JP2001102051A - Electrode and lithium secondary cell - Google Patents

Electrode and lithium secondary cell

Info

Publication number
JP2001102051A
JP2001102051A JP27705799A JP27705799A JP2001102051A JP 2001102051 A JP2001102051 A JP 2001102051A JP 27705799 A JP27705799 A JP 27705799A JP 27705799 A JP27705799 A JP 27705799A JP 2001102051 A JP2001102051 A JP 2001102051A
Authority
JP
Japan
Prior art keywords
electrode
battery
opening
lithium secondary
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27705799A
Other languages
Japanese (ja)
Other versions
JP3615432B2 (en
Inventor
Yoshito Konno
義人 近野
Kazunari Okita
一成 大北
Toshiyuki Noma
俊之 能間
Ikuro Yonezu
育郎 米津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP27705799A priority Critical patent/JP3615432B2/en
Publication of JP2001102051A publication Critical patent/JP2001102051A/en
Application granted granted Critical
Publication of JP3615432B2 publication Critical patent/JP3615432B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode which can promote an impregnation of elec trode and perform a good charge and discharge in the case of use in a lithium secondary cell, etc. SOLUTION: In an electrode constituted by winding laminate positive and negative electrodes through a separator, the ends of the core body of the positive and negative electrodes 1 and 2 are provided with non-active portions 12 and 22 having no active materials of which portions 12 and 22 are exposed more than the separator 3 and also provided with openings.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電池
に用いて好適な電極、及びその電極を用いたリチウム二
次電池に関する。
The present invention relates to an electrode suitable for use in a lithium secondary battery and a lithium secondary battery using the electrode.

【0002】[0002]

【従来の技術】近年、電気自動車に必要な高エネルギー
密度、且つ高出力密度を達成することのできる二次電池
として、リチウム二次電池が期待されている。
2. Description of the Related Art In recent years, lithium secondary batteries have been expected as secondary batteries capable of achieving high energy density and high output density required for electric vehicles.

【0003】電気自動車などに必要な大容量、高出力密
度の電池は、発進時や急加速時に大電流を通電する必要
があり、エネルギー効率向上やジュール発熱低減の観点
から集電性の向上による電池内部抵抗の低減が必須とな
っている。特に円筒型の大容量の二次電池では帯状の電
極が長尺となるため、電位分布を小さくし集電性を向上
させるため、複数の集電タブを配設する必要があり、芯
体と集電タブをスポット、レーザー、超音波等で溶着し
ていたが、電気的接触性は必ずしも良好でなく、大電流
通電時に溶着部での発熱が問題となっている。
A large-capacity, high-output-density battery required for an electric vehicle or the like needs to supply a large current at the time of starting or sudden acceleration. It is essential to reduce the battery internal resistance. In particular, in the case of a cylindrical large-capacity secondary battery, since the band-shaped electrode is long, it is necessary to arrange a plurality of current collecting tabs in order to reduce the potential distribution and improve the current collecting property. The current collecting tab was welded with a spot, laser, ultrasonic wave or the like, but the electrical contact was not always good, and there was a problem of heat generation at the welded portion when a large current was applied.

【0004】上記問題を解決するものとして、例えば、
特開平8−115744号公報には、集電タブの代わり
に、芯体の端部に活物質の未塗布部を設け、それを金属
製の円形状集電板に溶接により接続し、その集電板を集
電端子に接続した集電方法を用いたリチウム二次電池が
提案されている。
To solve the above problems, for example,
In Japanese Patent Application Laid-Open No. 8-115744, instead of a current collecting tab, an uncoated portion of an active material is provided at an end of a core body, which is connected to a metal circular current collecting plate by welding, and the current collecting tab is collected. A lithium secondary battery using a current collecting method in which a power plate is connected to a current collecting terminal has been proposed.

【0005】しかしながら、リチウム二次電池では有機
系電解液を用いているため巻電極が圧迫した状態である
ため、上記公報に示された集電方法を用いたリチウム二
次電池では、有機系電解液が電極に含浸し難いという問
題がある。
However, since the lithium secondary battery uses an organic electrolytic solution, the wound electrode is in a compressed state. Therefore, in the lithium secondary battery using the current collecting method disclosed in the above publication, the organic electrolytic solution is not used. There is a problem that it is difficult for the liquid to impregnate the electrode.

【0006】また、特開平9−92335号公報には、
正負極未塗布部の芯体を短冊状に加工し、複数の短冊状
リードを束ねて正極集電端子、及び負極集電端子に接続
した二次電池が提案されている。
[0006] Japanese Patent Application Laid-Open No. 9-92335 discloses that
There has been proposed a secondary battery in which a core of a non-coated portion of a positive electrode and a negative electrode is processed into a strip shape, a plurality of strip-shaped leads are bundled, and connected to a positive electrode current collecting terminal and a negative electrode current collecting terminal.

【0007】しかしながら、この公報に示されているリ
チウム二次電池においても、短冊状リード間の隙間から
電解液の含浸が可能であるが、多数の短冊状リードを束
ねて正、負極集電端子に接続する必要があるなど製造工
程が複雑なものになるという問題がある。
However, in the lithium secondary battery disclosed in this publication, the electrolyte can be impregnated through the gap between the strip-shaped leads. However, a large number of strip-shaped leads are bundled to collect positive and negative current collecting terminals. There is a problem that the manufacturing process becomes complicated, such as the need to connect to

【0008】[0008]

【発明が解決しようとする課題】本発明は上記従来例の
欠点に鑑み為されたものであり、製造工程を複雑とする
ことなく電解液が含浸し易くなるように構成した電極、
及びその電極を用いたリチウム二次電池を提供すること
を目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned drawbacks of the prior art, and has an electrode configured to be easily impregnated with an electrolyte without complicating a manufacturing process.
And a lithium secondary battery using the electrode.

【0009】[0009]

【課題を解決するための手段】本発明の電極は、帯状の
正極と帯状の負極とをセパレータを介して巻回してなる
電極において、前記正極及び負極の少なくとも一方の芯
体の端部には活物質が付着していない未塗布部分が設け
られ、該未塗布部は前記セパレータより露出し、且つ開
口部が設けられていることを特徴とする。
An electrode according to the present invention is an electrode formed by winding a strip-shaped positive electrode and a strip-shaped negative electrode with a separator interposed therebetween. An uncoated portion to which the active material is not attached is provided, the uncoated portion is exposed from the separator, and an opening is provided.

【0010】このような構成の電極では、リチウム二次
電池等に用いた場合、前記開口部から電解液が浸透し、
電極への電解液の含浸が促進される。
In the electrode having such a structure, when used in a lithium secondary battery or the like, an electrolyte permeates through the opening,
The impregnation of the electrode with the electrolytic solution is promoted.

【0011】特に、本発明の電極では、前記未塗布部分
における開口部の開口率が10%以上、80%以下であ
る場合、リチウム二次電池等に用いた場合、良好な充放
電が可能となる。
In particular, in the electrode of the present invention, when the opening ratio of the opening in the uncoated portion is 10% or more and 80% or less, good charge / discharge becomes possible when used in a lithium secondary battery or the like. Become.

【0012】また、前記正極の芯体としては、アルミニ
ウム箔が適している。
An aluminum foil is suitable as the core of the positive electrode.

【0013】また、前記負極の芯体としては、銅箔或い
はニッケル箔が適している。
As the core of the negative electrode, a copper foil or a nickel foil is suitable.

【0014】また、本発明のリチウム二次電池は、上述
の本発明の電極を備え、該電極の前記未塗布部分より端
子への電気的接続が行われていることを特徴とする。
Further, a lithium secondary battery of the present invention is provided with the above-mentioned electrode of the present invention, wherein an electrical connection is made from the uncoated portion of the electrode to a terminal.

【0015】このような構成のリチウム二次電池では、
電極への電解液の含浸が促進され、良好な充放電が行わ
れる。
In the lithium secondary battery having such a configuration,
The impregnation of the electrode with the electrolytic solution is promoted, and favorable charging and discharging are performed.

【0016】リチウムイオンの吸蔵、放出可能な正極の
活物質材料としては、金属酸化物が適するが、具体的に
は、LiCoO2、LiNiO2、LiCo1-XNi
X2、LiMn24及びこれらの複合化合物からなる群
から選択された少なくとも1種の材料を挙げることがで
きる。
As the active material of the positive electrode capable of occluding and releasing lithium ions, a metal oxide is suitable, and specifically, LiCoO 2 , LiNiO 2 , LiCo 1-x Ni
At least one material selected from the group consisting of XO 2 , LiMn 2 O 4 and a composite compound thereof can be given.

【0017】また、本発明で使用される負極の活物質材
料としては、黒鉛、コークス等の炭素材料、リチウム金
属、リチウム合金、LiXFe23、LiXWO2等の金
属酸化物材料、ポリアセチレン等の導電性高分子材料等
が挙げられる。特に黒鉛からなる炭素材料を用いた場
合、優れた効果が発揮される。前記炭素材料に用いられ
る黒鉛、コークス材料としては、粉砕したものをそのま
ま用いてもよく、500℃〜3700℃の範囲で加熱処
理したものを用いてもよい。また、黒鉛のX線広角回折
法による(002)面の面間隔d002の値は3.35Å
以上、3.37Å以下、C軸方向の結晶子長さLcは4
00Å以上が好ましい。
The negative electrode active material used in the present invention includes carbon materials such as graphite and coke, and metal oxide materials such as lithium metal, lithium alloy, Li x Fe 2 O 3 and Li x WO 2. And conductive polymer materials such as polyacetylene. In particular, when a carbon material made of graphite is used, excellent effects are exhibited. As the graphite and coke material used for the carbon material, a crushed material may be used as it is, or a material heat-treated at a temperature in the range of 500 ° C. to 3700 ° C. may be used. The value of the plane distance d 002 of the (002) plane of the graphite by the X-ray wide-angle diffraction method is 3.35 °.
Above 3.37 ° and below, the crystallite length Lc in the C-axis direction is 4
It is preferably at least 00 °.

【0018】尚、電解液、電解質、セパレータなどの電
池構成部材についても、従来のリチウム二次電池用とし
て実用され或いは提案されている種々の材料を使用する
ことが可能である。
It is to be noted that various materials that have been practically used or proposed for conventional lithium secondary batteries can also be used for battery components such as an electrolytic solution, an electrolyte, and a separator.

【0019】例えば、電解質としてはリチウムイオンを
含むLiPF6、LiClO4、LiCF3SO3等の電解
質が挙げられる。また、電解液の有機溶媒としてはエチ
レンカーボネート、ジエチルカーボネート、ジメトキシ
メタン、スルホラン等を単独、あるいは混合して用いる
ことができる。電解液としてはこれら溶媒に前記電解質
を0.7〜1.5M(mol/l)程度の割合で溶解さ
せた溶液が挙げられる。
For example, examples of the electrolyte include electrolytes containing lithium ions, such as LiPF 6 , LiClO 4 , and LiCF 3 SO 3 . Further, as the organic solvent of the electrolytic solution, ethylene carbonate, diethyl carbonate, dimethoxymethane, sulfolane, or the like can be used alone or in combination. Examples of the electrolytic solution include solutions obtained by dissolving the electrolyte in these solvents at a ratio of about 0.7 to 1.5 M (mol / l).

【0020】[0020]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。
Embodiments of the present invention will be described below.

【0021】[正極の作製]正極芯体となるアルミニウム
箔(厚み20μm)の活物質の未塗布部に相当する部分
に、未塗布部における開口率5%になるように、円形の
開口部を形成した。尚、活物質の塗布部に相当する部分
には全く開口部を形成していない。
[Preparation of Positive Electrode] A circular opening was formed in a portion corresponding to an uncoated portion of the active material of an aluminum foil (thickness: 20 μm) serving as a positive electrode core so that an opening ratio in the uncoated portion was 5%. Formed. Note that no opening is formed in a portion corresponding to the active material application portion.

【0022】正極活物質、即ち正極材料としてのLiC
oO2は、リチウムの水酸化物とコバルトの水酸化物を
混合し、空気中で800℃で24時間焼成することによ
り得たものである。この正極材料と導電材としての人造
黒鉛とを重量比90:5で混合し、正極合剤を作製し
た。そして、結着剤であるPVdF(ポリフッ化ビニリ
デン)をNMP(N−メチル2−ピロリドン)に溶解さ
せ、NMP溶液を調整した。正極合剤とポリフッ化ビニ
リデンの重量比が95:5になるよう正極合剤とNMP
溶液を混練してスラリーを調整し、このスラリーを上述
の開口部が形成されたアルミニウム箔の長手方向の片側
に20mmの未塗布部を残して、ドクターブレード法に
より塗布して塗布部を形成し、接着し、150℃で2時
間真空乾燥させ、更に未塗布部が20mmに対して、塗
工部が220mmとなるよう幅240mmに切断、圧延
して、正極を作成した。尚、正極の厚みは150μmで
ある。
The positive electrode active material, ie, LiC as the positive electrode material
oO 2 was obtained by mixing a hydroxide of lithium and a hydroxide of cobalt and calcining the mixture at 800 ° C. for 24 hours in air. This positive electrode material and artificial graphite as a conductive material were mixed at a weight ratio of 90: 5 to prepare a positive electrode mixture. Then, PVdF (polyvinylidene fluoride) as a binder was dissolved in NMP (N-methyl 2-pyrrolidone) to prepare an NMP solution. The positive electrode mixture and the NMP so that the weight ratio of the positive electrode mixture to polyvinylidene fluoride becomes 95: 5.
The solution was kneaded to prepare a slurry, and the slurry was applied by a doctor blade method to leave an uncoated portion of 20 mm on one side in the longitudinal direction of the aluminum foil in which the above-described opening was formed, thereby forming an applied portion. Then, it was vacuum-dried at 150 ° C. for 2 hours, and further cut and rolled to a width of 240 mm so that the coated portion became 220 mm with respect to the uncoated portion of 20 mm, thereby producing a positive electrode. In addition, the thickness of the positive electrode is 150 μm.

【0023】図1は本実施例のリチウム二次電池用正極
の模式的断面図である。図1において、11は塗布部、
12は未塗布部、13は開口部である。
FIG. 1 is a schematic sectional view of a positive electrode for a lithium secondary battery according to this embodiment. In FIG. 1, 11 is a coating unit,
Reference numeral 12 denotes an uncoated portion, and 13 denotes an opening.

【0024】[負極の作製]負極芯体となる銅箔(厚み2
0μm)の活物質の未塗布部に相当する部分に、未塗布
部における開口率5%になるように、円形の開口部をに
より形成した。尚、活物質の塗布部に相当する部分には
全く開口部を形成していない。
[Preparation of Negative Electrode] Copper foil (thickness 2
A circular opening was formed in a portion corresponding to the uncoated portion of the active material (0 μm) so that the opening ratio in the uncoated portion was 5%. Note that no opening is formed in a portion corresponding to the active material application portion.

【0025】負極活物質、即ち負極材料として、炭素塊
(d002=3.356Å;Lc>1000Å)に空気
流を噴射、粉砕(ジェット粉砕)してふるいにかけ、粒
子径10μmの黒鉛粉末を得た。また結着剤であるポリ
フッ化ビニリデンをNMPに溶解させ、NMP溶液を調
整した。この黒鉛粉末とポリフッ化ビニリデンの重量比
が90:10になるよう混練してスラリーを調製した。
このスラリーを未塗布部の開口率が5%になるよう加工
した負極芯体としての銅箔の両面にドクターブレード法
により塗布し、150℃で2時間真空乾燥して負極を作
製した。また、この負極の厚みは、芯体も含めて、15
0μmである。尚、負極の模式的断面図については図示
を省略するが、図1に示した正極と同様の形状である。
As a negative electrode active material, that is, a negative electrode material, an air stream is injected into a carbon lump (d002 = 3.356 °; Lc> 1000 °), pulverized (jet pulverized), and sieved to obtain a graphite powder having a particle diameter of 10 μm. . In addition, polyvinylidene fluoride as a binder was dissolved in NMP to prepare an NMP solution. A slurry was prepared by kneading the graphite powder and polyvinylidene fluoride so that the weight ratio was 90:10.
This slurry was applied to both sides of a copper foil as a negative electrode core processed so that the opening ratio of the uncoated portion became 5% by a doctor blade method, and vacuum dried at 150 ° C. for 2 hours to produce a negative electrode. The thickness of the negative electrode, including the core, is 15
0 μm. Although a schematic cross-sectional view of the negative electrode is not shown, it has the same shape as the positive electrode shown in FIG.

【0026】[電解液の作製]電解液としては、エチレン
カーボネートとジメトキシメタンを体積比1:1で混合し
た溶媒に、LiPF6を1Mの割合で溶解して電解液を
調製した。
[Preparation of Electrolyte Solution] As an electrolyte solution, LiPF 6 was dissolved at a ratio of 1M in a solvent in which ethylene carbonate and dimethoxymethane were mixed at a volume ratio of 1: 1 to prepare an electrolyte solution.

【0027】[電池の組立]図2に示すように、上述の工
程により作製された正極1及び負極2を、ポリプロピレ
ン製の微多孔性薄膜からなるセパレータ3を介して巻回
し、円筒状の巻電極を作製した。この時、正極1の未塗
布部12はセパレータ3の一方の端部側から露出し、負
極2の未塗布部22はセパレータ3の他方の端部側から
露出している。次に、巻電極の両端に直径58mmのニ
ッケル製円形集電板を抵抗溶接により固定し、続いて該
ニッケル製円形集電板と正負極集電端子を接続した。次
に、電解液300gを注液した後、電池缶内部を4kg
f/cm2に加圧し、24時間静置し、大型の円筒型リ
チウム二次電池A1を作製した。この電池の寸法は、直
径60mm、長さ320mmである。尚、この電池の設
計容量は70Ahである。
[Assembly of Battery] As shown in FIG. 2, the positive electrode 1 and the negative electrode 2 manufactured by the above-described steps are wound through a separator 3 made of a microporous thin film made of polypropylene, and are wound into a cylindrical shape. An electrode was prepared. At this time, the uncoated portion 12 of the positive electrode 1 is exposed from one end of the separator 3, and the uncoated portion 22 of the negative electrode 2 is exposed from the other end of the separator 3. Next, a nickel circular current collector having a diameter of 58 mm was fixed to both ends of the wound electrode by resistance welding, and the nickel circular current collector was connected to the positive and negative electrode current collector terminals. Next, after injecting 300 g of the electrolyte, the inside of the battery can was 4 kg.
It was pressurized to f / cm 2 and allowed to stand for 24 hours to produce a large cylindrical lithium secondary battery A1. The dimensions of this battery are 60 mm in diameter and 320 mm in length. The design capacity of this battery is 70 Ah.

【0028】次に、正極及び負極共に、活物質の未塗布
部における開口部の開口率が夫々、10%、30%、6
0%、80%、90%である芯体を用いた以外は、上述
の電池A1と同様にして大型の円筒型リチウム二次電池
A2、A3、A4、A5、A6を夫々、各2セルづつ作
製した。
Next, in each of the positive electrode and the negative electrode, the opening ratio of the opening in the uncoated portion of the active material is 10%, 30%, and 6%, respectively.
Except for using the cores of 0%, 80%, and 90%, large cylindrical lithium secondary batteries A2, A3, A4, A5, and A6 were each two cells each in the same manner as battery A1 described above. Produced.

【0029】尚、上述のリチウム二次電池A1〜A6で
は、活物質の未塗布部における開口部の開口率が所望の
値になるように、開口部を下記のパターン配列で形成し
た。
In the above-mentioned lithium secondary batteries A1 to A6, the openings were formed in the following pattern arrangement so that the opening ratio of the openings in the uncoated portions of the active material became a desired value.

【0030】即ち、電池A1では、図3に示すように、
開口率が5%となるように、直径4mmの円形の開口部
を8.58mm間隔で1列形成した。
That is, in the battery A1, as shown in FIG.
One line of circular openings having a diameter of 4 mm was formed at an interval of 8.58 mm so that the opening ratio became 5%.

【0031】電池A2では、図4に示すように、開口率
が10%となるように、直径4mmの円形の開口部を
2.29mm間隔で1列形成した。
In the battery A2, as shown in FIG. 4, circular openings having a diameter of 4 mm were formed in a row at 2.29 mm intervals so that the opening ratio became 10%.

【0032】電池A3では、図5に示すように、開口率
が30%となるように、直径4mmの円形の開口部を
2.29mm間隔で3列形成した。
In the battery A3, as shown in FIG. 5, three rows of circular openings having a diameter of 4 mm were formed at an interval of 2.29 mm so that the opening ratio became 30%.

【0033】電池A4では、図6に示すように、開口率
が60%となるように、直径6mmの円形の開口部を1
mm間隔で3列形成した。
In the battery A4, as shown in FIG. 6, one circular opening having a diameter of 6 mm is formed so that the opening ratio becomes 60%.
Three rows were formed at mm intervals.

【0034】電池A5では、図7に示すように、開口率
が80%となるように、一辺17.9mmの正方形の開
口部を2.1mm間隔で1列形成した。
In the battery A5, as shown in FIG. 7, square openings having a side of 17.9 mm were formed in a row at 2.1 mm intervals so that the opening ratio became 80%.

【0035】電池A6では、図8に示すように、開口率
が90%となるように、一辺19mmの正方形の開口部
を1mm間隔で1列形成した。 <比較例>正極芯体のアルミニウム箔、負極芯体の銅箔
は、未塗布部に相当する部位が開口加工されていないも
のを用いる以外は、上述の電池A1と同様にして、比較
電池Xを作製した。 (実験1)これらの本発明の電池A1〜電池A6及び比
較例の電池Xを用いて、注液工程時の電解液含浸量を求
めた。尚、電解液含浸量は、加圧含浸で24時間経過後
に電池を開缶、電極群を取り出し、速やかに電極群の重
量を計量することにより求めた。
In the battery A6, as shown in FIG. 8, a single row of square openings having a side of 19 mm was formed at intervals of 1 mm so that the opening ratio became 90%. <Comparative Example> A comparative battery X was prepared in the same manner as the battery A1 except that the aluminum foil of the positive electrode core and the copper foil of the negative electrode core were not subjected to opening processing at a portion corresponding to the uncoated portion. Was prepared. (Experiment 1) Using the batteries A1 to A6 of the present invention and the battery X of the comparative example, the amount of electrolyte impregnation in the liquid injection step was determined. The electrolyte impregnation amount was determined by opening the battery after 24 hours of pressure impregnation, taking out the electrode group, and immediately weighing the electrode group.

【0036】次に電池A1〜電池A6及び電池Xについ
て、充放電容量試験を行った。充放電条件は以下の通り
である。
Next, a charge / discharge capacity test was performed on the batteries A1 to A6 and the battery X. The charge and discharge conditions are as follows.

【0037】充電:8.75A(1/8C)の定流で、
8時間若しくは充電電圧が4.2Vになるまで充電 休止:30分 放電:8.75A(1C)の定電流で、2.7Vになる
まで放電 ここで求められた充電容量に対する放電容量の比を、充
放電効率と定義する。
Charge: At a constant current of 8.75 A (1/8 C),
Charging for 8 hours or until the charging voltage reaches 4.2 V Pause: 30 minutes Discharging: Discharging at a constant current of 8.75 A (1 C) until the voltage reaches 2.7 V The ratio of the discharging capacity to the charging capacity calculated here is calculated as follows. , Charge and discharge efficiency.

【0038】さらに電池A1〜電池A6及び電池Xにつ
いて1C放電率で負荷特性試験を行った。測定条件は以
下の通りである。
Further, a load characteristic test was performed on the batteries A1 to A6 and the battery X at a discharge rate of 1 C. The measurement conditions are as follows.

【0039】充電:8.75A(1/8C)の定流で、
8時間若しくは充電電圧が4.2Vになるまで充電 休止:30分 放電:70A(1/8C)の定電流で、2.7Vになる
まで放電 この試験の後、1/8Cでの放電容量に対する1Cでの
放電容量の比、放電容量(1C)/放電容量(1/8
C)を求めた。
Charging: At a constant current of 8.75 A (1/8 C),
Charge for 8 hours or until the charging voltage becomes 4.2 V. Rest: 30 minutes Discharge: Discharge at a constant current of 70 A (1/8 C) to 2.7 V After this test, the discharge capacity at 1/8 C Ratio of discharge capacity at 1C, discharge capacity (1C) / discharge capacity (1/8)
C) was determined.

【0040】以上の結果を、表1に示す。Table 1 shows the above results.

【0041】[0041]

【表1】 [Table 1]

【0042】表1から判るように、正極の芯体及び負極
の芯体の活物質の未塗布部分に開口部を設けた電池A1
〜A6では、開口部を設けなかった電池Xと比較して、
電解液の含浸量が多くなり、充電容量、充放電効率、及
び放電容量(1C)/放電容量(1/8C)が向上し
た。
As can be seen from Table 1, the battery A1 provided with openings in the uncoated portions of the active material of the positive electrode core and the negative electrode core.
-A6, compared with the battery X having no opening,
The impregnation amount of the electrolyte increased, and the charge capacity, charge / discharge efficiency, and discharge capacity (1C) / discharge capacity (1 / 8C) were improved.

【0043】特に、10〜80%の範囲である電池A
2、A3、A4、A5では、1/8C(8.75A)の
充電電流で8時間充電を行うことが出来、充放電効率が
99.5%以上、放電容量(1C)/放電容量(1/8
C)が95%以上の良好な結果が得られた。
In particular, battery A in the range of 10-80%
For 2, A3, A4, and A5, charging can be performed for 8 hours at a charging current of 1/8 C (8.75 A), the charging / discharging efficiency is 99.5% or more, and the discharging capacity (1 C) / discharging capacity (1 / 8
Good results with C) of 95% or more were obtained.

【0044】一方、開口率が5%、0%である電池A
1、Xは、電解液の含浸量が230g、180gと少な
く、1/8C(8.75A)の充電電流では、充電時間
が8時間に達する前に、充電終止電圧4.2Vで充電モ
ードが終了したため、定格の70Ahの充電が行えなか
った。
On the other hand, battery A having an aperture ratio of 5% and 0%
1, X indicates that the impregnation amount of the electrolyte is as small as 230 g and 180 g, and at a charging current of 1/8 C (8.75 A), the charging mode is set at a charging end voltage of 4.2 V before the charging time reaches 8 hours. Because of the termination, charging of the rated 70 Ah could not be performed.

【0045】また、開口率が90%である電池A6の場
合、電解液の含浸量は290gと十分であるが、充電容
量は65Ahと低い。これは、芯体の未塗布部の開口率
が大きいため、集電性が低下し、電池内部抵抗が上昇した
結果、過電圧が増加し、充電時間が8時間に達する以前
に充電終止電圧4.2Vで充電モードが終了したためで
ある。更に、放電容量(1C)/放電容量(1/8C)
が90%以下と低く、集電性低下の影響が顕著である。
In the case of battery A6 having an opening ratio of 90%, the impregnation amount of the electrolytic solution is 290 g, which is sufficient, but the charging capacity is as low as 65 Ah. This is because the opening ratio of the uncoated portion of the core is large, the current collecting property is reduced, and the internal resistance of the battery is increased. As a result, the overvoltage increases, and the charging end voltage before the charging time reaches 8 hours. This is because the charging mode ends at 2V. Furthermore, discharge capacity (1C) / discharge capacity (1 / 8C)
Is as low as 90% or less, and the influence of the decrease in current collection is remarkable.

【0046】(実験2)この実験2では、負極芯体とし
て銅箔の代わりに厚み20μmのニッケル箔を用いた以
外は、上述の電池A3と同様にして電池A7を作製し、
上述の実験1と同様の実験を行った。その結果を電池A
3の実験結果と併せて表2に示す。
(Experiment 2) In Experiment 2, a battery A7 was manufactured in the same manner as the above-described battery A3, except that a nickel foil having a thickness of 20 μm was used instead of the copper foil as the negative electrode core.
An experiment similar to Experiment 1 described above was performed. Battery A
The results are shown in Table 2 together with the experimental results of Example 3.

【0047】[0047]

【表2】 [Table 2]

【0048】表2から判るように、電解液の含浸量は、
278gと十分であり、放電容量(1C)/放電容量
(1/8C)は96%以上と大きく、負荷特性は良好で
あり、負極芯体としてニッケル箔でも使用可能である。
As can be seen from Table 2, the impregnation amount of the electrolyte is
The discharge capacity (1C) / discharge capacity (1 / 8C) is as large as 96% or more, the load characteristics are good, and nickel foil can be used as the negative electrode core.

【0049】上述の実施例では、渦巻き電極体を有した
円筒形電池に適用する場合について説明したが、本発明
の電池はその形状に特に制限はなく、角形など、種々の
形状の非水系電解質電池に適用することが可能である。
In the above-described embodiment, the case where the present invention is applied to a cylindrical battery having a spiral electrode body is described. However, the shape of the battery of the present invention is not particularly limited, and non-aqueous electrolytes having various shapes such as a square shape may be used. It can be applied to batteries.

【0050】[0050]

【発明の効果】本発明によれば、リチウム二次電池等に
用いた場合、電解液の含浸が促進され、良好な充放電を
行うことが可能となる電極を提供し得る。
According to the present invention, when used in a lithium secondary battery or the like, it is possible to provide an electrode in which impregnation with an electrolytic solution is promoted and good charge / discharge can be performed.

【0051】また、本発明によれば、電極への電解液の
含浸が促進され、良好な充放電を行うことが出来るリチ
ウム二次電池を提供し得る。
Further, according to the present invention, it is possible to provide a lithium secondary battery in which the impregnation of the electrode with the electrolytic solution is promoted and good charge / discharge can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電極の正極の構造を示す図である。FIG. 1 is a diagram showing a structure of a positive electrode of an electrode of the present invention.

【図2】本発明の電極の概略構造を示す斜視図である。FIG. 2 is a perspective view showing a schematic structure of an electrode of the present invention.

【図3】本発明の電池A1における開口部のパターンを
示す図である。
FIG. 3 is a view showing a pattern of an opening in a battery A1 of the present invention.

【図4】本発明の電池A2における開口部のパターンを
示す図である。
FIG. 4 is a diagram showing a pattern of an opening in a battery A2 of the present invention.

【図5】本発明の電池A3における開口部のパターンを
示す図である。
FIG. 5 is a view showing a pattern of an opening in a battery A3 of the present invention.

【図6】本発明の電池A4における開口部のパターンを
示す図である。
FIG. 6 is a view showing a pattern of an opening in a battery A4 of the present invention.

【図7】本発明の電池A5における開口部のパターンを
示す図である。
FIG. 7 is a view showing a pattern of an opening in a battery A5 of the present invention.

【図8】本発明の電池A6における開口部のパターンを
示す図である。
FIG. 8 is a view showing a pattern of an opening in a battery A6 of the present invention.

【符号の説明】[Explanation of symbols]

1 正極 11 塗布部 12 未塗布部 13 開口部 2 負極 22 未塗布部 3 セパレータ DESCRIPTION OF SYMBOLS 1 Positive electrode 11 Coating part 12 Uncoated part 13 Opening 2 Negative electrode 22 Uncoated part 3 Separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 能間 俊之 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 米津 育郎 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 5H014 AA04 BB04 BB08 CC01 CC07 EE05 HH01  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Toshiyuki Noma 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Ikuo Yonezu 2-chome Keihanhondori, Moriguchi-shi, Osaka No.5 No.5 Sanyo Electric Co., Ltd. F-term (reference) 5H014 AA04 BB04 BB08 CC01 CC07 EE05 HH01

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 帯状の正極と帯状の負極とをセパレータ
を介して巻回してなる電極において、前記正極及び負極
の少なくとも一方の芯体の端部には活物質が付着してい
ない未塗布部分が設けられ、該未塗布部は前記セパレー
タより露出し、且つ開口部が設けられていることを特徴
とする電極。
An electrode formed by winding a strip-shaped positive electrode and a strip-shaped negative electrode with a separator interposed therebetween, wherein at least one of the positive electrode and the negative electrode has an uncoated portion to which an active material is not attached at one end. Wherein the uncoated portion is exposed from the separator and an opening is provided.
【請求項2】 前記未塗布部分における開口部の開口率
が10%以上、80%以下であることを特徴とする請求
項1記載の電極。
2. The electrode according to claim 1, wherein an opening ratio of the opening in the uncoated portion is 10% or more and 80% or less.
【請求項3】 前記正極の芯体がアルミニウム箔よりな
ることを特徴とする請求項1又は2記載の電極。
3. The electrode according to claim 1, wherein the core of the positive electrode is made of aluminum foil.
【請求項4】 前記負極の芯体が銅箔或いはニッケル箔
よりなることを特徴とする請求項1、2又は3記載の電
極。
4. The electrode according to claim 1, wherein the core of the negative electrode is made of a copper foil or a nickel foil.
【請求項5】 請求項1、2、3又は4記載の電極を備
え、該電極の前記未塗布部分より端子への電気的接続が
行われていることを特徴とするリチウム二次電池。
5. A lithium secondary battery comprising the electrode according to claim 1, 2, 3 or 4, wherein an electrical connection is made from the uncoated portion of the electrode to a terminal.
JP27705799A 1999-09-29 1999-09-29 Electrode and lithium secondary battery Expired - Fee Related JP3615432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27705799A JP3615432B2 (en) 1999-09-29 1999-09-29 Electrode and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27705799A JP3615432B2 (en) 1999-09-29 1999-09-29 Electrode and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2001102051A true JP2001102051A (en) 2001-04-13
JP3615432B2 JP3615432B2 (en) 2005-02-02

Family

ID=17578196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27705799A Expired - Fee Related JP3615432B2 (en) 1999-09-29 1999-09-29 Electrode and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3615432B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006221817A (en) * 2005-02-08 2006-08-24 Shin Kobe Electric Mach Co Ltd Wound-type lead acid storage battery
JP2008251256A (en) * 2007-03-29 2008-10-16 Toshiba Corp Nonaqueous electrolyte battery, battery pack, and automobile
JP2009117290A (en) * 2007-11-09 2009-05-28 Nec Tokin Corp Sealed battery
JP2010015851A (en) * 2008-07-04 2010-01-21 Hitachi Vehicle Energy Ltd Nonaqueous electrolyte secondary battery
JP2012501052A (en) * 2008-08-26 2012-01-12 ビーワイディー カンパニー リミテッド Battery electrode plate, method of forming the electrode plate, and battery equipped with the electrode plate
JP2014517988A (en) * 2011-05-06 2014-07-24 エベルト、クラウス Lithium secondary battery cell array
JP2015046297A (en) * 2013-08-28 2015-03-12 日立オートモティブシステムズ株式会社 Flat-winding secondary battery
JP2015103420A (en) * 2013-11-26 2015-06-04 日立オートモティブシステムズ株式会社 Square secondary battery
WO2021162346A1 (en) * 2020-02-10 2021-08-19 주식회사 엘지에너지솔루션 Electrode and electrode assembly

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006221817A (en) * 2005-02-08 2006-08-24 Shin Kobe Electric Mach Co Ltd Wound-type lead acid storage battery
JP4655657B2 (en) * 2005-02-08 2011-03-23 新神戸電機株式会社 Winded lead acid battery
JP2008251256A (en) * 2007-03-29 2008-10-16 Toshiba Corp Nonaqueous electrolyte battery, battery pack, and automobile
JP2009117290A (en) * 2007-11-09 2009-05-28 Nec Tokin Corp Sealed battery
JP2010015851A (en) * 2008-07-04 2010-01-21 Hitachi Vehicle Energy Ltd Nonaqueous electrolyte secondary battery
JP2012501052A (en) * 2008-08-26 2012-01-12 ビーワイディー カンパニー リミテッド Battery electrode plate, method of forming the electrode plate, and battery equipped with the electrode plate
JP2014517988A (en) * 2011-05-06 2014-07-24 エベルト、クラウス Lithium secondary battery cell array
JP2015046297A (en) * 2013-08-28 2015-03-12 日立オートモティブシステムズ株式会社 Flat-winding secondary battery
JP2015103420A (en) * 2013-11-26 2015-06-04 日立オートモティブシステムズ株式会社 Square secondary battery
WO2021162346A1 (en) * 2020-02-10 2021-08-19 주식회사 엘지에너지솔루션 Electrode and electrode assembly

Also Published As

Publication number Publication date
JP3615432B2 (en) 2005-02-02

Similar Documents

Publication Publication Date Title
JP5260838B2 (en) Non-aqueous secondary battery
JP6305263B2 (en) Non-aqueous electrolyte battery, battery pack, battery pack and car
JP5465755B2 (en) Non-aqueous secondary battery
JP6408137B2 (en) Electrode, electrode group and non-aqueous electrolyte battery
JP4988169B2 (en) Lithium secondary battery
KR20160027088A (en) Nonaqueous electrolyte secondary cell and method for producing same
JP2019160734A (en) Assembled battery, battery pack, vehicle, stationary power supply
JP3768026B2 (en) Non-aqueous electrolyte secondary battery
WO2015129376A1 (en) Rolled electrode set and nonaqueous-electrolyte battery
WO2019098056A1 (en) Lithium ion secondary battery
US20230223535A1 (en) Negative electrode and secondary battery including the same
JP4097443B2 (en) Lithium secondary battery
JP6656370B2 (en) Lithium ion secondary battery and battery pack
JPWO2017098682A1 (en) Non-aqueous electrolyte secondary battery
JP5150095B2 (en) Non-aqueous electrolyte battery
JP4026351B2 (en) Negative electrode current collector, and negative electrode plate and non-aqueous electrolyte secondary battery using the current collector
JP3615432B2 (en) Electrode and lithium secondary battery
JP6646370B2 (en) Charge / discharge method of lithium secondary battery
JP7003775B2 (en) Lithium ion secondary battery
JP2017091677A (en) Nonaqueous electrolyte battery
JP2002075460A (en) Lithium secondary cell
JPH11312516A (en) Positive electrode for lithium secondary battery and lithium secondary battery using the same
JP2000106171A (en) Battery
JP2007335308A (en) Nonaqueous electrolyte secondary battery
JP2001015168A (en) Lithium secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees