvil 22 is arranged outside. On the other hand, FIG. 6B shows a plate surface of the sandwich plate 26 in which the lead 23 and a plurality of current collecting metal foils 25 protruding from the end surface of the power generation element 24 are overlapped as in Patent Document 2. Shows a case where is sandwiched between facing parts facing each other.

図6(a)のように挟持部材11,12を正負極リード3,4の内側に配置する場合、超音波溶接による接合界面は、正負極リード3,4の集電部3c(4c)と挟持部材11,12との接触面そして挟持部材11,12により挟み込まれた正負極集電タブ8a,9a同士および挟持部材11,12との接触面となる。これに対し、図6(b)の場合、超音波溶接による接合界面は、リード23と集電金属箔25との接触面と、積層された集電金属箔25同士及び挟持板26との接触面となる。ホーンもしくはアンビルは、接合界面を持たせたい材料の接合界面とは反対側の面に、直接接触させ把持させることが最も適切な配置である。図6(b)のように挟持板26をリード23の外側に配置した場合は、ホーンもしくはアンビルがリード23を直接接触し把持することができなくなることで、リード23自身が内側でずれる可能性がでてくることで接合界面への適切なエネルギー伝達ができるとは言えない。図6(a)のように挟持部材11,12を正負極リード3,4の内側に配置する場合に比べて接合強度の信頼性は乏しくなる。   When the clamping members 11 and 12 are arranged inside the positive and negative electrode leads 3 and 4 as shown in FIG. 6A, the joining interface by ultrasonic welding is connected to the current collecting part 3c (4c) of the positive and negative electrode leads 3 and 4. It becomes a contact surface with the holding members 11, 12 and a contact surface with the positive and negative current collecting tabs 8 a, 9 a held between the holding members 11, 12 and the holding members 11, 12. On the other hand, in the case of FIG. 6B, the joining interface by ultrasonic welding is the contact surface between the lead 23 and the current collector metal foil 25, the contact between the stacked current collector metal foils 25 and the sandwiching plate 26. It becomes a surface. The most suitable arrangement for the horn or anvil is to directly contact and grip the horn or anvil on the surface opposite to the bonding interface of the material to be provided with the bonding interface. When the sandwiching plate 26 is arranged outside the lead 23 as shown in FIG. 6B, the lead 23 itself may be displaced inside because the horn or anvil cannot directly contact and hold the lead 23. It cannot be said that proper energy transfer to the bonding interface is possible. Compared with the case where the holding members 11 and 12 are arranged inside the positive and negative leads 3 and 4 as shown in FIG.

また、挟持板26をリード23の外側に配置した場合は、一工程の中で集電金属箔25を束ねながらのリード23との位置合わせ作業をしなければならず作業の困難度が増し、集電金属箔25の位置ずれの可能性が高まる。また、超音波溶接作業も同一工程内で実施しなければならず、工程の作業時間がかかる。前後工程との作業時間の差が大きくなりラインバランスも悪くなる。   In addition, when the sandwiching plate 26 is disposed outside the lead 23, it is necessary to perform alignment work with the lead 23 while bundling the current collector metal foil 25 in one process, and the difficulty of the work increases. The possibility of the displacement of the current collector metal foil 25 is increased. Also, the ultrasonic welding work must be performed within the same process, and the work time of the process is long. The difference in working time with the preceding and following processes becomes large, and the line balance also deteriorates.

図6(a)のように挟持部材11,12を正負極リード3,4の内側に配置する場合、正負極集電タブ8a,9aの束ね作業と位置合わせと超音波溶接作業とを分割して行うことができるのでラインバランスもよく、組み立て性を考慮した合理的な形状と言える。   When the clamping members 11 and 12 are arranged inside the positive and negative electrode leads 3 and 4 as shown in FIG. 6A, the bundling work, alignment and ultrasonic welding work of the positive and negative current collecting tabs 8a and 9a are divided. Therefore, it can be said that it is a reasonable shape considering the assembly.

ここで、代表的な正負極端子材料の説明をする。負極活物質に炭素系材料を使用するリチウムイオン二次電池の場合、正極端子は一般的に、アルミニウムあるいはアルミニウム合金が使用され、負極端子は、銅、ニッケル、ニッケルメッキされた鉄などの金属が使用される。また、負極活物質にチタン酸リチウムを使用する場合は、上記に加え、負極端子にアルミニウムあるいはアルミニウム合金を使用してもかまわない。正負極端子にアルミニウムあるいはアルミニウム合金を使用する場合、正負極集電タブ、正負極挟持部材及び正負極リードは、アルミニウムあるいはアルミニウム合金から形成することが望ましい。   Here, typical positive and negative electrode terminal materials will be described. In the case of a lithium ion secondary battery using a carbon-based material for the negative electrode active material, the positive electrode terminal is generally made of aluminum or an aluminum alloy, and the negative electrode terminal is made of a metal such as copper, nickel, or nickel-plated iron. used. When lithium titanate is used as the negative electrode active material, in addition to the above, aluminum or an aluminum alloy may be used for the negative electrode terminal. When aluminum or an aluminum alloy is used for the positive and negative electrode terminals, the positive and negative current collecting tabs, the positive and negative electrode holding members, and the positive and negative electrode leads are preferably formed from aluminum or an aluminum alloy.

以下、前述した図1の角型非水電解質二次電池で用いた正極、負極、セパレータ及び電解液について説明する。   Hereinafter, the positive electrode, the negative electrode, the separator, and the electrolytic solution used in the above-described prismatic nonaqueous electrolyte secondary battery in FIG. 1 will be described.

正極は、例えば、正極活物質を含むスラリーをアルミニウム箔もしくはアルミニウム合金箔からなる集電体に塗着することにより作製される。正極活物質としては、特に限定されるものではないが、リチウムを吸蔵放出できる酸化物や硫化物、ポリマーなどが使用できる。好ましい活物質としては、高い正極電位が得られるリチウムマンガン複合酸化物、リチウムニッケル複合酸化物、リチウムコバルト複合酸化物、リチウム燐酸鉄等が挙げられる。また、負極は、負極活物質を含むスラリーをアルミニウム箔もしくはアルミニウム合金箔からなる集電体に塗着することにより作製される。負極活物質としては、特に限定されるものではないが、リチウムを吸蔵放出できる金属酸化物、金属硫化物、金属窒化物、合金等が使用でき、好ましくは、リチウムイオンの吸蔵放出電位が金属リチウム電位に対して0.4V以上貴となる物質である。このようなリチウムイオン吸蔵放出電位を有する負極活物質は、アルミニウムもしくはアルミニウム合金とリチウムとの合金反応を抑えられることから、負極集電体および負極関連構成部材へのアルミニウムもしくはアルミニウム合金の使用を可能とする。たとえば、チタン酸化物、チタン酸リチウムのようなリチウムチタン複合酸化物、タングステン酸化物、アモルファススズ酸化物、スズ珪素酸化物、酸化珪素などがあり、中でもリチウムチタン複合酸化物が好ましい。セパレータとしては、微多孔性の膜、織布、不織布、これらのうち同一材または異種材の積層物等を用いることができる。セパレータを形成する材料としては、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合ポリマー、エチレン−ブテン共重合ポリマー等を挙げることができる。   The positive electrode is produced, for example, by applying a slurry containing a positive electrode active material to a current collector made of an aluminum foil or an aluminum alloy foil. Although it does not specifically limit as a positive electrode active material, The oxide, sulfide, polymer, etc. which can occlude / release lithium can be used. Preferable active materials include lithium manganese composite oxide, lithium nickel composite oxide, lithium cobalt composite oxide, lithium iron phosphate, and the like that can obtain a high positive electrode potential. The negative electrode is produced by applying a slurry containing a negative electrode active material to a current collector made of an aluminum foil or an aluminum alloy foil. The negative electrode active material is not particularly limited, and metal oxides, metal sulfides, metal nitrides, alloys, and the like that can occlude and release lithium can be used. Preferably, the lithium ion occlusion and release potential is metal lithium. It is a substance that becomes noble 0.4V or more with respect to the potential. Since the negative electrode active material having such a lithium ion storage / release potential can suppress the alloy reaction between aluminum or an aluminum alloy and lithium, it is possible to use aluminum or an aluminum alloy for a negative electrode current collector and a negative electrode related component. And For example, there are titanium oxide, lithium titanium composite oxide such as lithium titanate, tungsten oxide, amorphous tin oxide, tin silicon oxide, silicon oxide, etc. Among them, lithium titanium composite oxide is preferable. As the separator, a microporous film, a woven fabric, a non-woven fabric, a laminate of the same material or different materials among these can be used. Examples of the material for forming the separator include polyethylene, polypropylene, ethylene-propylene copolymer, and ethylene-butene copolymer.

電解液は、非水溶媒に電解質(例えば、リチウム塩)を溶解させることにより調製された非水電解液が用いられる。非水溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、γ−ブチロラクトン(γ−BL)、スルホラン、アセトニトリル、1,2−ジメトキシエタン、1,3−ジメトキシプロパン、ジメチルエーテル、テトラヒドロフラン(THF)、2−メチルテトラヒドロフラン等を挙げることができる。非水溶媒は、単独で使用しても、2種以上混合して使用してもよい。電解質としては、例えば、過塩素酸リチウム(LiClO4)、六フッ過リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)、六フッ化砒素リチウム(LiAsF6)、トリフルオロメタスルホン酸リチウム(LiCF3SO3)等のリチウム塩を挙げることができる。電解質は単独で使用しても、2種以上混合して使用してもよい。電解質の非水溶媒に対する溶解量は、0.2mol/L〜3mol/Lとすることが望ましい。 As the electrolytic solution, a nonaqueous electrolytic solution prepared by dissolving an electrolyte (for example, lithium salt) in a nonaqueous solvent is used. Examples of the non-aqueous solvent include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), γ-butyrolactone (γ -BL), sulfolane, acetonitrile, 1,2-dimethoxyethane, 1,3-dimethoxypropane, dimethyl ether, tetrahydrofuran (THF), 2-methyltetrahydrofuran and the like. Nonaqueous solvents may be used alone or in combination of two or more. Examples of the electrolyte include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium arsenic hexafluoride (LiAsF 6 ), and trifluorometa. A lithium salt such as lithium sulfonate (LiCF 3 SO 3 ) can be given. The electrolyte may be used alone or in combination of two or more. The amount of electrolyte dissolved in the non-aqueous solvent is desirably 0.2 mol / L to 3 mol / L.

以上説明したように、本発明によれば、正負極リードを二股に分岐した形状とし、それらを外装缶の内部においてスペース効率のよい配置をすることで、偏平型電極群を外装缶の中により多く収納しエネルギー密度を高めることができ、正負極リードを分岐し偏平型電極群への接合箇所を2箇所に分散することで、大電流を流した場合の発熱に対しても熱が集中しにくい構造であり、且つ偏平型電極群の電極部に対し均等な位置に接合部を持つことで集電バランスのよい構造を兼ね備えることができる。さらに、偏平型電極群の正負極集電タブを挟持部材により挟み込むことで良好な接合部を形成でき、その接合方法である超音波溶接も容易に行うことができる。   As described above, according to the present invention, the flat and negative electrode leads are formed in a bifurcated shape, and they are arranged in a space efficient manner inside the outer can so that the flat electrode group can be placed in the outer can. A large amount of energy can be stored and the energy density can be increased. By splitting the positive and negative electrode leads and dispersing the joints to the flat electrode group in two places, heat is concentrated even when heat is generated when a large current is applied. It is a difficult structure and can have a structure with a good current collection balance by having joints at equal positions with respect to the electrode portions of the flat electrode group. Furthermore, a good joint can be formed by sandwiching the positive and negative current collecting tabs of the flat electrode group by the sandwiching member, and ultrasonic welding which is the joining method can be easily performed.

(第2の実施形態)
第2の実施形態に係る電池の一形態を図7に示す。なお、図1〜図6に記載したのと同様な部材については、同符号を付して重複する説明を省略する。
(Second Embodiment)
One form of the battery according to the second embodiment is shown in FIG. In addition, about the member similar to having described in FIGS. 1-6, the same code | symbol is attached | subjected and the overlapping description is abbreviate | omitted.

図7に示す電池50は、密閉型の角型非水電解質二次電池である。電池50は、外装缶1と、外装缶1内に収容される偏平型電極群2と、外装缶1内に位置する正負極リード3,4と、電極群2の最外周を被覆する絶縁テープ35と、第1の絶縁カバー36と、第2の絶縁カバー37と、絶縁カバー固定テープ38と、外装缶1の開口部に取り付けられた蓋5と、蓋5に設けられた正負極端子6,7とを有する。電解液(図示しない)は、電極群2に含浸されている。   A battery 50 shown in FIG. 7 is a sealed prismatic nonaqueous electrolyte secondary battery. The battery 50 includes an outer can 1, a flat electrode group 2 accommodated in the outer can 1, positive and negative electrode leads 3 and 4 located in the outer can 1, and an insulating tape that covers the outermost periphery of the electrode group 2. 35, the first insulating cover 36, the second insulating cover 37, the insulating cover fixing tape 38, the lid 5 attached to the opening of the outer can 1, and the positive and negative terminals 6 provided on the lid 5. , 7. An electrolytic solution (not shown) is impregnated in the electrode group 2.

正極リード3は、正極端子6と電気的に接続するための接続プレート3aと、接続プレート3aに開口された貫通孔3bと、接続プレート3aから二股に分岐し、下方に延出した短冊状の集電部3c、3dとを有する。また、負極リード4は、負極端子7と電気的に接続するための接続プレート4aと、接続プレート4aに開口された貫通孔4bと、接続プレート4aから二股に分岐し、下方に延出した短冊状の集電部4c、4dとを有する。   The positive electrode lead 3 has a connection plate 3a for electrical connection with the positive electrode terminal 6, a through hole 3b opened in the connection plate 3a, a bifurcated branch from the connection plate 3a, and a strip-like shape extending downward. Current collectors 3c and 3d. The negative electrode lead 4 includes a connection plate 4a for electrical connection with the negative electrode terminal 7, a through hole 4b opened in the connection plate 4a, and a strip that branches off from the connection plate 4a and extends downward. Current collectors 4c and 4d.

正極集電タブ8aは、電極群2の厚さ方向に積層された二つの束に分けられている。導電性の正極挟持部材12は、正極集電タブ8aの束それぞれを挟んで保持する。負極集電タブ9aは、電極群2の厚さ方向に積層された二つの束に分けられている。導電性の負極挟持部材11は、負極集電タブ9aの束それぞれを挟んで保持する。   The positive electrode current collecting tab 8 a is divided into two bundles stacked in the thickness direction of the electrode group 2. The conductive positive electrode holding member 12 holds each bundle of the positive electrode current collecting tabs 8a. The negative electrode current collecting tab 9 a is divided into two bundles stacked in the thickness direction of the electrode group 2. The conductive negative electrode holding member 11 holds each bundle of the negative electrode current collecting tabs 9a.

正極リード3は、集電部3c、3dの間に正極挟持部材12を挟んでいる。集電部3cは、正極挟持部材12の第1の挟持部12aの外側の面に配置されている。集電部3dは、第2の挟持部12bの外側の面に配置されている。第1,第2の挟持部12a,12b、正極集電タブ8a、及び、集電部3c,3dは、例えば超音波溶接によって接合されている。これにより、電極群2の正極8と正極リード3が正極集電タブ8aを介して電気的に接続される。   The positive electrode lead 3 sandwiches the positive electrode clamping member 12 between the current collecting portions 3c and 3d. The current collector 3 c is disposed on the outer surface of the first clamping part 12 a of the positive electrode clamping member 12. The current collector 3d is disposed on the outer surface of the second clamping unit 12b. The 1st, 2nd clamping parts 12a and 12b, the positive electrode current collection tab 8a, and the current collection parts 3c and 3d are joined, for example by ultrasonic welding. Thereby, the positive electrode 8 and the positive electrode lead 3 of the electrode group 2 are electrically connected via the positive electrode current collection tab 8a.

負極リード4は、集電部4c、4dの間に負極挟持部材11を挟んでいる。集電部4cは、負極挟持部材11の第1の挟持部11aの外側の面に配置されている。一方、集電部4dは、第2の挟持部11bの外側の面に配置される。第1,第2の挟持部11a,11b、負極集電タブ9a、集電部4c,4dは、例えば超音波溶接によって接合されている。これにより、電極群2の負極9と負極リード4が負極集電タブ9aを介して電気的に接続される。   The negative electrode lead 4 sandwiches the negative electrode clamping member 11 between the current collecting portions 4c and 4d. The current collector 4 c is disposed on the outer surface of the first clamping part 11 a of the negative electrode clamping member 11. On the other hand, the current collector 4d is disposed on the outer surface of the second clamping unit 11b. The 1st, 2nd clamping parts 11a and 11b, the negative electrode current collection tab 9a, and the current collection parts 4c and 4d are joined by ultrasonic welding, for example. Thereby, the negative electrode 9 and the negative electrode lead 4 of the electrode group 2 are electrically connected via the negative electrode current collection tab 9a.

粘着性の絶縁テープ35は、電極群2の最外周を外装缶1から絶縁する。図7では、絶縁テープ35は、電極群2の最外周に密着して最外周1周を被覆している。これは、捲回された電極群2の巻止機能と、電極群2と外装缶1との絶縁機能を兼ねている。また、部品点数の削減によるコストダウンに寄与する。さらに、絶縁カバー以外の新たな絶縁材料を必要とせず、外装缶1への挿入が容易となり、外装缶1の内寸法まで電極群寸法を確保でき、体積効率の向上にも寄与する。また、電極群2の両端部の正負極集電タブ8a,9aは、絶縁テープ35で被覆されていないため、絶縁テープ35が電解液の含浸の妨げにならない。絶縁テープ35の巻き数は1周以上にすることができる。なお、実施形態では、電極群2を偏平形状に捲回しているが、積層状の電極群にも適用できる。   The adhesive insulating tape 35 insulates the outermost periphery of the electrode group 2 from the outer can 1. In FIG. 7, the insulating tape 35 is in close contact with the outermost periphery of the electrode group 2 and covers the outermost periphery. This combines the winding function of the wound electrode group 2 and the insulating function between the electrode group 2 and the outer can 1. It also contributes to cost reduction by reducing the number of parts. Further, no new insulating material other than the insulating cover is required, and the insertion into the outer can 1 is facilitated, and the electrode group dimensions can be secured up to the inner dimensions of the outer can 1, thereby contributing to the improvement of volume efficiency. Further, since the positive and negative electrode current collecting tabs 8a and 9a at both ends of the electrode group 2 are not covered with the insulating tape 35, the insulating tape 35 does not hinder the impregnation of the electrolytic solution. The number of turns of the insulating tape 35 can be one or more. In the embodiment, the electrode group 2 is wound into a flat shape, but the present invention can also be applied to a stacked electrode group.

絶縁テープ35の基材に使用可能な樹脂の種類は、例えば、ポリエステル(PET)、ポリイミド、ポリフェニレンサルファイド(PPS)、ポリプロピレン等を挙げることができる。   Examples of the resin that can be used for the base material of the insulating tape 35 include polyester (PET), polyimide, polyphenylene sulfide (PPS), and polypropylene.

第1の絶縁カバー36は、正極リード3、正極挟持部材12及び正極集電タブ8aにおける外装缶1の内面と対向する部分を覆う形状の樹脂成型品からなる。具体的には、第1の絶縁カバー36は、蓋5の内面と対向する開口部36aと、正極集電タブ8aの端面を覆う側板36bと、正極集電タブ8aの最外周を覆うようにU字状に湾曲した側板36cとを有する。   The first insulating cover 36 is made of a resin molded product having a shape that covers portions of the positive electrode lead 3, the positive electrode holding member 12, and the positive electrode current collecting tab 8 a that face the inner surface of the outer can 1. Specifically, the first insulating cover 36 covers the opening 36a facing the inner surface of the lid 5, the side plate 36b covering the end face of the positive current collecting tab 8a, and the outermost periphery of the positive current collecting tab 8a. And a side plate 36c curved in a U-shape.

第2の絶縁カバー37は、負極リード4、負極挟持部材11及び負極集電タブ9aにおける外装缶1の内面と対向する部分を覆う形状の樹脂成型品からなる。具体的には、第2の絶縁カバー37は、蓋5の内面と対向する開口部37aと、負極集電タブ9aの端面を覆う側板37bと、負極集電タブ9aの最外周を覆うようにU字状に湾曲した側板37cとを有する。   The second insulating cover 37 is made of a resin molded product having a shape that covers portions of the negative electrode lead 4, the negative electrode holding member 11, and the negative electrode current collecting tab 9 a that face the inner surface of the outer can 1. Specifically, the second insulating cover 37 covers the opening 37a facing the inner surface of the lid 5, the side plate 37b covering the end face of the negative current collecting tab 9a, and the outermost periphery of the negative current collecting tab 9a. And a side plate 37c curved in a U-shape.

第1の絶縁カバー36は、正極リード3と正極挟持部材12と正極集電タブ8aとの超音波溶接部を、振動、衝撃から保護する機能と、正極リード3、正極挟持部材12並びに正極集電タブ8aを外装缶から絶縁する機能を兼ねることができ、部品点数の削減によるコストダウンに寄与する。また、第2の絶縁カバー37は、負極リード4と負極挟持部材11と負極集電タブ9aとの超音波溶接部を、振動、衝撃から保護する機能と、負極リード4、負極挟持部材11並びに負極集電タブ9aを外装缶1から絶縁する機能を兼ねることができ、部品点数の削減によるコストダウンに寄与する。また、第1,第2の絶縁カバー36,37で超音波溶接部を保護することにより、電極群2の外装缶1への挿入性も向上する。   The first insulating cover 36 has a function of protecting the ultrasonic welding portion of the positive electrode lead 3, the positive electrode holding member 12, and the positive electrode current collecting tab 8 a from vibration and impact, and the positive electrode lead 3, the positive electrode holding member 12, and the positive electrode collector. A function of insulating the electric tab 8a from the outer can can also be used, which contributes to cost reduction by reducing the number of parts. Further, the second insulating cover 37 has a function of protecting the ultrasonic welding portion of the negative electrode lead 4, the negative electrode holding member 11 and the negative electrode current collecting tab 9a from vibration and impact, and the negative electrode lead 4, the negative electrode holding member 11 and The negative electrode current collecting tab 9a can also serve as a function of insulating the outer can 1 from the outer can 1 and contributes to cost reduction by reducing the number of parts. Further, by protecting the ultrasonic welded portions with the first and second insulating covers 36 and 37, the insertability of the electrode group 2 into the outer can 1 is also improved.

第1の絶縁カバー36は、電極群2の正極集電タブ8aが突出している端面に挿入され、U字状の側板36cが絶縁テープ35上に重ねられ、絶縁カバー固定テープ38で絶縁テープ35上に固定される。また、第2の絶縁カバー37は、電極群2の負極集電タブ9aが突出している端面に挿入され、U字状の側板37cが絶縁テープ35上に重ねられ、絶縁カバー固定テープ38で絶縁テープ35上に固定される。この構成により、電極群2、正負極集電タブ8a,9a、正負極挟持部材11,12及び正負極リード3,4を外装缶1から完全に絶縁できる。なお、絶縁テープ35と第1、第2の絶縁カバー36,37を重ね合せ、絶縁カバー固定テープ38を使用しなくても良い。   The first insulating cover 36 is inserted into the end face from which the positive electrode current collecting tab 8 a of the electrode group 2 protrudes, a U-shaped side plate 36 c is overlaid on the insulating tape 35, and the insulating tape 35 is covered with the insulating cover fixing tape 38. Fixed on top. The second insulating cover 37 is inserted into the end face from which the negative electrode current collecting tab 9 a of the electrode group 2 protrudes, and a U-shaped side plate 37 c is overlaid on the insulating tape 35 and insulated by the insulating cover fixing tape 38. It is fixed on the tape 35. With this configuration, the electrode group 2, the positive and negative current collecting tabs 8 a and 9 a, the positive and negative electrode holding members 11 and 12, and the positive and negative electrode leads 3 and 4 can be completely insulated from the outer can 1. The insulating tape 35 and the first and second insulating covers 36 and 37 may be overlapped and the insulating cover fixing tape 38 may not be used.

第1,第2の絶縁カバー36,37に使用可能な樹脂の種類は、例えば、ポリプロピレン、ポリイミド、ポリフェニレンサルファイド(PPS)、ポリエステル(PET)等を挙げることができる。中でも、耐熱性、絶縁性とコストの観点から、ポリプロピレンが望ましい。   Examples of the resin that can be used for the first and second insulating covers 36 and 37 include polypropylene, polyimide, polyphenylene sulfide (PPS), and polyester (PET). Among these, polypropylene is desirable from the viewpoints of heat resistance, insulation, and cost.

矩形板状の蓋5は、外装缶1の開口部に例えばレーザでシーム溶接されている。電解液の注液口(図示しない)は、蓋5に開口され、電解液の注液後に封止蓋51で封止される。蓋5の外面には、矩形状の凹部5aが2つ設けられている。一方の凹部5aに正極端子6が収容され、他方の凹部5aに負極端子7が収容される。各凹部5aには、貫通孔5bが1つずつ設けられている。安全弁52は、蓋5の外面における凹部5a間に配置されている。安全弁52は、矩形状の凹部と、凹部内に形成された溝とを有する。外装缶1内の圧力が基準値以上になると、その圧力で溝が破断し、破断した箇所からガスが外部に放出されることにより、電池の破裂が未然に防止される。   The rectangular plate-shaped lid 5 is seam welded to the opening of the outer can 1 by, for example, a laser. An electrolyte solution injection port (not shown) is opened in the lid 5 and sealed with a sealing lid 51 after the electrolyte solution is injected. Two rectangular recesses 5 a are provided on the outer surface of the lid 5. The positive electrode terminal 6 is accommodated in one recess 5a, and the negative electrode terminal 7 is accommodated in the other recess 5a. Each recess 5a is provided with one through hole 5b. The safety valve 52 is disposed between the recesses 5 a on the outer surface of the lid 5. The safety valve 52 has a rectangular recess and a groove formed in the recess. When the pressure in the outer can 1 becomes equal to or higher than the reference value, the groove is broken by the pressure, and gas is discharged to the outside from the broken portion, thereby preventing the battery from being ruptured.

蓋5の裏面には、内部絶縁体53が配置されている。内部絶縁体53は、蓋5の貫通孔5bと対向する箇所に設けられた貫通孔53aと、安全弁52と対向する箇所に設けられたガス抜き孔53bと、注液口53cとを有する。内部絶縁体53の裏面、つまり電極群2と対向する面には、スペーサ53dが設けられている。スペーサ53dは、電極群2が蓋5に接近する方向に移動するのを阻止することができる。   An internal insulator 53 is disposed on the back surface of the lid 5. The internal insulator 53 includes a through hole 53a provided at a position facing the through hole 5b of the lid 5, a gas vent hole 53b provided at a position facing the safety valve 52, and a liquid injection port 53c. A spacer 53 d is provided on the back surface of the internal insulator 53, that is, the surface facing the electrode group 2. The spacer 53 d can prevent the electrode group 2 from moving in the direction approaching the lid 5.

正極絶縁ガスケット14は、円筒状の筒部14aと、筒部14aの一方の開口端に鍔状に形成されたフランジ部14bとを有する。また、負極絶縁ガスケット13は、円筒状の筒部13aと、筒部13aの一方の開口端に鍔状に形成されたフランジ部13bとを有する。筒部13a,14aは、それぞれ、蓋5の凹部5a内の貫通孔5bに挿入され、それぞれの下部開口端が内部絶縁体53の貫通孔53aに挿入されている。フランジ部13b,14bは、それぞれ、蓋5の凹部5a内の貫通孔5bの周縁を覆っている。   The positive electrode insulating gasket 14 includes a cylindrical tube portion 14a and a flange portion 14b formed in a bowl shape at one opening end of the tube portion 14a. The negative electrode insulating gasket 13 includes a cylindrical tube portion 13a and a flange portion 13b formed in a bowl shape at one opening end of the tube portion 13a. The cylindrical portions 13 a and 14 a are each inserted into the through hole 5 b in the recess 5 a of the lid 5, and the respective lower opening ends are inserted into the through holes 53 a of the internal insulator 53. The flange portions 13b and 14b cover the periphery of the through hole 5b in the recess 5a of the lid 5, respectively.

正極端子6は、頭部6aと、頭部6aから下方に延出された軸部6bとを有する。正極端子6の頭部6aは、絶縁ガスケット14のフランジ部14b内に収容される。また、負極端子7は、頭部7aと、頭部7aから下方に延出された軸部7bとを有する。負極端子7の頭部7aは、絶縁ガスケット13のフランジ部13b内に収容される。   The positive electrode terminal 6 has a head portion 6a and a shaft portion 6b extending downward from the head portion 6a. The head portion 6 a of the positive electrode terminal 6 is accommodated in the flange portion 14 b of the insulating gasket 14. Moreover, the negative electrode terminal 7 has the head part 7a and the axial part 7b extended below from the head part 7a. The head portion 7 a of the negative electrode terminal 7 is accommodated in the flange portion 13 b of the insulating gasket 13.

正極端子6の軸部6bは、絶縁ガスケット14の筒部14a内に挿入された状態で蓋5の貫通孔5b並びに内部絶縁体53の貫通孔53aに挿入され、先端が正極リード3の貫通孔3bに挿入されている。軸部6bは、かしめ加工で拡径変形し、蓋5、内部絶縁体53及び正極リード3にかしめ固定されている。一方、負極端子7の軸部7bは、絶縁ガスケット13の筒部13a内に挿入された状態で蓋5の貫通孔5b並びに内部絶縁体53の貫通孔53aに挿入され、先端が負極リード4の貫通孔4bに挿入されている。軸部7bは、かしめ加工で拡径変形し、蓋5、内部絶縁体53及び負極リード4にかしめ固定されている。これにより、正負極端子6,7と蓋5は、絶縁性と気密性が確保された状態で固定され、さらに正負極端子6,7と正負極リード3,4は、電気的接続が確保された状態で固定される。   The shaft portion 6 b of the positive electrode terminal 6 is inserted into the through hole 5 b of the lid 5 and the through hole 53 a of the internal insulator 53 while being inserted into the cylindrical portion 14 a of the insulating gasket 14, and the tip is a through hole of the positive electrode lead 3. It is inserted in 3b. The shaft portion 6 b is deformed by caulking and is fixed to the lid 5, the internal insulator 53 and the positive electrode lead 3 by caulking. On the other hand, the shaft portion 7 b of the negative electrode terminal 7 is inserted into the through hole 5 b of the lid 5 and the through hole 53 a of the internal insulator 53 while being inserted into the cylindrical portion 13 a of the insulating gasket 13, and the tip of the negative electrode lead 4. It is inserted into the through hole 4b. The shaft portion 7 b is deformed by caulking and is fixed to the lid 5, the internal insulator 53 and the negative electrode lead 4 by caulking. As a result, the positive and negative terminals 6 and 7 and the lid 5 are fixed in a state where insulation and airtightness are ensured, and further, the positive and negative terminals 6 and 7 and the positive and negative leads 3 and 4 are electrically connected. It is fixed in the state.

絶縁カバー54は、正負極端子6,7と対向する箇所に貫通孔54aを有する。絶縁カバー54は、貫通孔54aから正負極端子6,7の頭部6a,7aが突出するように、蓋5上に配置される。   The insulating cover 54 has a through hole 54 a at a location facing the positive and negative terminals 6 and 7. The insulating cover 54 is disposed on the lid 5 so that the heads 6a and 7a of the positive and negative electrode terminals 6 and 7 protrude from the through hole 54a.

図7に示す構造の非水電解質二次電池について、パルス充放電時の通電電流限界を確認したところ、以下の結果が得られた。なお、正極活物質にリチウムコバルト酸化物(LiCoO2)、負極活物質にリチウム金属の開回路電位に対して開回路電位0.4V以上のリチウム吸蔵電位を有する負極活物質を使用した。電解液には非水電解液を使用した。外装缶1、蓋5、正負極端子6,7、正負極集電タブ8a,9a、正負極リード3,4、および、正負極挟持部材11,12には、アルミニウム合金を使用した。第1、第2の絶縁カバー36,37にはポリプロピレンの成型品を使用し、絶縁テープ35の基材にはポリエステルを使用した。 Regarding the nonaqueous electrolyte secondary battery having the structure shown in FIG. 7, when the current-carrying limit during pulse charge / discharge was confirmed, the following results were obtained. Note that lithium cobalt oxide (LiCoO 2 ) was used as the positive electrode active material, and a negative electrode active material having an open circuit potential of 0.4 V or higher with respect to the open circuit potential of lithium metal was used as the negative electrode active material. A non-aqueous electrolyte was used as the electrolyte. Aluminum alloy was used for the outer can 1, the lid 5, the positive and negative electrode terminals 6 and 7, the positive and negative electrode current collecting tabs 8 a and 9 a, the positive and negative electrode leads 3 and 4, and the positive and negative electrode holding members 11 and 12. Polypropylene molded products were used for the first and second insulating covers 36 and 37, and polyester was used for the base material of the insulating tape 35.

パルス電流にて充放電を繰り返し、そのときのセル温度を測定した。通電電流は100Aから開始し、セル温度が100℃を超えるまで、もしくは設定電圧(1.5Vから2.95V)を外れるまで、電流を段階的に上げていった。具体的な評価方法を以下に説明する。   Charging / discharging was repeated with a pulse current, and the cell temperature at that time was measured. The energization current started from 100 A, and the current was increased stepwise until the cell temperature exceeded 100 ° C. or until the set voltage (1.5 V to 2.95 V) was removed. A specific evaluation method will be described below.

図8に示すようにパルス充放電試験を行った。すなわち、電流値を段階的に上昇させながらパルス充放電を複数回行い、パルス充放電間に一定の休止期間を設ける試験方法である。SOC50%の初期条件にて10秒毎にパルス充放電を行った。パルス充放電は、STEP1〜STEP5まで段階的に電流値を上昇させながら行った。STEP1〜STEP5の電流値を表1に示す。表1における各STEPの電流値は、A単位で表示した値と、その値をCレートに換算した値を括弧内に示した。また、各STEPのパルス充放電は、40から60分間のうちの一定時間とした。各STEP間に休止時間を設けた。セル温度が100℃に達したら、もしくは設定電圧(1.5Vから2.95V)を外れたら充放電を中止し、その後セル温度が低下し、環境温度で落ち着いたら一段上の電流値にてパルス充放電を繰り返した。また、パルス充放電時に、電流、電圧、時間、温度4点(恒温槽、正極端子、負極端子、外装缶中央部)を測定した。STEP1〜STEP5、すなわち、100Aから最大250A通電時のパルス充放電試験を実施した際の試験結果を表2及び図9〜図12に示す。図9は、STEP4(200A)のパルス充放電における恒温槽、正極端子、負極端子、外装缶中央部の温度の経時変化を示す。図10は、STEP4(200A)のパルス充放電におけるセルの電流及び電圧の経時変化を示す。図11は、STEP5(250A)のパルス充放電における恒温槽、正極端子、負極端子、外装缶中央部の温度の経時変化を示す。図12は、STEP5(250A)のパルス充放電におけるセルの電流及び電圧の経時変化を示す。図9、図11において、恒温槽の温度をT1、正極端子の温度をT2、負極端子の温度をT3、外装缶中央部の温度をT4で示す。また、図2に、正極端子の温度T2、負極端子の温度T3、外装缶中央部の温度T4それぞれの測定点をα、β、γで示す。

Figure 2011071109
A pulse charge / discharge test was conducted as shown in FIG. That is, this is a test method in which pulse charging / discharging is performed a plurality of times while increasing the current value stepwise, and a certain rest period is provided between the pulse charging / discharging. Pulse charge / discharge was performed every 10 seconds under the initial condition of SOC 50%. Pulse charge / discharge was performed while increasing the current value stepwise from STEP1 to STEP5. Table 1 shows the current values of STEP1 to STEP5. As for the current value of each STEP in Table 1, the value displayed in A units and the value converted into the C rate are shown in parentheses. Moreover, the pulse charge / discharge of each STEP was set to a fixed time of 40 to 60 minutes. There was a pause between each STEP. When the cell temperature reaches 100 ° C or exceeds the set voltage (1.5V to 2.95V), charging / discharging is stopped. After that, when the cell temperature decreases and settles at the ambient temperature, pulse at the current value one step higher. Charging / discharging was repeated. Moreover, at the time of pulse charge / discharge, current, voltage, time, and temperature were measured at 4 points (a constant temperature bath, a positive electrode terminal, a negative electrode terminal, and an outer can center). Table 2 and FIGS. 9 to 12 show the test results when STEP1 to STEP5, that is, the pulse charge / discharge test at the time of energization of 100A to 250A at maximum. FIG. 9 shows changes over time in the temperature of the constant temperature bath, the positive electrode terminal, the negative electrode terminal, and the outer can center in the pulse charge / discharge of STEP 4 (200A). FIG. 10 shows time-dependent changes in cell current and voltage during pulse charge / discharge of STEP 4 (200A). FIG. 11 shows changes over time in the temperature of the constant temperature bath, the positive electrode terminal, the negative electrode terminal, and the central portion of the outer can in the pulse charge / discharge of STEP 5 (250A). FIG. 12 shows time-dependent changes in cell current and voltage during pulse charge / discharge of STEP 5 (250 A). 9 and 11, the temperature of the thermostatic chamber is indicated by T 1 , the temperature of the positive terminal is T 2 , the temperature of the negative terminal is T 3 , and the temperature of the central portion of the outer can is indicated by T 4 . FIG. 2 shows the measurement points α, β, and γ for the temperature T 2 of the positive electrode terminal, the temperature T 3 of the negative electrode terminal, and the temperature T 4 of the central portion of the outer can.
Figure 2011071109

Figure 2011071109
Figure 2011071109

表2から明らかなように、パルス電流100Aでは、評価開始前の温度と最大温度との温度差は、外装缶中央部が最も大きく、11.6℃であった。パルス電流130Aでは、評価開始前の温度と最大温度との温度差は、外装缶中央部が最も大きく、18.0℃であった。パルス電流160Aでは、評価開始前の温度と最大温度との温度差は、外装缶中央部が最も大きく、27.2℃であった。   As is clear from Table 2, in the pulse current 100A, the temperature difference between the temperature before the start of evaluation and the maximum temperature was the largest in the central portion of the outer can, and was 11.6 ° C. In the pulse current 130A, the temperature difference between the temperature before the start of evaluation and the maximum temperature was 18.0 ° C., which was the largest in the central portion of the outer can. In the pulse current 160A, the temperature difference between the temperature before the start of evaluation and the maximum temperature was 27.2 ° C., which was the largest in the central portion of the outer can.

図9及び図10から明らかなように、第2の実施形態に係る電池は、パルス電流200Aにて60分以上通電可能であった。表2に示すように、評価開始前の温度と最大温度との温度差は、外装缶中央部が最も大きく、40.4℃であった。また、図11及び図12から明らかなように、250A通電時においては、評価開始25分後には設定した電圧終止条件の下限値の1.5Vを下回った。このため、この時点で評価は強制的に終了した。測定ポイントの温度上昇については、表2に示すように、評価開始前の温度と最大温度との温度差は、正極端子が最も大きく、66.2℃であった。また、250Aの大電流を電池に通電しても発熱の問題が生じなかった。さらに、設定電圧範囲内(1.5Vから2.95V)においては、パルス電流250Aにて25分間通電が可能であった。   As is clear from FIGS. 9 and 10, the battery according to the second embodiment was able to be energized for 60 minutes or more at a pulse current of 200A. As shown in Table 2, the temperature difference between the temperature before the start of evaluation and the maximum temperature was the largest in the central portion of the outer can, and was 40.4 ° C. Further, as is clear from FIGS. 11 and 12, at the time of 250 A energization, 25 minutes after the start of the evaluation, the lower limit value of the set voltage end condition was 1.5 V. For this reason, the evaluation was forcibly terminated at this point. Regarding the temperature rise at the measurement point, as shown in Table 2, the temperature difference between the temperature before the start of evaluation and the maximum temperature was 66.2 ° C., which was the largest at the positive electrode terminal. Further, no problem of heat generation occurred even when a large current of 250 A was applied to the battery. Furthermore, in the set voltage range (1.5 V to 2.95 V), it was possible to energize with a pulse current of 250 A for 25 minutes.

以上説明した第2の実施形態によれば、偏平型電極群を外装缶の中により多く収納しエネルギー密度を高めること、正負極リードの接合部等の抵抗を抑え効率よく集電できる構造を兼ね備えた電池を提供することができる。また、電極群および集電タブ並びにリードを外装缶から絶縁する構造の電池の体積効率を向上させることができる。   According to the second embodiment described above, the flat electrode group is accommodated more in the outer can to increase the energy density, and the structure that can efficiently collect current while suppressing the resistance of the joint portion of the positive and negative electrode leads is provided. Batteries can be provided. Moreover, the volume efficiency of the battery of the structure which insulates an electrode group, a current collection tab, and a lead from an exterior can can be improved.

なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.

1…外装缶、2…電極群、3…正極リード、4…負極リード、3a,4a…接続部、3c、3d、4c、4d…集電部、5…蓋、6…正極端子、7…負極端子、8a…正極集電タブ、9a…負極集電タブ、10…セパレータ、11…負極挟持部材、11a,11b…第1,第2の挟持部、12…正極挟持部材、12a,12b…第1,第2の挟持部、13,14…絶縁ガスケット、20…電池、21…ホーン、22…アンビル、23…リード、24…発電要素、25…集電金属箔、26…挟持板、35…絶縁テープ、36,37…第1,第2の絶縁カバー。   DESCRIPTION OF SYMBOLS 1 ... Exterior can, 2 ... Electrode group, 3 ... Positive electrode lead, 4 ... Negative electrode lead, 3a, 4a ... Connection part, 3c, 3d, 4c, 4d ... Current collecting part, 5 ... Cover, 6 ... Positive electrode terminal, 7 ... Negative terminal, 8a ... Positive current collecting tab, 9a ... Negative current collecting tab, 10 ... Separator, 11 ... Negative electrode holding member, 11a, 11b ... First and second holding portions, 12 ... Positive electrode holding member, 12a, 12b ... 1st and 2nd clamping part, 13 and 14 ... insulation gasket, 20 ... battery, 21 ... horn, 22 ... anvil, 23 ... lead, 24 ... power generation element, 25 ... current collecting metal foil, 26 ... clamping plate, 35 ... insulating tapes 36, 37 ... first and second insulating covers.

Claims (7)

正極集電体を含む正極と、負極集電体を含む負極が、セパレータを介して偏平形状に捲回された偏平型電極群と、
前記電極群の一方の端面から渦巻状に突出した前記正極集電体からなる正極集電タブと、
前記電極群の他方の端面から渦巻状に突出した前記負極集電体からなる負極集電タブと、
前記正極集電タブを前記電極群の厚さ方向に積層された二つの束に分け、それぞれの束を挟持する第1、第2の挟持部と、前記第1の挟持部と前記第2の挟持部を電気的に接続する連結部とを有する導電性の正極挟持部材と、
前記負極集電タブを前記電極群の厚さ方向に積層された二つの束に分け、それぞれの束を挟持する第1、第2の挟持部と、前記第1の挟持部と前記第2の挟持部を電気的に接続する連結部とを有する導電性の負極挟持部材と、
前記電極群が収納される外装缶と、
前記外装缶の開口部に取り付けられ、正極端子及び負極端子を有する蓋と、
前記正極端子と電気的に接続される接続部と、前記接続部から二股に分岐して前記正極挟持部材を挟み、一方が前記正極挟持部材の前記第1の挟持部の外側の面に接合され、かつ他方が前記第2の挟持部の外側の面に接合される集電部とを有する正極リードと、
前記負極端子と電気的に接続される接続部と、前記接続部から二股に分岐して前記負極挟持部材を挟み、一方が前記負極挟持部材の前記第1の挟持部の外側の面に接合され、かつ他方が前記第2の挟持部の外側の面に接合される集電部とを有する負極リードと
を備えることを特徴とする電池。
A flat electrode group in which a positive electrode including a positive electrode current collector and a negative electrode including a negative electrode current collector are wound into a flat shape via a separator;
A positive electrode current collector tab comprising the positive electrode current collector projecting spirally from one end face of the electrode group;
A negative electrode current collector tab comprising the negative electrode current collector projecting spirally from the other end face of the electrode group;
The positive electrode current collecting tab is divided into two bundles stacked in the thickness direction of the electrode group, and first and second sandwiching portions for sandwiching each bundle, the first sandwiching portion, and the second sandwiching portion. A conductive positive electrode clamping member having a coupling portion for electrically connecting the clamping portion;
The negative electrode current collecting tab is divided into two bundles stacked in the thickness direction of the electrode group, and first and second sandwiching portions for sandwiching each bundle, the first sandwiching portion, and the second sandwiching portion. A conductive negative electrode clamping member having a coupling part for electrically connecting the clamping part;
An outer can in which the electrode group is stored;
A lid attached to the opening of the outer can and having a positive terminal and a negative terminal;
A connecting portion electrically connected to the positive electrode terminal; and a bifurcated branch from the connecting portion to sandwich the positive electrode holding member; one of the positive electrode holding members is joined to an outer surface of the first holding portion; And a positive electrode lead having a current collector joined to the outer surface of the second sandwiching part on the other side,
A connecting portion that is electrically connected to the negative electrode terminal, and bifurcated from the connecting portion to sandwich the negative electrode holding member, and one of them is joined to the outer surface of the first holding portion of the negative electrode holding member And a negative electrode lead having a current collector joined to the outer surface of the second clamping part.
前記正極集電タブと、前記正極挟持部材の前記第1、第2の挟持部と、前記正極リードの前記集電部とが超音波溶接により接合されており、かつ前記負極集電タブと、前記負極挟持部材の前記第1、第2の挟持部と、前記負極リードの前記集電部とが超音波溶接により接合されていることを特徴とする請求項1記載の電池。   The positive electrode current collecting tab, the first and second holding parts of the positive electrode holding member, and the current collecting part of the positive electrode lead are joined by ultrasonic welding, and the negative electrode current collecting tab; 2. The battery according to claim 1, wherein the first and second holding portions of the negative electrode holding member and the current collecting portion of the negative electrode lead are joined by ultrasonic welding. 前記正極挟持部材の前記第1、第2の挟持部の厚さは前記正極リードの厚さよりも薄く、かつ前記負極挟持部材の前記第1、第2の挟持部の厚さは前記負極リードの厚さよりも薄いることを特徴とする請求項1または2記載の電池。   The thickness of the first and second clamping portions of the positive electrode clamping member is thinner than the thickness of the positive electrode lead, and the thickness of the first and second clamping portions of the negative electrode clamping member is the thickness of the negative electrode lead. The battery according to claim 1, wherein the battery is thinner than the thickness. 前記正極リード、前記正極挟持部材及び前記正極集電タブにおける前記外装缶の内面と対向する部分か、前記負極リード、前記負極挟持部材及び前記負極集電タブにおける前記外装缶の内面と対向する部分を覆う形状の樹脂成型品からなる絶縁カバーをさらに備えることを特徴とする請求項1〜2いずれか1項記載の電池。   A portion of the positive electrode lead, the positive electrode holding member and the positive electrode current collecting tab facing the inner surface of the outer can, or a portion of the negative electrode lead, the negative electrode holding member and the negative electrode current collecting tab facing the inner surface of the outer can The battery according to claim 1, further comprising an insulating cover made of a resin molded product having a shape covering the battery. 前記絶縁カバーは、前記外装缶と前記電極群との流路となる穴を有する請求項4記載の電池。   The battery according to claim 4, wherein the insulating cover has a hole serving as a flow path between the outer can and the electrode group. 前記絶縁カバーは、前記正極集電タブまたは前記負極集電タブの端面と対向する側板に内方に突出した凸部を有することを特徴とする請求項4または5記載の電池。   6. The battery according to claim 4, wherein the insulating cover has a convex portion projecting inwardly on a side plate facing an end face of the positive current collecting tab or the negative current collecting tab. 前記電極群の最外周を絶縁するための絶縁テープをさらに備えることを特徴とする請求項4〜6いずれか1項記載の電池。   The battery according to claim 4, further comprising an insulating tape for insulating the outermost periphery of the electrode group.
JP2010185570A 2009-08-27 2010-08-20 battery Active JP5558265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010185570A JP5558265B2 (en) 2009-08-27 2010-08-20 battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009197193 2009-08-27
JP2009197193 2009-08-27
JP2010185570A JP5558265B2 (en) 2009-08-27 2010-08-20 battery

Publications (2)

Publication Number Publication Date
JP2011071109A true JP2011071109A (en) 2011-04-07
JP5558265B2 JP5558265B2 (en) 2014-07-23

Family

ID=44016166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010185570A Active JP5558265B2 (en) 2009-08-27 2010-08-20 battery

Country Status (1)

Country Link
JP (1) JP5558265B2 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120037402A (en) * 2009-06-17 2012-04-19 가부시키가이샤 지에스 유아사 Battery and method for producing battery
JP2012227110A (en) * 2010-06-21 2012-11-15 Toshiba Corp Battery
JP2013054914A (en) * 2011-09-05 2013-03-21 Gs Yuasa Corp Power storage element
KR20130037169A (en) * 2011-10-04 2013-04-15 가부시키가이샤 지에스 유아사 Electrochemical device
JP2013089558A (en) * 2011-10-21 2013-05-13 Gs Yuasa Corp Power storage element
JP2013114940A (en) * 2011-11-29 2013-06-10 Gs Yuasa Corp Electricity storage element
JP2013137864A (en) * 2011-11-11 2013-07-11 Toshiba Corp Battery
WO2013105362A1 (en) * 2012-01-12 2013-07-18 日立マクセル株式会社 Method for producing battery
WO2013153588A1 (en) 2012-04-13 2013-10-17 トヨタ自動車株式会社 Battery, battery pack, and vehicle
WO2014024802A1 (en) * 2012-08-09 2014-02-13 株式会社Gsユアサ Method for manufacturing electricity storage device, auxiliary board for ultrasonic welding, and electricity storage device
WO2014033827A1 (en) * 2012-08-28 2014-03-06 日立ビークルエナジー株式会社 Secondary battery
JP2014182900A (en) * 2013-03-18 2014-09-29 Gs Yuasa Corp Power storage element and method for manufacturing power storage element
JP2014216076A (en) * 2013-04-23 2014-11-17 トヨタ自動車株式会社 Secondary battery and method for manufacturing the secondary battery
JP2015022966A (en) * 2013-07-22 2015-02-02 株式会社Gsユアサ Power storage element
KR20150105849A (en) * 2014-03-10 2015-09-18 삼성에스디아이 주식회사 Rechargeable battery having insulating member
WO2015186834A1 (en) * 2014-06-05 2015-12-10 株式会社 東芝 Secondary battery
JP2016225117A (en) * 2015-05-29 2016-12-28 株式会社東芝 Secondary battery
US9590264B2 (en) 2012-02-22 2017-03-07 Gs Yuasa International Ltd. Electric storage device
JP2017120743A (en) * 2015-12-28 2017-07-06 株式会社Gsユアサ Power storage device
JP2017212075A (en) * 2016-05-24 2017-11-30 オートモーティブエナジーサプライ株式会社 Lithium ion secondary battery
JP2018022696A (en) * 2011-10-04 2018-02-08 株式会社Gsユアサ Electrochemical device
CN109037761A (en) * 2018-07-17 2018-12-18 江苏海基新能源股份有限公司 A kind of rectangular lithium ion battery with aluminum shell and assembly method
US10205142B2 (en) 2012-09-18 2019-02-12 Toyota Jidosha Kabushiki Kaisha Battery, battery pack, and method of manufacturing battery
CN110797478A (en) * 2018-08-01 2020-02-14 宁德时代新能源科技股份有限公司 Secondary battery
JP2021077597A (en) * 2019-11-13 2021-05-20 トヨタ自動車株式会社 Secondary battery
WO2021181563A1 (en) 2020-03-11 2021-09-16 株式会社 東芝 Connection lead and battery
EP4258431A1 (en) * 2022-04-07 2023-10-11 AESC Japan Ltd. Current collecting member, cell and electronic device
WO2024062522A1 (en) * 2022-09-20 2024-03-28 株式会社 東芝 Secondary battery and method for manufacturing secondary battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003197174A (en) * 2001-12-25 2003-07-11 Japan Storage Battery Co Ltd Battery
JP2004303500A (en) * 2003-03-31 2004-10-28 Sanyo Electric Co Ltd Square battery
JP2006196276A (en) * 2005-01-12 2006-07-27 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JP2007149353A (en) * 2005-11-24 2007-06-14 Sanyo Electric Co Ltd Rectangular battery
JP2007226989A (en) * 2006-02-21 2007-09-06 Sanyo Electric Co Ltd Square battery
JP2012227110A (en) * 2010-06-21 2012-11-15 Toshiba Corp Battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003197174A (en) * 2001-12-25 2003-07-11 Japan Storage Battery Co Ltd Battery
JP2004303500A (en) * 2003-03-31 2004-10-28 Sanyo Electric Co Ltd Square battery
JP2006196276A (en) * 2005-01-12 2006-07-27 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JP2007149353A (en) * 2005-11-24 2007-06-14 Sanyo Electric Co Ltd Rectangular battery
JP2007226989A (en) * 2006-02-21 2007-09-06 Sanyo Electric Co Ltd Square battery
JP2012227110A (en) * 2010-06-21 2012-11-15 Toshiba Corp Battery

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120037402A (en) * 2009-06-17 2012-04-19 가부시키가이샤 지에스 유아사 Battery and method for producing battery
JP2014132590A (en) * 2009-06-17 2014-07-17 Gs Yuasa Corp Battery and battery manufacturing method
KR101907935B1 (en) 2009-06-17 2018-10-15 가부시키가이샤 지에스 유아사 Battery and method for producing battery
JP2012227110A (en) * 2010-06-21 2012-11-15 Toshiba Corp Battery
JP2015008157A (en) * 2010-06-21 2015-01-15 株式会社東芝 Battery
JP2013054914A (en) * 2011-09-05 2013-03-21 Gs Yuasa Corp Power storage element
KR20130037169A (en) * 2011-10-04 2013-04-15 가부시키가이샤 지에스 유아사 Electrochemical device
KR102115767B1 (en) * 2011-10-04 2020-05-27 가부시키가이샤 지에스 유아사 Electrochemical device
JP2013093314A (en) * 2011-10-04 2013-05-16 Gs Yuasa Corp Electrochemical device
JP2018022696A (en) * 2011-10-04 2018-02-08 株式会社Gsユアサ Electrochemical device
JP2013089558A (en) * 2011-10-21 2013-05-13 Gs Yuasa Corp Power storage element
JP2013137864A (en) * 2011-11-11 2013-07-11 Toshiba Corp Battery
JP2013114940A (en) * 2011-11-29 2013-06-10 Gs Yuasa Corp Electricity storage element
WO2013105362A1 (en) * 2012-01-12 2013-07-18 日立マクセル株式会社 Method for producing battery
US9590264B2 (en) 2012-02-22 2017-03-07 Gs Yuasa International Ltd. Electric storage device
WO2013153588A1 (en) 2012-04-13 2013-10-17 トヨタ自動車株式会社 Battery, battery pack, and vehicle
EP3041065A1 (en) 2012-04-13 2016-07-06 Toyota Jidosha Kabushiki Kaisha Battery, assembled battery, and vehicle
WO2014024802A1 (en) * 2012-08-09 2014-02-13 株式会社Gsユアサ Method for manufacturing electricity storage device, auxiliary board for ultrasonic welding, and electricity storage device
US10050299B2 (en) 2012-08-09 2018-08-14 Gs Yuasa International Ltd Manufacturing method of electric storage apparatus, auxiliary plate for ultrasonic welding, and electric storage apparatus
JPWO2014033827A1 (en) * 2012-08-28 2016-08-08 日立オートモティブシステムズ株式会社 Secondary battery
WO2014033827A1 (en) * 2012-08-28 2014-03-06 日立ビークルエナジー株式会社 Secondary battery
US10205142B2 (en) 2012-09-18 2019-02-12 Toyota Jidosha Kabushiki Kaisha Battery, battery pack, and method of manufacturing battery
JP2014182900A (en) * 2013-03-18 2014-09-29 Gs Yuasa Corp Power storage element and method for manufacturing power storage element
JP2014216076A (en) * 2013-04-23 2014-11-17 トヨタ自動車株式会社 Secondary battery and method for manufacturing the secondary battery
JP2015022966A (en) * 2013-07-22 2015-02-02 株式会社Gsユアサ Power storage element
KR102197407B1 (en) 2014-03-10 2020-12-31 삼성에스디아이 주식회사 Rechargeable battery having insulating member
KR20150105849A (en) * 2014-03-10 2015-09-18 삼성에스디아이 주식회사 Rechargeable battery having insulating member
WO2015186834A1 (en) * 2014-06-05 2015-12-10 株式会社 東芝 Secondary battery
JP2016225117A (en) * 2015-05-29 2016-12-28 株式会社東芝 Secondary battery
JP2017120743A (en) * 2015-12-28 2017-07-06 株式会社Gsユアサ Power storage device
JP2017212075A (en) * 2016-05-24 2017-11-30 オートモーティブエナジーサプライ株式会社 Lithium ion secondary battery
CN109037761A (en) * 2018-07-17 2018-12-18 江苏海基新能源股份有限公司 A kind of rectangular lithium ion battery with aluminum shell and assembly method
CN110797478A (en) * 2018-08-01 2020-02-14 宁德时代新能源科技股份有限公司 Secondary battery
JP2021077597A (en) * 2019-11-13 2021-05-20 トヨタ自動車株式会社 Secondary battery
JP7290102B2 (en) 2019-11-13 2023-06-13 トヨタ自動車株式会社 secondary battery
WO2021181563A1 (en) 2020-03-11 2021-09-16 株式会社 東芝 Connection lead and battery
EP4258431A1 (en) * 2022-04-07 2023-10-11 AESC Japan Ltd. Current collecting member, cell and electronic device
WO2024062522A1 (en) * 2022-09-20 2024-03-28 株式会社 東芝 Secondary battery and method for manufacturing secondary battery

Also Published As

Publication number Publication date
JP5558265B2 (en) 2014-07-23

Similar Documents

Publication Publication Date Title
JP5558265B2 (en) battery
US10115937B2 (en) Battery including branched current collector sections
JP5774752B2 (en) Battery and battery pack
JP5537094B2 (en) battery
US8815426B2 (en) Prismatic sealed secondary cell and method of manufacturing the same
JP5618515B2 (en) battery
JP4158440B2 (en) Secondary battery and assembled battery using the same
WO2019059133A1 (en) Battery pack and method for manufacturing battery pack
JP5558262B2 (en) battery
JP6250921B2 (en) battery
US20080070111A1 (en) Sheet-type secondary battery and manufacturing method therefor
JP6137556B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP5566651B2 (en) Battery and manufacturing method thereof
JP2011049065A (en) Nonaqueous electrolyte battery and method of manufacturing the same
JP2011049064A (en) Battery
JP2011171079A (en) Battery cell
JP5953549B2 (en) Lithium ion battery
KR101273472B1 (en) Manufacturing method for pouch-type secondary battery and pouch-type secondary battery made by the same
US20220352606A1 (en) Secondary battery and method for manufacturing same
JP5161421B2 (en) Non-aqueous electrolyte battery
US10158107B2 (en) Battery comprising insulative films
CN108140794A (en) The manufacturing method of charge storage element and charge storage element
JP2009181899A (en) Laminated battery
JP6727853B2 (en) Secondary battery, battery module and vehicle
CN110998914A (en) Sealed battery, battery pack, and method for manufacturing sealed battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131205

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131212

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140109

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140604

R151 Written notification of patent or utility model registration

Ref document number: 5558265

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151