JP2019003842A - Film sheathing battery and manufacturing method therefor - Google Patents

Film sheathing battery and manufacturing method therefor Download PDF

Info

Publication number
JP2019003842A
JP2019003842A JP2017118206A JP2017118206A JP2019003842A JP 2019003842 A JP2019003842 A JP 2019003842A JP 2017118206 A JP2017118206 A JP 2017118206A JP 2017118206 A JP2017118206 A JP 2017118206A JP 2019003842 A JP2019003842 A JP 2019003842A
Authority
JP
Japan
Prior art keywords
electrode
laminate
film
electrode tab
exterior body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017118206A
Other languages
Japanese (ja)
Inventor
真之 弓田
Masayuki Yumita
真之 弓田
雅信 佐藤
Masanobu Sato
雅信 佐藤
生馬 松崎
Ikuma Matsuzaki
生馬 松崎
雅人 大野
Masato Ono
雅人 大野
田中 俊治
Toshiharu Tanaka
俊治 田中
隆浩 岩崎
Takahiro Iwasaki
隆浩 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2017118206A priority Critical patent/JP2019003842A/en
Publication of JP2019003842A publication Critical patent/JP2019003842A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

To restrain movement of an electrode laminate 3 in a sheathing body 2, in a film sheathing battery.SOLUTION: An electrode laminate 3 including an electrode tab 4 is housed in a sheathing body 2 consisting of two laminate films in sealing process. The sheathing body 2 becomes bag-like by heating and sealing three sides 7, 8, 9 by means of a heat block. At the side 7 at an electrode tab 4 side, joint points 15A-15C where two laminate films are bonded locally by thermal fusion are formed at positions closer to a circumference of the electrode laminate 3 than an inner boundary of a seal line 11. With such an arrangement, movement of the electrode laminate 3 is restrained. Furthermore, joint points 15D, 15E may be added for restraining the movement of the electrode laminate 3 in a rotation direction with the electrode tab 4 as a fulcrum.SELECTED DRAWING: Figure 3

Description

この発明は、可撓性を有するラミネートフィルムからなる外装体の中に電解液とともに電極積層体(発電要素)が収容されたフィルム外装電池およびその製造方法に関し、特に、外装体の中での電極積層体の移動を抑制する構成の改良に関する。   The present invention relates to a film-clad battery in which an electrode laminate (power generation element) is accommodated together with an electrolyte in an exterior body made of a laminate film having flexibility, and more particularly to an electrode in the exterior body. The present invention relates to an improvement in a configuration that suppresses the movement of a laminate.

例えばリチウムイオン二次電池として、複数のシート状の正極および負極をセパレータを介して積層してなる電極積層体(発電要素とも呼ばれる)が、熱融着層を備えたラミネートフィルムからなる外装体の中に電解液とともに収容された偏平形状をなすフィルム外装電池が知られている。フィルム外装電池における外装体の各辺の封止は、一般に、2枚のラミネートフィルムを各々の熱融着層が内側となるようにして一対のヒートブロックの間に挟み込み、かつ加熱することで、熱融着層同士を接合させる、加熱封止の手法が採用されている。電極積層体の一辺には、正極および負極の各々の集電体の端部を束にして超音波接合等で接続した正負の電極タブを備えているが、この電極タブは、2枚のラミネートフィルムの接合面を通して外部へ導出されている。   For example, as a lithium ion secondary battery, an electrode laminate (also referred to as a power generation element) in which a plurality of sheet-like positive and negative electrodes are laminated via a separator is an exterior body made of a laminate film having a heat-sealing layer. 2. Description of the Related Art A film-clad battery having a flat shape housed together with an electrolyte is known. Sealing of each side of the outer package in a film-clad battery is generally performed by sandwiching and heating two laminated films between a pair of heat blocks so that each heat-sealing layer is inside, A heat sealing method is employed in which the heat-sealing layers are bonded to each other. One side of the electrode laminate is provided with positive and negative electrode tabs in which the ends of the current collectors of the positive electrode and the negative electrode are bundled and connected by ultrasonic bonding or the like. It is led out through the joint surface of the film.

一方、特許文献1には、この種のフィルム外装電池において、外装体内での電極積層体のずれを防止するために、セパレータの一辺に部分的に突出した舌片部を設けるとともに、ラミネートフィルムからなる外装体の封止時に、2枚のラミネートフィルムの間にセパレータの舌片部を挟んで、超音波接合等により一体に接合することが開示されている。   On the other hand, in Patent Document 1, in this type of film-clad battery, in order to prevent displacement of the electrode laminate in the outer package, a tongue piece part that partially protrudes on one side of the separator is provided, and a laminate film is used. It is disclosed that a tongue portion of a separator is sandwiched between two laminate films, and is integrally bonded by ultrasonic bonding or the like when sealing an exterior body.

特開2013−73913号公報JP 2013-73913 A

上記のようなフィルム外装電池にあっては、熱融着されている外装体の各辺のシール線と電極積層体の周縁との間に多少の間隔があり、とりわけ、電極タブ側の一辺においては、電極タブに至る多数の集電体(金属箔)の端部が収容されることから、比較的大きな間隔が存在する。そのため、フィルム外装電池に外部から衝撃が加わったような場合に、電極積層体が外装体の内部で移動し、その結果、集電体の屈曲等が生じて電池性能が低下する、という懸念がある。   In the film-clad battery as described above, there is a slight gap between the seal line on each side of the outer package that is heat-sealed and the peripheral edge of the electrode laminate, especially on one side of the electrode tab side. Since the ends of a large number of current collectors (metal foils) reaching the electrode tab are accommodated, there is a relatively large distance. Therefore, there is a concern that when an impact is applied to the film-clad battery from the outside, the electrode laminate moves inside the exterior body, and as a result, the current collector is bent and the battery performance is lowered. is there.

特許文献1のようにセパレータに舌片部を設け、外装体に挟み込むようにした構成では、衝撃等による電極積層体の移動が抑制されるものの、舌片部の面積は電池容量に寄与しないことから、電池の外形寸法に対する電池容量の観点からは好ましいものではない。   In the configuration in which the separator is provided with a tongue piece as in Patent Document 1 and sandwiched between the exterior bodies, the movement of the electrode laminate due to impact or the like is suppressed, but the area of the tongue piece does not contribute to the battery capacity. Therefore, it is not preferable from the viewpoint of the battery capacity with respect to the outer dimensions of the battery.

この発明に係るフィルム外装電池は、ラミネートフィルムからなる外装体の電極タブ側の一辺において、上記電極タブを横切って連続的に設定されたシール線の内側境界よりも電極積層体の周縁に近い位置に、ラミネートフィルム同士が局部的に接合された少なくとも1つの接合点を備えている。この接合点によって、外装体内部での電極積層体の移動が抑制される。   The film-clad battery according to the present invention is a position closer to the periphery of the electrode laminate than the inner boundary of the seal line continuously set across the electrode tab on one side of the electrode tab of the exterior body made of a laminate film Further, at least one joining point where the laminated films are locally joined is provided. By this joining point, the movement of the electrode laminate within the exterior body is suppressed.

また、この発明に係るフィルム外装電池の製造方法は、一辺に正負の電極タブを備えた電極積層体を構成する電極積層工程と、ラミネートフィルムからなる外装体の周縁の各辺を、連続的に設定されるシール線に沿って加熱封止する封止工程と、上記外装体の少なくとも上記電極タブ側の一辺において、当該辺のシール線の内側境界よりも上記電極積層体の周縁に近い位置に、ラミネートフィルム同士を局部的に接合して1つあるいは複数の接合点を形成する接合点形成工程と、上記外装体の中に電解液を注入する注液工程と、を備えている。   Moreover, the manufacturing method of the film-clad battery according to the present invention includes an electrode laminating step that constitutes an electrode laminate having positive and negative electrode tabs on one side, and each side of the outer periphery of the outer package made of a laminate film. In the sealing step of heat sealing along the set seal line, and at least one side of the exterior body on the electrode tab side, at a position closer to the periphery of the electrode laminate than the inner boundary of the seal line of the side And a bonding point forming step of locally bonding the laminated films to form one or a plurality of bonding points, and a liquid injection step of injecting an electrolytic solution into the outer package.

この発明によれば、シール線の内側境界よりも電極積層体の周縁に近い位置に接合点を設けることによって、外装体内部での電極積層体の移動が抑制される。この接合点の形成は、外装体の外形寸法の大型化や電池容量の低下等を招くことがない。   According to this invention, the movement of the electrode laminated body inside the exterior body is suppressed by providing the junction point at a position closer to the periphery of the electrode laminated body than the inner boundary of the seal line. The formation of this junction does not cause an increase in the outer dimension of the outer package or a decrease in battery capacity.

一実施例の電池製造方法の要部を示した工程説明図。Process explanatory drawing which showed the principal part of the battery manufacturing method of one Example. 封止工程を経たセルの正面図。The front view of the cell which passed through the sealing process. 接合点形成工程を経たセルの正面図。The front view of the cell which passed through the joining point formation process. 図3のA−A線に沿った断面(a)とB−B線に沿った断面(b)を対比して示した断面図。Sectional drawing which contrasted and showed the cross section (a) along the AA line of FIG. 3, and the cross section (b) along the BB line. 電極タブの検出による接合点の位置設定を説明する説明図。Explanatory drawing explaining the position setting of the junction point by the detection of an electrode tab. 接触子を用いた電極積層体の周縁位置の検出を説明する説明図。Explanatory drawing explaining the detection of the peripheral position of the electrode laminated body using a contactor. X線を用いた電極積層体の周縁位置の検出を説明する説明図。Explanatory drawing explaining the detection of the peripheral position of the electrode laminated body using X-ray | X_line.

以下、この発明の一実施例を図面に基づいて詳細に説明する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

図1は、一実施例の電池製造方法の要部を示した工程説明図である。この実施例では、フィルム外装電池の一例として、電気自動車やハイブリッド自動車等の車両駆動用電源パックを構成する偏平形状をなすフィルム外装型リチウムイオン二次電池を対象としている。一実施例のフィルム外装電池は、矩形のシート状に構成した正極および負極をセパレータを介して複数積層して電極積層体(発電要素)を構成し、この電極積層体を、ラミネートフィルムからなる袋状の外装体の中に電解液とともに収容したものである。なお、以下の実施例の説明では、電極積層体がフィルム状外装体の中に収容された後の電池を、製造工程の如何に拘わらず、単に「セル」と呼ぶこととする。   FIG. 1 is a process explanatory view showing the main part of the battery manufacturing method of one embodiment. In this embodiment, as an example of a film-clad battery, a film-clad lithium ion secondary battery having a flat shape constituting a power supply pack for driving a vehicle such as an electric vehicle or a hybrid vehicle is targeted. A film-clad battery according to an embodiment includes an electrode laminate (power generation element) formed by laminating a plurality of positive electrodes and negative electrodes configured in a rectangular sheet shape via a separator, and the electrode laminate is a bag made of a laminate film. In an outer package body together with an electrolytic solution. In the description of the following examples, the battery after the electrode laminate is accommodated in the film-like outer package is simply referred to as “cell” regardless of the manufacturing process.

ステップS1として示す工程は、電極積層体を構成する電極積層工程である。ここでは、それぞれロール状に巻回されている正極、負極およびセパレータを、矩形のシート状に切断しながら順次積層することで、複数の正極および負極がセパレータを介して積層された発電要素つまり電極積層体を形成する。正極は、集電体となるアルミニウム箔の両面に正極活物質をバインダを含むスラリとして塗布し、乾燥かつ圧延して所定の厚みの活物質層を形成したものである。負極は、同様に、集電体となる銅箔の両面に負極活物質をバインダを含むスラリとして塗布し、乾燥かつ圧延して所定の厚みの活物質層を形成したものである。   The process shown as step S1 is an electrode lamination process which comprises an electrode laminated body. Here, a positive electrode, a negative electrode, and a separator wound in a roll shape are sequentially stacked while being cut into a rectangular sheet, so that a power generation element, that is, an electrode, in which a plurality of positive electrodes and negative electrodes are stacked via a separator. A laminate is formed. The positive electrode is obtained by applying a positive electrode active material as a slurry containing a binder to both surfaces of an aluminum foil serving as a current collector, and drying and rolling to form an active material layer having a predetermined thickness. Similarly, the negative electrode is obtained by applying a negative electrode active material as a slurry containing a binder to both surfaces of a copper foil serving as a current collector, and drying and rolling to form an active material layer having a predetermined thickness.

セパレータは、正極と負極との間の短絡を防止すると同時に電解液を保持する機能を有するものであって、例えば、ポリエチレン(PE)やポリプロピレン(PP)等の熱可塑性合成樹脂の微多孔性膜あるいは不織布からなる合成樹脂層の表面に、セラミックス粒子を吹き付けて耐熱層となる多孔性のセラミックス層を形成した構成である。例えば、ポリプロピレンからなる合成樹脂層の両面にセラミックス層を具備している。   The separator has a function of preventing the short circuit between the positive electrode and the negative electrode and at the same time holding the electrolytic solution. For example, the separator is a microporous film of a thermoplastic synthetic resin such as polyethylene (PE) or polypropylene (PP). Alternatively, a porous ceramic layer serving as a heat-resistant layer is formed by spraying ceramic particles on the surface of a synthetic resin layer made of nonwoven fabric. For example, a ceramic layer is provided on both surfaces of a synthetic resin layer made of polypropylene.

これらの正極、負極およびセパレータは、所定枚数積層されることで、発電要素つまり電極積層体となる。複数の正極の集電体の端部は、互いに重ねられ、正の端子となる電極タブつまり正極タブが超音波溶接される。同様に、複数の負極の集電体の端部は、互いに重ねられ、負の端子となる電極タブつまり負極タブが超音波溶接される。正極タブは、帯状の薄いアルミニウム板からなり、負極タブは、帯状の薄い銅板からなる。つまり、それぞれ集電体と同種の金属から構成される。なお、これら正負の電極タブに接合される集電体(アルミニウム箔および銅箔)の端部は、正極および負極の基本形状である矩形の一辺からそれぞれ電極タブに対応した幅でもって比較的短い舌片状に突出して形成されており、この舌片状部分に電極タブが超音波接合されている。   The positive electrode, the negative electrode, and the separator are laminated in a predetermined number to form a power generation element, that is, an electrode laminate. The ends of the current collectors of the plurality of positive electrodes are overlapped with each other, and an electrode tab that is a positive terminal, that is, a positive electrode tab is ultrasonically welded. Similarly, the ends of the current collectors of the plurality of negative electrodes are overlapped with each other, and an electrode tab that is a negative terminal, that is, a negative electrode tab, is ultrasonically welded. The positive electrode tab is made of a strip-like thin aluminum plate, and the negative electrode tab is made of a strip-like thin copper plate. That is, each is comprised from the same kind of metal as an electrical power collector. In addition, the edge part of the collector (aluminum foil and copper foil) joined to these positive / negative electrode tabs is comparatively short with the width | variety corresponding to an electrode tab from the one side of the rectangle which is a basic shape of a positive electrode and a negative electrode, respectively. It protrudes in the shape of a tongue piece, and an electrode tab is ultrasonically bonded to the tongue piece portion.

このように構成された電極積層体は、次のステップS2として示す封止工程において、可撓性を有するフィルム状外装体の中に配置される。外装体は、例えば、アルミニウム箔の内側にポリプロピレンからなる熱融着層をラミネートするとともに、外側にポリアミド樹脂層およびポリエチレンテレフタレート樹脂層を保護層としてラミネートしてなる四層構造を有するラミネートフィルムからなる。ラミネートフィルム全体の厚さは、例えば、0.15mm程度である。本実施例では、外装体は、発電要素の下面側に配置される1枚のラミネートフィルムと上面側に配置される他の1枚のラミネートフィルムとの2枚構造をなし、これら2枚のラミネートフィルムの間に電極積層体を配置した上で、周囲の四辺を一辺の注入口を残して重ね合わせ、かつ互いに熱融着する。従って、外装体は、注入口が開いた袋状の構成となる。ここで、2つの電極タブ(正極タブおよび負極タブ)は、注入口を具備する一辺を上方へ向けたときに側方へ向かう辺に位置し、ラミネートフィルムの接合面を通して外側へ導出されている。   In the sealing step shown as the next step S2, the electrode laminated body configured as described above is placed in a flexible film-shaped exterior body. The exterior body is made of, for example, a laminate film having a four-layer structure in which a heat-sealing layer made of polypropylene is laminated inside an aluminum foil and a polyamide resin layer and a polyethylene terephthalate resin layer are laminated on the outside as a protective layer. . The thickness of the entire laminate film is, for example, about 0.15 mm. In this embodiment, the outer package has a two-sheet structure of one laminate film disposed on the lower surface side of the power generation element and another laminate film disposed on the upper surface side. After the electrode laminate is disposed between the films, the surrounding four sides are overlapped with each other leaving an injection port on one side, and thermally fused to each other. Therefore, the exterior body has a bag-like configuration with an open inlet. Here, the two electrode tabs (the positive electrode tab and the negative electrode tab) are located on the side facing the side when the one side having the injection port is directed upward, and are led out through the bonding surface of the laminate film. .

この封止工程は、3つの辺のそれぞれについて、互いに重ね合わせた2枚のラミネートフィルムを両側から挟み込んで加圧しながら加熱を行う一対のヒートブロックを用いて行う。ヒートブロックは、基本的に直線状に連続した細い帯状のシール線に沿った加工面を備えており、各辺に沿った3本のシール線が端部において互いに交差することで、三辺に連続したシール線が構成される。   This sealing step is performed using a pair of heat blocks that heat each of the three sides while sandwiching two laminated films that are superposed on each other and pressing them. The heat block is basically provided with a processing surface along a thin strip-shaped seal line that is continuous in a straight line, and three seal lines along each side intersect with each other at the end, so that the three sides A continuous seal line is constructed.

なお、他の例では、1枚の比較的大きなラミネートフィルムを二つ折りにし、2片の間に電極積層体を挟み込んだ形に外装体を構成することも可能である。この場合は、三辺を一辺の注入口を残して熱融着することとなる。   In another example, it is also possible to fold a relatively large laminate film into two and configure the exterior body in a form in which the electrode laminate is sandwiched between the two pieces. In this case, the three sides are heat-sealed leaving one side of the inlet.

このように封止工程においてフィルム状外装体の中に電極積層体が収容された状態に構成されたセルは、次に、ステップS3として示す接合点形成工程に搬送される。ここでは、3つの辺が加熱封止されている外装体に、さらに、電極積層体の移動を制限するために、2枚のラミネートフィルム同士を互いに局部的に接合してなる接合点を加工する。この接合点は、後述するように、特に電極タブ側の辺において、シール線の内側境界よりも電極積層体の周縁に近い位置に設けられるものであり、例えば、周縁の加熱封止と同様に、熱融着層を備えているラミネートフィルム同士を比較的小さな点状の範囲で加圧・加熱して熱融着することで形成される。その他、超音波接合等によって2枚のラミネートフィルム同士を接合するようにしてもよい。この接合点形成工程の詳細は後述する。   Thus, the cell comprised in the state by which the electrode laminated body was accommodated in the film-shaped exterior body in the sealing process is conveyed next to the junction formation process shown as step S3. Here, in order to further limit the movement of the electrode laminate, a joint point formed by locally joining two laminate films to each other is processed on the exterior body in which three sides are heat-sealed. . As will be described later, this junction point is provided at a position closer to the periphery of the electrode laminate than the inner boundary of the seal line, particularly on the side on the electrode tab side. It is formed by heat-sealing by laminating and heating laminated films having a heat-sealing layer within a relatively small dot-like range. In addition, two laminated films may be bonded together by ultrasonic bonding or the like. Details of this junction formation process will be described later.

接合点形成工程を経たセルは、次に、ステップS4として示す注液工程に搬送される。注液工程では、例えば減圧チャンバ内にセルを立てた状態に配置し、所定の減圧下で外装体の注入口にディスペンサの注液ノズルを差し入れて、電解液の充填(注液)を行う。   The cell that has undergone the junction formation process is then transferred to the liquid injection process shown as step S4. In the liquid injection process, for example, a cell is placed in a decompression chamber, and a liquid injection nozzle of a dispenser is inserted into the inlet of the exterior body under a predetermined pressure reduction to fill (inject) the electrolytic solution.

注液が完了したら、セルの姿勢をそのまま保った状態で、注入口封止工程(ステップS5)として、注入口を熱融着により封止する。なお、ここでの封止はいわゆる仮封止であり、後述する充電後に、充電に伴って発生したガス抜きのために注入口(あるいはその近傍)が開封されるので、ガス抜き後に、最終的な封止を行うこととなる。   When the liquid injection is completed, the injection port is sealed by thermal fusion as an injection port sealing step (step S5) while maintaining the cell posture. The sealing here is a so-called temporary sealing, and after charging, which will be described later, the inlet (or the vicinity thereof) is opened in order to vent the gas generated with the charging. Sealing is performed.

ステップS5の注入口封止工程の次に、ステップS6の含浸工程として、電解液の電極積層体への十分な浸透を待つために、所定時間(例えば数時間ないし数十時間)、放置する。その後、ステップS7において、初充電を行う。そして、図外のエージング工程等の次工程に進む。   Next to the inlet sealing step in step S5, as an impregnation step in step S6, the electrode is left for a predetermined time (for example, several hours to several tens of hours) in order to wait for sufficient penetration of the electrolyte into the electrode laminate. Thereafter, in step S7, initial charging is performed. And it progresses to next processes, such as an aging process outside a figure.

次に、本発明の要部であるステップS3の接合点形成工程について説明する。   Next, the junction point formation process of step S3 which is the principal part of this invention is demonstrated.

図2は、ステップS2の封止工程を経たセル1を示しており、前述したように、ラミネートフィルムからなる外装体2の内部に仮想線で示す電極積層体(発電要素)3が収容されている。電極積層体3は、互いに並んで配置された正負2つの電極タブ4を備えている。外装体2は、2つの電極タブ4が導出された第1の辺7と、この第1の辺7に対向する第2の辺8と、一方の側において第1の辺7と第2の辺8とを結ぶ第3の辺9と、注入口となる第4の辺10と、の四辺を有する長方形状に構成されている。図示するように、辺7,8が長方形の短辺、辺9,10が長辺である。   FIG. 2 shows the cell 1 that has undergone the sealing process of step S2, and as described above, the electrode laminate (power generation element) 3 indicated by a virtual line is accommodated inside the exterior body 2 made of a laminate film. Yes. The electrode laminate 3 includes two positive and negative electrode tabs 4 arranged side by side. The exterior body 2 includes a first side 7 from which the two electrode tabs 4 are led out, a second side 8 opposite to the first side 7, and the first side 7 and the second side on one side. It is configured in a rectangular shape having four sides, a third side 9 connecting the side 8 and a fourth side 10 serving as an injection port. As shown in the figure, the sides 7 and 8 are rectangular short sides, and the sides 9 and 10 are long sides.

そして、封止工程(S2)において、注入口となる第4の辺10を除く3つの辺7,8,9が一対のヒートブロックによってそれぞれ加熱封止されている。図2には、ヒートブロックを用いた熱融着により構成される細い帯状のシール線11,12,13が斜線を施して示されている。これら3本のシール線11,12,13は、基本的には直線状に延びており、端部において互いに交差することで、三辺に連続したシール線を構成している。第1の辺7のシール線11は、2つの電極タブ4を横切って1本の直線をなすように設定されており、2枚のラミネートフィルムが電極タブ4を挟み込んだ形に接合されている。なお、シール線11の中で電極タブ4に重なる領域と電極タブ4に重ならない領域とを別個のヒートブロックを用いて個々に加熱加工するようにしてもよい。   In the sealing step (S2), the three sides 7, 8, and 9 excluding the fourth side 10 serving as the injection port are each heat-sealed by a pair of heat blocks. In FIG. 2, thin strip-shaped seal lines 11, 12, and 13 constituted by heat fusion using a heat block are shown by hatching. These three seal lines 11, 12, and 13 basically extend in a straight line, and intersect with each other at the end portion to form a seal line continuous on three sides. The seal line 11 on the first side 7 is set so as to form a straight line across the two electrode tabs 4, and the two laminated films are joined in a shape sandwiching the electrode tabs 4. . In addition, you may make it heat-process separately the area | region which overlaps with the electrode tab 4 in the seal line 11, and the area | region which does not overlap with the electrode tab 4 using a separate heat block.

このように連続したシール線11,12,13に沿って加熱封止を行った状態では、これらシール線11,12,13(特にその内側境界)と電極積層体3の周縁との間に、適宜な間隔が存在する。これらの間隔は、最終的に完成したセルにおいて余剰の電解液を保有する容積ともなり得るものであり、また、電極タブ4側の第1の辺7においては、電極タブ4にそれぞれ接続された集電体の舌片状部分を収容するために、比較的大きな間隔が与えられている。例えば長辺9,10の長さが200〜250mm程度のセル1において、電極タブ4側の第1の辺7に、7〜8mm程度の間隔が存在する。そのため、完成したセル1が仮に長辺9,10に沿った方向に衝撃を受けたような場合に、電極積層体3が移動し、金属箔からなる集電体の舌片状部分や電極タブ4が変形したりする懸念がある。   In a state where heat sealing is performed along the continuous seal lines 11, 12, and 13 as described above, between the seal lines 11, 12 and 13 (particularly the inner boundary thereof) and the peripheral edge of the electrode laminate 3, There is an appropriate interval. These intervals can also serve as a volume for storing excess electrolyte in the finally completed cell, and are connected to the electrode tab 4 on the first side 7 on the electrode tab 4 side. A relatively large spacing is provided to accommodate the tongue-like portion of the current collector. For example, in the cell 1 in which the length of the long sides 9 and 10 is about 200 to 250 mm, there is an interval of about 7 to 8 mm on the first side 7 on the electrode tab 4 side. Therefore, if the completed cell 1 receives an impact in the direction along the long sides 9 and 10, the electrode laminate 3 moves, and the tongue-like portion of the current collector made of metal foil or the electrode tab There is a concern that 4 may be deformed.

図3は、ステップS3の接合点形成工程を経たセル1を示しており、上記のような電極積層体3の移動を制限するために、この例では、計5個の接合点15(15A〜15E)が形成されている。これらの接合点15は、例えば一対の比較的小型のヒートブロックを用いて2枚のラミネートフィルムを挟み込み、かつ加圧・加熱することにより形成される。接合点15A,15B,15Cは、電極タブ4側の第1の辺7において、シール線11の内側境界よりも電極積層体3の周縁に近い位置に設けられた接合点であり、望ましくは電極積層体3のセパレータ等と重ならない範囲でできるだけ電極積層体3の周縁に近い位置に設けられている。これらの接合点15A〜15Cは、第1の辺7に沿った方向に長い長方形に形成されている。これら3つの接合点15A〜15Cは、2つの電極タブ4を両側から挟むように配置される。すなわち、接合点15Aは、一方の電極タブ4の外側に位置し、接合点15Cは他方の電極タブ4の外側に位置し、接合点15Bは2つの電極タブ4の間に位置する。なお、これら3つの接合点15A〜15Cは、基本的に一直線上に並んで配置されているが、本発明においては、必ずしもこれに限定されるものではない。   FIG. 3 shows the cell 1 that has undergone the junction formation process of step S3. In order to limit the movement of the electrode laminate 3 as described above, in this example, a total of five junctions 15 (15A to 15A) 15E) is formed. These joining points 15 are formed, for example, by sandwiching two laminate films using a pair of relatively small heat blocks, and applying pressure and heating. The junction points 15A, 15B, and 15C are junction points provided at positions closer to the periphery of the electrode laminate 3 than the inner boundary of the seal line 11 on the first side 7 on the electrode tab 4 side. It is provided at a position as close as possible to the periphery of the electrode laminate 3 as long as it does not overlap with the separator or the like of the laminate 3. These joining points 15 </ b> A to 15 </ b> C are formed in a rectangular shape that is long in the direction along the first side 7. These three junction points 15A to 15C are arranged so as to sandwich the two electrode tabs 4 from both sides. That is, the junction point 15 </ b> A is located outside the one electrode tab 4, the junction point 15 </ b> C is located outside the other electrode tab 4, and the junction point 15 </ b> B is located between the two electrode tabs 4. In addition, although these three junction points 15A-15C are arrange | positioned along with the straight line fundamentally, in this invention, it is not necessarily limited to this.

また接合点15Dは、第1の辺7と交差する第4の辺10において電極積層体3の周縁に近い位置に設けられた接合点であり、第4の辺10に沿って長い長方形に形成されている。接合点15Eは、第1の辺7と交差する第3の辺9において電極積層体3の周縁に近い位置に設けられた接合点であり、やはり第3の辺9に沿って長い長方形に形成されている。これらの接合点15D,15Eは、電極タブ4を支点とした電極積層体3の回転方向の動きを制限する機能を有しており、従って、支点となる電極タブ4からなるべく離れた位置つまり第2の辺8に近い位置に配置されている。ここで、接合点15Eは、第3の辺9におけるシール線13の内側境界よりも電極積層体3の周縁に近い位置に形成されている。また、接合点15Dは、注液工程後の注入口封止工程において第4の辺10に沿って形成されるシール線14の内側境界よりも電極積層体3の周縁に近い位置に形成されている。なお、接合点15A〜15Eは、各々対応するシール線11,12,13,14と一部が重なり合っていてもよい。   The junction point 15 </ b> D is a junction point provided at a position close to the periphery of the electrode stack 3 in the fourth side 10 intersecting the first side 7, and is formed in a long rectangle along the fourth side 10. Has been. The junction point 15 </ b> E is a junction point provided at a position close to the periphery of the electrode stack 3 on the third side 9 that intersects the first side 7, and is also formed in a long rectangle along the third side 9. Has been. These joining points 15D and 15E have a function of restricting the movement of the electrode laminate 3 in the rotation direction with the electrode tab 4 as a fulcrum, and therefore, a position as far as possible from the electrode tab 4 as a fulcrum, that is, the first position. 2 is arranged at a position close to the side 8. Here, the joining point 15 </ b> E is formed at a position closer to the periphery of the electrode stack 3 than the inner boundary of the seal line 13 in the third side 9. The junction 15D is formed at a position closer to the periphery of the electrode stack 3 than the inner boundary of the seal line 14 formed along the fourth side 10 in the inlet sealing step after the liquid injection step. Yes. The junction points 15A to 15E may partially overlap with the corresponding seal lines 11, 12, 13, and 14, respectively.

図4は、接合点15Aを通る図3のA−A線に沿った模式的な断面図(a)と電極タブ4を通るB−B線に沿った模式的な断面図(b)とを対比して示したものである。図(b)に示すように、接合点15A〜15C以外の範囲では、加熱封止によるシール線11と電極積層体3の周縁とが比較的大きく離れており、両者間で集電体21が電極タブ4へと延びている。これに対し、接合点15A〜15Cの箇所では、図(a)に示すように、接合点15A〜15Cが電極積層体3の周縁に近接して位置し、外装体2となる2枚のラミネートフィルムが閉じられているので、仮に外部から衝撃が加わったような場合でも、シール線11へ向かう電極積層体3の移動が抑制される。なお、第1の辺7における接合点15の個数は3個に限られるものではなく、少なくとも1点あればよい。   FIG. 4 is a schematic cross-sectional view (a) along the line AA in FIG. 3 passing through the junction 15A and a schematic cross-sectional view (b) along the line BB passing through the electrode tab 4. It is shown in contrast. As shown in the figure (b), in the range other than the joining points 15A to 15C, the sealing wire 11 by heat sealing and the peripheral edge of the electrode laminate 3 are relatively far apart, and the current collector 21 is between them. It extends to the electrode tab 4. On the other hand, at the locations of the junction points 15A to 15C, as shown in FIG. 1A, the junction points 15A to 15C are located close to the peripheral edge of the electrode laminate 3, and the two laminates that become the outer package 2 are provided. Since the film is closed, even if an impact is applied from the outside, the movement of the electrode laminate 3 toward the seal line 11 is suppressed. In addition, the number of the junction points 15 in the 1st edge | side 7 is not restricted to three, What is necessary is just at least 1 point.

また、接合点15D,15Eが同様に電極積層体3の周縁に近接して位置するので、電極タブ4を支点とした電極積層体3の回転が抑制される。特に、接合点15Dは、第4の辺10を加熱封止する前に設けられているので、注液工程(S4)へのセル1の搬送時などにおいて電極積層体3を外装体2内の所定位置に保持することにも寄与する。なお、これらの接合点15D,15E、特に接合点15Eは、省略してもよい。   Further, since the joint points 15D and 15E are similarly positioned close to the periphery of the electrode laminate 3, the rotation of the electrode laminate 3 with the electrode tab 4 as a fulcrum is suppressed. In particular, since the junction 15D is provided before the fourth side 10 is heat-sealed, the electrode stack 3 is attached to the exterior body 2 during the transportation of the cell 1 to the liquid injection step (S4). It also contributes to holding in place. In addition, you may abbreviate | omit these junction points 15D and 15E, especially the junction point 15E.

接合点15A〜15Eの加工位置とりわけ第1の辺7に沿った接合点15A〜15Cの加工位置(セル1の長辺方向における位置)は、外装体2の中にある電極積層体3の実際の周縁の位置に対応していることが望ましい。   The processing positions of the junction points 15A to 15E, particularly the processing positions of the junction points 15A to 15C along the first side 7 (positions in the long side direction of the cell 1) are the actual positions of the electrode laminate 3 in the exterior body 2. It is desirable to correspond to the position of the peripheral edge.

一実施例では、電極タブ4の位置をセンサもしくはカメラ等を用いて検出し、この電極タブ4の位置を基準として、接合点15A〜15Cの加工位置(セル1の長辺方向における位置)を設定する。すなわち、図5に示すように、電極タブ4の先端から電極積層体3の周縁までの距離X1が所定値にあるものとして、実際に検出した電極タブ4の先端位置(例えば先端の角の位置)から距離X2(X2<X1)の位置に接合点15A〜15Cを加工する。   In one embodiment, the position of the electrode tab 4 is detected using a sensor or a camera, and the processing positions (positions in the long side direction of the cell 1) of the joining points 15A to 15C are determined using the position of the electrode tab 4 as a reference. Set. That is, as shown in FIG. 5, it is assumed that the distance X1 from the tip of the electrode tab 4 to the periphery of the electrode laminate 3 is a predetermined value, and the tip position of the electrode tab 4 actually detected (for example, the position of the corner of the tip). ) Are joined at positions X2 (X2 <X1).

ここで、さらに高い精度で接合点15A〜15Cを電極積層体3の周縁に近付けるためには、電極積層工程(S1)において電極タブ4が電極積層体3に接合された段階で、電極タブ4の先端から電極積層体3の周縁までの実際の距離X1を個々に測定しておき、この測定データに基づいて、接合点15A〜15Cの加工位置を補正するようにしてもよい。このようにすれば、正極や負極等の積層時のばらつきや電極タブ4の接合時のばらつき等に影響されずに、電極積層体3の周縁により近い位置に接合点15A〜15Cを設定することが可能となる。なお、例えば電極積層工程(S1)において負極を基準として積層を行う場合には、電極タブ4接合後に負極側の電極タブ4と電極積層体3の周縁との相対的な位置関係(つまり距離X1)を測定しておき、接合点形成工程(S3)においても負極側の電極タブ4の位置を検出して、これに基づいて接合点15A〜15Cの位置を設定することが望ましい。   Here, in order to bring the joining points 15A to 15C closer to the periphery of the electrode laminate 3 with higher accuracy, the electrode tab 4 is joined at the stage where the electrode tab 4 is joined to the electrode laminate 3 in the electrode lamination step (S1). The actual distance X1 from the tip of the electrode stack 3 to the periphery of the electrode laminate 3 may be measured individually, and the processing positions of the joining points 15A to 15C may be corrected based on this measurement data. In this way, the junction points 15A to 15C are set at positions closer to the peripheral edge of the electrode laminate 3 without being affected by variations in lamination of the positive electrode and the negative electrode, variations in bonding of the electrode tab 4, and the like. Is possible. For example, in the electrode stacking step (S1), when stacking is performed based on the negative electrode, the relative positional relationship (that is, the distance X1) between the electrode tab 4 on the negative electrode side and the periphery of the electrode stack 3 after the electrode tab 4 is joined. ), And the positions of the electrode tabs 4 on the negative electrode side are also detected in the bonding point forming step (S3), and the positions of the bonding points 15A to 15C are preferably set based on the detected positions.

また、接合点15A〜15Cの加工位置の設定に際して、外装体2の中にある電極積層体3の周縁の位置を外部から検出し、この検出位置を基準として接合点15A〜15Cの加工位置を設定するようにしてもよい。   Further, when setting the processing positions of the joining points 15A to 15C, the position of the peripheral edge of the electrode laminate 3 in the exterior body 2 is detected from the outside, and the processing positions of the joining points 15A to 15C are determined based on this detection position. You may make it set.

図6は、電極積層体3の周縁位置の検出方法の一例を示す説明図であり、接触子として回転自在なローラ25を用い、適宜な加圧力でもって外装体2の表面に接触させながら、矢印DAで示すように、電極積層体3の上となる位置から第1の辺7へ近付くようにセル1の長辺方向に沿ってローラ25を移動させる。電極積層体3の周縁の位置を境界としてローラ25が受ける反力が変化するので、例えばロードセル等で検出される荷重変化により、電極積層体3の周縁の位置を比較的簡易に検出することができる。あるいは、電極積層体3の周縁の位置を境界として接触子であるローラ25のセル1の厚さ方向の位置が変化するので、その位置変化により、電極積層体3の周縁の位置を検出することができる。   FIG. 6 is an explanatory diagram showing an example of a method for detecting the peripheral position of the electrode laminate 3, using a rotatable roller 25 as a contactor, while contacting the surface of the exterior body 2 with an appropriate pressure force, As indicated by the arrow DA, the roller 25 is moved along the long side direction of the cell 1 so as to approach the first side 7 from a position above the electrode laminate 3. Since the reaction force received by the roller 25 changes with the position of the peripheral edge of the electrode stack 3 as a boundary, the position of the peripheral edge of the electrode stack 3 can be detected relatively easily by a load change detected by, for example, a load cell. it can. Alternatively, since the position in the thickness direction of the cell 1 of the roller 25 as a contact changes with the position of the peripheral edge of the electrode laminate 3 as a boundary, the position of the peripheral edge of the electrode laminate 3 is detected by the change in position. Can do.

複数のローラ25(接触子)を用いて、第1の辺7の複数箇所において電極積層体3の周縁位置を検出するようにしてもよい。また、接触子として他の形状の接触子を用いることもできる。   You may make it detect the peripheral position of the electrode laminated body 3 in the several location of the 1st edge | side 7 using the some roller 25 (contactor). Further, a contact having another shape can be used as the contact.

他の実施例としては、セル1に対するX線の透過により電極積層体3の実際の周縁位置を検出するようにしてもよい。図7は、このX線を用いた加工位置の設定の説明図である。図7に示すように、電極積層体3は、アルミニウム箔からなる集電体31aの両面に活物質層31bを設けた正極31と、銅箔からなる集電体32aの両面に活物質層32bを設けた負極32と、ポリプロピレン等からなるセパレータ33と、を多数積層した構成となっている。銅箔からなる負極32の集電体はX線を遮断するので、X線を用いた検査装置により、その端縁位置が検出される。なお、正極31やセパレータ33はX線を透過するので、検出することができないが、正極31は負極32よりも僅かに小さく形成されているので、支障はない。これに対し、セパレータ33は負極32よりも僅かに大きいため、電極積層体3の最外縁の位置としては、X線で検出した負極32の端縁位置よりも僅かに外側となる。   As another example, the actual peripheral position of the electrode stack 3 may be detected by transmitting X-rays to the cell 1. FIG. 7 is an explanatory diagram of the setting of the machining position using this X-ray. As shown in FIG. 7, the electrode laminate 3 includes a positive electrode 31 provided with active material layers 31b on both sides of a current collector 31a made of aluminum foil, and an active material layer 32b on both sides of a current collector 32a made of copper foil. A large number of negative electrodes 32 provided with a separator 33 made of polypropylene or the like are laminated. Since the current collector of the negative electrode 32 made of copper foil blocks X-rays, the edge position is detected by an inspection device using X-rays. The positive electrode 31 and the separator 33 transmit X-rays and cannot be detected. However, since the positive electrode 31 is formed slightly smaller than the negative electrode 32, there is no problem. On the other hand, since the separator 33 is slightly larger than the negative electrode 32, the position of the outermost edge of the electrode laminate 3 is slightly outside the edge position of the negative electrode 32 detected by X-rays.

接合点15A〜15Cの加工位置XAは、図7に示すように、X線による検出位置XBから適宜な余裕代だけ離れた位置に設定される。詳しくは、接合点15の接合領域の内側境界と検出位置XBとの間に所定の距離X3が与えられる。   As shown in FIG. 7, the processing positions XA of the joining points 15A to 15C are set at positions separated from the detection position XB by X-rays by an appropriate margin. Specifically, a predetermined distance X3 is given between the inner boundary of the joint region of the joint point 15 and the detection position XB.

なお、このようにX線を用いて電極積層体3の周縁位置を検出する場合には、3つの接合点15A〜15Cの加工位置を個々に制御することも容易である。また、接合点15D,15Eについても、電極積層体3の周縁位置により近付けて配置することが可能となる。   In addition, when detecting the peripheral position of the electrode laminated body 3 using X-rays in this way, it is also easy to individually control the processing positions of the three joining points 15A to 15C. Also, the junction points 15D and 15E can be arranged closer to the peripheral position of the electrode laminate 3.

以上のように、上記実施例のセル1および製造方法によれば、外装体2を封止するシール線11,13,14よりも電極積層体3の周縁に近い位置に局部的に接合点15が設けられるので、外装体2内部での電極積層体3の移動が抑制される。少なくとも外装体2内部での電極積層体3の移動可能量が短くなる。そのため、前述した特許文献1に開示されているようにセパレータに舌片部を設けて外装体に挟み込むようにした構成を付加する必要がなくなり、電池容量に寄与しない電極積層体投影面積の大型化を回避できる。また、セパレータが上記実施例のようにセラミックス層を具備する場合には、外装体のラミネートフィルムに熱融着で接合することが困難であるので、特許文献1のような構成を採用する場合には、超音波接合等の面倒な接合処理が必要となる。上記実施例では、このようなセパレータとラミネートフィルムとの接合が不要である。   As described above, according to the cell 1 and the manufacturing method of the above embodiment, the junction 15 is locally located at a position closer to the periphery of the electrode laminate 3 than the seal lines 11, 13, and 14 that seal the outer package 2. Therefore, the movement of the electrode laminated body 3 in the exterior body 2 is suppressed. At least the movable amount of the electrode laminate 3 within the exterior body 2 is shortened. Therefore, it is not necessary to add a configuration in which a tongue piece portion is provided in the separator and is sandwiched between exterior bodies as disclosed in Patent Document 1 described above, and the electrode laminate projected area that does not contribute to battery capacity is increased. Can be avoided. In addition, when the separator has a ceramic layer as in the above embodiment, it is difficult to bond to the laminate film of the exterior body by heat fusion. Requires a troublesome bonding process such as ultrasonic bonding. In the said Example, joining of such a separator and a laminate film is unnecessary.

上記実施例では、比較的小型のヒートブロックを用いてラミネートフィルムに接合点15を加工するだけでよく、新たな部材の追加や各部材の面積の拡大等は一切伴わない。また、電池容量も何ら損なうことがない。   In the above embodiment, it is only necessary to process the joining point 15 on the laminate film using a relatively small heat block, and there is no addition of new members or expansion of the area of each member. Further, the battery capacity is not impaired at all.

なお、本発明の接合点15は、必要であれば、特許文献1に開示されているようにセパレータに舌片部を設けて外装体に挟み込むようにした構成と併用することも可能である。例えばセラッミクス層を具備しないセパレータの場合には、外装体の加熱封止と同時に舌片部をラミネートフィルムに熱融着することが可能である。このような場合でも、本発明の接合点15の適用により、例えば、セパレータの舌片部をより小型化することができる利点が得られるとともに、電極積層体の移動を両側でより確実に制限することができることとなる。   In addition, if necessary, the joint point 15 of the present invention can be used in combination with a configuration in which a tongue piece portion is provided on a separator and sandwiched between exterior bodies as disclosed in Patent Document 1. For example, in the case of a separator that does not have a ceramics layer, the tongue piece can be heat-sealed to the laminate film simultaneously with the heat sealing of the outer package. Even in such a case, the application of the joint point 15 of the present invention provides an advantage that, for example, the separator tongue portion can be further reduced in size, and more reliably restricts the movement of the electrode laminate on both sides. Will be able to.

1…セル
2…外装体
3…電極積層体
4…電極タブ
11〜14…シール線
15(15A〜15E)…接合点
21…集電体
31…正極
32…負極
33…セパレータ
DESCRIPTION OF SYMBOLS 1 ... Cell 2 ... Exterior body 3 ... Electrode laminated body 4 ... Electrode tab 11-14 ... Seal wire 15 (15A-15E) ... Junction point 21 ... Current collector 31 ... Positive electrode 32 ... Negative electrode 33 ... Separator

Claims (10)

セパレータを介して正極と負極とが複数積層された電極積層体と、
熱融着層を備えたラミネートフィルムの周縁を加熱封止することで袋状に構成され、上記電極積層体を電解液とともに収容した外装体と、
を備え、上記電極積層体の正負の電極タブが上記外装体の一辺における接合面を通して導出されてなるフィルム外装電池であって、
上記外装体の上記電極タブ側の一辺において、上記電極タブを横切って連続的に設定されたシール線の内側境界よりも上記電極積層体の周縁に近い位置に、ラミネートフィルム同士が局部的に接合された少なくとも1つの接合点を備えている、フィルム外装電池。
An electrode laminate in which a plurality of positive electrodes and negative electrodes are laminated via a separator;
An outer package that is configured in a bag shape by heat-sealing the periphery of a laminate film provided with a heat-fusible layer, and contains the electrode laminate together with an electrolyte solution;
A film-clad battery in which positive and negative electrode tabs of the electrode laminate are led out through a joint surface on one side of the exterior body,
On one side of the exterior body on the electrode tab side, the laminate films are locally joined to a position closer to the periphery of the electrode laminate than the inner boundary of the seal line continuously set across the electrode tab. A film-clad battery comprising at least one bonded point.
上記電極タブ側の一辺において、正負2つの電極タブの間、および各々の電極タブの外側、の3点の接合点を備えている、ことを特徴とする請求項1に記載のフィルム外装電池。   2. The film-clad battery according to claim 1, comprising three junction points on one side of the electrode tab side between two positive and negative electrode tabs and on the outside of each electrode tab. さらに、上記電極タブ側の一辺と交差する上記外装体の他の辺において、当該辺に連続的に設定されるシール線の内側境界よりも上記電極積層体の周縁に近い位置に、上記接合点を備えている、ことを特徴とする請求項1または2に記載のフィルム外装電池。   Furthermore, in the other side of the exterior body that intersects with one side of the electrode tab side, the junction point is positioned closer to the periphery of the electrode stack than the inner boundary of the seal line that is continuously set on the side. The film-clad battery according to claim 1, comprising: 上記セパレータは、合成樹脂層の少なくとも一方の面にセラミックス層を備える、ことを特徴とする請求項1〜3のいずれかに記載のフィルム外装電池。   The film-clad battery according to claim 1, wherein the separator includes a ceramic layer on at least one surface of the synthetic resin layer. 複数の正極および負極をセパレータを介して積層し、一辺に正負の電極タブを備えた電極積層体を構成する電極積層工程と、
熱融着層を備えたラミネートフィルムを2枚重ねもしくは二つ折りとした外装体の中に上記電極積層体を収容するとともに、注入口を残して、上記電極タブが導出された辺を含めて周縁の各辺を、連続的に設定されるシール線に沿って加熱封止する封止工程と、
上記外装体の少なくとも上記電極タブ側の一辺において、当該辺のシール線の内側境界よりも上記電極積層体の周縁に近い位置に、ラミネートフィルム同士を局部的に接合して1つあるいは複数の接合点を形成する接合点形成工程と、
上記注入口を介して上記外装体の中に電解液を注入する注液工程と、
を備えてなるフィルム外装電池の製造方法。
An electrode stacking step of stacking a plurality of positive electrodes and negative electrodes through a separator and forming an electrode stack including positive and negative electrode tabs on one side;
The electrode laminate is accommodated in an exterior body in which two laminated films each having a heat-sealing layer are stacked or folded in two, and the periphery including the side where the electrode tab is led out, leaving an injection port. A sealing step in which each side is heated and sealed along a continuously set seal line;
One or a plurality of joints by locally joining the laminate films at least on one side of the electrode tab side of the outer package at a position closer to the periphery of the electrode laminate than the inner boundary of the seal line of the side A junction forming step for forming a point;
A liquid injection step of injecting an electrolytic solution into the exterior body through the injection port;
A method for producing a film-clad battery comprising:
上記接合点形成工程では、上記外装体から導出された電極タブの位置を検出し、この電極タブの位置を基準として、上記電極タブ側の一辺における上記接合点の加工位置を設定する、ことを特徴とする請求項5に記載のフィルム外装電池の製造方法。   In the bonding point forming step, the position of the electrode tab derived from the exterior body is detected, and the processing position of the bonding point on one side of the electrode tab side is set on the basis of the position of the electrode tab. The method for producing a film-clad battery according to claim 5. 上記電極積層工程を経た電極積層体における電極タブの相対位置を個々に測定しておき、この測定データに基づき上記接合点の加工位置を補正する、ことを特徴とする請求項6に記載のフィルム外装電池の製造方法。   The film according to claim 6, wherein the relative positions of the electrode tabs in the electrode laminate subjected to the electrode lamination step are individually measured, and the processing position of the joining point is corrected based on the measurement data. A method for manufacturing an exterior battery. 上記接合点形成工程では、上記外装体の中にある上記電極積層体の上記電極タブ側の辺もしくはこれに対向する辺における周縁位置を検出し、この検出位置を基準として、上記電極タブ側の一辺における上記接合点の加工位置を設定する、ことを特徴とする請求項5に記載のフィルム外装電池の製造方法。   In the bonding point forming step, the peripheral position of the electrode tab side of the electrode stack in the outer package or the side facing the electrode tab is detected, and the electrode tab side of the electrode tab side is detected based on the detected position. The manufacturing method of the film-clad battery according to claim 5, wherein a processing position of the joint point on one side is set. 外装体の表面に当接した接触子を外装体の表面に沿って移動させることで、上記電極積層体の周縁位置を検出する、ことを特徴とする請求項8に記載のフィルム外装電池の製造方法。   The manufacturing method of the film-clad battery according to claim 8, wherein the peripheral position of the electrode laminate is detected by moving a contact member in contact with the surface of the exterior body along the surface of the exterior body. Method. X線の透過により上記電極積層体の周縁位置を検出する、ことを特徴とする請求項8に記載のフィルム外装電池の製造方法。   The method for producing a film-clad battery according to claim 8, wherein the peripheral position of the electrode laminate is detected by transmission of X-rays.
JP2017118206A 2017-06-16 2017-06-16 Film sheathing battery and manufacturing method therefor Pending JP2019003842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017118206A JP2019003842A (en) 2017-06-16 2017-06-16 Film sheathing battery and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017118206A JP2019003842A (en) 2017-06-16 2017-06-16 Film sheathing battery and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2019003842A true JP2019003842A (en) 2019-01-10

Family

ID=65004965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017118206A Pending JP2019003842A (en) 2017-06-16 2017-06-16 Film sheathing battery and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2019003842A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021210823A1 (en) 2020-09-28 2022-03-31 Yazaki Corporation Method of manufacturing a shielded cable, shielded cable with grounding element, and clamping device
JP7416515B2 (en) 2020-06-04 2024-01-17 エルジー エナジー ソリューション リミテッド Secondary battery and its manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007115478A (en) * 2005-10-19 2007-05-10 Toshiba Battery Co Ltd Nonaqueous electrolyte battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007115478A (en) * 2005-10-19 2007-05-10 Toshiba Battery Co Ltd Nonaqueous electrolyte battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7416515B2 (en) 2020-06-04 2024-01-17 エルジー エナジー ソリューション リミテッド Secondary battery and its manufacturing method
DE102021210823A1 (en) 2020-09-28 2022-03-31 Yazaki Corporation Method of manufacturing a shielded cable, shielded cable with grounding element, and clamping device
US11699873B2 (en) 2020-09-28 2023-07-11 Yazaki Corporation Method for producing shield wire, shield wire with earthing member, and clamping device

Similar Documents

Publication Publication Date Title
JP6721053B2 (en) Power storage device and method of manufacturing power storage device
US8574746B2 (en) Film-covered electrical device and assembled battery
JP5045434B2 (en) ELECTRODE LAMINATE, ELECTRIC DEVICE USING THE ELECTRODE LAMINATE, AND METHOD FOR PRODUCING THEM
JP6678768B2 (en) Method of manufacturing film-covered battery and film-covered battery
WO2018016654A1 (en) Electrochemical device
JP6862639B2 (en) Heat block
JP6342231B2 (en) Battery negative terminal
JP2019003842A (en) Film sheathing battery and manufacturing method therefor
JP6491548B2 (en) Secondary battery manufacturing method and manufacturing apparatus
JP5371563B2 (en) Power storage device
TWI791747B (en) thin battery
JP2018195393A (en) Manufacturing method of film sheathing battery and film sheathing battery
JP2018120803A (en) Method for manufacturing film package battery and film package battery
CN112514128B (en) Laminated secondary battery and method for manufacturing same
TWI627782B (en) Flexible sealed power storage unit, power storage module and power storage unit
JP4708771B2 (en) Film exterior electrical device case and film exterior electrical device with case
JP2019029324A (en) Method of manufacturing film-coated battery
JP2019129070A (en) Manufacturing method of bipolar battery and the bipolar battery
JP2017228381A (en) Battery and manufacturing method of battery
JP7333000B2 (en) Battery manufacturing method
JP2014002858A (en) Electrode storage separator and power storage device
JP6584844B2 (en) Secondary battery manufacturing method and manufacturing apparatus
JP2020107486A (en) Power storage module, and power storage module manufacturing method
JP2019204671A (en) Power storage module and manufacturing method of power storage module
JP2021039833A (en) Power storage element and method for manufacturing power storage element

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20190528

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210309

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211005