JP2015103420A - Square secondary battery - Google Patents

Square secondary battery Download PDF

Info

Publication number
JP2015103420A
JP2015103420A JP2013243628A JP2013243628A JP2015103420A JP 2015103420 A JP2015103420 A JP 2015103420A JP 2013243628 A JP2013243628 A JP 2013243628A JP 2013243628 A JP2013243628 A JP 2013243628A JP 2015103420 A JP2015103420 A JP 2015103420A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
battery
hole
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2013243628A
Other languages
Japanese (ja)
Inventor
洋昭 増田
Hiroaki Masuda
洋昭 増田
佐々木 孝
Takashi Sasaki
孝 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2013243628A priority Critical patent/JP2015103420A/en
Publication of JP2015103420A publication Critical patent/JP2015103420A/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a square secondary battery which ensures excellent electrolyte permeability to a wound electrode group, while preventing fracture of the positive electrode uncoated part and negative electrode uncoated due to vibration ot impact in the market environment.SOLUTION: A square secondary battery C1 has a through hole 40 for introducing the electrolyte into a wound electrode group 3, in a region from the end 70 on the bottom side 22 of a battery can 1 in the positive electrode side weld zone 31c of a positive electrode uncoated part 31c to the top 71 of a bend 50 on the bottom side 22 of a battery can 1 of the positive electrode side weld zone 31c, and a region from the end 70 on the bottom side 22 of a battery can 1 in the negative electrode side weld zone 32d of a negative electrode uncoated part 32c to the top 71 of a bend 50 on the bottom side 22 of a battery can 1 of the negative electrode uncoated part 32c. Furthermore, the through hole 40 is immersed in the free liquid electrolyte.

Description

本発明は、角形二次電池に関する。   The present invention relates to a prismatic secondary battery.

リチウムイオン二次電池は他の二次電池と比較してエネルギー密度が高いため、昨今では主にデジタルカメラやノート型パソコン、携帯電話などのポータブル機器に多く使用されている。また近年は環境問題に対応すべく、電気自動車用や電力貯蔵用を目的とする、大型のリチウムイオン二次電池の研究開発が活発に行われている。特に、自動車産業界においては、動力源としてモータを用いる方式の電気自動車や内燃機関とモータとの両方を用いるハイブリッド方式の電気自動車の開発が進められており、その一部はすでに実用化されている。   Since lithium ion secondary batteries have a higher energy density than other secondary batteries, they are now mainly used in portable devices such as digital cameras, notebook computers and mobile phones. In recent years, research and development of large-sized lithium ion secondary batteries for the purpose of electric vehicles and power storage have been actively conducted in order to cope with environmental problems. In particular, in the automobile industry, the development of electric vehicles using a motor as a power source and hybrid electric vehicles using both an internal combustion engine and a motor are underway, some of which have already been put into practical use. Yes.

従来のリチウムイオン二次電池として、帯状の正極と負極にセパレータを介して重ねて捲回してなる捲回電極群と、上記捲回電極群と電解液を缶に収容してなる角形二次電池が知られている。この種の角形二次電池において、主に高出力を必要とする車載用等のリチウムイオン二次電池として、捲回電極群の捲回軸方向の両端に正極と負極それぞれの未塗工部を突出させ、その突出させた未塗工部を集電体に接続することで簡便な構成を可能にしている。   As a conventional lithium ion secondary battery, a wound electrode group formed by winding a belt-like positive electrode and a negative electrode through a separator, and a prismatic secondary battery in which the wound electrode group and an electrolytic solution are accommodated in a can. It has been known. In this type of prismatic secondary battery, as an in-vehicle lithium ion secondary battery that mainly requires high output, uncoated portions of the positive electrode and the negative electrode are provided at both ends in the winding axis direction of the wound electrode group. A simple configuration is made possible by projecting and connecting the projected uncoated portion to a current collector.

リチウムイオン二次電池では、電池反応を進行させるために電解液を注入する。捲回電極群の内部に電解液が浸透して電池反応を起こすが、一般的な捲回電極群は主に捲回軸方向端部から電解液が浸透するため、電解液の浸透に時間がかかるという問題がある。   In a lithium ion secondary battery, an electrolytic solution is injected in order to advance the battery reaction. The electrolyte solution penetrates inside the wound electrode group and causes a battery reaction. However, in the general wound electrode group, the electrolyte solution penetrates mainly from the end in the winding axis direction. There is a problem that it takes.

特許文献1には、正極未塗工部における正極集電体との溶接部と、正極塗工部との間に、複数の貫通孔が捲回方向に沿って形成され、負極未塗工部における負極集電体との溶接部と、負極塗工部との間に、複数の貫通孔が捲回方向に沿って形成された発明が開示されている。特許文献1に記載の発明によれば、貫通孔からも電解液が浸透するため、捲回電極群の電解液の浸透が早くなり、注液作業が短縮されるという効果を奏する。   In Patent Document 1, a plurality of through holes are formed along a winding direction between a welded portion with a positive electrode current collector in a positive electrode uncoated portion and the positive electrode coated portion, and a negative electrode uncoated portion. An invention is disclosed in which a plurality of through holes are formed along a winding direction between a welded portion with a negative electrode current collector and a negative electrode coating portion. According to the invention described in Patent Document 1, since the electrolytic solution permeates through the through-holes, the penetration of the electrolytic solution in the wound electrode group is accelerated, and the liquid injection operation is shortened.

特開2013−171733号公報JP 2013-171733 A

しかし、特許文献1に記載の発明では、捲回電極群を保持している集電溶接部に対して捲回軸方向中心側に複数の貫通孔が設けられており、貫通孔によって未塗工部の面積が減少しているために機械的強度が低い。市場環境における振動や衝撃によって電池缶内で捲回電極群が振られる可能性があり、結果として、正極未塗工部または負極未塗工部が破断する可能性がある。   However, in the invention described in Patent Document 1, a plurality of through holes are provided on the center side in the winding axis direction with respect to the current collecting weld holding the wound electrode group, and the coating is not applied by the through holes. Since the area of the part is reduced, the mechanical strength is low. There is a possibility that the wound electrode group is shaken in the battery can due to vibration or impact in the market environment, and as a result, the positive electrode uncoated portion or the negative electrode uncoated portion may be broken.

請求項1の発明による角形二次電池は、電解液と、正極箔に正極活物質が塗工された正極塗工部と塗工されていない正極未塗工部とを有する正極電極、および、負極箔に負極活物質が塗工された負極塗工部と塗工されていない負極未塗工部とを有する負極電極をセパレータを介在させて扁平形状に捲回した捲回電極群と、捲回電極群を収容する電池缶と、電池缶を封止する電池蓋と、正極側溶接部を介して、正極未塗工部と接続される正極集電体と、負極側溶接部を介して、負極未塗工部と接続される負極集電体とを備え、捲回電極群は、正極未塗工部における正極側溶接部と正極塗工部との間の領域外、または負極未塗工部における負極側溶接部と負極塗工部との間の領域外のいずれかに貫通孔を有し、貫通孔の少なくとも一部は、電解液の遊離液に浸漬されていることを特徴とする。即ち、貫通孔は、正極側溶接部の捲回方向電池缶底面側端部から捲回方向電池缶底面側の捲回電極群の湾曲部の頂点までの領域、正極未塗工部における正極側溶接部の捲回方向電池蓋側端部から捲回方向電池蓋側の捲回電極群の湾曲部の頂点までの領域、負極未塗工部における負極側溶接部の捲回方向電池缶底面側端部から捲回方向電池缶底面側の捲回電極群の湾曲部の頂点までの領域、および、負極未塗工部における負極側溶接部の捲回方向前記電池蓋側端部から捲回方向電池蓋側の捲回電極群の湾曲部の頂点までの領域のいずれかに設けられている。   The prismatic secondary battery according to the invention of claim 1 includes an electrolyte, a positive electrode having a positive electrode coated part in which a positive electrode active material is coated on a positive electrode foil, and a non-coated positive electrode uncoated part, and A wound electrode group in which a negative electrode having a negative electrode coated portion coated with a negative electrode active material and a non-coated negative electrode uncoated portion is wound in a flat shape with a separator interposed therebetween, A battery can that houses the rotating electrode group, a battery lid that seals the battery can, a positive electrode current collector connected to the positive electrode uncoated part via the positive electrode side welded part, and a negative electrode side welded part A negative electrode current collector connected to the negative electrode uncoated part, and the wound electrode group is outside the region between the positive electrode side welded part and the positive electrode coated part in the positive electrode uncoated part, or the negative electrode uncoated part. The through hole has a through hole anywhere outside the region between the negative electrode side welded portion and the negative electrode coated portion, and at least a part of the through hole is an electrolyte solution. Characterized in that it is immersed in free liquid. That is, the through hole is a region from the winding direction battery can bottom side end of the positive electrode side welded portion to the apex of the curved portion of the winding electrode group on the winding direction battery can bottom side, the positive electrode side in the positive electrode uncoated portion Winding direction battery lid side end of the winding electrode group on the winding direction battery lid side of the welding part to the apex of the curved part of the winding electrode group on the winding direction battery lid side The region from the end to the apex of the curved portion of the wound electrode group on the bottom side of the winding direction battery can, and the winding direction of the negative electrode side welded portion in the negative electrode uncoated portion It is provided in any of the regions up to the apex of the curved portion of the wound electrode group on the battery lid side.

本発明により、市場環境における振動や衝撃による正極未塗工部および負極未塗工部の破断を防ぎつつ、捲回電極群への電解液浸透性が優れた角形二次電池を提供できる。   According to the present invention, it is possible to provide a prismatic secondary battery having excellent electrolyte solution permeability to a wound electrode group while preventing breakage of a positive electrode uncoated portion and a negative electrode uncoated portion due to vibration or impact in a market environment.

角形二次電池の外観斜視図。The external appearance perspective view of a square secondary battery. 角形二次電池の分解斜視図。The disassembled perspective view of a square secondary battery. 集電体を溶接する前の捲回電極群を示す図。The figure which shows the winding electrode group before welding a collector. 貫通孔を設けた第1実施形態の捲回電極群の図。The figure of the winding electrode group of 1st Embodiment which provided the through-hole. 貫通孔を設ける工程を示す概略図。Schematic which shows the process of providing a through-hole. 貫通孔を湾曲部の頂部に設けた第2実施形態の捲回電極群の図。The figure of the winding electrode group of 2nd Embodiment which provided the through-hole in the top part of the curved part. 捲回電極群未塗工部を一方の外周面からもう一方の外周面まで貫通させるような貫通孔を設けた第3実施形態の捲回電極群の図。The figure of the winding electrode group of 3rd Embodiment which provided the through-hole which penetrates the winding electrode group uncoated part from one outer peripheral surface to another outer peripheral surface. 角形の貫通孔を設けた第4実施形態の捲回電極群の図。The figure of the winding electrode group of 4th Embodiment which provided the square through-hole. 複数の貫通孔を設けた第5実施形態の捲回電極群の図。The figure of the winding electrode group of 5th Embodiment which provided the several through-hole. 貫通孔の設け方の変形例を示す図。The figure which shows the modification of how to provide a through-hole.

―第1実施形態―
図1は角形二次電池C1の外観を示す斜視図であり、図2は図1の角形二次電池C1の構成を示す分解斜視図である。
-First embodiment-
FIG. 1 is a perspective view showing the external appearance of the prismatic secondary battery C1, and FIG. 2 is an exploded perspective view showing the configuration of the prismatic secondary battery C1 of FIG.

図1および図2に示すように、角形二次電池C1は、扁平な直方体形状であって、電池缶1と電池蓋6とからなる電池容器を備えている。電池缶1および電池蓋6の材質は、アルミニウムまたはアルミニウム合金などである。   As shown in FIGS. 1 and 2, the square secondary battery C <b> 1 has a flat rectangular parallelepiped shape and includes a battery container including a battery can 1 and a battery lid 6. The material of the battery can 1 and the battery lid 6 is aluminum or an aluminum alloy.

図2に示すように、電池缶1には捲回電極群3が収容されている。電池缶1は、一対の幅広面21aと一対の幅狭面21bと底面22とを有し、一端が開口部1aとして開口された有底箱状に形成されている。捲回電極群3は絶縁保護フィルム2に覆われた状態で電池缶1に収容されている。絶縁保護フィルム2の材質は、ポリプロピレンやポリエチレンテレフタレート等の絶縁性を有する樹脂である。これにより、電池缶1の底面および側面と、捲回電極群3とは電気的に絶縁されている。   As shown in FIG. 2, the wound electrode group 3 is accommodated in the battery can 1. The battery can 1 has a pair of wide surfaces 21a, a pair of narrow surfaces 21b, and a bottom surface 22, and is formed in a bottomed box shape having one end opened as an opening 1a. The wound electrode group 3 is accommodated in the battery can 1 while being covered with the insulating protective film 2. The material of the insulating protective film 2 is an insulating resin such as polypropylene or polyethylene terephthalate. Thereby, the bottom face and side face of the battery can 1 and the wound electrode group 3 are electrically insulated.

図1および図2に示すように、電池蓋6は、矩形平板状であって、電池缶1の開口を塞ぐようにレーザ溶接されている。つまり、電池蓋6は、電池缶1の開口を封止している。電池蓋6には、正極外部端子8Aおよび負極外部端子8Bが配設されている。   As shown in FIGS. 1 and 2, the battery lid 6 has a rectangular flat plate shape and is laser-welded so as to close the opening of the battery can 1. That is, the battery lid 6 seals the opening of the battery can 1. The battery lid 6 is provided with a positive external terminal 8A and a negative external terminal 8B.

正極外部端子8Aは正極集電体4Aを介して捲回電極群3の正極側溶接部31dに電気的に接続され、負極外部端子8Bは負極集電体4Bを介して捲回電極群3の負極側溶接部32dに電気的に接続されている。このため、正極外部端子8Aおよび負極外部端子8Bを介して外部負荷に電力が供給され、あるいは、正極外部端子8Aおよび負極外部端子8Bを介して外部発電電力が捲回電極群3に供給されて充電される。   The positive electrode external terminal 8A is electrically connected to the positive electrode side weld 31d of the wound electrode group 3 via the positive electrode current collector 4A, and the negative electrode external terminal 8B is connected to the wound electrode group 3 via the negative electrode current collector 4B. It is electrically connected to the negative electrode side welding part 32d. Therefore, electric power is supplied to the external load via the positive external terminal 8A and the negative external terminal 8B, or external generated power is supplied to the wound electrode group 3 via the positive external terminal 8A and the negative external terminal 8B. Charged.

図2に示すように、電池蓋6には、電池容器内に電解液を注入するための注液口9が穿設されている。注液口9は、電解液注入後に注液栓11によって封止される。電解液としては、例えば、エチレンカーボネート等の炭酸エステル系の有機溶媒に六フッ化リン酸リチウム(LiPF)等のリチウム塩が溶解された非水電解液を用いることができる。 As shown in FIG. 2, the battery lid 6 is provided with a liquid injection port 9 for injecting an electrolytic solution into the battery container. The liquid injection port 9 is sealed with a liquid injection stopper 11 after the electrolytic solution is injected. As the electrolytic solution, for example, a non-aqueous electrolytic solution in which a lithium salt such as lithium hexafluorophosphate (LiPF 6 ) is dissolved in a carbonate-based organic solvent such as ethylene carbonate can be used.

図1に示すように、電池蓋6の表面には、ガス排出弁10が凹設されている。ガス排出弁10は、内圧作用時の応力集中度合が相対的に高くなるように、プレス加工によって電池蓋6を部分的に薄肉化することで形成されている。ガス排出弁10は、角形二次電池C1が過充電等の異常により発熱してガスが発生し、電池容器内の圧力が上昇して所定圧力に達したときに開裂して、内部からガスを排出することで電池容器内の圧力を低減させる。   As shown in FIG. 1, a gas discharge valve 10 is recessed on the surface of the battery lid 6. The gas discharge valve 10 is formed by partially thinning the battery lid 6 by press work so that the degree of stress concentration at the time of internal pressure action is relatively high. The gas discharge valve 10 generates heat when the square secondary battery C1 generates heat due to an abnormality such as overcharge, and when the pressure in the battery container rises and reaches a predetermined pressure, the gas discharge valve 10 is opened and gas is discharged from the inside. By discharging, the pressure in the battery container is reduced.

図2に示すように、電池蓋6には、正極外部端子8A、負極外部端子8B、正極集電体4A、および、負極集電体4Bが取り付けられる。正極外部端子8Aと電池蓋6との間、および、負極外部端子8Bと電池蓋6との間のそれぞれには、ガスケット5が配置される。正極集電体4Aと電池蓋6との間、および、負極集電体4Bと電池蓋6との間のそれぞれには、絶縁板7が配置される。   As shown in FIG. 2, a positive electrode external terminal 8A, a negative electrode external terminal 8B, a positive electrode current collector 4A, and a negative electrode current collector 4B are attached to the battery lid 6. Gaskets 5 are disposed between the positive external terminal 8A and the battery cover 6 and between the negative external terminal 8B and the battery cover 6, respectively. Insulating plates 7 are disposed between the positive electrode current collector 4 </ b> A and the battery lid 6 and between the negative electrode current collector 4 </ b> B and the battery lid 6.

正極外部端子8Aおよび正極集電体4Aの材質は、アルミニウム系金属、すなわちアルミニウムまたはアルミニウム合金である。正極外部端子8Aは、直方体形状の外部端子部と、外部端子部の電池蓋6側の面から電池蓋6側に向かって突出する突部とを有している。突部は、ガスケット5の貫通孔、電池蓋6の正極側貫通孔6A、絶縁板7の貫通孔、および、正極集電体4Aの正極集電体基部41Aの正極側開口孔43Aに挿通され、先端が電池容器内において正極集電体4Aの正極集電体基部41Aにかしめられて正極接続部12Aが形成される。正極接続部12Aと正極集電体基部41Aとは、かしめ固定された後、レーザによりスポット溶接される。これにより、正極外部端子8Aと正極集電体4Aとが電気的に接続されるとともに、正極外部端子8Aおよび正極集電体4Aのそれぞれが電池蓋6に固定される。   The material of the positive electrode external terminal 8A and the positive electrode current collector 4A is an aluminum-based metal, that is, aluminum or an aluminum alloy. 8 A of positive electrode external terminals have a rectangular parallelepiped external terminal part and the protrusion part which protrudes toward the battery cover 6 side from the battery cover 6 side surface of an external terminal part. The protrusion is inserted into the through hole of the gasket 5, the positive side through hole 6A of the battery lid 6, the through hole of the insulating plate 7, and the positive side opening hole 43A of the positive current collector base 41A of the positive current collector 4A. The tip is caulked to the positive electrode current collector base 41A of the positive electrode current collector 4A in the battery container to form the positive electrode connection portion 12A. The positive electrode connecting portion 12A and the positive electrode current collector base portion 41A are fixed by caulking and then spot welded by a laser. Thus, the positive external terminal 8A and the positive current collector 4A are electrically connected, and the positive external terminal 8A and the positive current collector 4A are fixed to the battery cover 6.

負極外部端子8Bおよび負極集電体4Bの材質は、銅系金属、すなわち銅や銅合金である。負極外部端子8Bは、直方体形状の外部端子部と、外部端子部の電池蓋6側の面から電池蓋6側に向かって突出する突部とを有している。突部は、ガスケット5の貫通孔、電池蓋6の正極側貫通孔6A、絶縁板7の貫通孔、および、負極集電体4Bの負極集電体基部41Bの負極側開口孔43Bに挿通され、先端が電池容器内において負極集電体4Bの負極集電体基部41Bにかしめられて負極接続部12Bが形成される。負極接続部12Bと負極集電体基部41Bとは、かしめ固定された後、レーザによりスポット溶接される。これにより、負極外部端子8Bと負極集電体4Bとが電気的に接続されるとともに、負極外部端子8Bおよび負極集電体4Bのそれぞれが電池蓋6に固定される。   The material of the negative electrode external terminal 8B and the negative electrode current collector 4B is a copper-based metal, that is, copper or a copper alloy. The negative electrode external terminal 8B has a rectangular parallelepiped external terminal portion and a protrusion protruding from the surface of the external terminal portion on the battery lid 6 side toward the battery lid 6 side. The protrusion is inserted into the through hole of the gasket 5, the positive electrode side through hole 6A of the battery cover 6, the through hole of the insulating plate 7, and the negative electrode side opening hole 43B of the negative electrode current collector base 41B of the negative electrode current collector 4B. The tip is caulked to the negative electrode current collector base 41B of the negative electrode current collector 4B in the battery container to form the negative electrode connection portion 12B. The negative electrode connection portion 12B and the negative electrode current collector base portion 41B are caulked and fixed, and then spot welded by a laser. Thereby, the negative electrode external terminal 8B and the negative electrode current collector 4B are electrically connected, and each of the negative electrode external terminal 8B and the negative electrode current collector 4B is fixed to the battery lid 6.

ガスケット5および絶縁板7の材質は、ポリブチレンテレフタレートやポリフェニレンサルファイド、ペルフルオロアルコキシフッ素樹脂等の絶縁性を有する樹脂である。正極外部端子8Aおよび負極外部端子8Bのそれぞれと、電池蓋6との間にはガスケット5が配置される。このため、正極外部端子8Aおよび負極外部端子8Bのそれぞれと、電池蓋6とは電気的に絶縁される。正極集電体4Aの正極集電体基部41Aおよび負極集電体4Bの負極集電体基部41Bのそれぞれと、電池蓋6との間には、絶縁板7が配置される。このため、正極集電体4Aおよび負極集電体4Bのそれぞれと、電池蓋6とは電気的に絶縁される。   The material of the gasket 5 and the insulating plate 7 is a resin having insulation properties such as polybutylene terephthalate, polyphenylene sulfide, perfluoroalkoxy fluororesin. A gasket 5 is disposed between each of the positive external terminal 8 </ b> A and the negative external terminal 8 </ b> B and the battery cover 6. For this reason, each of the positive electrode external terminal 8A and the negative electrode external terminal 8B is electrically insulated from the battery lid 6. An insulating plate 7 is disposed between each of the positive electrode current collector base 41A of the positive electrode current collector 4A and the negative electrode current collector base 41B of the negative electrode current collector 4B and the battery lid 6. Therefore, each of positive electrode current collector 4A and negative electrode current collector 4B is electrically insulated from battery cover 6.

図2に示すように、正極集電体4Aは、電池蓋6の内面に沿って配置される矩形平板状の正極集電体基部41Aと、正極集電体基部41Aの長辺側部から略直角に曲がって、電池缶1の幅広面21aに沿いながら電池缶1の底面22に向かって延在する正極側平板部44Aと、正極側平板部44Aの下端に設けた正極側連結部45Aにより接続される正極側接続端部42Aとを備えている。正極側接続端部42Aは、捲回電極群3の正極側溶接部31dに超音波溶接される部分である。   As shown in FIG. 2, the positive electrode current collector 4 </ b> A includes a rectangular flat plate-shaped positive electrode current collector base 41 </ b> A disposed along the inner surface of the battery lid 6, and substantially from the long side of the positive electrode current collector base 41 </ b> A. The positive electrode side flat plate portion 44A that is bent at a right angle and extends toward the bottom surface 22 of the battery can 1 along the wide surface 21a of the battery can 1, and the positive electrode side connecting portion 45A provided at the lower end of the positive electrode side flat plate portion 44A. And a positive electrode side connection end 42A to be connected. The positive electrode side connection end portion 42 </ b> A is a portion that is ultrasonically welded to the positive electrode side welding portion 31 d of the wound electrode group 3.

同様に、負極集電体4Bは、電池蓋6の内面に沿って配置される矩形平板状の負極集電体基部41Bと、負極集電体基部41Bの長辺側部から略直角に曲がって、電池缶1の幅広面21aに沿いながら電池缶1の底面22に向かって延在する負極側平板部44Bと、負極側平板部44Bの下端に設けた負極側連結部45Bにより接続される負極側接続端部42Bとを備えている。負極側接続端部42Bは、捲回電極群3の負極側溶接部32dに超音波溶接される部分である。   Similarly, the negative electrode current collector 4B is bent at a substantially right angle from the rectangular flat plate negative electrode current collector base portion 41B arranged along the inner surface of the battery lid 6 and the long side of the negative electrode current collector base portion 41B. The negative electrode side plate portion 44B extending toward the bottom surface 22 of the battery can 1 along the wide surface 21a of the battery can 1, and the negative electrode connected by the negative electrode side connecting portion 45B provided at the lower end of the negative electrode side flat plate portion 44B Side connection end 42B. The negative electrode side connection end portion 42 </ b> B is a portion that is ultrasonically welded to the negative electrode side welding portion 32 d of the wound electrode group 3.

図3(a)は、正極未塗工部31cに正極集電体4Aが溶接される前で、かつ、負極未塗工部32cに負極集電体4Bが溶接される前の捲回電極群3の巻き終わり側を展開した状態を示す分解斜視図である。捲回電極群3は、負極電極32と正極電極31の間にセパレータ33を介して扁平状に捲回することによって構成されている。捲回するための軸芯としては、正極箔31a、負極箔32a、セパレータ33のいずれよりも曲げ剛性の高い樹脂シートを捲回して構成したものなどを用いることができる。捲回電極群3は、最外周の電極が負極電極32であり、さらにその外側にセパレータ33が捲回される。セパレータ33は、正極電極31と負極電極32との間を絶縁する役割を有している。正極未塗工部31cと負極未塗工部32cは、電極箔の金属面が露出した領域である。捲回電極群3において、正極未塗工部31cは捲回軸方向の一方側に配置され、また、負極未塗工部32cは、捲回軸方向の他方側に配置されるように捲回される。   FIG. 3A shows a wound electrode group before the positive electrode current collector 4A is welded to the positive electrode uncoated part 31c and before the negative electrode current collector 4B is welded to the negative electrode uncoated part 32c. It is a disassembled perspective view which shows the state which expand | deployed the winding end side of 3. FIG. The wound electrode group 3 is configured by winding in a flat shape via a separator 33 between the negative electrode 32 and the positive electrode 31. As the shaft core for winding, one formed by winding a resin sheet having higher bending rigidity than any of the positive electrode foil 31a, the negative electrode foil 32a, and the separator 33 can be used. In the wound electrode group 3, the outermost electrode is the negative electrode 32, and the separator 33 is wound outside thereof. The separator 33 has a role of insulating between the positive electrode 31 and the negative electrode 32. The positive electrode uncoated portion 31c and the negative electrode uncoated portion 32c are regions where the metal surface of the electrode foil is exposed. In the wound electrode group 3, the positive electrode uncoated portion 31 c is disposed on one side in the winding axis direction, and the negative electrode uncoated portion 32 c is wound on the other side in the winding axis direction. Is done.

ここで、捲回方向について述べる。捲回方向は、捲回軸方向と用語が似ているが、概念は異なる。図3(a)に示すように、捲回軸方向が捲回電極群の捲回軸と平行な方向であるのに対し、捲回方向とは、捲回電極群が捲回される方向を意味する。   Here, the winding direction will be described. The winding direction is similar in terms to the winding axis direction, but the concept is different. As shown in FIG. 3A, the winding axis direction is a direction parallel to the winding axis of the wound electrode group, whereas the wound direction is a direction in which the wound electrode group is wound. means.

正極電極31を作製するために、正極活物質としてマンガン酸リチウム(化学式LiMn)100重量部に対し、導電材として10重量部の鱗片状黒鉛と結着剤として10重量部のポリフッ化ビニリデン(以下、PVDFという。)とを添加し、これに分散溶媒としてN−メチルピロリドン(以下、NMPという。)を添加、混練した正極合剤を作製した。厚さ20μmのアルミニウム箔よりなる正極箔31aの両面に、この正極合剤を塗工して正極合剤塗工部31bを設けた。その際、正極箔31aの幅方向の一方の端部の両面には、正極合剤を塗工しないことで正極未塗工部31cを設けた。その後、乾燥、プレス、裁断工程を経て、正極電極31を得た。なお、正極箔31aの厚さを差し引いた正極合剤塗工部31bの厚さは、90μmであった。 In order to fabricate the positive electrode 31, 10 parts by weight of flaky graphite as a conductive material and 10 parts by weight of polyfluoride as a binder with respect to 100 parts by weight of lithium manganate (chemical formula LiMn 2 O 4 ) as a positive electrode active material A positive electrode mixture was prepared by adding vinylidene (hereinafter referred to as PVDF), adding N-methylpyrrolidone (hereinafter referred to as NMP) as a dispersion solvent, and kneading. This positive electrode mixture was applied to both surfaces of a positive electrode foil 31a made of an aluminum foil having a thickness of 20 μm to provide a positive electrode mixture coating portion 31b. In that case, the positive electrode uncoated part 31c was provided in both surfaces of the one edge part of the width direction of the positive electrode foil 31a by not coating a positive mix. Then, the positive electrode 31 was obtained through the drying, the press, and the cutting process. In addition, the thickness of the positive mix application part 31b which deducted the thickness of the positive electrode foil 31a was 90 micrometers.

負極電極32を作製するために、負極活物質として非晶質炭素粉末100重量部に対して、結着剤として10重量部のPVDFを添加し、これに分散溶媒としてNMPを添加、混練した負極合剤を作製した。厚さ10μmの銅箔よりなる負極箔32aの両面にこの負極合剤を塗工して負極合剤塗工部32bを設けた。その際、負極箔32aの幅方向の一方の端部の両面には、負極合剤を塗工しないことで負極未塗工部32cを設けた。その後、乾燥、プレス、裁断工程を経て、負極電極32を得た。なお、負極箔32aの厚さを差し引いた負極合剤塗工部32bの厚さは、70μmであった。   In order to produce the negative electrode 32, 10 parts by weight of PVDF as a binder was added to 100 parts by weight of amorphous carbon powder as a negative electrode active material, and NMP was added and kneaded as a dispersion solvent thereto. A mixture was prepared. This negative electrode mixture was applied to both surfaces of a negative electrode foil 32a made of a copper foil having a thickness of 10 μm to provide a negative electrode mixture coating portion 32b. In that case, the negative electrode uncoated part 32c was provided in both surfaces of the one end part of the width direction of the negative electrode foil 32a by not coating a negative electrode mixture. Then, the negative electrode 32 was obtained through the drying, the press, and the cutting process. In addition, the thickness of the negative electrode mixture coating part 32b which deducted the thickness of the negative electrode foil 32a was 70 micrometers.

負極合剤塗工部32bは正極合剤塗工部31bよりも幅方向において大きく、正極合剤塗工部31bは、捲回電極群3において負極合剤塗工部32bから捲回軸方向にはみ出さないように配置されている。正極未塗工部31c、負極未塗工部32cは、それぞれ束ねられて溶接により正極集電体4A、負極集電体4Bにそれぞれ接続される。なお、セパレータ33は、負極合剤塗工部32bよりも幅方向において大きい。しかし、捲回電極群3における正極未塗工部31cと負極未塗工部32cはセパレータ33よりも捲回軸方向外側に向けて突出して配置されているため、セパレータ33は正極未塗工部31cと負極未塗工部32cが溶接する場合の支障にはならない。   The negative electrode mixture coating portion 32b is larger in the width direction than the positive electrode mixture coating portion 31b, and the positive electrode mixture coating portion 31b extends from the negative electrode mixture coating portion 32b in the winding axis direction in the wound electrode group 3. It is arranged so as not to protrude. The positive electrode uncoated portion 31c and the negative electrode uncoated portion 32c are bundled and connected to the positive electrode current collector 4A and the negative electrode current collector 4B, respectively, by welding. The separator 33 is larger in the width direction than the negative electrode mixture coating portion 32b. However, since the positive electrode uncoated portion 31c and the negative electrode uncoated portion 32c in the wound electrode group 3 are arranged so as to protrude outward in the winding axis direction from the separator 33, the separator 33 is the positive electrode uncoated portion. This does not hinder the welding of 31c and negative electrode uncoated portion 32c.

図3(b)は、正極未塗工部31cに正極集電体4Aが溶接される前で、かつ、負極未塗工部32cに負極集電体4Bが溶接される前の捲回電極群3を捲回軸方向から見た図である。本明細書において、湾曲部とは、図示上方と図示下方に設けた点線で囲んだ領域50、すなわち捲回電極群3の湾曲している両端の領域50を指し、以降、湾曲部50と呼ぶ。正極未塗工部31cの溶接後と負極未塗工部32cの溶接後のことも考慮して湾曲部50を定義すると、「正極合剤塗工部31bと、負極合剤塗工部32bと、セパレータ33とで構成される捲回電極群3の捲回軸方向中央部の湾曲している領域、および、当該領域から捲回軸方向に延設された正極未塗工部31cと負極未塗工部32cの領域」となる。このような定義としているのは、正極未塗工部31cや負極未塗工部32cは、図3(b)の図示中央に示す正極未塗工部31や負極未塗工部32cの中央部51付近が束ねられて溶接され変形するため、正極未塗工部31cや負極未塗工部32cを基準とするのは好ましくないからである。なお、湾曲部50の図示上下方向の端部を頂点71と呼ぶ。   FIG. 3B shows a wound electrode group before the positive electrode current collector 4A is welded to the positive electrode uncoated part 31c and before the negative electrode current collector 4B is welded to the negative electrode uncoated part 32c. It is the figure which looked at 3 from the winding axis direction. In this specification, the bending portion refers to a region 50 surrounded by a dotted line provided above and below the drawing, that is, a region 50 at both ends of the wound electrode group 3, and is hereinafter referred to as a bending portion 50. . When the curved portion 50 is defined in consideration of after welding of the positive electrode uncoated portion 31c and after welding of the negative electrode uncoated portion 32c, “the positive electrode mixture coated portion 31b, the negative electrode mixture coated portion 32b, A curved region in the central portion of the wound electrode direction 3 of the wound electrode group 3 constituted by the separator 33, and a positive electrode uncoated portion 31c extending from the region in the wound axial direction and the negative electrode It becomes an area | region of the coating part 32c. The definition is such that the positive electrode uncoated portion 31c and the negative electrode uncoated portion 32c are the central portions of the positive electrode uncoated portion 31 and the negative electrode uncoated portion 32c shown in the center of FIG. 3B. This is because it is not preferable to use the positive electrode uncoated portion 31c and the negative electrode uncoated portion 32c as a reference because the vicinity of 51 is bundled, welded, and deformed. Note that an end portion of the bending portion 50 in the illustrated vertical direction is referred to as a vertex 71.

図4(a)は、第1実施形態の捲回電極群3の正面図である。図4(b)は、図4(a)のA−A断面図である。なお、図4(a)のB−B断面図は、図4(b)と同様なので省略する。すなわち、捲回電極群3の負極未塗工部32cに設けられた貫通孔40についての説明は、捲回電極群3の正極未塗工部31cに設けられた貫通孔40についての説明と同様であるので省略する。   FIG. 4A is a front view of the wound electrode group 3 of the first embodiment. FIG.4 (b) is AA sectional drawing of Fig.4 (a). Note that the BB cross-sectional view of FIG. 4A is the same as FIG. That is, the description of the through hole 40 provided in the negative electrode uncoated portion 32c of the wound electrode group 3 is the same as the description of the through hole 40 provided in the positive electrode uncoated portion 31c of the wound electrode group 3. Therefore, it is omitted.

図4(a)に示すように、第1実施形態の捲回電極群3においては、負極未塗工部32cの負極側溶接部32dにおける電池缶1の底面22側の端部70から負極未塗工部32cの電池缶1の底面22側の湾曲部50の頂点71までの領域に、電解液を捲回電極群3の内部に導くための通路として丸形の貫通孔40が設けられている。貫通孔40は、捲回電極群による負荷を受けにくい位置に設けられているが、より影響を少なくするには、負極未塗工部32cの負極側溶接部32dにおける電池缶1の捲回方向底面22側の端部70から、負極未塗工部32cの電池缶1の捲回方向底面22側の湾曲部50の頂点71までの領域に貫通孔40を設ければよい。捲回方向底面22側とすることで、負極側溶接部32dの捲回軸方向端部72から負極側溶接部32dの捲回軸方向端部73の領域という限定が追加される。なお、正極未塗工部31cに設けられた貫通孔40においても、負極側と同様に設けられる。すなわち、正極未塗工部31cの正極側溶接部31dにおける電池缶1の底面22側の端部70から正極未塗工部31cの電池缶1の底面22側の湾曲部50の頂点71までの領域に貫通孔40が設けられる。   As shown in FIG. 4 (a), in the wound electrode group 3 of the first embodiment, the negative electrode is not formed from the end portion 70 on the bottom surface 22 side of the battery can 1 in the negative electrode side welded portion 32d of the negative electrode uncoated portion 32c. A round through-hole 40 is provided as a passage for guiding the electrolyte to the inside of the wound electrode group 3 in the region up to the vertex 71 of the curved portion 50 on the bottom surface 22 side of the battery can 1 of the coating portion 32c. Yes. The through hole 40 is provided at a position where it is difficult to receive a load from the wound electrode group. To reduce the influence, the winding direction of the battery can 1 in the negative electrode side welded part 32d of the negative electrode uncoated part 32c is provided. The through hole 40 may be provided in a region from the end portion 70 on the bottom surface 22 side to the apex 71 of the curved portion 50 on the bottom surface 22 side in the winding direction of the battery can 1 of the negative electrode uncoated portion 32c. By setting it as the winding direction bottom face 22 side, the limitation of the area | region from the winding axial direction edge part 72 of the negative electrode side welding part 32d to the winding axial direction edge part 73 of the negative electrode side welding part 32d is added. Note that the through hole 40 provided in the positive electrode uncoated portion 31c is also provided in the same manner as the negative electrode side. That is, from the end portion 70 on the bottom surface 22 side of the battery can 1 in the positive electrode side welding portion 31d of the positive electrode uncoated portion 31c to the apex 71 of the curved portion 50 on the bottom surface 22 side of the battery can 1 in the positive electrode uncoated portion 31c. A through hole 40 is provided in the region.

図4(b)に示すように、貫通孔40は捲回電極群3の正極未塗工部31cの外周側表面から内周側表面まで貫通して設けられている。したがって、貫通孔40は、電池缶1の幅広面21aと対向する捲回電極群3の2面ある外周面のうち、一方だけが開口することになる。このように外周面を開口することで、電解液を捲回電極群3の内部に導くことができる。   As shown in FIG. 4B, the through hole 40 is provided so as to penetrate from the outer peripheral side surface to the inner peripheral side surface of the positive electrode uncoated portion 31 c of the wound electrode group 3. Therefore, only one of the through-holes 40 of the outer peripheral surface of the wound electrode group 3 facing the wide surface 21a of the battery can 1 is opened. By opening the outer peripheral surface in this way, the electrolytic solution can be guided to the inside of the wound electrode group 3.

角形二次電池C1は、一般的には、電池缶1の底面22が重力方向と垂直になるように、すなわち、いわゆる縦置きで載置される。よって、電解液の遊離液が電池缶1の底面22側に溜まることになるので、電池缶1の底面22側に貫通孔40を設けたほうが、電池缶1の底部に溜まった電解液、すなわち、遊離液に浸漬されやすくなる。   The square secondary battery C1 is generally placed so that the bottom surface 22 of the battery can 1 is perpendicular to the direction of gravity, that is, so-called vertical placement. Therefore, since the electrolyte free solution is collected on the bottom surface 22 side of the battery can 1, the electrolyte solution collected at the bottom of the battery can 1 is more provided by providing the through hole 40 on the bottom surface 22 side of the battery can 1. It becomes easy to be immersed in the free liquid.

図5(a)は、貫通孔40を設ける工程を示す概略図である。図5(b)は、貫通孔40を設けた後でプレス成形をする前の捲回電極群3を示している。捲回電極群3は、セパレータ33を介して負極電極32と正極電極31とを扁平状に捲回することによって作製される。貫通孔40は、捲回工程後でかつプレス成形前に設けられる。図5(a)に示すように、捲回工程後、プレス成形前の捲回電極群3に対し、通路加工用パンチ61および通路加工用治具62を用いて正極箔31aおよび負極箔32aに貫通孔40を設ける。そして、図5(b)に示すように、正極未塗工部31cおよび負極未塗工部32cに設けた貫通孔40が上述の領域に位置するようにするために、捲回軸を回転軸とした回転により捲回電極群3を回転させることで貫通孔40の位置を調整した後に、捲回電極群3をプレス成形する。   FIG. 5A is a schematic diagram illustrating a process of providing the through hole 40. FIG. 5B shows the wound electrode group 3 after the through hole 40 and before press molding. The wound electrode group 3 is produced by winding the negative electrode 32 and the positive electrode 31 in a flat shape via the separator 33. The through hole 40 is provided after the winding process and before press molding. As shown in FIG. 5A, the positive electrode foil 31a and the negative electrode foil 32a are formed on the wound electrode group 3 after the winding process and before press molding using the passage processing punch 61 and the passage processing jig 62. A through hole 40 is provided. And as shown in FIG.5 (b), in order to position the through-hole 40 provided in the positive electrode uncoated part 31c and the negative electrode uncoated part 32c in the above-mentioned area | region, a winding axis | shaft is used as a rotating shaft. After adjusting the position of the through hole 40 by rotating the wound electrode group 3 by the rotation described above, the wound electrode group 3 is press-molded.

特許文献1に記載の発明のような電極を捲回する前に孔を設ける場合では電極の捲回の際に貫通孔を構成するための位置合わせが必要である。しかし、本発明の第1実施形態の貫通孔40は電極を捲回した後に設けるため、上述の位置合わせが必要なく、容易に正極未塗工部31cに貫通孔40を設けることができる。   In the case where the hole is provided before winding the electrode as in the invention described in Patent Document 1, alignment for forming the through hole is required when the electrode is wound. However, since the through hole 40 according to the first embodiment of the present invention is provided after winding the electrode, the above-described alignment is not required, and the through hole 40 can be easily provided in the positive electrode uncoated portion 31c.

正極未塗工部31c、負極未塗工部32cは、図3(b)で示した中央部51で束ねられて溶接により、正極集電体4A、負極集電体4Bと接続される。この時、溶接位置と、貫通孔40が設けられた箇所は干渉しないようにすることが好ましい。溶接方法としては、超音波溶接、抵抗溶接を用いることができる。集電体の材質による影響を考慮すると超音波溶接が好ましい。   The positive electrode uncoated portion 31c and the negative electrode uncoated portion 32c are bundled at the central portion 51 shown in FIG. 3B and connected to the positive electrode current collector 4A and the negative electrode current collector 4B by welding. At this time, it is preferable that the welding position and the portion where the through hole 40 is provided do not interfere with each other. As a welding method, ultrasonic welding or resistance welding can be used. Considering the influence of the material of the current collector, ultrasonic welding is preferable.

貫通孔40を設け、正極未塗工部31cおよび負極未塗工部32cを溶接した後、捲回電極群3は貫通孔40を電池缶1の底に向けた状態で電池缶1に挿入する。捲回電極群3は構成する正極電極31、負極電極32、および、セパレータ33のそれぞれに空孔を有しており、この空孔に電解液が含浸することで電池特性を発揮する。したがって電解液の量は捲回電極群3の空孔体積以上の電解液量を注液することが好ましい。しかし、軽量化の観点から、電池缶1の容積をすべて満たす量の電解液を入れないことが好ましい。   After the through hole 40 is provided and the positive electrode uncoated portion 31 c and the negative electrode uncoated portion 32 c are welded, the wound electrode group 3 is inserted into the battery can 1 with the through hole 40 facing the bottom of the battery can 1. . The wound electrode group 3 has pores in each of the positive electrode 31, the negative electrode 32, and the separator 33, and the battery characteristics are exhibited by impregnating the pores with the electrolytic solution. Therefore, it is preferable to inject an amount of the electrolytic solution that is equal to or larger than the pore volume of the wound electrode group 3. However, from the viewpoint of weight reduction, it is preferable not to add an amount of the electrolyte that fills the entire volume of the battery can 1.

第1実施形態に示した角形二次電池C1によれば、以下の作用効果を奏する。
(1)角形二次電池C1においては、正極未塗工部31cの正極側溶接部31dにおける電池缶1の底面22側の端部70から正極未塗工部31cの電池缶1の底面22側の湾曲部50の頂点71までの領域、および、負極未塗工部32cの負極側溶接部32dにおける電池缶1の底面22側の端部70から負極未塗工部32cの電池缶1の底面22側の湾曲部50の頂点71までの領域に、電解液を捲回電極群3の内部に導くための通路として丸形の貫通孔40が設けられている。
これにより、正極溶接部および負極溶接部に対し捲回軸方向に貫通孔がないため、未塗工部の機械的強度を維持し、振動や衝撃による正極未塗工部および負極未塗工部の破断を抑制することができる。
According to the square secondary battery C1 shown in the first embodiment, the following operational effects are obtained.
(1) In the square secondary battery C1, the bottom surface 22 side of the battery can 1 of the positive electrode uncoated portion 31c from the end portion 70 on the bottom surface 22 side of the battery can 1 in the positive electrode side welding portion 31d of the positive electrode uncoated portion 31c. And the bottom surface of the battery can 1 of the negative electrode uncoated portion 32c from the end portion 70 on the bottom surface 22 side of the battery can 1 in the negative electrode side welded portion 32d of the negative electrode uncoated portion 32c. A round through hole 40 is provided as a passage for guiding the electrolytic solution to the inside of the wound electrode group 3 in a region up to the vertex 71 of the curved portion 50 on the 22 side.
Thereby, since there is no through hole in the winding axis direction with respect to the positive electrode welded portion and the negative electrode welded portion, the mechanical strength of the uncoated portion is maintained, and the positive electrode uncoated portion and the negative electrode uncoated portion due to vibration and impact are maintained. Can be prevented from breaking.

(2)貫通孔40は、電池缶1の底面22側に設けられ、さらに捲回電極群3の外周面側が開口しているため、電解液の遊離液に貫通孔40が浸漬されやすくなる。それによって、捲回電極群3の内部に電解液を導きやすくなり、さらには、捲回電極群3の電解液の交換が容易に行われる。 (2) Since the through hole 40 is provided on the bottom surface 22 side of the battery can 1 and the outer peripheral surface side of the wound electrode group 3 is open, the through hole 40 is easily immersed in the electrolyte free liquid. As a result, the electrolytic solution can be easily guided into the wound electrode group 3, and the electrolytic solution in the wound electrode group 3 can be easily replaced.

第1実施形態に示した貫通孔40の別形態として、以下に示す第2実施形態〜第5実施形態の貫通孔40について説明する。第1実施形態と同様の説明箇所は省略する。   As another form of the through hole 40 shown in the first embodiment, the through hole 40 of the second to fifth embodiments shown below will be described. Explanations similar to those in the first embodiment are omitted.

―第2実施形態―
図6(a)は、貫通孔40を捲回電極群3の正極未塗工部31cおよび負極未塗工部32cの湾曲部50の頂部に設けた捲回電極群3の正面図である。図6(b)は、図6(a)のA−A断面図である。なお、図6(a)のB−B断面図は、図6(b)と同様なので省略する。すなわち、捲回電極群3の負極未塗工部32cに設けられた貫通孔40についての説明は、捲回電極群3の正極未塗工部31cに設けられた貫通孔40についての説明と同様であるので省略する。
-Second embodiment-
FIG. 6A is a front view of the wound electrode group 3 in which the through hole 40 is provided at the top of the curved portion 50 of the positive electrode uncoated part 31 c and the negative electrode uncoated part 32 c of the wound electrode group 3. FIG.6 (b) is AA sectional drawing of Fig.6 (a). Note that the BB cross-sectional view of FIG. 6A is the same as FIG. That is, the description of the through hole 40 provided in the negative electrode uncoated portion 32c of the wound electrode group 3 is the same as the description of the through hole 40 provided in the positive electrode uncoated portion 31c of the wound electrode group 3. Therefore, it is omitted.

第1実施形態では、正極未塗工部31cの正極側溶接部31dにおける電池缶1の底面22側の端部70から正極未塗工部31cの電池缶1の底面22側の湾曲部50の頂点71までの領域、および、負極未塗工部32cの負極側溶接部32dにおける電池缶1の底面22側の端部70から負極未塗工部32cの電池缶1の底面22側の湾曲部50の頂点71までの領域に、貫通孔40を設けた。第2実施形態では、そのうちの湾曲部50の頂部に設けた。これにより、貫通孔40が電解液の遊離液により浸漬しやすくなり、捲回電極群3に電解液がより浸透しやすくなる。   In the first embodiment, the curved portion 50 on the bottom surface 22 side of the battery can 1 in the positive electrode uncoated portion 31c from the end portion 70 on the bottom surface 22 side of the battery can 1 in the positive electrode side welded portion 31d of the positive electrode uncoated portion 31c. A region from the end 70 on the bottom surface 22 side of the battery can 1 to the bottom surface 22 side of the negative electrode uncoated portion 32c on the bottom surface 22 side in the region up to the vertex 71 and the negative electrode side welded portion 32d of the negative electrode uncoated portion 32c. A through hole 40 was provided in a region up to 50 vertices 71. In 2nd Embodiment, it provided in the top part of the curved part 50 of them. Thereby, the through-hole 40 becomes easy to be immersed in the free solution of the electrolytic solution, and the electrolytic solution more easily penetrates into the wound electrode group 3.

―第3実施形態―
図7(a)は、捲回電極群3の正極未塗工部31cおよび負極未塗工部32cにおいて一方の外周面から他方の外周面まで貫通するような貫通孔40を設けた捲回電極群の正面図である。図7(b)は、図7(a)のA−A断面図である。なお、図7(a)のB−B断面図は、図7(b)と同様なので省略する。すなわち、捲回電極群3の負極未塗工部32cに設けられた貫通孔40についての説明は、捲回電極群3の正極未塗工部31cに設けられた貫通孔40についての説明と同様であるので省略する。
-Third embodiment-
FIG. 7A shows a wound electrode provided with a through-hole 40 that penetrates from one outer peripheral surface to the other outer peripheral surface in the positive electrode uncoated portion 31c and the negative electrode uncoated portion 32c of the wound electrode group 3. It is a front view of a group. FIG.7 (b) is AA sectional drawing of Fig.7 (a). Note that the BB cross-sectional view of FIG. 7A is the same as FIG. That is, the description of the through hole 40 provided in the negative electrode uncoated portion 32c of the wound electrode group 3 is the same as the description of the through hole 40 provided in the positive electrode uncoated portion 31c of the wound electrode group 3. Therefore, it is omitted.

第1実施形態では、電池缶1の幅広面21aと対向する捲回電極群3の2面ある外周面のうち、一方だけが開口するように貫通孔40を設けた(図4(b))。第3実施形態では、図7(b)に示すように、一方の外周面から他方の外周面まで貫通するように、貫通孔40を設けた。これにより、第1実施形態よりも捲回電極群3の内部に電解液が浸透しやすくなる。   In the first embodiment, the through-hole 40 is provided so that only one of the two outer peripheral surfaces of the wound electrode group 3 facing the wide surface 21a of the battery can 1 is opened (FIG. 4B). . In 3rd Embodiment, as shown in FIG.7 (b), the through-hole 40 was provided so that it might penetrate from one outer peripheral surface to the other outer peripheral surface. Thereby, it becomes easier for the electrolytic solution to penetrate into the wound electrode group 3 than in the first embodiment.

―第4実施形態―
図8は角形の貫通孔40を設けた捲回電極群3の正面図である。第1実施形態の貫通孔40の形状は、丸形であった。本実施形態の貫通孔40の形状は、角形である。角形は、丸形に比べて、角形の四隅分だけ、正極未塗工部31cおよび負極未塗工部32cに大きな通路を設けることができるので、その分だけ電解液が捲回電極群3内部に浸透しやすくなる。角形の貫通孔40は、角形の孔加工用パンチ61により設けることができる。
-Fourth embodiment-
FIG. 8 is a front view of the wound electrode group 3 provided with the rectangular through holes 40. The shape of the through hole 40 of the first embodiment was a round shape. The shape of the through hole 40 of this embodiment is a square. Compared with the round shape, the square shape can provide a large passage in the positive electrode uncoated portion 31c and the negative electrode uncoated portion 32c for the four corners of the square shape, so that the electrolytic solution is contained in the wound electrode group 3 by that amount. Easy to penetrate. The square through hole 40 can be provided by a square hole processing punch 61.

―第5実施形態―
図9は複数の貫通孔40を設けた捲回電極群3の正面図である。第1実施形態では、正極未塗工部31cと負極未塗工部32cのそれぞれに1つずつ貫通孔40を設けた。本実施形態では、それぞれの未塗工部に対して複数の貫通孔40を設けるようにした。これにより、第1実施形態と比較して、通路の断面積の総面積が同じ場合、大きな貫通孔を1つ設けるよりも小さな貫通孔を複数設ける方が機械的強度を保つことができる。また、貫通孔40の内周面の面積が増えるため、電解液が捲回電極群3の内部により浸透しやすくなる。電解液が浸透し、かつ加工が可能な孔径は1mmが好ましく、また孔間隔は、未塗工部の強度を考慮すると孔径の2倍以上が好ましい。捲回電極群よりセパレータから突出した正極未塗工部の幅または負極未塗工部の幅が6mmであり、貫通孔40の位置はセパレータより2mmの位置であれば、加工時にセパレータを巻き込むことはない。溶接部端部から湾曲部の頂点までの長さが20mmであるので、貫通孔40を捲回軸方向に対し同位置かつ捲回方向に複数形成する場合は一つの未塗工部に対して2〜3か所、捲回軸方向に対し位置をずらしかつ捲回方向に複数形成する場合は5〜7か所が好ましい。捲回方向に対し同位置かつ捲回軸方向に複数の貫通孔を設ける場合、捲回軸方向外側の孔から浸透した電解液が内側の孔で排出されるため、貫通孔を増やしても電解液浸透の効果は期待できない。また複数の貫通孔は、プレス成形すると湾曲部の頂点を中心に内周側は外周側よりも溶接部に近くなることも考慮する必要がある。このため貫通孔40を8か所以上設ける場合、孔間隔が狭くなることによる機械的強度の低下や、貫通孔が溶接部に干渉する可能性がある。
-Fifth embodiment-
FIG. 9 is a front view of the wound electrode group 3 provided with a plurality of through holes 40. In the first embodiment, one through hole 40 is provided in each of the positive electrode uncoated portion 31c and the negative electrode uncoated portion 32c. In the present embodiment, a plurality of through holes 40 are provided for each uncoated portion. Thereby, compared with 1st Embodiment, when the total area of the cross-sectional area of a channel | path is the same, the direction of providing a plurality of small through-holes can maintain mechanical strength rather than providing one large through-hole. Moreover, since the area of the inner peripheral surface of the through-hole 40 increases, the electrolytic solution easily penetrates into the wound electrode group 3. The hole diameter into which the electrolytic solution penetrates and can be processed is preferably 1 mm, and the hole interval is preferably at least twice the hole diameter in consideration of the strength of the uncoated part. If the width of the positive electrode uncoated portion or the negative electrode uncoated portion protruding from the separator from the wound electrode group is 6 mm and the position of the through hole 40 is 2 mm from the separator, the separator is involved during processing. There is no. Since the length from the welded portion end to the apex of the curved portion is 20 mm, when a plurality of through-holes 40 are formed at the same position in the winding axis direction and in the winding direction, with respect to one uncoated portion Two to three places, preferably 5 to 7 places when the positions are shifted with respect to the winding axis direction and a plurality of places are formed in the winding direction. When a plurality of through-holes are provided at the same position in the winding direction and in the winding axis direction, the electrolyte that has permeated from the outer holes in the winding axis direction is discharged through the inner holes. The effect of liquid penetration cannot be expected. Further, it is necessary to consider that the plurality of through-holes are closer to the welded portion on the inner peripheral side than the outer peripheral side with the vertex of the curved portion being the center when press-molding. For this reason, when eight or more through-holes 40 are provided, there is a possibility that the mechanical strength is lowered due to the narrowing of the hole interval, and the through-holes interfere with the welded portion.

―貫通孔40の設け方の変形例―
図10は、貫通孔40の設け方の変形例を示す図である。第1実施形態では、捲回電極群3をプレス成形して扁平させる前に貫通孔40を設けたのに対して、本変形例では、捲回電極群3をプレス成形して扁平させた後に貫通孔40を設けた。これにより、プレス成形時の孔の位置ずれを防ぐことができる。図7に示す第3実施形態の貫通孔40は、本変形例を適用したほうが容易に貫通孔40を設けることができる。
-Modification of how to provide through hole 40-
FIG. 10 is a view showing a modification of how to provide the through hole 40. In the first embodiment, the through-hole 40 is provided before the wound electrode group 3 is pressed and flattened, whereas in the present modification, the wound electrode group 3 is pressed and flattened. A through hole 40 was provided. Thereby, the position shift of the hole at the time of press molding can be prevented. The through-hole 40 of the third embodiment shown in FIG. 7 can be easily provided with the through-hole 40 if this modification is applied.

―その他の変形例―
その他、本発明においては以下に示すような変形を施してもよい。
―Other variations―
In addition, the following modifications may be made in the present invention.

第1、第3〜第5実施形態において、正極未塗工部31cの正極側溶接部31dにおける電池缶1の底面22側の端部70から正極未塗工部31cの電池缶1の底面22側の湾曲部50の頂点71までの領域、および、負極未塗工部32cの負極側溶接部32dにおける電池缶1の底面22側の端部70から負極未塗工部32cの電池缶1の底面22側の湾曲部50の頂点71までの領域に貫通孔40を設けるようにしたが、その中でも湾曲部50に設けるほうが好ましい。このようにすることで、貫通孔40が電解液の遊離液により浸漬されやすくなる。   In 1st, 3rd-5th embodiment, the bottom face 22 of the battery can 1 of the positive electrode uncoated part 31c from the edge part 70 by the side of the bottom face 22 of the battery can 1 in the positive electrode side welding part 31d of the positive electrode uncoated part 31c. Of the battery can 1 of the negative electrode uncoated portion 32c from the end portion 70 on the bottom surface 22 side of the battery can 1 in the negative electrode side welded portion 32d of the negative electrode uncoated portion 32c Although the through hole 40 is provided in the region up to the vertex 71 of the curved portion 50 on the bottom surface 22 side, it is more preferable to provide the curved portion 50 among them. By doing in this way, the through-hole 40 becomes easy to be immersed with the free liquid of electrolyte solution.

貫通孔40が形成される角度は、未塗工部外周側表面に対して垂直、すなわち、捲回電極群3を構成する未塗工部の各層の積層方向に対して平行であることが好ましいが、これに限られるものではない。未塗工部表面に対して、貫通孔40を垂直に設けることで、容易に効率よく設けることができる。これに対して、貫通孔40を未塗工部表面に対して角度をつけて設けることで、垂直に設けた場合と比較して、貫通孔40の内周面の表面積が増えるため、電解液との接触面積が増え、電解液浸透効率が高まる。   The angle at which the through hole 40 is formed is preferably perpendicular to the outer surface of the uncoated part, that is, parallel to the stacking direction of the layers of the uncoated part constituting the wound electrode group 3. However, it is not limited to this. By providing the through hole 40 perpendicularly to the surface of the uncoated part, it can be provided easily and efficiently. On the other hand, since the surface area of the inner peripheral surface of the through hole 40 is increased by providing the through hole 40 at an angle with respect to the surface of the uncoated portion, the surface area of the inner peripheral surface of the through hole 40 is increased. The contact area with the electrolyte increases, and the electrolyte penetration efficiency increases.

貫通孔40の大きさは、電解液の遊離液を通しやすくする観点から未塗工部の幅の範囲でなるべく大きいことが好ましい。ただし、貫通孔40が電解液の遊離液が流れる通路が十分に確保されているならば、貫通孔40は小さくても構わない。   The size of the through hole 40 is preferably as large as possible within the range of the width of the uncoated portion from the viewpoint of facilitating the passage of the electrolyte free solution. However, the through hole 40 may be small if the through hole 40 has a sufficient passage through which the electrolyte free liquid flows.

貫通孔40は、正極集電体4Aまたは負極集電体4Bの下端よりも電池缶1の底側に設けられることが好ましい。その理由は2つある。1つ目の理由は、正極集電体4A、負極集電体4Bと貫通孔40との接近を避けるためである。正極集電体4A、負極集電体4Bは、それぞれ正極未塗工部31c、負極未塗工部32cにおける電池缶1の底−電池蓋6方向中央部付近に設けられる。正極未塗工部31cおよび負極未塗工部32cの電池缶1の底−電池蓋6方向における中央(図3(b)の中央部51)付近に、貫通孔40が設けられた場合、貫通孔40の上に正極集電体4Aまたは負極集電体4Bを溶接することになるため、溶接強度が下がる可能性があるからである。2つ目は、電解液の遊離液が電池缶1の底側にたまるため、貫通孔40が電解液の遊離液に浸漬しやすくなるためである。貫通孔40を電池缶1の底側に設けることで、貫通孔40と正極集電体4Aまたは負極集電体4Bとの干渉を避けることができるため、溶接強度の低下や金属箔の破断などを防ぎ、安定的に溶接できるようになり、さらに、電解液の遊離液に浸漬しやすくなる。   The through hole 40 is preferably provided on the bottom side of the battery can 1 from the lower end of the positive electrode current collector 4A or the negative electrode current collector 4B. There are two reasons for this. The first reason is to avoid the proximity of the positive electrode current collector 4A, the negative electrode current collector 4B, and the through hole 40. The positive electrode current collector 4A and the negative electrode current collector 4B are provided in the vicinity of the center of the battery can 1 in the bottom-battery lid 6 direction in the positive electrode uncoated portion 31c and the negative electrode uncoated portion 32c, respectively. When the through hole 40 is provided near the center of the battery can 1 in the positive electrode uncoated portion 31c and the negative electrode uncoated portion 32c in the direction of the battery lid 6 (the central portion 51 in FIG. 3B), This is because the positive electrode current collector 4 </ b> A or the negative electrode current collector 4 </ b> B is welded onto the hole 40, so that the welding strength may be lowered. Secondly, since the electrolyte free solution accumulates on the bottom side of the battery can 1, the through hole 40 is easily immersed in the electrolyte free solution. By providing the through hole 40 on the bottom side of the battery can 1, interference between the through hole 40 and the positive electrode current collector 4A or the negative electrode current collector 4B can be avoided, so that the welding strength is reduced, the metal foil is broken, and the like. This makes it possible to perform welding stably, and further makes it easy to immerse in the electrolyte free solution.

貫通孔40は、正極未塗工部31c、負極未塗工部32cの捲回軸方向中央部に設けられていることが好ましい。図3(a)から分かるように、貫通孔40が、正極未塗工部31cと正極合剤塗工部31bとの境界付近、または、負極未塗工部32cと負極合剤塗工部32bとの境界付近に設けられると、セパレータ33と貫通孔40とが干渉する可能性がある。   It is preferable that the through hole 40 is provided in the center portion in the winding axis direction of the positive electrode uncoated portion 31c and the negative electrode uncoated portion 32c. As can be seen from FIG. 3 (a), the through hole 40 is near the boundary between the positive electrode uncoated portion 31c and the positive electrode mixture coated portion 31b, or the negative electrode uncoated portion 32c and the negative electrode mixture coated portion 32b. The separator 33 and the through-hole 40 may interfere with each other.

角形二次電池C1は、一般的には、電池缶1の底面22が重力方向と垂直になるように、すなわち、いわゆる縦置きで載置される。そのため、以上の実施形態で示したように、電池缶1の底面22側に貫通孔40を設けるのが好ましいと考えられる。しかし、貫通孔40が電解液の遊離液に浸漬されるならば、正極未塗工部31cにおける溶接部以外の領域、および、負極未塗工部32cにおける溶接部以外の領域の電池蓋6側に貫通孔40を設けてもよい。このようなことが可能な例としては、例えば、角形二次電池C1の幅広面21aが重力方向に垂直になるように、角形二次電池C1が載置されること、すなわち、角形二次電池C1がいわゆる横置きで載置されることなどが考えられる。   The square secondary battery C1 is generally placed so that the bottom surface 22 of the battery can 1 is perpendicular to the direction of gravity, that is, so-called vertical placement. Therefore, as shown in the above embodiment, it is considered preferable to provide the through hole 40 on the bottom surface 22 side of the battery can 1. However, if the through hole 40 is immersed in the electrolyte free solution, the battery lid 6 side of the region other than the welded portion in the positive electrode uncoated portion 31c and the region other than the welded portion in the negative electrode uncoated portion 32c. A through hole 40 may be provided. As an example in which this is possible, for example, the prismatic secondary battery C1 is placed so that the wide surface 21a of the prismatic secondary battery C1 is perpendicular to the direction of gravity, that is, the prismatic secondary battery. It is conceivable that C1 is placed in a so-called horizontal orientation.

正極未塗工部31cにおける溶接部以外の領域、および、負極未塗工部32cにおける溶接部以外の領域のいずれか一方だけに貫通孔40を設けてもよい。正極未塗工部31cにおける溶接部以外の領域、および、負極未塗工部32cにおける溶接部以外の領域のいずれにも貫通孔40を設けない捲回電極群3よりは、電解液が浸透するからである。   The through hole 40 may be provided only in one of the region other than the welded portion in the positive electrode uncoated portion 31c and the region other than the welded portion in the negative electrode uncoated portion 32c. The electrolytic solution permeates from the wound electrode group 3 in which the through hole 40 is not provided in any of the region other than the welded portion in the positive electrode uncoated portion 31c and the region other than the welded portion in the negative electrode uncoated portion 32c. Because.

正極活物質として、スピネル結晶構造を有する他のマンガン酸リチウムや、一部を金属元素で置換またはドープしたリチウムマンガン複合酸化物や、層状結晶構造を有するコバルト酸リチウムや、チタン酸リチウムや、これらの一部を金属元素で置換またはドープしたリチウム-金属複合酸化物を用いるようにしてもよい。   As a positive electrode active material, other lithium manganate having a spinel crystal structure, a lithium manganese composite oxide partially substituted or doped with a metal element, lithium cobaltate having a layered crystal structure, lithium titanate, and the like A lithium-metal composite oxide in which a part of the metal is substituted or doped with a metal element may be used.

負極活物質として、リチウムイオンを挿入したり脱離したりすることが可能な天然黒鉛や、人造の各種黒鉛材、コークスなどの炭素質材料やSiやSnなどの化合物(例えば、SiO、TiSi等)、または、それらの複合材料を用いることができる。それらの粒子形状においても、鱗片状、球状、繊維状、塊状等、特に制限されない。 As a negative electrode active material, natural graphite capable of inserting and removing lithium ions, various artificial graphite materials, carbonaceous materials such as coke, and compounds such as Si and Sn (for example, SiO, TiSi 2, etc.) Or a composite material thereof. Also in the particle shape, there is no particular limitation such as a scale shape, a spherical shape, a fiber shape, or a lump shape.

正極電極および負極電極における塗工部の結着材として、ポリテトラフルオロエチレン(PTFE)、ポリエチレン、ポリスチレン、ポリブタジエン、ブチルゴム、ニトリルゴム、スチレンブタジエンゴム、多硫化ゴム、ニトロセルロース、シアノエチルセルロース、各種ラテックス、アクリロニトリル、フッ化ビニル、フッ化ビニリデン、フッ化プロピレン、フッ化クロロプレン、アクリル系樹脂などの重合体およびこれらの混合体などを用いることができる。   As a binder for the coating part in the positive electrode and the negative electrode, polytetrafluoroethylene (PTFE), polyethylene, polystyrene, polybutadiene, butyl rubber, nitrile rubber, styrene butadiene rubber, polysulfide rubber, nitrocellulose, cyanoethyl cellulose, various latexes Polymers such as acrylonitrile, vinyl fluoride, vinylidene fluoride, propylene fluoride, chloroprene fluoride, and acrylic resins, and mixtures thereof can be used.

C1:角形二次電池、 1:電池缶、 1a: 開口部、 2:絶縁保護フィルム、
3:捲回電極群、 4A:正極集電体、 4B:負極集電体、 5:ガスケット、
6:電池蓋、 6A:正極側貫通孔、 6B:負極側貫通孔、 7:絶縁板、
8A:正極外部端子、 8B:負極外部端子、 9:注液口、 10:ガス排出弁、
11:注液栓、 12A:正極接続部、 12B:負極接続部、 21a:幅広面、
21b:幅狭面、 22:底面、 31:正極電極、 31a:正極箔、
31b:正極合剤塗工部、 31c:正極未塗工部、 31d:正極側溶接部、
32:負極電極、 32a:負極箔、 32b:負極合剤塗工部、
32c:負極未塗工部、 32d:負極側溶接部、 33:セパレータ、
40:貫通孔、 50:湾曲部、51:中央部、 61:通路加工用パンチ、
62:通路加工用治具、 71:頂点
C1: prismatic secondary battery, 1: battery can, 1a: opening, 2: insulating protective film,
3: wound electrode group, 4A: positive electrode current collector, 4B: negative electrode current collector, 5: gasket
6: Battery cover, 6A: Positive electrode side through hole, 6B: Negative electrode side through hole, 7: Insulating plate,
8A: positive electrode external terminal, 8B: negative electrode external terminal, 9: injection port, 10: gas discharge valve,
11: Injection plug, 12A: Positive electrode connection part, 12B: Negative electrode connection part, 21a: Wide surface,
21b: narrow surface, 22: bottom surface, 31: positive electrode, 31a: positive foil,
31b: Positive electrode mixture coated part, 31c: Positive electrode uncoated part, 31d: Positive electrode side welded part,
32: Negative electrode, 32a: Negative electrode foil, 32b: Negative electrode mixture coating part,
32c: negative electrode uncoated portion, 32d: negative electrode side welded portion, 33: separator,
40: Through hole, 50: Curved part, 51: Center part, 61: Punch for passage processing,
62: Passage processing jig 71: Vertex

Claims (8)

電解液と、
正極箔に正極活物質が塗工された正極塗工部と塗工されていない正極未塗工部とを有する正極電極、および、負極箔に負極活物質が塗工された負極塗工部と塗工されていない負極未塗工部とを有する負極電極をセパレータを介在させて扁平形状に捲回した捲回電極群と、
前記捲回電極群を収容する電池缶と、
前記電池缶を封止する電池蓋と、
正極側溶接部を介して、前記正極未塗工部と接続される正極集電体と、
負極側溶接部を介して、前記負極未塗工部と接続される負極集電体とを備え、
前記捲回電極群は、
前記正極未塗工部における前記正極側溶接部と前記正極塗工部との間の領域外、または、
前記負極未塗工部における前記負極側溶接部と前記負極塗工部との間の領域外のいずれかに貫通孔を有し、
前記貫通孔の少なくとも一部は、前記電解液の遊離液に浸漬されている角形二次電池。
An electrolyte,
A positive electrode having a positive electrode coated part coated with a positive electrode active material on a positive electrode foil and a non-coated positive electrode uncoated part; and a negative electrode coated part coated with a negative electrode active material on a negative electrode foil; A wound electrode group in which a negative electrode having an uncoated negative electrode uncoated portion is wound into a flat shape with a separator interposed therebetween,
A battery can containing the wound electrode group;
A battery lid for sealing the battery can;
A positive electrode current collector connected to the positive electrode uncoated part via a positive electrode side welding part;
A negative electrode current collector connected to the negative electrode uncoated portion via a negative electrode side weld,
The wound electrode group includes:
Outside the region between the positive electrode side welded portion and the positive electrode coated portion in the positive electrode uncoated portion, or
In the negative electrode uncoated part has a through hole in any one of the areas outside the negative electrode side welded part and the negative electrode coated part,
A rectangular secondary battery in which at least a part of the through hole is immersed in a free solution of the electrolytic solution.
請求項1に記載の角形二次電池において、
前記貫通孔は、前記正極側溶接部の捲回方向前記電池缶底面側端部から捲回方向前記電池缶底面側の前記捲回電極群の湾曲部の頂点までの領域、前記正極未塗工部における前記正極側溶接部の捲回方向前記電池蓋側端部から捲回方向前記電池蓋側の前記捲回電極群の湾曲部の頂点までの領域、前記負極未塗工部における前記負極側溶接部の捲回方向前記電池缶底面側端部から捲回方向前記電池缶底面側の前記捲回電極群の湾曲部の頂点までの領域、および、前記負極未塗工部における前記負極側溶接部の前記捲回方向前記電池蓋側端部から捲回方向前記電池蓋側の前記捲回電極群の湾曲部の頂点までの領域のいずれかに設けられている角形二次電池。
The prismatic secondary battery according to claim 1,
The through hole is a region from the end of the battery can bottom surface side in the winding direction of the positive electrode side welded portion to the apex of the curved portion of the wound electrode group on the bottom surface side of the battery can in the winding direction, the positive electrode uncoated Winding direction of the positive electrode side welded portion in the region from the battery lid side end portion to the apex of the curved portion of the wound electrode group on the battery lid side in the winding direction, the negative electrode side in the negative electrode uncoated portion Winding direction of the welded part The region from the bottom of the battery can bottom side to the apex of the curved part of the wound electrode group on the bottom of the battery can in the winding direction, and the negative electrode side welding in the negative electrode uncoated part A prismatic secondary battery provided in one of the regions from the battery lid side end of the winding part to the apex of the curved part of the winding electrode group on the battery lid side in the winding direction.
請求項1に記載の角形二次電池において、
前記貫通孔は、前記正極未塗工部における前記正極側溶接部の捲回方向前記電池缶底面側端部から捲回方向前記電池缶底面側の前記捲回電極群の湾曲部の頂点までの領域、および、前記負極未塗工部における前記負極側溶接部の捲回方向前記電池缶底面側端部から捲回方向前記電池缶底面側の前記捲回電極群の湾曲部の頂点までの領域のうち、少なくともいずれか一方に設けられる角形二次電池。
The prismatic secondary battery according to claim 1,
The through hole extends from the battery can bottom surface side end portion of the positive electrode side welded portion in the positive electrode uncoated portion to the apex of the curved portion of the wound electrode group on the battery can bottom surface side in the winding direction. A region, and a region from the negative electrode side welded portion of the negative electrode side welded portion to the apex of the curved portion of the wound electrode group on the bottom surface side of the battery can in the winding direction A prismatic secondary battery provided in at least one of them.
請求項2に記載の角形二次電池において、
前記貫通孔は、前記捲回電極群の前記湾曲部に設けられる角形二次電池。
The prismatic secondary battery according to claim 2,
The through hole is a prismatic secondary battery provided in the curved portion of the wound electrode group.
請求項3に記載の角形二次電池において、
前記貫通孔は、前記捲回電極群の前記湾曲部の頂部に設けられる角形二次電池。
The prismatic secondary battery according to claim 3,
The through hole is a prismatic secondary battery provided at the top of the curved portion of the wound electrode group.
請求項1〜5のいずれか一項に記載の角形二次電池において、
前記貫通孔は、複数設けられている角形二次電池。
In the square secondary battery according to any one of claims 1 to 5,
A square secondary battery in which a plurality of the through holes are provided.
請求項1〜5のいずれか一項に記載の角形二次電池において、
前記貫通孔の形状は、丸形又は角形である角形二次電池。
In the square secondary battery according to any one of claims 1 to 5,
The shape of the through hole is a rectangular secondary battery that is round or square.
請求項1〜5のいずれか一項に記載の角形二次電池において、
前記貫通孔は、前記捲回電極群を構成する各層の積層方向に対して平行に設けられている角形二次電池。
In the square secondary battery according to any one of claims 1 to 5,
The said through-hole is a square secondary battery provided in parallel with the lamination direction of each layer which comprises the said winding electrode group.
JP2013243628A 2013-11-26 2013-11-26 Square secondary battery Ceased JP2015103420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013243628A JP2015103420A (en) 2013-11-26 2013-11-26 Square secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013243628A JP2015103420A (en) 2013-11-26 2013-11-26 Square secondary battery

Publications (1)

Publication Number Publication Date
JP2015103420A true JP2015103420A (en) 2015-06-04

Family

ID=53378958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013243628A Ceased JP2015103420A (en) 2013-11-26 2013-11-26 Square secondary battery

Country Status (1)

Country Link
JP (1) JP2015103420A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107768598A (en) * 2017-10-19 2018-03-06 杭州金色能源科技有限公司 The manufacture method of coiled lithium ion battery, core and coiling lithium electronic cell
WO2024057727A1 (en) * 2022-09-16 2024-03-21 株式会社Gsユアサ Electricity storage element
WO2024057726A1 (en) * 2022-09-16 2024-03-21 株式会社Gsユアサ Power storage element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102051A (en) * 1999-09-29 2001-04-13 Sanyo Electric Co Ltd Electrode and lithium secondary cell
JP2006210031A (en) * 2005-01-26 2006-08-10 Toyota Motor Corp Wound type power storage device
JP2008166235A (en) * 2007-01-05 2008-07-17 Sony Corp Nonaqueous electrolyte secondary battery
WO2011096069A1 (en) * 2010-02-05 2011-08-11 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
JP2013171733A (en) * 2012-02-21 2013-09-02 Hitachi Vehicle Energy Ltd Secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102051A (en) * 1999-09-29 2001-04-13 Sanyo Electric Co Ltd Electrode and lithium secondary cell
JP2006210031A (en) * 2005-01-26 2006-08-10 Toyota Motor Corp Wound type power storage device
JP2008166235A (en) * 2007-01-05 2008-07-17 Sony Corp Nonaqueous electrolyte secondary battery
WO2011096069A1 (en) * 2010-02-05 2011-08-11 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
JP2013171733A (en) * 2012-02-21 2013-09-02 Hitachi Vehicle Energy Ltd Secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107768598A (en) * 2017-10-19 2018-03-06 杭州金色能源科技有限公司 The manufacture method of coiled lithium ion battery, core and coiling lithium electronic cell
WO2024057727A1 (en) * 2022-09-16 2024-03-21 株式会社Gsユアサ Electricity storage element
WO2024057726A1 (en) * 2022-09-16 2024-03-21 株式会社Gsユアサ Power storage element

Similar Documents

Publication Publication Date Title
US10388939B2 (en) Secondary battery
JP6328271B2 (en) Prismatic secondary battery
JP6446239B2 (en) Secondary battery
JP6208258B2 (en) Prismatic secondary battery
JP6410833B2 (en) Prismatic secondary battery
JP2010103027A (en) Secondary battery and method for manufacturing the same
JP2015097174A (en) Secondary battery
JP6167185B2 (en) Prismatic secondary battery
JP2015103420A (en) Square secondary battery
JP6959718B2 (en) Rechargeable battery
JP2016178053A (en) Square secondary battery
WO2019123932A1 (en) Positive electrode for lithium ion secondary cell, and lithium ion secondary cell using same
JP2016110787A (en) Square secondary battery
WO2017130702A1 (en) Rectangular secondary battery
JP6382336B2 (en) Prismatic secondary battery
JP6562726B2 (en) Rectangular secondary battery and manufacturing method thereof
JP2018125109A (en) Secondary battery and battery pack
JP2018056085A (en) Secondary battery
JP6182061B2 (en) Secondary battery
JP2018081860A (en) Secondary battery
JP2016143618A (en) Rectangular secondary battery
JP2011076786A (en) Secondary battery
JP2016173907A (en) Square secondary battery
JPWO2019003770A1 (en) Secondary battery and method of manufacturing the same
JP2018056086A (en) Secondary battery and method of manufacturing secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161026

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170913

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171121

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20180327