JP7102831B2 - Positive electrode and lithium ion secondary battery - Google Patents

Positive electrode and lithium ion secondary battery Download PDF

Info

Publication number
JP7102831B2
JP7102831B2 JP2018056884A JP2018056884A JP7102831B2 JP 7102831 B2 JP7102831 B2 JP 7102831B2 JP 2018056884 A JP2018056884 A JP 2018056884A JP 2018056884 A JP2018056884 A JP 2018056884A JP 7102831 B2 JP7102831 B2 JP 7102831B2
Authority
JP
Japan
Prior art keywords
graphene
positive electrode
active material
electrode active
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018056884A
Other languages
Japanese (ja)
Other versions
JP2019169376A (en
Inventor
洋 苅宿
智彦 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2018056884A priority Critical patent/JP7102831B2/en
Publication of JP2019169376A publication Critical patent/JP2019169376A/en
Application granted granted Critical
Publication of JP7102831B2 publication Critical patent/JP7102831B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、正極及びリチウムイオン二次電池に関する。 The present invention relates to a positive electrode and a lithium ion secondary battery.

リチウムイオン二次電池は、ニッケルカドミウム電池、ニッケル水素電池等と比べ、軽量、高容量であるため、携帯電子機器用電源として広く応用されている。また、ハイブリッド自動車や、電気自動車用に搭載される電源として有力な候補ともなっている。そして、近年の携帯電子機器の小型化、高機能化に伴い、これらの電源となるリチウムイオン二次電池への更なる高容量化が期待されている。 Lithium-ion secondary batteries are lighter and have higher capacity than nickel-cadmium batteries, nickel-metal hydride batteries, and the like, and are therefore widely used as power sources for portable electronic devices. It is also a promising candidate for power sources installed in hybrid vehicles and electric vehicles. With the recent miniaturization and higher functionality of portable electronic devices, it is expected that the capacity of lithium ion secondary batteries, which are the power sources for these devices, will be further increased.

特に、正極活物質として層状構造のリチウム含有遷移金属複合酸化物を用いたリチウムイオン二次電池は、従来の電池と比較して電池の高エネルギー密度化が可能であるため、現在では広く普及している。しかしながら、現在のリチウムイオン二次電池は、用途の多様化により、様々な特性の向上が望まれている。 In particular, lithium ion secondary batteries using a layered lithium-containing transition metal composite oxide as a positive electrode active material are now widely used because they can have a higher energy density than conventional batteries. ing. However, the current lithium-ion secondary batteries are desired to have various characteristics improved due to diversification of applications.

層状構造のリチウム含有遷移金属複合酸化物を用いたリチウムイオン二次電池の課題の一つとして、出力特性の向上が挙げられる。出力特性向上を目的として、様々な方法が試みられているが、その中の一つとして正極にグラフェンまたは多層グラフェンを用いることが挙げられている。 One of the problems of the lithium ion secondary battery using the lithium-containing transition metal composite oxide having a layered structure is to improve the output characteristics. Various methods have been tried for the purpose of improving the output characteristics, and one of them is to use graphene or multi-layer graphene for the positive electrode.

例えば特許文献1には、粒状正極活物質をグラフェンで被覆して、電子伝導性とイオン伝導性とを改善したリチウム二次電池用正極材料が開示されている。 For example, Patent Document 1 discloses a positive electrode material for a lithium secondary battery in which a granular positive electrode active material is coated with graphene to improve electron conductivity and ionic conductivity.

特開2017-135105号公報JP-A-2017-135105

しかしながら、更なる出力特性の改善が求められている。 However, further improvement in output characteristics is required.

本発明は上記従来技術の有する課題に鑑みてなされたものであり、出力特性を向上することができる正極およびイオン二次電池を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to provide a positive electrode and an ion secondary battery capable of improving output characteristics.

本発明者は、上記課題を解決するために、鋭意検討を重ねた。
本発明者は、正極活物質層中に含まれるグラフェン又は多層グラフェンの表面に所定の微粒子が付着している場合、リチウムイオン二次電池の出力特性を改善できることを見出した。
すなわち、上記課題を解決するため、以下の手段を提供する。
The present inventor has made extensive studies in order to solve the above problems.
The present inventor has found that the output characteristics of a lithium ion secondary battery can be improved when predetermined fine particles are attached to the surface of graphene or multilayer graphene contained in the positive electrode active material layer.
That is, in order to solve the above problems, the following means are provided.

(1)第1の態様にかかる正極は、正極集電体と、前記正極集電体の表面上に設けられた正極活物質層とを有し、前記正極活物質層は、以下の組成式(1)で表される正極活物質と、グラフェン又は多層グラフェンとを含み、前記正極活物質は、前記グラフェン又は前記多層グラフェンの平均粒子径Daの2分の1以下の粒子径を有する粒子からなる粒子群A1を有し、前記粒子群A1の少なくとも一部は前記グラフェン又は前記多層グラフェンの表面に付着している。
LiNiCoMn(M) (1)
(ただし、Mは、Al、Si、Zr、Ti、Fe、Mg、Nb、Ba及びVからなる群から選ばれる少なくとも1種を示し、1.90≦(a+b+c+d+e)≦2.2、0<a≦1.3、0.5≦b≦1.0、0≦c≦1.0、0≦d≦0.7、0≦e≦0.2である。)
(1) The positive electrode according to the first aspect has a positive electrode current collector and a positive electrode active material layer provided on the surface of the positive electrode current collector, and the positive electrode active material layer has the following composition formula. The positive electrode active material includes the positive electrode active material represented by (1) and graphene or multilayer graphene, and the positive electrode active material is composed of particles having a particle size of 1/2 or less of the average particle size Da of the graphene or the multilayer graphene. The particle group A1 is formed, and at least a part of the particle group A1 is attached to the surface of the graphene or the multilayer graphene.
Li a Ni b Co c Mn d (M) e O 2 (1)
(However, M indicates at least one selected from the group consisting of Al, Si, Zr, Ti, Fe, Mg, Nb, Ba and V, and 1.90 ≦ (a + b + c + d + e) ≦ 2.2, 0 <a. ≦ 1.3, 0.5 ≦ b ≦ 1.0, 0 ≦ c ≦ 1.0, 0 ≦ d ≦ 0.7, 0 ≦ e ≦ 0.2)

(2)上記態様にかかる正極において、前記正極活物質は、前記グラフェン又は前記多層グラフェンの平均粒子径Daよりも大きい粒子径を有する粒子からなる粒子群A2を更に有し、前記粒子群A1の少なくとも一部は、前記グラフェン又は前記多層グラフェンと前記粒子群A2との間に存在してもよい。 (2) In the positive electrode according to the above aspect, the positive electrode active material further has a particle group A2 composed of particles having a particle size larger than the average particle size Da of the graphene or the multilayer graphene, and the particle group A1. At least a part may be present between the graphene or the multilayer graphene and the particle group A2.

(3)上記態様にかかる正極において、前記グラフェン又は前記多層グラフェンの表面に付着した付着粒子の平均粒子径Dbは3μm以下でもよい。 (3) In the positive electrode according to the above aspect, the average particle diameter Db of the adhered particles adhering to the surface of the graphene or the multilayer graphene may be 3 μm or less.

(4)上記態様にかかる正極において、前記グラフェン又は前記多層グラフェンの平均粒子径Daは3~25μmでもよい。 (4) In the positive electrode according to the above aspect, the average particle size Da of the graphene or the multilayer graphene may be 3 to 25 μm.

(5)上記態様にかかる正極において、前記グラフェン又は前記多層グラフェンの平均粒子径Daと、前記グラフェン又は前記多層グラフェンの表面に付着した付着粒子の平均粒子径Dbとが、Da/Db≧2を満たしてもよい。 (5) In the positive electrode according to the above aspect, the average particle size Da of the graphene or the multilayer graphene and the average particle size Db of the adhered particles adhering to the surface of the graphene or the multilayer graphene have Da / Db ≧ 2. May be satisfied.

(6)第2の態様にかかるリチウムイオン二次電池は、上記態様に係る正極を有する。 (6) The lithium ion secondary battery according to the second aspect has a positive electrode according to the above aspect.

上記態様に係る正極は、正極活物質層中に含まれるグラフェン又は多層グラフェンの表面に所定の微粒子が付着しているため、リチウムイオン二次電池の出力特性が向上する。 In the positive electrode according to the above aspect, predetermined fine particles are attached to the surface of graphene or multilayer graphene contained in the positive electrode active material layer, so that the output characteristics of the lithium ion secondary battery are improved.

本実施形態にかかるリチウムイオン二次電池の断面模式図である。It is sectional drawing of the lithium ion secondary battery which concerns on this embodiment. 本実施形態に係る正極活物質の走査型電子顕微鏡(SEM)像である。It is a scanning electron microscope (SEM) image of the positive electrode active material which concerns on this embodiment.

以下、本実施形態について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、本発明の特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。 Hereinafter, the present embodiment will be described in detail with reference to the drawings as appropriate. The drawings used in the following description may be enlarged for convenience in order to make the features of the present invention easy to understand, and the dimensional ratios of the respective components may differ from the actual ones. be. The materials, dimensions, etc. exemplified in the following description are examples, and the present invention is not limited thereto, and the present invention can be appropriately modified without changing the gist thereof.

[リチウムイオン二次電池]
図1は、本実施形態にかかるリチウムイオン二次電池100の断面模式図である。図1に示すリチウムイオン二次電池100は、主として積層体40、積層体40を密閉した状態で収容する外装体50、及び積層体40に接続された一対のリード60、62を備えている。また図示されていないが、積層体40とともに電解液が、外装体50内に収容されている。
[Lithium-ion secondary battery]
FIG. 1 is a schematic cross-sectional view of the lithium ion secondary battery 100 according to the present embodiment. The lithium ion secondary battery 100 shown in FIG. 1 mainly includes a laminate 40, an exterior body 50 that houses the laminate 40 in a sealed state, and a pair of leads 60 and 62 connected to the laminate 40. Although not shown, the electrolytic solution is housed in the exterior body 50 together with the laminated body 40.

積層体40は、正極20と負極30とが、セパレータ10を挟んで対向配置されたものである。正極20は、板状(膜状)の正極集電体22上に正極活物質層24が設けられたものである。負極30は、板状(膜状)の負極集電体32上に負極活物質層34が設けられたものである。 In the laminated body 40, the positive electrode 20 and the negative electrode 30 are arranged so as to face each other with the separator 10 interposed therebetween. The positive electrode 20 has a positive electrode active material layer 24 provided on a plate-shaped (film-shaped) positive electrode current collector 22. The negative electrode 30 has a negative electrode active material layer 34 provided on a plate-shaped (film-shaped) negative electrode current collector 32.

正極活物質層24及び負極活物質層34は、セパレータ10の両側にそれぞれ接触している。正極集電体22及び負極集電体32の端部には、それぞれリード62、60が接続されており、リード60、62の端部は外装体50の外部にまで延びている。図1では、外装体50内に積層体40が一つの場合を例示したが、複数積層されていてもよい。 The positive electrode active material layer 24 and the negative electrode active material layer 34 are in contact with both sides of the separator 10, respectively. Leads 62 and 60 are connected to the ends of the positive electrode current collector 22 and the negative electrode current collector 32, respectively, and the ends of the leads 60 and 62 extend to the outside of the exterior body 50. In FIG. 1, a case where one laminated body 40 is provided in the exterior body 50 is illustrated, but a plurality of laminated bodies 40 may be laminated.

「正極」
正極20は、正極集電体22と、正極集電体22の表面上に設けられた正極活物質層24とを有する。
"Positive electrode"
The positive electrode 20 has a positive electrode current collector 22 and a positive electrode active material layer 24 provided on the surface of the positive electrode current collector 22.

(正極集電体)
正極集電体22は、導電性の板材であればよく、例えば、アルミニウム、銅、ニッケル箔の金属薄板を用いることができる。
(Positive current collector)
The positive electrode current collector 22 may be any conductive plate material, and for example, a thin metal plate of aluminum, copper, or nickel foil can be used.

(正極活物質層)
正極活物質層24は、以下の組成式(1)で表される正極活物質と、グラフェン又は多層グラフェンとを含み、必要に応じてバインダーを含んでよい。組成式(1)から分かるように正極活物質はLi及びNiを含み、グラフェン又は多層グラフェンは正極導電材の役割を果たす。
LiNiCoMn(M) (1)
(ただし、Mは、Al、Si、Zr、Ti、Fe、Mg、Nb、Ba及びVからなる群から選ばれる少なくとも1種を示し、1.90≦(a+b+c+d+e)≦2.2、0<a≦1.3、0.5≦b≦1.0、0≦c≦1.0、0≦d≦0.7、0≦e≦0.2である。)
(Positive electrode active material layer)
The positive electrode active material layer 24 contains the positive electrode active material represented by the following composition formula (1), graphene or multi-layer graphene, and may contain a binder if necessary. As can be seen from the composition formula (1), the positive electrode active material contains Li and Ni, and graphene or multi-layer graphene plays the role of a positive electrode conductive material.
Li a Ni b Co c Mn d (M) e O 2 (1)
(However, M indicates at least one selected from the group consisting of Al, Si, Zr, Ti, Fe, Mg, Nb, Ba and V, and 1.90 ≦ (a + b + c + d + e) ≦ 2.2, 0 <a. ≦ 1.3, 0.5 ≦ b ≦ 1.0, 0 ≦ c ≦ 1.0, 0 ≦ d ≦ 0.7, 0 ≦ e ≦ 0.2)

多層グラフェンとの用語は、約50層以下の積層構造を有するグラフェンを意味し、特に2層~30層程度の積層構造を有するグラフェンを含む。 The term "multilayer graphene" means graphene having a laminated structure of about 50 layers or less, and particularly includes graphene having a laminated structure of about 2 to 30 layers.

図2に、本実施形態に係る正極活物質層用粉末の走査型電子顕微鏡(SEM)像を示す。正極活物質は、正極活物質層24に含まれるグラフェン又は多層グラフェンGの平均粒子径Daの2分の1以下の粒子径を有する粒子からなる粒子群A1を有する。 FIG. 2 shows a scanning electron microscope (SEM) image of the powder for the positive electrode active material layer according to the present embodiment. The positive electrode active material has a particle group A1 composed of particles having a particle size of 1/2 or less of the average particle size Da of graphene or multilayer graphene G contained in the positive electrode active material layer 24.

グラフェン又は多層グラフェンGと正極活物質の粒子径は、SEMで測定することで求めることができる。具体的には、以下のように求める。まず正極の断面の倍率1000倍の二次電子像と反射電子像を10枚撮影する。バインダーは二次電子像において黒く映るため、画像を2値化し、正極活物質及びグラフェン又は多層グラフェンGを抽出する。次いで、反射電子像を2値化し、正極活物質とグラフェン又は多層グラフェンGをそれぞれ抽出する。抽出したすべての粒子の粒径を画像処理により測定する。同様の作業を10枚の画像で行い、グラフェン又は多層グラフェンGの粒子径及び正極活物質の粒子径を求める。グラフェン又は多層グラフェンGは扁平形状であり、粒子径はグラフェン又は多層グラフェンGの積層方向と直交するグラフェン又は多層グラフェンGの幅(長径)を意味する。 The particle size of graphene or multilayer graphene G and the positive electrode active material can be determined by measuring with SEM. Specifically, it is calculated as follows. First, 10 images of secondary electron images and backscattered electron images at a magnification of 1000 times the cross section of the positive electrode are taken. Since the binder appears black in the secondary electron image, the image is binarized and the positive electrode active material and graphene or multi-layer graphene G are extracted. Next, the backscattered electron image is binarized, and the positive electrode active material and graphene or multi-layer graphene G are extracted, respectively. The particle size of all the extracted particles is measured by image processing. The same operation is performed on 10 images, and the particle size of graphene or multilayer graphene G and the particle size of the positive electrode active material are determined. The graphene or multi-layer graphene G has a flat shape, and the particle size means the width (major diameter) of graphene or multi-layer graphene G orthogonal to the stacking direction of graphene or multi-layer graphene G.

代替的に、グラフェン又は多層グラフェンGと正極活物質の粒子径は、正極からグラフェン及び正極活物質を分離してから測定してもよい。具体的には、電池から取り出した正極を、バインダーを溶解する溶媒中に入れて攪拌し、溶媒中に遊離した正極構成材料をろ過により取り出す。その後、正極構成材料から分離されたグラフェン又は多層グラフェンGと正極活物質粒子とを電子顕微鏡で観察することで、グラフェン又は多層グラフェンGと正極活物質の粒子径を求めることができる。 Alternatively, the particle size of graphene or multilayer graphene G and the positive electrode active material may be measured after separating graphene and the positive electrode active material from the positive electrode. Specifically, the positive electrode taken out from the battery is put in a solvent for dissolving the binder and stirred, and the positive electrode constituent material released in the solvent is taken out by filtration. Then, by observing the graphene or multilayer graphene G separated from the positive electrode constituent material and the positive electrode active material particles with an electron microscope, the particle size of the graphene or multilayer graphene G and the positive electrode active material can be determined.

粒子群A1は、上記の測定により求められたグラフェン又は多層グラフェンGの平均粒子径Daの2分の1以下の粒子径を有する粒子からなる。粒子群A1に含まれる粒子の組成は、上記組成式(1)を満たしてればよく、粒子群A1に含まれない正極活物質(後述する粒子群A2)と同じでも、異なってもよい。 The particle group A1 is composed of particles having a particle diameter of 1/2 or less of the average particle diameter Da of graphene or multilayer graphene G determined by the above measurement. The composition of the particles contained in the particle group A1 may be the same as or different from the positive electrode active material (particle group A2 described later) not included in the particle group A1 as long as the composition formula (1) is satisfied.

粒子群A1の粒子数は、正極活物質の粒子数の3%以上であることが好ましく、5%以上であることが更に好ましい。このような粒子数を採用することによって、グラフェン又は多層グラフェンGと正極活物質との電子伝導経路を十分に確保することができる。また、粒子群A1の粒子数は、正極活物質の粒子数の30%以下であることが好ましく、15%以下であることが更に好ましい。このような粒子数を採用することによって、リチウムイオン二次電池100の充放電サイクル中に正極活物質層24の劣化を抑制できる。即ち、リチウムイオン二次電池のサイクル特性を向上することができる。 The number of particles in the particle group A1 is preferably 3% or more, more preferably 5% or more, of the number of particles of the positive electrode active material. By adopting such a number of particles, it is possible to sufficiently secure an electron conduction path between graphene or multilayer graphene G and the positive electrode active material. The number of particles in the particle group A1 is preferably 30% or less, more preferably 15% or less of the number of particles of the positive electrode active material. By adopting such a number of particles, deterioration of the positive electrode active material layer 24 can be suppressed during the charge / discharge cycle of the lithium ion secondary battery 100. That is, the cycle characteristics of the lithium ion secondary battery can be improved.

従来も正極活物質として小さな破砕粒子が混入することがあったが、サイクル特性の低下を防ぐために、小さな破砕粒子は除去されるのが通常である。従って、従来の正極活物質層では、3μm以下の平均粒子径を有する小さな正極活物質粒子は3%未満であり、通常は1%未満である。即ち、意図的に小さな正極活物質を追加しない限り、粒子群A1の粒子数が、正極活物質の全粒子数の3%以上にはならない。 Conventionally, small crushed particles may be mixed as a positive electrode active material, but in order to prevent deterioration of cycle characteristics, small crushed particles are usually removed. Therefore, in the conventional positive electrode active material layer, the amount of small positive electrode active material particles having an average particle diameter of 3 μm or less is less than 3%, and usually less than 1%. That is, unless a small positive electrode active material is intentionally added, the number of particles in the particle group A1 does not exceed 3% of the total number of particles of the positive electrode active material.

粒子群A1の少なくとも一部は、グラフェン又は多層グラフェンGの表面に付着している。以下、このグラフェン又は多層グラフェンGの表面に付着した正極活物質を付着粒子Fという。付着粒子Fの組成は、上記組成式(1)を満たしてればよく、粒子群A1に含まれない正極活物質(後述する粒子群A2)と同じでも、異なってもよい。 At least a part of the particle group A1 is attached to the surface of graphene or multi-layer graphene G. Hereinafter, the positive electrode active material adhering to the surface of the graphene or the multilayer graphene G is referred to as adhering particles F. The composition of the adhered particles F may be the same as or different from the positive electrode active material (particle group A2 described later) not included in the particle group A1 as long as the composition formula (1) is satisfied.

グラフェン又は多層グラフェンGの表面に比較的小さな正極活物質が付着していることによって、リチウムイオン二次電池の出力特性を高めることができる。この理由は完全に明らかではないが、以下のように考えることができる。即ち、グラフェン又は多層グラフェンGの表面上にNiを含有する小さな正極活物質が付着していることにより、グラフェン又は多層グラフェンGの表面上に付着していないNiを含有する正極活物質と、グラフェン又は多層グラフェンGとの間の親和性が高まる。その結果、グラフェンと正極活物質との電子伝導経路が確保しやすくなったのだと理解することができる。 By adhering a relatively small positive electrode active material to the surface of graphene or multilayer graphene G, the output characteristics of the lithium ion secondary battery can be enhanced. The reason for this is not completely clear, but it can be thought of as follows. That is, since a small positive electrode active material containing Ni is attached to the surface of graphene or multi-layer graphene G, a positive electrode active material containing Ni that is not attached to the surface of graphene or multi-layer graphene G and graphene Alternatively, the affinity with the multilayer graphene G is enhanced. As a result, it can be understood that it has become easier to secure an electron conduction path between graphene and the positive electrode active material.

付着粒子Fの平均粒子径Dbは3μm以下であることが好ましく、2μm以下であることが更に好ましい。付着粒子Fの平均粒子径Dbは、SEM像において確認される任意の20個の付着粒子Fの粒子径を平均することで求めることができる。付着粒子Fの粒子径は、SEM像においてグラフェン又は多層グラフェンGと重なっており、二値化による抽出では測定しにくい。そのため、上記のように付着粒子FをSEM像から直接測定する。このようなDbを選択することによって、付着粒子Fがグラフェン又は多層グラフェンGと正極活物質との間の電子伝導経路を好適に確保することができる。 The average particle diameter Db of the adhered particles F is preferably 3 μm or less, and more preferably 2 μm or less. The average particle size Db of the attached particles F can be obtained by averaging the particle sizes of any 20 attached particles F confirmed in the SEM image. The particle size of the attached particles F overlaps with graphene or multi-layer graphene G in the SEM image, and is difficult to measure by extraction by binarization. Therefore, the adhered particles F are measured directly from the SEM image as described above. By selecting such a Db, the adherent particles F can suitably secure an electron conduction path between graphene or multilayer graphene G and the positive electrode active material.

正極活物質は、グラフェン又は多層グラフェンGの平均粒子径Daよりも大きい粒子径を有する粒子からなる粒子群A2を更に有し、粒子群A1の少なくとも一部は、グラフェン又は多層グラフェンGと粒子群A2との間に存在していることが好ましい。 The positive electrode active material further has a particle group A2 composed of particles having a particle size larger than the average particle size Da of graphene or multilayer graphene G, and at least a part of the particle group A1 is graphene or multilayer graphene G and a particle group. It is preferable that it exists between A2 and A2.

粒子群A1の少なくとも一部がグラフェン又は多層グラフェンGと粒子群A2との間に存在することにより、リチウムイオン二次電池の出力特性を向上させることができる。この理由は完全に明らかではないが、以下のように考えることができる。粒径の大きな粒子群A1は、リチウムを吸蔵、放出し、電池の主反応を担う。そこで発生した電子が、グラフェン又は多層グラフェンGと親和性の高い粒子群A2(特に付着粒子)を介して伝導することで、リチウムイオン二次電池の出力特性を向上するものと理解できる。 Since at least a part of the particle group A1 is present between graphene or multilayer graphene G and the particle group A2, the output characteristics of the lithium ion secondary battery can be improved. The reason for this is not completely clear, but it can be thought of as follows. The particle swarm A1 with a large particle size occludes and releases lithium, and is responsible for the main reaction of the battery. It can be understood that the electrons generated there are conducted via the particle group A2 (particularly adherent particles) having a high affinity with graphene or multi-layer graphene G to improve the output characteristics of the lithium ion secondary battery.

グラフェン又は多層グラフェンGの表面上に付着している比較的小さな正極活物質粒子は、グラフェン又は多層グラフェンGの表面上に付着していない比較的大きな正極活物質粒子と隣接していることが好ましい。この場合、グラフェン又は多層グラフェンGの表面上に付着している比較的小さな正極活物質粒子は、グラフェン又は多層グラフェンGと、比較的大きな正極活物質粒子とに接する。従って、グラフェン又は多層グラフェンGと比較的大きな正極活物質との電子伝導が更に容易となる。 The relatively small positive electrode active material particles adhering to the surface of graphene or multilayer graphene G are preferably adjacent to the relatively large positive electrode active material particles not adhering to the surface of graphene or multilayer graphene G. .. In this case, the relatively small positive electrode active material particles adhering to the surface of graphene or multilayer graphene G are in contact with graphene or multilayer graphene G and relatively large positive electrode active material particles. Therefore, electron conduction between graphene or multilayer graphene G and a relatively large positive electrode active material becomes easier.

グラフェン又は多層グラフェンGの平均粒子径Daは、3~25μmであることが好ましく、5~20μmであることが更に好ましく、10~15μmであることが更に好ましい。このようなDaを採用することによって、正極活物質層24の平坦性を維持しつつ、グラフェン又は多層グラフェンGと正極活物質との間の電子伝導経路を好適に確保することができる。 The average particle size Da of graphene or multilayer graphene G is preferably 3 to 25 μm, more preferably 5 to 20 μm, and even more preferably 10 to 15 μm. By adopting such Da, it is possible to suitably secure an electron conduction path between graphene or multilayer graphene G and the positive electrode active material while maintaining the flatness of the positive electrode active material layer 24.

グラフェン又は多層グラフェンGの平均粒子径Daと、付着粒子Fの平均粒子径Dbとは、Da/Db≧2を満たすことが好ましく、Da/Db≧5を満たすことが更に好ましい。Da及びDbがこのような関係を満たすことによって、グラフェン又は多層グラフェンG上に正極活物質を好適に付着させることができ、正極活物質層24中の電子伝導経路を好適に確保することができる。 The average particle size Da of graphene or multilayer graphene G and the average particle size Db of adherent particles F preferably satisfy Da / Db ≧ 2, and more preferably Da / Db ≧ 5. When Da and Db satisfy such a relationship, the positive electrode active material can be suitably adhered to graphene or the multilayer graphene G, and the electron conduction path in the positive electrode active material layer 24 can be suitably secured. ..

粒子群A1の粒子径の個数分布は、グラフェン又は多層グラフェンGの平均粒子径Daの2分の1以下にピークを有することが好ましい。この場合、正極活物質全体の粒子径の個数分布は2以上のピークを有することになる。粒子群A1がこのような粒子径分布を有することによって、グラフェン又は多層グラフェンGと正極活物質との間の電子伝導経路を好適に確保することができる。 The number distribution of the particle size of the particle group A1 preferably has a peak at half or less of the average particle size Da of graphene or multi-layer graphene G. In this case, the number distribution of the particle size of the entire positive electrode active material has two or more peaks. When the particle group A1 has such a particle size distribution, it is possible to suitably secure an electron conduction path between graphene or multilayer graphene G and the positive electrode active material.

(正極バインダー)
バインダーは、公知のものを用いることができる。例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン-テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン-クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂、が挙げられる。
(Positive binder)
A known binder can be used. For example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), ethylene-tetrafluoro Fluororesin such as ethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), ethylene-chlorotrifluoroethylene copolymer (ECTFE), and polyvinyl fluoride (PVF) can be mentioned.

上記の他に、バインダーとして、例えば、ビニリデンフルオライド-ヘキサフルオロプロピレン系フッ素ゴム(VDF-HFP系フッ素ゴム)、ビニリデンフルオライド-ヘキサフルオロプロピレン-テトラフルオロエチレン系フッ素ゴム(VDF-HFP-TFE系フッ素ゴム)、ビニリデンフルオライド-ペンタフルオロプロピレン系フッ素ゴム(VDF-PFP系フッ素ゴム)、ビニリデンフルオライド-ペンタフルオロプロピレン-テトラフルオロエチレン系フッ素ゴム(VDF-PFP-TFE系フッ素ゴム)、ビニリデンフルオライド-パーフルオロメチルビニルエーテル-テトラフルオロエチレン系フッ素ゴム(VDF-PFMVE-TFE系フッ素ゴム)、ビニリデンフルオライド-クロロトリフルオロエチレン系フッ素ゴム(VDF-CTFE系フッ素ゴム)等のビニリデンフルオライド系フッ素ゴムを用いてもよい。 In addition to the above, as binders, for example, vinylidene fluoride-hexafluoropropylene-based fluorine rubber (VDF-HFP-based fluorine rubber), vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene-based fluorine rubber (VDF-HFP-TFE-based) Fluoro-rubber), vinylidene fluoride-pentafluoropropylene-based fluorine rubber (VDF-PFP-based fluorine rubber), vinylidene fluoride-pentafluoropropylene-tetrafluoroethylene-based fluorine rubber (VDF-PFP-TFE-based fluorine rubber), vinylidene fluo Vinylidene fluoride-based fluorine such as ride-perfluoromethyl vinyl ether-tetrafluoroethylene-based fluorine rubber (VDF-PFMVE-TFE-based fluorine rubber), vinylidene fluoride-chlorotrifluoroethylene-based fluorine rubber (VDF-CTFE-based fluorine rubber) Rubber may be used.

また、バインダーとして電子伝導性の導電性高分子やイオン伝導性の導電性高分子を用いてもよい。電子伝導性の導電性高分子としては、例えば、ポリアセチレン等が挙げられる。この場合は、バインダーが導電材の機能も発揮するので導電材を添加しなくてもよい。イオン伝導性の導電性高分子としては、例えば、リチウムイオン等のイオンの伝導性を有するものを使用することができ、例えば、高分子化合物(ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル系高分子化合物、ポリフォスファゼン等)のモノマーと、LiClO、LiBF、LiPF等のリチウム塩又はリチウムを主体とするアルカリ金属塩と、を複合化させたもの等が挙げられる。複合化に使用する重合開始剤としては、例えば、上記のモノマーに適合する光重合開始剤または熱重合開始剤が挙げられる。 Further, an electron conductive conductive polymer or an ion conductive conductive polymer may be used as the binder. Examples of the electron-conducting conductive polymer include polyacetylene and the like. In this case, since the binder also functions as a conductive material, it is not necessary to add the conductive material. As the ionic conductive polymer, for example, one having ionic conductivity such as lithium ion can be used, and for example, a polymer compound (polyether-based polymer compound such as polyethylene oxide and polypropylene oxide) can be used. , Polyphosphazene, etc.) and a lithium salt such as LiClO 4 , LiBF 4 , LiPF 6 , or an alkali metal salt mainly composed of lithium, and the like. Examples of the polymerization initiator used for the compounding include a photopolymerization initiator or a thermal polymerization initiator compatible with the above-mentioned monomers.

またこの他に、バインダーとして、例えば、セルロース、スチレン・ブタジエンゴム、エチレン・プロピレンゴム、ポリイミド樹脂、ポリアミドイミド樹脂、アクリル樹脂等を用いてもよい。 In addition, as the binder, for example, cellulose, styrene / butadiene rubber, ethylene / propylene rubber, polyimide resin, polyamideimide resin, acrylic resin or the like may be used.

正極活物質層24における正極活物質の構成比率は、質量比で80%以上90%以下であることが好ましい。また正極活物質層24における導電材の構成比率は、質量比で0.5%以上10%以下であることが好ましく、正極活物質層24におけるバインダーの構成比率は、質量比で0.5%以上10%以下であることが好ましい。 The composition ratio of the positive electrode active material in the positive electrode active material layer 24 is preferably 80% or more and 90% or less in terms of mass ratio. The composition ratio of the conductive material in the positive electrode active material layer 24 is preferably 0.5% or more and 10% or less in terms of mass ratio, and the composition ratio of the binder in the positive electrode active material layer 24 is 0.5% by mass ratio. It is preferably 10% or more.

「負極」
負極30は、負極集電体32と負極集電体の表面上に設けられた負極活物質層34とを有する。
"Negative electrode"
The negative electrode 30 has a negative electrode current collector 32 and a negative electrode active material layer 34 provided on the surface of the negative electrode current collector.

(負極集電体)
負極集電体32は、導電性の板材であればよく、例えば、アルミニウム、銅、ニッケル箔の金属薄板を用いることができる。負極集電体32は、リチウムと合金化しないことが好ましく、銅が特に好ましい。負極集電体32の厚みは6~30μmとすることが好ましい。
(Negative electrode current collector)
The negative electrode current collector 32 may be any conductive plate material, and for example, a thin metal plate of aluminum, copper, or nickel foil can be used. The negative electrode current collector 32 is preferably not alloyed with lithium, and copper is particularly preferable. The thickness of the negative electrode current collector 32 is preferably 6 to 30 μm.

(負極活物質層)
負極活物質層34は、負極活物質と負極バインダーとを有し、必要に応じて導電材を有する。
(Negative electrode active material layer)
The negative electrode active material layer 34 has a negative electrode active material and a negative electrode binder, and has a conductive material if necessary.

(負極活物質)
負極活物質は、公知の非水電解液二次電池に用いられる負極活物質を使用できる。負極活物質としては、例えば、金属リチウム等のアルカリ又はアルカリ土類金属、イオンを吸蔵・放出可能な黒鉛(天然黒鉛、人造黒鉛)、カーボンナノチューブ、難黒鉛化炭素、易黒鉛化炭素、低温度焼成炭素等の炭素材料、アルミニウム、シリコン、スズ等のリチウム等の金属と化合することのできる金属、SiO(0<x<2)、二酸化スズ等の酸化物を主体とする非晶質の化合物、チタン酸リチウム(LiTi12)等を含む粒子が挙げられる。
(Negative electrode active material)
As the negative electrode active material, a negative electrode active material used in a known non-aqueous electrolytic solution secondary battery can be used. Examples of the negative electrode active material include alkali or alkaline earth metals such as metallic lithium, graphite capable of storing and releasing ions (natural graphite, artificial graphite), carbon nanotubes, non-graphitizable carbon, easily graphitized carbon, and low temperature. Amorphous, mainly composed of carbon materials such as calcined carbon, metals that can be combined with metals such as lithium such as aluminum, silicon, and tin, and oxides such as SiO x (0 <x <2) and tin dioxide. Examples thereof include particles containing a compound, lithium titanate (Li 4 Ti 5 O 12 ) and the like.

(負極導電材)
導電材としては、例えば、カーボンブラック類等のカーボン粉末、カーボンナノチューブ、炭素材料、銅、ニッケル、ステンレス、鉄等の金属微粉、炭素材料及び金属微粉の混合物、ITO等の導電性酸化物等を用いることができる。これらの中でも、カーボンブラック等の炭素材料が好ましい。活物質材料のみで十分な導電性を確保できる場合は、導電助剤を含んでいなくてもよい。
(Negative electrode conductive material)
Examples of the conductive material include carbon powder such as carbon black, carbon nanotube, carbon material, metal fine powder such as copper, nickel, stainless steel and iron, a mixture of carbon material and metal fine powder, and conductive oxide such as ITO. Can be used. Among these, a carbon material such as carbon black is preferable. If sufficient conductivity can be ensured only with the active material, it is not necessary to contain the conductive auxiliary agent.

(負極バインダー)
負極に用いるバインダーは正極と同様のものを使用できる。また、負極バインダーとして水系バインダーを使用してもよい。水系バインダーは、例えばスチレンブタジエンゴム(SBR)を使用することができる。
(Negative electrode binder)
The binder used for the negative electrode can be the same as that used for the positive electrode. Moreover, you may use an aqueous binder as a negative electrode binder. As the water-based binder, for example, styrene-butadiene rubber (SBR) can be used.

負極活物質層中の負極活物質、導電材及びバインダーの含有量は特に限定されない。負極活物質層における負極活物質の構成比率は、質量比で70%以上99%以下であることが好ましく、90%以上98%以下であることがより好ましい。また負極活物質層における導電材の構成比率は、質量比で0%以上20%以下であることが好ましく、負極活物質層におけるバインダーの構成比率は、質量比で1%以上30%以下であることが好ましい。 The contents of the negative electrode active material, the conductive material and the binder in the negative electrode active material layer are not particularly limited. The composition ratio of the negative electrode active material in the negative electrode active material layer is preferably 70% or more and 99% or less, and more preferably 90% or more and 98% or less in terms of mass ratio. The composition ratio of the conductive material in the negative electrode active material layer is preferably 0% or more and 20% or less in terms of mass ratio, and the composition ratio of the binder in the negative electrode active material layer is 1% or more and 30% or less in terms of mass ratio. Is preferable.

負極活物質とバインダーの含有量を上記範囲とすることにより、バインダーの量が少なすぎて強固な負極活物質層を形成できなくなることを防ぐことができる。また、電気容量に寄与しないバインダーの量が多くなり、十分な体積エネルギー密度を得ることが困難となる傾向も抑制できる。 By setting the contents of the negative electrode active material and the binder within the above range, it is possible to prevent the amount of the binder from being too small to form a strong negative electrode active material layer. In addition, the amount of binder that does not contribute to the electric capacity increases, and the tendency that it becomes difficult to obtain a sufficient volumetric energy density can be suppressed.

「セパレータ」
セパレータ10は、電気絶縁性の多孔質構造から形成されていればよく、例えば、ポリエチレン、ポリプロピレン又はポリオレフィンからなるフィルムの単層体、積層体や上記樹脂の混合物の延伸膜、或いはセルロース、ポリエステル及びポリプロピレンからなる群より選択される少なくとも1種の構成材料からなる繊維不織布が挙げられる。
"Separator"
The separator 10 may be formed from an electrically insulating porous structure, for example, a monolayer of a film made of polyethylene, polypropylene or polyolefin, a laminated body or a stretched film of a mixture of the above resins, or cellulose, polyester and Examples thereof include fibrous nonwoven fabrics made of at least one constituent material selected from the group consisting of polypropylene.

「電解液」
電解液には、リチウム塩を含む電解質溶液(電解質水溶液、有機溶媒を使用する電解質溶液)を使用することができる。ただし、電解質水溶液は電気化学的に分解電圧が低いため、充電時の耐用電圧が低く制限される。そのため、有機溶媒を使用する電解質溶液(非水電解質溶液)であることが好ましい。
"Electrolytic solution"
As the electrolytic solution, an electrolyte solution containing a lithium salt (an aqueous electrolyte solution, an electrolyte solution using an organic solvent) can be used. However, since the decomposition voltage of the aqueous electrolyte solution is electrochemically low, the withstand voltage during charging is low and limited. Therefore, it is preferable that the electrolyte solution uses an organic solvent (non-aqueous electrolyte solution).

非水電解液は、非水溶媒に電解質が溶解されており、非水溶媒として環状カーボネートと、鎖状カーボネートと、を含有してもよい。 The non-aqueous electrolyte solution has an electrolyte dissolved in a non-aqueous solvent, and may contain a cyclic carbonate and a chain carbonate as the non-aqueous solvent.

環状カーボネートとしては、電解質を溶媒和することができるものを用いることができる。例えば、エチレンカーボネート、プロピレンカーボネート及びブチレンカーボネートなどを用いることができる。 As the cyclic carbonate, one capable of solvating an electrolyte can be used. For example, ethylene carbonate, propylene carbonate, butylene carbonate and the like can be used.

鎖状カーボネートは、環状カーボネートの粘性を低下させることができる。例えば、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネートが挙げられる。その他、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、γ-ブチロラクトン、1,2-ジメトキシエタン、1,2-ジエトキシエタンなどを混合して使用してもよい。 The chain carbonate can reduce the viscosity of the cyclic carbonate. For example, diethyl carbonate, dimethyl carbonate and ethyl methyl carbonate can be mentioned. In addition, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, γ-butyrolactone, 1,2-dimethoxyethane, 1,2-diethoxyethane and the like may be mixed and used.

非水溶媒中の環状カーボネートと鎖状カーボネートの割合は体積にして1:9~1:1にすることが好ましい。 The ratio of cyclic carbonate to chain carbonate in the non-aqueous solvent is preferably 1: 9 to 1: 1 in volume.

電解質としては、例えば、LiPF、LiClO、LiBF、LiCFSO、LiCFCFSO、LiC(CFSO、LiN(CFSO、LiN(CFCFSO、LiN(CFSO)(CSO)、LiN(CFCFCO)、LiBOB等のリチウム塩が使用できる。なお、これらのリチウム塩は1種を単独で使用してもよく、2種以上を併用してもよい。特に、電離度の観点から、LiPFを含むことが好ましい。 Examples of the electrolyte include LiPF 6 , LiClO 4 , LiBF 4 , LiCF 3 SO 3 , LiCF 3 CF 2 SO 3 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 SO 2 ) 2 , and LiN (CF 3 CF). 2 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiN (CF 3 CF 2 CO) 2 , LiBOB and other lithium salts can be used. One of these lithium salts may be used alone, or two or more thereof may be used in combination. In particular, from the viewpoint of the degree of ionization, it is preferable to contain LiPF 6 .

LiPFを非水溶媒に溶解する際は、非水電解液中の電解質の濃度を、0.5~2.0mol/Lに調整することが好ましい。電解質の濃度が0.5mol/L以上であると、非水電解液のリチウムイオン濃度を充分に確保することができ、充放電時に十分な容量が得られやすい。また、電解質の濃度が2.0mol/L以内に抑えることで、非水電解液の粘度上昇を抑え、リチウムイオンの移動度を充分に確保することができ、充放電時に十分な容量が得られやすくなる。 When dissolving LiPF 6 in a non-aqueous solvent, it is preferable to adjust the concentration of the electrolyte in the non-aqueous electrolyte solution to 0.5 to 2.0 mol / L. When the concentration of the electrolyte is 0.5 mol / L or more, the lithium ion concentration of the non-aqueous electrolyte solution can be sufficiently secured, and a sufficient capacity can be easily obtained during charging / discharging. Further, by suppressing the concentration of the electrolyte to 2.0 mol / L or less, it is possible to suppress an increase in the viscosity of the non-aqueous electrolyte solution, to sufficiently secure the mobility of lithium ions, and to obtain a sufficient capacity during charging and discharging. It will be easier.

LiPFをその他の電解質と混合する場合にも、非水電解液中のリチウムイオン濃度が0.5~2.0mol/Lに調整することが好ましく、LiPFからのリチウムイオン濃度がその50mol%以上含まれることがさらに好ましい。 Even when LiPF 6 is mixed with other electrolytes, it is preferable to adjust the lithium ion concentration in the non-aqueous electrolyte solution to 0.5 to 2.0 mol / L, and the lithium ion concentration from LiPF 6 is 50 mol% thereof. It is more preferable that the above is included.

「外装体」
外装体50は、その内部に積層体40及び電解液を密封するものである。外装体50は、電解液の外部への漏出や、外部からのリチウムイオン二次電池100内部への水分等の侵入等を抑止できる物であれば特に限定されない。
"Exterior body"
The exterior body 50 seals the laminate 40 and the electrolytic solution inside the exterior body 50. The exterior body 50 is not particularly limited as long as it can suppress leakage of the electrolytic solution to the outside and invasion of moisture or the like into the inside of the lithium ion secondary battery 100 from the outside.

例えば、外装体50として、図1に示すように、金属箔52を高分子膜54で両側からコーティングした金属ラミネートフィルムを利用できる。金属箔52としては例えばアルミ箔を、高分子膜54としてはポリプロピレン等の膜を利用できる。例えば、外側の高分子膜54の材料としては融点の高い高分子、例えば、ポリエチレンテレフタレート(PET)、ポリアミド等が好ましく、内側の高分子膜54の材料としてはポリエチレン(PE)、ポリプロピレン(PP)等が好ましい。 For example, as the exterior body 50, as shown in FIG. 1, a metal laminate film in which a metal foil 52 is coated with a polymer film 54 from both sides can be used. For example, an aluminum foil can be used as the metal foil 52, and a film such as polypropylene can be used as the polymer film 54. For example, the material of the outer polymer film 54 is preferably a polymer having a high melting point, for example, polyethylene terephthalate (PET) or polyamide, and the material of the inner polymer film 54 is polyethylene (PE) or polypropylene (PP). Etc. are preferable.

「リード」
リード60、62は、アルミ等の導電材料から形成されている。して、公知の方法により、リード60、62を正極集電体22、負極集電体32にそれぞれ溶接し、正極20の正極活物質層24と負極30の負極活物質層34との間にセパレータ10を挟んだ状態で、電解液と共に外装体50内に挿入し、外装体50の入り口をシールする。
"Lead"
The leads 60 and 62 are formed of a conductive material such as aluminum. Then, the leads 60 and 62 are welded to the positive electrode current collector 22 and the negative electrode current collector 32, respectively, by a known method, and between the positive electrode active material layer 24 of the positive electrode 20 and the negative electrode active material layer 34 of the negative electrode 30. With the separator 10 sandwiched, it is inserted into the exterior body 50 together with the electrolytic solution to seal the entrance of the exterior body 50.

[リチウムイオン二次電池の製造方法]
以下、リチウムイオン二次電池100の製造方法を具体的に説明する。
[Manufacturing method of lithium ion secondary battery]
Hereinafter, a method for manufacturing the lithium ion secondary battery 100 will be specifically described.

負極活物質、バインダー及び溶媒を混合して塗料を作製する。必要に応じ導電材を更に加えても良い。溶媒としては例えば、水、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド等を用いることができる。負極活物質、導電材、バインダーの構成比率は、質量比で70wt%~90wt%:0.1wt%~10wt%:0.1wt%~30wt%であることが好ましい。これらの質量比は、全体で100wt%となるように調整される。 A paint is prepared by mixing a negative electrode active material, a binder and a solvent. If necessary, a conductive material may be further added. As the solvent, for example, water, N-methyl-2-pyrrolidone, N, N-dimethylformamide and the like can be used. The composition ratio of the negative electrode active material, the conductive material, and the binder is preferably 70 wt% to 90 wt%: 0.1 wt% to 10 wt%: 0.1 wt% to 30 wt% in terms of mass ratio. These mass ratios are adjusted so as to be 100 wt% as a whole.

塗料を構成するこれらの成分の混合方法は特に制限されず、混合順序もまた特に制限されない。上記塗料を、負極集電体32に塗布する。塗布方法としては、特に制限はなく、通常電極を作製する場合に採用される方法を用いることができる。例えば、スリットダイコート法、ドクターブレード法が挙げられる。 The method of mixing these components constituting the paint is not particularly limited, and the mixing order is also not particularly limited. The above paint is applied to the negative electrode current collector 32. The coating method is not particularly limited, and a method usually adopted when producing an electrode can be used. For example, the slit die coat method and the doctor blade method can be mentioned.

正極についても、所望の粒子径分布を有する正極活物質を用いて、負極と同様に正極集電体22上に塗料を塗布する。所望の粒子径分布を有する正極活物質は、粒子径が制御された正極活物質を混合することで準備できる。また特定の粒子径を有する正極活物質にせん断力を加えながら混合し、粒径の小さい粒子群A1と粒径の大きい粒子群A2とを作製してもよい。 As for the positive electrode, a paint is applied onto the positive electrode current collector 22 in the same manner as the negative electrode using a positive electrode active material having a desired particle size distribution. A positive electrode active material having a desired particle size distribution can be prepared by mixing a positive electrode active material having a controlled particle size. Further, the positive electrode active material having a specific particle size may be mixed while applying a shearing force to prepare a particle group A1 having a small particle size and a particle group A2 having a large particle size.

続いて、正極集電体22及び負極集電体32上に塗布された塗料中の溶媒を除去する。除去方法は特に限定されない。例えば、塗料が塗布された正極集電体22及び負極集電体32を、80℃~150℃の雰囲気下で乾燥させればよい。 Subsequently, the solvent in the paint applied on the positive electrode current collector 22 and the negative electrode current collector 32 is removed. The removal method is not particularly limited. For example, the positive electrode current collector 22 and the negative electrode current collector 32 coated with the paint may be dried in an atmosphere of 80 ° C. to 150 ° C.

そして、このようにして正極活物質層24、負極活物質層34が形成された電極を必要に応じ、ロールプレス装置等によりプレス処理を行う。 Then, the electrodes on which the positive electrode active material layer 24 and the negative electrode active material layer 34 are formed in this way are pressed by a roll press device or the like, if necessary.

次いで、正極活物質層24を有する正極20と、負極活物質層34を有する負極30と、正極と負極との間に介在するセパレータ10と、電解液と、を外装体50内に封入する。 Next, the positive electrode 20 having the positive electrode active material layer 24, the negative electrode 30 having the negative electrode active material layer 34, the separator 10 interposed between the positive electrode and the negative electrode, and the electrolytic solution are sealed in the exterior body 50.

例えば、正極20と、負極30と、セパレータ10とを積層し、予め作製した袋状の外装体50に、積層体40を入れる。 For example, the positive electrode 20, the negative electrode 30, and the separator 10 are laminated, and the laminated body 40 is put into a bag-shaped exterior body 50 prepared in advance.

最後に電解液を外装体50内に注入することにより、リチウムイオン二次電池が作製される。なお、外装体に電解液を注入するのではなく、積層体40を電解液に含浸させてもよい。 Finally, the lithium ion secondary battery is produced by injecting the electrolytic solution into the exterior body 50. Instead of injecting the electrolytic solution into the exterior body, the laminated body 40 may be impregnated with the electrolytic solution.

以上、本発明の実施形態について図面を参照して詳述したが、各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、及びその他の変更が可能である。 Although the embodiments of the present invention have been described in detail with reference to the drawings, the configurations and combinations thereof in the respective embodiments are examples, and the configurations are added or omitted within a range not deviating from the gist of the present invention. , Replacement, and other changes are possible.

「実施例1」
(負極の作製)
94重量%のリチウムイオン電池グレードの黒鉛(負極活物質)と、2重量%のアセチレンブラック(導電助剤)と、4重量%のPVDF(バインダー)と、N-メチル-2-ピロリドン(溶媒)とを混合分散させて、ペースト状の負極スラリーを作製した。負極スラリーを厚さ10μmの電界銅箔の一面に、塗布量が6.1mg/cmとなるように塗布した。塗布後に、100℃で乾燥させて溶媒を除去し、負極活物質層を形成した。その後、負極活物質層をロールプレスにより加圧成形し、実施例1に係る負極を作製した。
"Example 1"
(Preparation of negative electrode)
94% by weight lithium-ion battery grade graphite (negative electrode active material), 2% by weight acetylene black (conductive aid), 4% by weight PVDF (binder), and N-methyl-2-pyrrolidone (solvent). And were mixed and dispersed to prepare a paste-like negative electrode slurry. The negative electrode slurry was applied to one surface of an electric field copper foil having a thickness of 10 μm so that the coating amount was 6.1 mg / cm 2 . After coating, it was dried at 100 ° C. to remove the solvent to form a negative electrode active material layer. Then, the negative electrode active material layer was pressure-molded by a roll press to prepare a negative electrode according to Example 1.

(正極の作製)
平均粒子径が25μmのLiNi0.8Co0.15Al0.05と平均粒子径が2.0μmのLiNi0.8Co0.15Al0.05とを、95:5の個数比で混合して正極活物質を用意した。用意した正極活物質と、導電材として用意した多層グラフェンを含むグラフェンと、バインダーとして用意したポリフッ化ビニリデン(PVdF)とを混合し、正極合剤とした。導電材として使用した多層グラフェンを含むグラフェンの平均粒子径は10μmであった。
(Preparation of positive electrode)
LiNi 0.8 Co 0.15 Al 0.05 O 2 having an average particle diameter of 25 μm and LiNi 0.8 Co 0.15 Al 0.05 O 2 having an average particle diameter of 2.0 μm were combined at 95: 5. The positive electrode active material was prepared by mixing in a number ratio. The prepared positive electrode active material, graphene containing multi-layer graphene prepared as a conductive material, and polyvinylidene fluoride (PVdF) prepared as a binder were mixed to prepare a positive electrode mixture. The average particle size of graphene containing the multilayer graphene used as the conductive material was 10 μm.

正極活物質と、導電材と、バインダーは質量比で90:5:5とした。この正極合剤を、N-メチル-2-ピロリドンに分散させて正極合剤塗料を作製した。そして、厚さ20μmのアルミニウム箔の一面に、算出した正極の単位面積当たりの重量となるように塗布した。塗布後に、100℃で乾燥させ、溶媒を除去して正極活物質層を形成した。その後、正極活物質層をロールプレスにより加圧成形し、実施例1に係る正極を作製した。作製した正極の一部を断面SEMで確認したところ、平均粒子径が2.0μmのLiNi0.8Co0.15Al0.05の一部が多層グラフェンを含むグラフェンの表面に付着していることが確認された。 The mass ratio of the positive electrode active material, the conductive material, and the binder was 90: 5: 5. This positive electrode mixture was dispersed in N-methyl-2-pyrrolidone to prepare a positive electrode mixture coating material. Then, it was applied to one surface of an aluminum foil having a thickness of 20 μm so as to have the calculated weight per unit area of the positive electrode. After coating, it was dried at 100 ° C. to remove the solvent to form a positive electrode active material layer. Then, the positive electrode active material layer was pressure-molded by a roll press to prepare a positive electrode according to Example 1. When a part of the prepared positive electrode was confirmed by cross-section SEM, a part of LiNi 0.8 Co 0.15 Al 0.05 O 2 having an average particle diameter of 2.0 μm adhered to the surface of graphene containing multi-layer graphene. It was confirmed that

(評価用リチウムイオン二次電池の作製 フルセル)
作製した負極と正極とを、厚さ16μmのポリプロピレン製のセパレータを介して交互に積層し、負極3枚と正極2枚とを積層することで積層体を作製した。さらに、積層体の負極において、負極活物質層を設けていない銅箔の突起端部にニッケル製の負極リードを取り付けた。また積層体の正極においては、正極活物質層を設けていないアルミニウム箔の突起端部にアルミニウム製の正極リードを超音波溶接機によって取り付けた。
(Manufacturing of lithium-ion secondary battery for evaluation Full cell)
The prepared negative electrode and the positive electrode were alternately laminated via a polypropylene separator having a thickness of 16 μm, and three negative electrodes and two positive electrodes were laminated to prepare a laminated body. Further, in the negative electrode of the laminated body, a nickel negative electrode lead was attached to the protruding end of the copper foil not provided with the negative electrode active material layer. Further, in the positive electrode of the laminated body, an aluminum positive electrode lead was attached to the protruding end of the aluminum foil not provided with the positive electrode active material layer by an ultrasonic welding machine.

そしてこの積層体を、アルミラミネートフィルムの外装体内に挿入して周囲の1箇所を除いてヒートシールすることにより閉口部を形成した。外装体内には、ECとEMCとDECとが体積比3:5:2の割合で配合された溶媒と、リチウム塩として1.5M(mol/L)のLiPFが添加された非水電解液と、を注入した。そして、残りの1箇所を真空シール機によって減圧しながらヒートシールで密封し、リチウムイオン二次電池(フルセル)を作製した。 Then, this laminated body was inserted into the outer body of the aluminum laminated film and heat-sealed except for one peripheral portion to form a closed portion. Inside the exterior, a non-aqueous electrolytic solution containing a solvent containing EC, EMC and DEC in a volume ratio of 3: 5: 2 and 1.5 M (mol / L) of LiPF 6 as a lithium salt. And injected. Then, the remaining one place was sealed with a heat seal while reducing the pressure with a vacuum sealer to prepare a lithium ion secondary battery (full cell).

(実施例2~6)
導電材の大きさと正極活物質の粒子径分布とを変えて正極活物質層を用意したことを除いて、実施例1と同様にリチウムイオン二次電池を作製した。正極活物質は、25μmの平均粒子径を有するものと、2.0~4.0μmの平均粒子径を有するものとを、95:5の個数比で混合することで、粒子径分布を変化させた。実施例2~6においても、平均粒子径が2.0~4.0μmの正極活物質の一部が多層グラフェンを含むグラフェンの表面に付着していることを確認した。
(Examples 2 to 6)
A lithium ion secondary battery was produced in the same manner as in Example 1 except that the positive electrode active material layer was prepared by changing the size of the conductive material and the particle size distribution of the positive electrode active material. The positive electrode active material changes the particle size distribution by mixing a material having an average particle size of 25 μm and a material having an average particle size of 2.0 to 4.0 μm in a number ratio of 95: 5. rice field. Also in Examples 2 to 6, it was confirmed that a part of the positive electrode active material having an average particle size of 2.0 to 4.0 μm was attached to the surface of graphene containing the multilayer graphene.

(実施例7及び8)
使用した正極活物質の組成を変えたことを除いて、実施例1と同様にリチウムイオン二次電池を作製した。実施例7及び8においても、平均粒子径が2.0μmの正極活物質の一部が多層グラフェンを含むグラフェンの表面に付着していることを確認した。
(Examples 7 and 8)
A lithium ion secondary battery was produced in the same manner as in Example 1 except that the composition of the positive electrode active material used was changed. Also in Examples 7 and 8, it was confirmed that a part of the positive electrode active material having an average particle size of 2.0 μm was attached to the surface of graphene containing the multilayer graphene.

(実施例9)
平均粒子径が25μmのLiNi0.8Co0.15Al0.05と平均粒子径が2.0μmのLiNi0.8Co0.1Mn0.1とを混合して正極活物質を用意したことを除いて、実施例1と同様にリチウムイオン二次電池を作製した。実施例9においても、平均粒子径が2.0μmの正極活物質の一部が多層グラフェンを含むグラフェンの表面に付着していることを確認した。
(Example 9)
LiNi 0.8 Co 0.15 Al 0.05 O 2 having an average particle diameter of 25 μm and LiNi 0.8 Co 0.1 Mn 0.1 O 2 having an average particle diameter of 2.0 μm are mixed to activate the positive electrode. A lithium ion secondary battery was produced in the same manner as in Example 1 except that the substance was prepared. Also in Example 9, it was confirmed that a part of the positive electrode active material having an average particle size of 2.0 μm was attached to the surface of graphene containing the multilayer graphene.

(実施例10)
平均粒子径が25μmのLiNi0.8Co0.15Al0.05と平均粒子径が2.0μmのLiNi0.9Co0.08Al0.02とを混合して正極活物質を用意したことを除いて、実施例1と同様にリチウムイオン二次電池を作製した。実施例10においても、平均粒子径が2.0μmの正極活物質の一部が多層グラフェンを含むグラフェンの表面に付着していることを確認した。
(Example 10)
LiNi 0.8 Co 0.15 Al 0.05 O 2 having an average particle diameter of 25 μm and LiNi 0.9 Co 0.08 Al 0.02 O 2 having an average particle diameter of 2.0 μm are mixed to activate the positive electrode. A lithium ion secondary battery was produced in the same manner as in Example 1 except that the substance was prepared. Also in Example 10, it was confirmed that a part of the positive electrode active material having an average particle size of 2.0 μm was attached to the surface of graphene containing the multilayer graphene.

(比較例1)
平均粒子径が2μmのLiNi0.8Co0.15Al0.05を加えずに正極活物質を用意したことを除いて、実施例1と同様にリチウムイオン二次電池を作製した。比較例1の正極の断面SEM像を確認したところ、平均粒子径が多層グラフェンを含むグラフェンの平均粒子径の半分以下のものは、正極活物質の全粒子数の1%であった。
(Comparative Example 1)
A lithium ion secondary battery was produced in the same manner as in Example 1 except that the positive electrode active material was prepared without adding LiNi 0.8 Co 0.15 Al 0.05 O 2 having an average particle size of 2 μm. When the cross-sectional SEM image of the positive electrode of Comparative Example 1 was confirmed, those having an average particle size of less than half the average particle size of the graphene containing the multilayer graphene were 1% of the total number of particles of the positive electrode active material.

(比較例2)
正極活物質としてLiCoOを使用したことを除いて、実施例1と同様にリチウムイオン二次電池を作製した。比較例2の正極の断面SEM像を確認したところ、平均粒子径が多層グラフェンを含むグラフェンの平均粒子径の半分以下のものは、正極活物質の全粒子数の1%であった。
(Comparative Example 2)
A lithium ion secondary battery was produced in the same manner as in Example 1 except that LiCoO 2 was used as the positive electrode active material. When the cross-sectional SEM image of the positive electrode of Comparative Example 2 was confirmed, those having an average particle size of less than half the average particle size of the graphene containing the multilayer graphene were 1% of the total number of particles of the positive electrode active material.

作製したリチウムイオン二次電池を、以下の方法によって評価した。 The prepared lithium ion secondary battery was evaluated by the following method.

(粒子群A1、粒子群A2、及び導電材の粒子径測定)
実施例及び比較例で作製したリチウムイオン二次電池について、株式会社日立ハイテクノロジーズの「IM4000」を用いて正極の断面出しを行い、正極断面のSEM像を1000倍の倍率で10枚撮影した。撮影されたSEM像からグラフェン又は多層グラフェンの粒子径Da及び正極活物質粒子の粒子径を算出した。またグラフェン又は多層グラフェンに付着した任意の20個の付着粒子を測定し、その平均値をDbとした。
(Measurement of particle size of particle group A1, particle group A2, and conductive material)
With respect to the lithium ion secondary batteries produced in Examples and Comparative Examples, a cross section of the positive electrode was obtained using "IM4000" of Hitachi High-Technologies Corporation, and 10 SEM images of the positive electrode cross section were taken at a magnification of 1000 times. From the photographed SEM image, the particle size Da of graphene or multilayer graphene and the particle size of the positive electrode active material particles were calculated. Further, any 20 adherent particles adhering to graphene or multi-layer graphene were measured, and the average value thereof was taken as Db.

(容量維持率測定試験)
実施例及び比較例で作製したリチウムイオン二次電池について、二次電池充放電試験装置(北斗電工株式会社製)を用い、25℃の環境下で容量維持率の測定を行った。容量維持率は、電圧範囲を4.2Vから3.0Vまでとし、フルセル設計容量当たり1C=3500mAhとし、5C容量維持率(%)で評価した。5C容量維持率は、0.2C定電流放電時の放電容量を基準とし、0.2C放電容量に対する5C定電流放電時における放電容量の割合であり以下の式(1)で表される。
(5C容量維持率(%))=(5C定電流放電時における放電容量)/(0.2C定電流放電時の放電容量)×100 ・・・(1)
(Capacity retention rate measurement test)
For the lithium ion secondary batteries produced in Examples and Comparative Examples, the capacity retention rate was measured in an environment of 25 ° C. using a secondary battery charge / discharge test device (manufactured by Hokuto Denko Co., Ltd.). The capacity retention rate was evaluated with a voltage range of 4.2 V to 3.0 V, 1C = 3500 mAh per full cell design capacity, and a 5C capacity retention rate (%). The 5C capacity retention rate is the ratio of the discharge capacity at the time of 5C constant current discharge to the 0.2C discharge capacity based on the discharge capacity at the time of 0.2C constant current discharge, and is represented by the following equation (1).
(5C capacity retention rate (%)) = (Discharge capacity during 5C constant current discharge) / (Discharge capacity during 0.2C constant current discharge) x 100 ... (1)

この5C容量維持率が高いほど、急速充電特性が良好であることを意味し、リチウムイオン二次電池の出力特性が優れる。 The higher the 5C capacity retention rate, the better the quick charge characteristics, and the better the output characteristics of the lithium ion secondary battery.

実施例及び比較例で作製したリチウムイオン二次電池の評価結果を表1に示す。 Table 1 shows the evaluation results of the lithium ion secondary batteries produced in Examples and Comparative Examples.

Figure 0007102831000001
Figure 0007102831000001

実施例1~10及び比較例2において、導電材上に付着した正極活物質が粒子群A2の粒子とも接していることをSEM像から確認した。 In Examples 1 to 10 and Comparative Example 2, it was confirmed from the SEM image that the positive electrode active material adhering to the conductive material was also in contact with the particles of the particle group A2.

表1の結果から分かるように、正極活物質及び導電材の組成及び大きさを特定の組み合わせとすることによって、リチウムイオン二次電池の容量維持率が顕著に向上した。 As can be seen from the results in Table 1, the capacity retention rate of the lithium ion secondary battery was remarkably improved by setting the composition and size of the positive electrode active material and the conductive material to a specific combination.

10 セパレータ
20 正極
22 正極集電体
24 正極活物質層
30 負極
32 負極集電体
34 負極活物質層
40 積層体
50 外装体
60、62 リード
100 リチウムイオン二次電池
10 Separator 20 Positive electrode 22 Positive electrode current collector 24 Positive electrode active material layer 30 Negative electrode 32 Negative electrode current collector 34 Negative electrode active material layer 40 Laminated body 50 Exterior body 60, 62 Lead 100 Lithium ion secondary battery

Claims (7)

正極集電体と、前記正極集電体の表面上に設けられた正極活物質層とを有する正極であって、
前記正極活物質層は、組成式(1)で表される正極活物質と、グラフェン又は多層グラフェンとを含み、
前記正極活物質は、前記グラフェン又は前記多層グラフェンの平均粒子径Daの2分の1以下の粒子径を有する粒子からなる粒子群A1と、前記グラフェン又は前記多層グラフェンの平均粒子径Daよりも大きい粒子径を有する粒子からなる粒子群A2と、を有し、
前記正極活物質全体の粒子径の個数分布は、前記グラフェン又は前記多層グラフェンの平均粒子径Daの2分の1以下の範囲に存在するピークと、前記グラフェン又は前記多層グラフェンの平均粒子径Daよりも大きい範囲に存在するピークと、を含む2以上のピークを有し、
前記粒子群A1の少なくとも一部は前記グラフェン又は前記多層グラフェンの表面に付着しており、
前記グラフェン又は前記多層グラフェンの平均粒子径Daと前記正極活物質の粒子径とは、10枚の走査型電子顕微鏡像を画像処理して求めた粒子径の平均値であり、
それぞれの画像の粒子径は、二次電子像を2値化して前記グラフェン又は前記多層グラフェンと前記正極活物質とを画像から抽出し、反射電子像を2値化して前記グラフェン又は前記多層グラフェンと前記正極活物質のそれぞれを抽出して求められ、
前記グラフェン又は前記多層グラフェンの平均粒子径Daは、前記グラフェン又は前記多層グラフェンの積層方向と直交する長径である、正極。
LiNiCoMn(M) (1)
(ただし、Mは、Al、Si、Zr、Ti、Fe、Mg、Nb、Ba及びVからなる群から選ばれる少なくとも1種を示し、1.90≦(a+b+c+d+e)≦2.2、0<a≦1.3、0.5≦b≦1.0、0≦c≦1.0、0≦d≦0.7、0≦e≦0.2である。)
A positive electrode having a positive electrode current collector and a positive electrode active material layer provided on the surface of the positive electrode current collector.
The positive electrode active material layer contains a positive electrode active material represented by the composition formula (1) and graphene or multilayer graphene.
The positive electrode active material is larger than the particle group A1 composed of particles having a particle size of half or less of the average particle size Da of the graphene or the multilayer graphene and the average particle size Da of the graphene or the multilayer graphene. It has a particle group A2 composed of particles having a particle diameter, and has.
The number distribution of the particle size of the entire positive electrode active material is based on the peak existing in the range of half or less of the average particle size Da of the graphene or the multilayer graphene and the average particle size Da of the graphene or the multilayer graphene. Has two or more peaks , including a peak that also exists in a large range ,
At least a part of the particle swarm A1 is attached to the surface of the graphene or the multilayer graphene.
The average particle size Da of the graphene or the multilayer graphene and the particle size of the positive electrode active material are average value of the particle size obtained by image processing 10 scanning electron microscope images.
The particle size of each image is determined by binarizing the secondary electron image to extract the graphene or the multilayer graphene and the positive electrode active material from the image, and binarizing the backscattered electron image to obtain the graphene or the multilayer graphene. Obtained by extracting each of the positive electrode active materials,
A positive electrode having an average particle diameter Da of the graphene or the multilayer graphene having a major axis orthogonal to the stacking direction of the graphene or the multilayer graphene.
Li a Ni b Co c Mn d (M) e O 2 (1)
(However, M indicates at least one selected from the group consisting of Al, Si, Zr, Ti, Fe, Mg, Nb, Ba and V, and 1.90 ≦ (a + b + c + d + e) ≦ 2.2, 0 <a. ≦ 1.3, 0.5 ≦ b ≦ 1.0, 0 ≦ c ≦ 1.0, 0 ≦ d ≦ 0.7, 0 ≦ e ≦ 0.2)
前記粒子群A1の少なくとも一部は、前記グラフェン又は前記多層グラフェンと前記粒子群A2との間に存在する、請求項1に記載の正極。 The positive electrode according to claim 1, wherein at least a part of the particle group A1 exists between the graphene or the multilayer graphene and the particle group A2. 前記グラフェン又は前記多層グラフェンの表面に付着した付着粒子の平均粒子径Dbは3μm以下であり、
前記付着粒子の平均粒子径Dbは、走査型電子顕微鏡像において確認される任意の20個の前記付着粒子の粒子径を平均して求められる、請求項1又は2に記載の正極。
The average particle diameter Db of the adhered particles adhering to the surface of the graphene or the multilayer graphene is 3 μm or less.
The positive electrode according to claim 1 or 2, wherein the average particle size Db of the attached particles is obtained by averaging the particle sizes of any 20 attached particles confirmed in a scanning electron microscope image.
前記グラフェン又は前記多層グラフェンの平均粒子径Daが3~25μmである、請求項1~3のいずれか一項に記載の正極。 The positive electrode according to any one of claims 1 to 3, wherein the graphene or the multilayer graphene has an average particle size Da of 3 to 25 μm. 前記グラフェン又は前記多層グラフェンの平均粒子径Daと、前記グラフェン又は前記多層グラフェンの表面に付着した付着粒子の平均粒子径Dbとが、Da/Db≧2を満たし、
前記付着粒子の平均粒子径Dbは、走査型電子顕微鏡像において確認される任意の20個の前記付着粒子の粒子径を平均して求められる、請求項1~4のいずれか一項に記載の正極。
The average particle size Da of the graphene or the multilayer graphene and the average particle size Db of the adhered particles adhering to the surface of the graphene or the multilayer graphene satisfy Da / Db ≧ 2.
The item according to any one of claims 1 to 4, wherein the average particle size Db of the attached particles is obtained by averaging the particle sizes of any 20 attached particles confirmed in the scanning electron microscope image. Positive electrode.
前記粒子群A1の粒子数は、前記正極活物質の粒子数の3%以上30%以下である、請求項1~5のいずれか一項に記載の正極。 The positive electrode according to any one of claims 1 to 5, wherein the number of particles in the particle group A1 is 3% or more and 30% or less of the number of particles of the positive electrode active material. 請求項1~6のいずれか一項に記載の正極を含む、リチウムイオン二次電池。 A lithium ion secondary battery comprising the positive electrode according to any one of claims 1 to 6.
JP2018056884A 2018-03-23 2018-03-23 Positive electrode and lithium ion secondary battery Active JP7102831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018056884A JP7102831B2 (en) 2018-03-23 2018-03-23 Positive electrode and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018056884A JP7102831B2 (en) 2018-03-23 2018-03-23 Positive electrode and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2019169376A JP2019169376A (en) 2019-10-03
JP7102831B2 true JP7102831B2 (en) 2022-07-20

Family

ID=68107581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018056884A Active JP7102831B2 (en) 2018-03-23 2018-03-23 Positive electrode and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP7102831B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7388855B2 (en) 2019-09-18 2023-11-29 東芝テック株式会社 Conveyor
CN111099663A (en) * 2019-11-28 2020-05-05 山西大学 Nickel-cobalt oxide-graphene compound and preparation method and application thereof
CN112952030A (en) * 2020-03-27 2021-06-11 宁德新能源科技有限公司 Positive pole piece, electrochemical device comprising positive pole piece and electronic device
WO2022082365A1 (en) * 2020-10-19 2022-04-28 宁德新能源科技有限公司 Positive electrode, and electrochemical device and electronic device comprising same
JP7273869B2 (en) * 2021-01-21 2023-05-15 プライムプラネットエナジー&ソリューションズ株式会社 Non-aqueous electrolyte secondary battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013145740A (en) 2011-12-16 2013-07-25 Semiconductor Energy Lab Co Ltd Method of manufacturing cathode for lithium ion secondary battery
JP2014182873A (en) 2013-03-18 2014-09-29 Toyo Ink Sc Holdings Co Ltd Nonaqueous secondary battery electrode-forming material, nonaqueous secondary battery electrode, and nonaqueous secondary battery
JP2015524154A (en) 2012-06-20 2015-08-20 キャボット コーポレイションCabot Corporation Electrode formulations containing graphene
JP2016189320A (en) 2015-03-27 2016-11-04 Tdk株式会社 Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery using the same
JP2017135105A (en) 2016-01-27 2017-08-03 東レ株式会社 Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and method of manufacturing the same
JP2016029649A5 (en) 2015-07-10 2018-08-16 Negative electrode

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6958987B2 (en) 2014-07-18 2021-11-02 株式会社半導体エネルギー研究所 Negative electrode
JP6930196B2 (en) 2016-04-21 2021-09-01 東レ株式会社 Positive electrode materials for lithium-ion batteries and their manufacturing methods, positive electrodes for lithium-ion batteries, lithium-ion batteries

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013145740A (en) 2011-12-16 2013-07-25 Semiconductor Energy Lab Co Ltd Method of manufacturing cathode for lithium ion secondary battery
JP2015524154A (en) 2012-06-20 2015-08-20 キャボット コーポレイションCabot Corporation Electrode formulations containing graphene
JP2014182873A (en) 2013-03-18 2014-09-29 Toyo Ink Sc Holdings Co Ltd Nonaqueous secondary battery electrode-forming material, nonaqueous secondary battery electrode, and nonaqueous secondary battery
JP2016189320A (en) 2015-03-27 2016-11-04 Tdk株式会社 Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery using the same
JP2016029649A5 (en) 2015-07-10 2018-08-16 Negative electrode
JP2017135105A (en) 2016-01-27 2017-08-03 東レ株式会社 Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and method of manufacturing the same
JP2017199670A5 (en) 2017-04-20 2020-04-02

Also Published As

Publication number Publication date
JP2019169376A (en) 2019-10-03

Similar Documents

Publication Publication Date Title
JP6206611B1 (en) Negative electrode and lithium ion secondary battery
JP7102831B2 (en) Positive electrode and lithium ion secondary battery
JP4513822B2 (en) Electrode and electrochemical device
US20180294514A1 (en) Lithium ion secondary battery and method for manufacturing the same
JP6995738B2 (en) Positive electrode for lithium-ion secondary battery and lithium-ion secondary battery
JP2019140054A (en) Positive electrode and non-aqueous electrolyte secondary battery
JP2019164967A (en) Negative electrode active material, negative electrode abd lithium ion secondary battery
CN111183537B (en) Method for pre-doping negative electrode active material, electrode for electrical device, and method for manufacturing electrical device
JP6981027B2 (en) Negative electrode active material for lithium ion secondary battery, negative electrode and lithium ion secondary battery
JP2019164965A (en) Lithium ion secondary battery
JP7064709B2 (en) Negative negative for lithium ion secondary battery and lithium ion secondary battery
JP7003775B2 (en) Lithium ion secondary battery
JP2018170142A (en) Lithium ion secondary battery
JP2019021418A (en) Controller and control method of nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery system having the controller, and method for manufacturing nonaqueous electrolyte secondary battery
JP2018170113A (en) Positive electrode and lithium ion secondary battery
JP2021096928A (en) Composite material, method for producing composite material, method for manufacturing electrode, positive electrode and lithium ion secondary battery
JP6855882B2 (en) Positive electrode and lithium ion secondary battery
JP7243381B2 (en) Electrodes and non-aqueous electrolyte secondary batteries
JP2019169377A (en) Positive electrode and lithium ion secondary battery
JP6870712B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP6992580B2 (en) Active material and lithium-ion secondary battery using it
JP7243380B2 (en) Electrodes and non-aqueous electrolyte secondary batteries
JP6992579B2 (en) Active material particles and lithium-ion secondary batteries using them
JP6236865B2 (en) Positive electrode active material for lithium ion secondary battery
JP6904393B2 (en) Method for manufacturing negative electrode for lithium ion secondary battery, lithium ion secondary battery and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220620

R150 Certificate of patent or registration of utility model

Ref document number: 7102831

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150