JP3615432B2 - Electrode and lithium secondary battery - Google Patents

Electrode and lithium secondary battery Download PDF

Info

Publication number
JP3615432B2
JP3615432B2 JP27705799A JP27705799A JP3615432B2 JP 3615432 B2 JP3615432 B2 JP 3615432B2 JP 27705799 A JP27705799 A JP 27705799A JP 27705799 A JP27705799 A JP 27705799A JP 3615432 B2 JP3615432 B2 JP 3615432B2
Authority
JP
Japan
Prior art keywords
electrode
lithium secondary
battery
secondary battery
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27705799A
Other languages
Japanese (ja)
Other versions
JP2001102051A (en
Inventor
義人 近野
一成 大北
俊之 能間
育郎 米津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP27705799A priority Critical patent/JP3615432B2/en
Publication of JP2001102051A publication Critical patent/JP2001102051A/en
Application granted granted Critical
Publication of JP3615432B2 publication Critical patent/JP3615432B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【0001】
【発明の属する技術分野】
本発明は、リチウム二次電池に用いて好適な電極、及びその電極を用いたリチウム二次電池に関する。
【0002】
【従来の技術】
近年、電気自動車に必要な高エネルギー密度、且つ高出力密度を達成することのできる二次電池として、リチウム二次電池が期待されている。
【0003】
電気自動車などに必要な大容量、高出力密度の電池は、発進時や急加速時に大電流を通電する必要があり、エネルギー効率向上やジュール発熱低減の観点から集電性の向上による電池内部抵抗の低減が必須となっている。特に円筒型の大容量の二次電池では帯状の電極が長尺となるため、電位分布を小さくし集電性を向上させるため、複数の集電タブを配設する必要があり、芯体と集電タブをスポット、レーザー、超音波等で溶着していたが、電気的接触性は必ずしも良好でなく、大電流通電時に溶着部での発熱が問題となっている。
【0004】
上記問題を解決するものとして、例えば、特開平8−115744号公報には、集電タブの代わりに、芯体の端部に活物質の未塗布部を設け、それを金属製の円形状集電板に溶接により接続し、その集電板を集電端子に接続した集電方法を用いたリチウム二次電池が提案されている。
【0005】
しかしながら、リチウム二次電池では有機系電解液を用いているため巻電極が圧迫した状態であるため、上記公報に示された集電方法を用いたリチウム二次電池では、有機系電解液が電極に含浸し難いという問題がある。
【0006】
また、特開平9−92335号公報には、正負極未塗布部の芯体を短冊状に加工し、複数の短冊状リードを束ねて正極集電端子、及び負極集電端子に接続した二次電池が提案されている。
【0007】
しかしながら、この公報に示されているリチウム二次電池においても、短冊状リード間の隙間から電解液の含浸が可能であるが、多数の短冊状リードを束ねて正、負極集電端子に接続する必要があるなど製造工程が複雑なものになるという問題がある。
【0008】
【発明が解決しようとする課題】
本発明は上記従来例の欠点に鑑み為されたものであり、製造工程を複雑とすることなく電解液が含浸し易くなるように構成した電極、及びその電極を用いたリチウム二次電池を提供することを目的とするものである。
【0009】
【課題を解決するための手段】
本発明の電解液を用いるリチウム二次電池用電極は、帯状の正極と帯状の負極とがセパレータを介して巻回してあり、前記正極及び負極の少なくとも一方の芯体の端部には活物質が付着していない未塗布部分が設けられ、該未塗布部は前記セパレータより露出し、且つ開孔部が設けられていることを特徴とする。
【0010】
このような構成の電極では、リチウム二次電池等に用いた場合、前記開孔部から電解液が浸透し、電極への電解液の含浸が促進される。
【0011】
特に、本発明の電極では、前記未塗布部分における開孔部開孔率が10%以上、80%以下である場合、リチウム二次電池等に用いた場合、良好な充放電が可能となる。
【0012】
また、前記正極の芯体としては、アルミニウム箔が適している。
【0013】
また、前記負極の芯体としては、銅箔或いはニッケル箔が適している。
【0014】
また、本発明のリチウム二次電池は、上述の本発明の電極を備え、該電極の前記未塗布部分より端子への電気的接続が行われていることを特徴とする。
【0015】
このような構成のリチウム二次電池では、電極への電解液の含浸が促進され、良好な充放電が行われる。
【0016】
リチウムイオンの吸蔵、放出可能な正極の活物質材料としては、金属酸化物が適するが、具体的には、LiCoO2、LiNiO2、LiCo1-XNiX2、LiMn24及びこれらの複合化合物からなる群から選択された少なくとも1種の材料を挙げることができる。
【0017】
また、本発明で使用される負極の活物質材料としては、黒鉛、コークス等の炭素材料、リチウム金属、リチウム合金、LiXFe23、LiXWO2等の金属酸化物材料、ポリアセチレン等の導電性高分子材料等が挙げられる。特に黒鉛からなる炭素材料を用いた場合、優れた効果が発揮される。前記炭素材料に用いられる黒鉛、コークス材料としては、粉砕したものをそのまま用いてもよく、500℃〜3700℃の範囲で加熱処理したものを用いてもよい。また、黒鉛のX線広角回折法による(002)面の面間隔d002の値は3.35Å以上、3.37Å以下、C軸方向の結晶子長さLcは400Å以上が好ましい。
【0018】
尚、電解液、電解質、セパレータなどの電池構成部材についても、従来のリチウム二次電池用として実用され或いは提案されている種々の材料を使用することが可能である。
【0019】
例えば、電解質としてはリチウムイオンを含むLiPF6、LiClO4、LiCF3SO3等の電解質が挙げられる。また、電解液の有機溶媒としてはエチレンカーボネート、ジエチルカーボネート、ジメトキシメタン、スルホラン等を単独、あるいは混合して用いることができる。電解液としてはこれら溶媒に前記電解質を0.7〜1.5M(mol/l)程度の割合で溶解させた溶液が挙げられる。
【0020】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。
【0021】
[正極の作製]
正極芯体となるアルミニウム箔(厚み20μm)の活物質の未塗布部に相当する部分に、未塗布部における開孔率5%になるように、円形の開孔部を形成した。尚、活物質の塗布部に相当する部分には全く開孔部を形成していない。
【0022】
正極活物質、即ち正極材料としてのLiCoO2は、リチウムの水酸化物とコバルトの水酸化物を混合し、空気中で800℃で24時間焼成することにより得たものである。この正極材料と導電材としての人造黒鉛とを重量比90:5で混合し、正極合剤を作製した。そして、結着剤であるPVdF(ポリフッ化ビニリデン)をNMP(N−メチル2−ピロリドン)に溶解させ、NMP溶液を調整した。正極合剤とポリフッ化ビニリデンの重量比が95:5になるよう正極合剤とNMP溶液を混練してスラリーを調整し、このスラリーを上述の開孔部が形成されたアルミニウム箔の長手方向の片側に20mmの未塗布部を残して、ドクターブレード法により塗布して塗布部を形成し、接着し、150℃で2時間真空乾燥させ、更に未塗布部が20mmに対して、塗工部が220mmとなるよう幅240mmに切断、圧延して、正極を作製した。尚、正極の厚みは150μmである。
【0023】
図1は本実施例のリチウム二次電池用正極の模式的断面図である。図1において、11は塗布部、12は未塗布部、13は開孔部である。
【0024】
[負極の作製]
負極芯体となる銅箔(厚み20μm)の活物質の未塗布部に相当する部分に、未塗布部における開孔率5%になるように、円形の開孔部を形成した。尚、活物質の塗布部に相当する部分には全く開孔部を形成していない。
【0025】
負極活物質、即ち負極材料として、炭素塊(d002=3.356Å;Lc>1000Å)に空気流を噴射、粉砕(ジェット粉砕)してふるいにかけ、粒子径10μmの黒鉛粉末を得た。また結着剤であるポリフッ化ビニリデンをNMPに溶解させ、NMP溶液を調整した。この黒鉛粉末とポリフッ化ビニリデンの重量比が90:10になるよう混練してスラリーを調製した。このスラリーを未塗布部の開孔率が5%になるよう加工した負極芯体としての銅箔の両面にドクターブレード法により塗布し、150℃で2時間真空乾燥して負極を作製した。また、この負極の厚みは、芯体も含めて、150μmである。尚、負極の模式的断面図については図示を省略するが、図1に示した正極と同様の形状である。
【0026】
[電解液の作製]
電解液としては、エチレンカーボネートとジメトキシメタンを体積比1:1で混合した溶媒に、LiPF6を1Mの割合で溶解して電解液を調製した。
【0027】
[電池の組立]
図2に示すように、上述の工程により作製された正極1及び負極2を、ポリプロピレン製の微多孔性薄膜からなるセパレータ3を介して巻回し、円筒状の巻電極を作製した。この時、正極1の未塗布部12はセパレータ3の一方の端部側から露出し、負極2の未塗布部22はセパレータ3の他方の端部側から露出している。次に、巻電極の両端に直径58mmのニッケル製円形集電板を抵抗溶接により固定し、続いて該ニッケル製円形集電板と正負極集電端子を接続した。次に、電解液300gを注液した後、電池缶内部を4kgf/cm2に加圧し、24時間静置し、大型の円筒型リチウム二次電池A1を作製した。この電池の寸法は、直径60mm、長さ320mmである。尚、この電池の設計容量は70Ahである。
【0028】
次に、正極及び負極共に、活物質の未塗布部における開孔部開孔率が夫々、10%、30%、60%、80%、90%である芯体を用いた以外は、上述の電池A1と同様にして大型の円筒型リチウム二次電池A2、A3、A4、A5、A6を夫々、各2セルづつ作製した。
【0029】
尚、上述のリチウム二次電池A1〜A6では、活物質の未塗布部における開孔部開孔率が所望の値になるように、開孔部を下記のパターン配列で形成した。
【0030】
即ち、電池A1では、図3に示すように、開孔率が5%となるように、直径4mmの円形の開孔部を8.58mm間隔で1列形成した。
【0031】
電池A2では、図4に示すように、開孔率が10%となるように、直径4mmの円形の開孔部を2.29mm間隔で1列形成した。
【0032】
電池A3では、図5に示すように、開孔率が30%となるように、直径4mm
の円形の開孔部を2.29mm間隔で3列形成した。
【0033】
電池A4では、図6に示すように、開孔率が60%となるように、直径6mmの円形の開孔部を1mm間隔で3列形成した。
【0034】
電池A5では、図7に示すように、開孔率が80%となるように、一辺17.9mmの正方形の開孔部を2.1mm間隔で1列形成した。
【0035】
電池A6では、図8に示すように、開孔率が90%となるように、一辺19mmの正方形の開孔部を1mm間隔で1列形成した。
<比較例>
正極芯体のアルミニウム箔、負極芯体の銅箔は、未塗布部に相当する部位が開孔加工されていないものを用いる以外は、上述の電池A1と同様にして、比較電池Xを作製した。
(実験1)
これらの本発明の電池A1〜電池A6及び比較例の電池Xを用いて、注液工程時の電解液含浸量を求めた。尚、電解液含浸量は、加圧含浸で24時間経過後に電池を開缶、電極群を取り出し、速やかに電極群の重量を計量することにより求めた。
【0036】
次に電池A1〜電池A6及び電池Xについて、充放電容量試験を行った。充放電条件は以下の通りである。
【0037】
充電:8.75A(1/8C)の定電流で、8時間若しくは充電電圧が4.2Vになる まで充電
休止:30分
放電:8.75A(1/8C)の定電流で、2.7Vになるまで放電
ここで求められた充電容量に対する放電容量の比を、充放電効率と定義する。
【0038】
さらに電池A1〜電池A6及び電池Xについて1C放電率で負荷特性試験を行った。測定条件は以下の通りである。
【0039】
充電:8.75A(1/8C)の定電流で、8時間若しくは充電電圧が4.2Vになる まで充電
休止:30分
放電:70A(1C)の定電流で、2.7Vになるまで放電
この試験の後、1/8Cでの放電容量に対する1Cでの放電容量の比、放電容量(1C)/放電容量(1/8C)を求めた。
【0040】
以上の結果を、表1に示す。
【0041】
【表1】

Figure 0003615432
【0042】
表1から判るように、正極の芯体及び負極の芯体の活物質の未塗布部分に開孔部を設けた電池A1〜A6では、開孔部を設けなかった電池Xと比較して、電解液の含浸量が多くなり、充電容量、充放電効率、及び放電容量(1C)/放電容量(1/8C)が向上した。
【0043】
特に、10〜80%の範囲である電池A2、A3、A4、A5では、1/8C(8.75A)の充電電流で8時間充電を行うことが出来、充放電効率が99.5%以上、放電容量(1C)/放電容量(1/8C)が95%以上の良好な結果が得られた。
【0044】
一方、開孔率が5%、0%である電池A1、Xは、電解液の含浸量が230g、180gと少なく、1/8C(8.75A)の充電電流では、充電時間が8時間に達する前に、充電終止電圧4.2Vで充電モードが終了したため、定格の70Ahの充電が行えなかった。
【0045】
また、開孔率が90%である電池A6の場合、電解液の含浸量は290gと十分であるが、充電容量は65Ahと低い。これは、芯体の未塗布部の開孔率が大きいため、集電性が低下し、電池内部抵抗が上昇した結果、過電圧が増加し、充電時間が8時間に達する以前に充電終止電圧4.2Vで充電モードが終了したためである。更に、放電容量(1C)/放電容量(1/8C)が90%以下と低く、集電性低下の影響が顕著である。
【0046】
(実験2)
この実験2では、負極芯体として銅箔の代わりに厚み20μmのニッケル箔を用いた以外は、上述の電池A3と同様にして電池A7を作製し、上述の実験1と同様の実験を行った。その結果を電池A3の実験結果と併せて表2に示す。
【0047】
【表2】
Figure 0003615432
【0048】
表2から判るように、電解液の含浸量は、278gと十分であり、放電容量(1C)/放電容量(1/8C)は96%以上と大きく、負荷特性は良好であり、負極芯体としてニッケル箔でも使用可能である。
【0049】
上述の実施例では、渦巻き電極体を有した円筒形電池に適用する場合について説明したが、本発明の電池はその形状に特に制限はなく、角形など、種々の形状の非水系電解質電池に適用することが可能である。
【0050】
【発明の効果】
本発明によれば、リチウム二次電池等に用いた場合、電解液の含浸が促進され、良好な充放電を行うことが可能となる電極を提供し得る。
【0051】
また、本発明によれば、電極への電解液の含浸が促進され、良好な充放電を行うことが出来るリチウム二次電池を提供し得る。
【図面の簡単な説明】
【図1】本発明の電極の正極の構造を示す図である。
【図2】本発明の電極の概略構造を示す斜視図である。
【図3】本発明の電池A1における開孔部のパターンを示す図である。
【図4】本発明の電池A2における開孔部のパターンを示す図である。
【図5】本発明の電池A3における開孔部のパターンを示す図である。
【図6】本発明の電池A4における開孔部のパターンを示す図である。
【図7】本発明の電池A5における開孔部のパターンを示す図である。
【図8】本発明の電池A6における開孔部のパターンを示す図である。
【符の説明】
1 正極
11 塗布部
12 未塗布部
13 開孔部
2 負極
22 未塗布部
3 セパレータ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrode suitable for use in a lithium secondary battery, and a lithium secondary battery using the electrode.
[0002]
[Prior art]
In recent years, lithium secondary batteries have been expected as secondary batteries that can achieve the high energy density and high output density required for electric vehicles.
[0003]
Large capacity, high power density batteries required for electric vehicles, etc. must be energized with a large current during start-up or rapid acceleration, and the internal resistance of the battery is improved by improving current collection from the viewpoint of improving energy efficiency and reducing Joule heat generation. Reduction is essential. In particular, since a strip-shaped electrode is long in a cylindrical large capacity secondary battery, it is necessary to dispose a plurality of current collecting tabs in order to reduce potential distribution and improve current collecting performance. Although the current collecting tab was welded with a spot, laser, ultrasonic wave, etc., the electrical contact property was not necessarily good, and heat generation at the welded portion became a problem when a large current was applied.
[0004]
In order to solve the above problem, for example, in JP-A-8-115744, an active material uncoated portion is provided at an end of a core body instead of a current collecting tab, and this is formed into a metal circular collector. A lithium secondary battery using a current collecting method in which a current collector plate is connected by welding and the current collector plate is connected to a current collector terminal has been proposed.
[0005]
However, since the lithium secondary battery uses an organic electrolyte, the wound electrode is in a pressed state. Therefore, in the lithium secondary battery using the current collection method disclosed in the above publication, the organic electrolyte is an electrode. There is a problem that it is difficult to impregnate.
[0006]
Japanese Patent Laid-Open No. 9-92335 discloses a secondary body in which the core of the uncoated portion of the positive and negative electrodes is processed into a strip shape, and a plurality of strip leads are bundled and connected to the positive electrode current collector terminal and the negative electrode current collector terminal. Batteries have been proposed.
[0007]
However, in the lithium secondary battery disclosed in this publication, it is possible to impregnate the electrolytic solution from the gap between the strip-shaped leads. However, a large number of strip-shaped leads are bundled and connected to the positive and negative current collecting terminals. There is a problem that the manufacturing process becomes complicated such as necessity.
[0008]
[Problems to be solved by the invention]
The present invention has been made in view of the drawbacks of the above conventional examples, and provides an electrode configured to be easily impregnated with an electrolyte without complicating the manufacturing process, and a lithium secondary battery using the electrode. It is intended to do.
[0009]
[Means for Solving the Problems]
An electrode for a lithium secondary battery using the electrolytic solution of the present invention has a strip-shaped positive electrode and a strip-shaped negative electrode wound around a separator, and an active material is provided at the end of at least one core of the positive electrode and the negative electrode. An unapplied part to which no adhesion is applied is provided, the unapplied part is exposed from the separator, and an opening is provided.
[0010]
In the electrode having such a configuration, when used in a lithium secondary battery or the like, the electrolytic solution permeates from the opening , and the impregnation of the electrolytic solution into the electrode is promoted.
[0011]
In particular, in the electrode of the present invention, when the aperture ratio of the aperture portion in the uncoated portion is 10% or more and 80% or less, when used for a lithium secondary battery or the like, good charge / discharge is possible. .
[0012]
Further, an aluminum foil is suitable as the positive electrode core.
[0013]
Further, a copper foil or a nickel foil is suitable as the core of the negative electrode.
[0014]
The lithium secondary battery of the present invention includes the above-described electrode of the present invention, and is characterized in that electrical connection is made from the uncoated portion of the electrode to a terminal.
[0015]
In the lithium secondary battery having such a configuration, the impregnation of the electrode with the electrolytic solution is promoted, and good charge / discharge is performed.
[0016]
As the active material of the positive electrode capable of occluding and releasing lithium ions, metal oxides are suitable. Specifically, LiCoO 2 , LiNiO 2 , LiCo 1-X Ni X O 2 , LiMn 2 O 4 and these Mention may be made of at least one material selected from the group consisting of complex compounds.
[0017]
As the active material of the negative electrode used in the present invention, graphite, carbon materials such as coke, a lithium metal, lithium alloys, LiXFe 2 O 3, Li X WO 2 or the like of the metal oxide materials, conductive, such as polyacetylene A functional polymer material. In particular, when a carbon material made of graphite is used, an excellent effect is exhibited. As the graphite and coke material used for the carbon material, a pulverized material may be used as it is, or a heat-treated material in the range of 500 ° C. to 3700 ° C. may be used. Further, the value of the (002) plane spacing d002 of the graphite by the X-ray wide angle diffraction method is preferably 3.35 mm or more and 3.37 mm or less, and the crystallite length Lc in the C axis direction is 400 mm or more.
[0018]
It should be noted that various materials that have been put to practical use or have been proposed for conventional lithium secondary batteries can also be used for battery components such as electrolytes, electrolytes, and separators.
[0019]
For example, electrolytes include electrolytes such as LiPF 6 , LiClO 4 , and LiCF 3 SO 3 containing lithium ions. Further, as the organic solvent for the electrolytic solution, ethylene carbonate, diethyl carbonate, dimethoxymethane, sulfolane and the like can be used alone or in combination. Examples of the electrolytic solution include solutions obtained by dissolving the electrolyte in these solvents at a ratio of about 0.7 to 1.5 M (mol / l).
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention are described below.
[0021]
[Preparation of positive electrode]
A portion corresponding to the uncoated portion of the active material of positive electrode substrate to become aluminum foil (thickness 20 [mu] m), such that the open area ratio 5% in uncoated portion, to form a circular opening. In addition, the opening part is not formed at all in the part corresponding to the application part of the active material.
[0022]
The positive electrode active material, that is, LiCoO 2 as the positive electrode material is obtained by mixing lithium hydroxide and cobalt hydroxide and firing in air at 800 ° C. for 24 hours. This positive electrode material and artificial graphite as a conductive material were mixed at a weight ratio of 90: 5 to prepare a positive electrode mixture. Then, PVdF (polyvinylidene fluoride) as a binder was dissolved in NMP (N-methyl 2-pyrrolidone) to prepare an NMP solution. The positive electrode mixture and the NMP solution were kneaded so that the weight ratio of the positive electrode mixture and polyvinylidene fluoride was 95: 5 to prepare a slurry, and this slurry was adjusted in the longitudinal direction of the aluminum foil in which the above-described apertures were formed. Applying by a doctor blade method, leaving an uncoated part of 20 mm on one side, forming a coated part, bonding, and vacuum drying at 150 ° C. for 2 hours. The positive electrode was produced by cutting and rolling to a width of 240 mm to be 220 mm. The positive electrode has a thickness of 150 μm.
[0023]
FIG. 1 is a schematic cross-sectional view of a positive electrode for a lithium secondary battery of this example. In FIG. 1, 11 is a coating part, 12 is an uncoated part, 13 is an opening part .
[0024]
[Preparation of negative electrode]
A portion corresponding to the uncoated portion of the active material of the negative electrode substrate to become copper foil (thickness 20 [mu] m), such that the open area ratio 5% in uncoated portion, to form a circular opening. In addition, the opening part is not formed at all in the part corresponding to the application part of the active material.
[0025]
As a negative electrode active material, that is, a negative electrode material, an air stream was jetted into a carbon lump (d002 = 3.356Å; Lc> 1000Å) and pulverized (jet pulverized), and sieved to obtain a graphite powder having a particle diameter of 10 μm. Further, polyvinylidene fluoride as a binder was dissolved in NMP to prepare an NMP solution. A slurry was prepared by kneading the graphite powder and polyvinylidene fluoride in a weight ratio of 90:10. This slurry was applied to both sides of a copper foil as a negative electrode core processed so that the open area ratio of the uncoated portion was 5% by a doctor blade method, and vacuum dried at 150 ° C. for 2 hours to prepare a negative electrode. Moreover, the thickness of this negative electrode is 150 micrometers including a core. In addition, although illustration is abbreviate | omitted about schematic sectional drawing of a negative electrode, it is the same shape as the positive electrode shown in FIG.
[0026]
[Preparation of electrolyte]
As an electrolytic solution, LiPF 6 was dissolved at a ratio of 1M in a solvent in which ethylene carbonate and dimethoxymethane were mixed at a volume ratio of 1: 1 to prepare an electrolytic solution.
[0027]
[Battery assembly]
As shown in FIG. 2, the positive electrode 1 and the negative electrode 2 produced by the above-described steps were wound through a separator 3 made of a polypropylene microporous thin film to produce a cylindrical wound electrode. At this time, the uncoated portion 12 of the positive electrode 1 is exposed from one end side of the separator 3, and the uncoated portion 22 of the negative electrode 2 is exposed from the other end side of the separator 3. Next, a nickel circular current collector plate having a diameter of 58 mm was fixed to both ends of the wound electrode by resistance welding, and then the nickel circular current collector plate and the positive and negative electrode current collector terminals were connected. Next, after 300 g of the electrolyte solution was injected, the inside of the battery can was pressurized to 4 kgf / cm 2 and allowed to stand for 24 hours to produce a large cylindrical lithium secondary battery A1. The battery has a diameter of 60 mm and a length of 320 mm. The design capacity of this battery is 70 Ah.
[0028]
Next, both the positive electrode and the negative electrode described above except that the cores having the open area ratios of 10%, 30%, 60%, 80%, and 90% in the uncoated areas of the active material were used. In the same manner as the battery A1, large cylindrical lithium secondary batteries A2, A3, A4, A5, and A6 were produced in two cells each.
[0029]
In the above-described lithium secondary batteries A1 to A6, the apertures were formed in the following pattern arrangement so that the aperture ratio of the apertures in the active material unapplied area was a desired value.
[0030]
That is, in the battery A1, as shown in FIG. 3, one row of circular apertures having a diameter of 4 mm was formed at intervals of 8.58 mm so that the aperture ratio was 5%.
[0031]
In battery A2, as shown in FIG. 4, circular apertures with a diameter of 4 mm were formed in a row at intervals of 2.29 mm so that the aperture ratio was 10%.
[0032]
In battery A3, as shown in FIG. 5, the diameter is 4 mm so that the hole area ratio is 30%.
Three circular apertures were formed at intervals of 2.29 mm.
[0033]
In battery A4, as shown in FIG. 6, three rows of circular apertures with a diameter of 6 mm were formed at intervals of 1 mm so that the aperture ratio was 60%.
[0034]
In battery A5, as shown in FIG. 7, square openings having a side of 17.9 mm were formed in one row at intervals of 2.1 mm so that the opening ratio was 80%.
[0035]
In the battery A6, as shown in FIG. 8, square holes having a side of 19 mm were formed in a row at intervals of 1 mm so that the hole area ratio was 90%.
<Comparative example>
A comparative battery X was produced in the same manner as the battery A1 described above except that the aluminum foil of the positive electrode core and the copper foil of the negative electrode core were not subjected to opening processing at the portion corresponding to the uncoated portion. .
(Experiment 1)
Using these batteries A1 to A6 of the present invention and the battery X of the comparative example, the amount of electrolyte impregnation during the liquid injection process was determined. The electrolytic solution impregnation amount was determined by opening the battery after 24 hours by pressure impregnation, taking out the electrode group, and quickly weighing the electrode group.
[0036]
Next, a charge / discharge capacity test was performed on the batteries A1 to A6 and the battery X. The charge / discharge conditions are as follows.
[0037]
Charging: 8.75 A (1/8 C) constant current , 8 hours or until charging voltage reaches 4.2 V Charging pause: 30 minutes Discharging: 8.75 A (1/8 C ) constant current, 2.7 V The ratio of the discharge capacity to the charge capacity determined here is defined as charge / discharge efficiency.
[0038]
Further, a load characteristic test was performed on the batteries A1 to A6 and the battery X at a 1C discharge rate. The measurement conditions are as follows.
[0039]
Charging: 8.75A (1 / 8C) constant current , 8 hours or until charging voltage reaches 4.2V Charging pause: 30 minutes Discharge: 70A ( 1C ) constant current, discharging until 2.7V After this test, the ratio of the discharge capacity at 1C to the discharge capacity at 1 / 8C, discharge capacity (1C) / discharge capacity (1 / 8C) was determined.
[0040]
The results are shown in Table 1.
[0041]
[Table 1]
Figure 0003615432
[0042]
As can be seen from Table 1, the battery A1~A6 provided an opening in the uncoated portion of the active material of the core and the core of the negative electrode of the positive electrode, as compared to the battery X was not provided an opening, The amount of electrolyte impregnation increased, and the charge capacity, charge / discharge efficiency, and discharge capacity (1C) / discharge capacity (1 / 8C) were improved.
[0043]
In particular, the batteries A2, A3, A4, and A5 in the range of 10 to 80% can be charged with a charging current of 1 / 8C (8.75 A) for 8 hours, and the charge / discharge efficiency is 99.5% or more. The discharge capacity (1C) / discharge capacity (1 / 8C) was 95% or more.
[0044]
On the other hand, the batteries A1 and X having an opening ratio of 5% and 0% have a small amount of electrolyte impregnation of 230 g and 180 g, respectively, and the charging time is 8 hours at a charging current of 1/8 C (8.75 A). Since the charge mode was terminated at the end-of-charge voltage of 4.2 V before reaching, the rated 70 Ah could not be charged.
[0045]
Further, in the case of the battery A6 having a porosity of 90%, the amount of electrolyte impregnation is 290 g, but the charging capacity is as low as 65 Ah. This is because the open area ratio of the uncoated portion of the core is large, the current collecting performance is lowered, and the battery internal resistance is increased. As a result, the overvoltage increases, and the charge end voltage 4 before the charging time reaches 8 hours. This is because the charging mode is terminated at 2V. Furthermore, the discharge capacity (1C) / discharge capacity (1 / 8C) is as low as 90% or less, and the influence of the decrease in current collection is remarkable.
[0046]
(Experiment 2)
In Experiment 2, a battery A7 was produced in the same manner as the battery A3 described above except that a nickel foil having a thickness of 20 μm was used instead of the copper foil as the negative electrode core, and the same experiment as the experiment 1 was performed. . The results are shown in Table 2 together with the experimental results of the battery A3.
[0047]
[Table 2]
Figure 0003615432
[0048]
As can be seen from Table 2, the amount of impregnation with the electrolyte is 278 g, the discharge capacity (1C) / discharge capacity (1 / 8C) is as large as 96% or more, the load characteristics are good, and the negative electrode core Nickel foil can also be used.
[0049]
In the above-described embodiments, the case where the present invention is applied to a cylindrical battery having a spiral electrode body has been described. However, the battery of the present invention is not particularly limited in its shape, and is applicable to non-aqueous electrolyte batteries having various shapes such as a square shape. Is possible.
[0050]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, when used for a lithium secondary battery etc., the impregnation of electrolyte solution is accelerated | stimulated and the electrode which can perform favorable charging / discharging can be provided.
[0051]
Moreover, according to this invention, the impregnation of the electrolyte solution to an electrode is accelerated | stimulated and the lithium secondary battery which can perform favorable charging / discharging can be provided.
[Brief description of the drawings]
FIG. 1 is a diagram showing the structure of a positive electrode of an electrode of the present invention.
FIG. 2 is a perspective view showing a schematic structure of an electrode of the present invention.
FIG. 3 is a diagram showing a pattern of openings in the battery A1 of the present invention.
FIG. 4 is a diagram showing a pattern of openings in battery A2 of the present invention.
FIG. 5 is a diagram showing a pattern of openings in battery A3 of the present invention.
FIG. 6 is a diagram showing a pattern of openings in battery A4 of the present invention.
FIG. 7 is a diagram showing a pattern of openings in battery A5 of the present invention.
FIG. 8 is a diagram showing a pattern of openings in battery A6 of the present invention.
[Description of marks Nos.]
DESCRIPTION OF SYMBOLS 1 Positive electrode 11 Application | coating part 12 Unapplied part 13 Opening part 2 Negative electrode 22 Unapplied part 3 Separator

Claims (5)

帯状の正極と帯状の負極とがセパレータを介して巻回してなる電解液を用いるリチウム二次電池用電極において、前記正極及び負極の少なくとも一方の芯体の端部には活物質が付着していない未塗布部分が設けられ、該未塗布部は前記セパレータより露出し、且つ開孔部が設けられていることを特徴とする、電解液を用いるリチウム二次電池用電極。 In an electrode for a lithium secondary battery using an electrolytic solution in which a strip-shaped positive electrode and a strip-shaped negative electrode are wound through a separator, an active material is attached to an end portion of at least one of the positive electrode and the negative electrode. An uncoated part is provided, the uncoated part is exposed from the separator, and an opening is provided . An electrode for a lithium secondary battery using an electrolytic solution. 前記未塗布部分における開孔部開孔部率が10%以上、80%以下であることを特徴とする請求項1記載の電解液を用いるリチウム二次電池用電極The non opening ratio of the openings in the coating portion of 10% or more, a lithium secondary battery electrode using an electrolytic solution of claim 1, wherein the 80% or less. 前記正極の芯体がアルミニウム箔よりなることを特徴とする請求項1又は2記載の電解液を用いるリチウム二次電池用電極The electrode for a lithium secondary battery using an electrolytic solution according to claim 1 or 2, wherein the core of the positive electrode is made of an aluminum foil. 前記負極の芯体が銅箔或いはニッケル箔よりなることを特徴とする請求項1、2又は3記載の電解液を用いるリチウム二次電池用電極4. The electrode for a lithium secondary battery using an electrolytic solution according to claim 1, wherein the negative electrode core is made of a copper foil or a nickel foil. 請求項1、2、3又は4記載の電解液を用いるリチウム二次電池用電極を備え、該電極の前記未塗布部分より端子への電気的接続が行われていることを特徴とするリチウム二次電池。A lithium secondary battery electrode using the electrolytic solution according to claim 1, 2, 3, or 4 is provided, and an electrical connection is made from the uncoated portion of the electrode to a terminal. Next battery.
JP27705799A 1999-09-29 1999-09-29 Electrode and lithium secondary battery Expired - Fee Related JP3615432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27705799A JP3615432B2 (en) 1999-09-29 1999-09-29 Electrode and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27705799A JP3615432B2 (en) 1999-09-29 1999-09-29 Electrode and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2001102051A JP2001102051A (en) 2001-04-13
JP3615432B2 true JP3615432B2 (en) 2005-02-02

Family

ID=17578196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27705799A Expired - Fee Related JP3615432B2 (en) 1999-09-29 1999-09-29 Electrode and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3615432B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4655657B2 (en) * 2005-02-08 2011-03-23 新神戸電機株式会社 Winded lead acid battery
JP4296205B2 (en) * 2007-03-29 2009-07-15 株式会社東芝 Non-aqueous electrolyte battery, battery pack and automobile
JP5187729B2 (en) * 2007-11-09 2013-04-24 Necエナジーデバイス株式会社 Sealed battery
CN101662011B (en) * 2008-08-26 2013-05-29 比亚迪股份有限公司 Battery pole piece and preparation method thereof and battery containing same
JP5337418B2 (en) * 2008-07-04 2013-11-06 日立ビークルエナジー株式会社 Non-aqueous electrolyte secondary battery
DE102011105040A1 (en) * 2011-05-06 2012-11-08 Klaus Ebert Lithiumsenkundärzellenanordnung
JP6261236B2 (en) * 2013-08-28 2018-01-17 日立オートモティブシステムズ株式会社 Flat rechargeable secondary battery
JP2015103420A (en) * 2013-11-26 2015-06-04 日立オートモティブシステムズ株式会社 Square secondary battery
KR20210101630A (en) * 2020-02-10 2021-08-19 주식회사 엘지에너지솔루션 The Electrode And The Electrode Assembly

Also Published As

Publication number Publication date
JP2001102051A (en) 2001-04-13

Similar Documents

Publication Publication Date Title
JP3978881B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP5929897B2 (en) Positive electrode plate for nonaqueous electrolyte secondary battery and method for producing the same, nonaqueous electrolyte secondary battery and method for producing the same
JP3538500B2 (en) Non-aqueous electrolyte secondary battery
EP3282502B1 (en) Electrode, electrode group and nonaqueous electrolyte battery
WO2015001871A1 (en) Nonaqueous electrolyte secondary cell and method for producing same
JP3631202B2 (en) Non-aqueous electrolyte battery
JP3768026B2 (en) Non-aqueous electrolyte secondary battery
WO2017098682A1 (en) Nonaqueous electrolyte secondary battery
JPWO2011016183A1 (en) Nonaqueous electrolyte secondary battery
JP3615432B2 (en) Electrode and lithium secondary battery
JP4026351B2 (en) Negative electrode current collector, and negative electrode plate and non-aqueous electrolyte secondary battery using the current collector
JP3501113B2 (en) Non-aqueous secondary battery and method of manufacturing the same
WO2015129376A1 (en) Rolled electrode set and nonaqueous-electrolyte battery
JPH06310126A (en) Nonaquous electrolytic secondary battery
JP3968772B2 (en) Non-aqueous electrolyte battery
JP3909996B2 (en) Non-aqueous electrolyte secondary battery
WO2012001814A1 (en) Lithium secondary battery
JP2007172879A (en) Battery and its manufacturing method
JP3749024B2 (en) battery
JP2017091677A (en) Nonaqueous electrolyte battery
JPH11312516A (en) Positive electrode for lithium secondary battery and lithium secondary battery using the same
JP2007172878A (en) Battery and its manufacturing method
JP2002075460A (en) Lithium secondary cell
JPH11283612A (en) Lithium secondary battery
JP3541481B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees