JP3631202B2 - Non-aqueous electrolyte battery - Google Patents

Non-aqueous electrolyte battery Download PDF

Info

Publication number
JP3631202B2
JP3631202B2 JP2001389525A JP2001389525A JP3631202B2 JP 3631202 B2 JP3631202 B2 JP 3631202B2 JP 2001389525 A JP2001389525 A JP 2001389525A JP 2001389525 A JP2001389525 A JP 2001389525A JP 3631202 B2 JP3631202 B2 JP 3631202B2
Authority
JP
Japan
Prior art keywords
positive electrode
electrode active
active material
battery
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001389525A
Other languages
Japanese (ja)
Other versions
JP2003187799A (en
Inventor
直希 井町
育朗 中根
訓 生川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001389525A priority Critical patent/JP3631202B2/en
Publication of JP2003187799A publication Critical patent/JP2003187799A/en
Application granted granted Critical
Publication of JP3631202B2 publication Critical patent/JP3631202B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、正極活物質を備えた正極と、負極と、非水電解質とを備えた非水電解質電池に関し、特に正極活物質の改良に関する。
【0002】
【従来の技術】
近年、コバルト酸リチウム(LiCoO2 )等のリチウム含有複合酸化物を正極材料とする一方、リチウムイオンを吸蔵、放出し得る炭素材料を負極材料とする非水電解質電池が、高容量化が可能な電池として注目されている。
【0003】
現在、上記非水電解質電池の正極活物質としては上記コバルト酸リチウムが主流となっており、このコバルト酸リチウムを正極活物質として用いた場合には、極めて優れた電池特性を有している。しかしながら、コバルト酸リチウムを正極活物質として用いた場合には、コバルト自体が高価であるということから生産コストが上昇し、しかも過充電等の電池異常発生時における安全性が十分ではないといった課題がある。
【0004】
そこで、このような課題を解決すべく、正極活物質としてマンガン酸リチウム、ニッケル酸リチウム等を用いることも提案されているが、マンガン酸リチウムを用いた場合には、放電容量が小さくなったり、高温でマンガンが溶解する等の問題を生じる一方、ニッケル酸リチウムを用いた場合には、放電電圧が低くなる等の問題がある。このため、最近では、リチウム二次電池の正極活物質として、LiCoPO4 やLiFePO4 等のオリビン型燐酸リチウム〔一般式は、LiMPO4 (MはCo、Ni、Mn、Feから選ばれる少なくとも1種以上の元素から構成される)で表される〕が検討され始めている。
【0005】
上記オリビン型燐酸リチウムは、核となる金属元素Mの種類によって作動電圧が異なるため、電池電圧を自由に制御できるという利点があり、且つ、理論容量も140〜170mAh/g程度と比較的高いので、単位質量当たりの電池容量を大きくすることができるという利点もある。更に、金属元素Mとして鉄を用いた場合には、鉄はコバルトに比べて産出量が多く安価であることから生産コストが低減し、コバルト酸リチウム代替活物質としての期待度は高い。この為、特開平9−134724号公報、特開平9−134725号公報、特開2001−85010号公報等でリチウム二次電池用の正極活物質材料として種々の検討がなされている。
【0006】
しかしながら、オリビン型燐酸リチウムは電池充放電時のリチウム脱挿入反応が遅く、先に示したコバルト酸リチウム、ニッケル酸リチウム、或いはマンガン酸リチウム等に比べて電気抵抗が非常に高くなる。このため、一定の電流を流すためには、コバルト酸リチウム等と比べて高い電圧を加える必要があり(即ち、過電圧が増大し)、その分だけ放電作動電圧が低下し、放電容量も低下する。特に、大きな電流で放電する高率放電特性においては、上記過電圧の増大により、著しく放電作動電圧や放電容量が低下するといった課題を有する。これは、オリビン型燐酸リチウムにおけるP−Oの結合が非常に強いことから、リチウムの挿入離脱に直接関与するLi−Oの相互作用が相対的に弱くなって、リチウムが挿入離脱し難くなるという理由によるものと考えられる。
そこで、この問題を解決する手段として、特開2001−110414号公報に示されるように、LiFePO4 粉末に、導電性で且つ酸化還元電位がLiFePO4 よりも貴な物質の粉末を担持して導電性を改善する試みがなされている。しかしながら、この手法ではLiFePO4 が合成された後に導電性材料を混合して焼結する為に、粒子の細部まで導電性を行き渡らせる事が困難と考えられ、より導電性を高める手法が望まれていた。
【0007】
【発明が解決しようとする課題】
本発明は、上記従来の課題を考慮してなされたものであって、正極活物質の電気抵抗を飛躍的に低減させて導電性を高めることにより、特に高率放電特性を向上させることができる非水電解質電池の提供を目的としている。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本発明の非水電解質電池は、正極活物質を備えた正極と、負極と、非水電解質とを備えた非水電解質電池において、上記正極活物質として、LiMPO4MはCo、Ni、Mnから選ばれる少なくとも1種以上の元素から構成される) で表されるオリビン型燐酸リチウムの一部がフッ素で置換されたものを用いることを特徴とする。
上記構成の如く、オリビン型燐酸リチウムの一部がフッ素で置換されていれば、リチウムの挿入離脱が容易化する。この結果、放電特性(特に高率放電特性)が飛躍的に向上する。
【0009】
請求項2記載の発明は、請求項1記載の発明において、上記LiMPO4 に対する上記フッ素の割合が2質量%以下であることを特徴とする。
上記のように規制するのは、フッ素はオリビン型燐酸リチウムの結晶の形態を変化させる要因となっているため、フッ素で多量に置換した場合(2質量%を越えてフッ素で置換した場合)には、導電性は向上するが、活物質の形態そのものが変化してしまうため、単位質量当りから取り出すことができるリチウムの量が減少するという理由による。
【0010】
また、上記目的を達成するために、本発明の非水電解質電池は、正極活物質を備えた正極と、負極と、非水電解質とを備えた非水電解質電池において、上記正極活物質として、LiMPO4 (MはCo、Ni、Mn、Feから選ばれる少なくとも1種以上の元素から構成される)で表されるオリビン型燐酸リチウムのPO4 の一部をSO4 で置換したLiM(PO41-X(SO4X を用いることを特徴とする。
オリビン型燐酸リチウムのPO4 の一部をSO4 で置換したLiM(PO41-X (SO4X を正極活物質として用いれば、SO4 の存在により、Pと強く結合していたOの存在割合が減少し、代わりにPより結合性が弱いSと結合したOの存在割合が増加する。これによりリチウムの挿入離脱に直接関与するLi−Oの相互作用が相対的に強くなって、オリビン型燐酸リチウムの一部をフッ素で置換した場合と同様に、リチウムの挿入離脱が容易化して、放電特性(特に高率放電特性)が飛躍的に向上する。
【0011】
請求項4記載の発明は、請求項3記載の発明において、上記LiM(PO4 )1-X (SO4)X におけるXが0<X≦0.3に規制されることを特徴とする。
上記のように規制するのは、SO4 は上記フッ素と同様にオリビン型燐酸リチウムの結晶の形態を変化させる要因となっているため、SO4 で多量に置換した場合(上記Xが0.3<Xの場合)には、導電性は向上するが、活物質の形態そのものが変化してしまうため、単位質量当りから取り出すことができるリチウムの量が減少し、また、SO4 で多量に置換した場合には放電作動電圧が低下する等の問題も生じるという理由による。
【0012】
【発明の実施の形態】
本発明の実施の形態を、図1〜図4に基づいて、以下に説明する。
図1は本発明に係る非水電解質二次電池の正面図、図2は図1のA−A線矢視断面図、図3は本発明に係る非水電解質二次電池に用いるアルミラミネート外装体の断面図、図4は本発明に係る非水電解質二次電池に用いる電極体の斜視図である。
【0013】
〔第1の形態〕
図2に示すように、本発明の薄型電池は電極体1を有しており、この電極体1は収納空間2内に配置されている。この収納空間2は、図1に示すように、アルミラミネート外装体3の上下端と中央部とをそれぞれ封止部4a・4b・4cで封口することにより形成される。また、図4に示すように、上記電極体1は、一部がフッ素で置換されたオリビン型燐酸リチウムから成る正極活物質を主体とする正極5と、天然黒鉛から成る負極活物質を主体とする負極6と、これら両電極を離間するセパレータ(図4においては図示せず)とを偏平渦巻き状に巻回することにより作製される。
【0014】
上記セパレータには、エチレンカーボネート(EC)30体積%とジエチルカーボネート(DEC)70体積%とから成る混合溶媒に、電解質塩(リチウム塩)としてのLiPF6 を1M(モル/リットル)の割合で添加した電解液が含浸されている。
【0015】
また、図3に示すように、上記アルミラミネート外装体3の具体的な構造は、アルミニウム層11(厚み:30μm)の両面に、各々、変性ポリプロピレンから成る接着剤層12・12(厚み:5μm)を介してポリプロピレンから成る樹脂層13・13(厚み:30μm)が接着される構造である。
更に、上記正極5はアルミニウムから成る正極リード7に、また上記負極6は銅から成る負極リード8にそれぞれ接続され、電池内部で生じた化学エネルギーを電気エネルギーとして外部へ取り出し得るようになっている。
【0016】
ここで、上記構造の電池を、以下のようにして作製した。
(正極の作製)
先ず、炭酸リチウム(Li2CO3 )と、酸化コバルト(CoO)と、五酸化二燐(P25 )とが量論比0.5:1.0:0.5となるように秤量した後、メノー乳鉢を用いてよく混合し、更にこの合剤に、合成が予想されるオリビン型燐酸リチウム(LiCoPO4 )に対するフッ素量が2質量%となるようにフッ化リチウム(LiF)を添加し、大気中600℃で15時間焼成してオリビン型燐酸リチウムの一部がフッ素で置換された正極活物質(F置換LiCoPO4)得た。
次に、上記正極活物質であるF置換LiCoPO4と、導電剤である炭素及びグラファイトとを90:5の質量比で混合して正極合剤粉末とし、混合装置〔例えば、ホソカワミクロン製メカノフュージョン装置(AM−15F)〕内に200gを充填する。これを、回転数1500rpmで10分間作動させて、圧縮・衝撃・せん断作用を起こさせて混合して混合正極活物質とする。次いで、この混合正極活物質とフッ素系樹脂結着剤(PVdF)との質量比が95:5となるように、N−メチルピロリドン(NMP)溶剤中で両者を混合して正極合剤スラリーを調製した。しかる後、この正極合剤スラリーをアルミニウム箔の両面に塗着した後、乾燥、圧延して正極5を作製した。
【0017】
(負極の作製)
先ず、黒鉛より成る負極活物質と、スチレン系結着剤との質量比が98:2となるように、N−メチルピロリドン溶剤中で両者を混合して、負極合剤スラリーを調製した。次に、この負極合剤スラリーを銅箔から成る負極芯体の両面の全面にわたって均一に塗布した後、乾燥、圧延して負極6を作製した。
【0018】
(電極体の作製)
上述のようにして作成した正極5と負極6とに、それぞれ正極リード7或いは負極リード8を取り付けた後、両極5・6を、ポリエチレン製のセパレータを介して重ね合わせた。しかる後、巻き取り機により捲回し、更に、最外周をテープ止めし加圧することにより偏平渦巻状の電極体1を作製した。
【0019】
(電池の作製)
先ず、シート状のアルミラミネート材を用意した後、このアルミラミネート材における端部近傍同士を重ね合わせ、更に、重ね合わせ部を溶着して、封止部4cを形成した。次に、この筒状のアルミラミネート材の収納空間2内に電極体1を挿入した。この際、筒状のアルミラミネート材の一方の開口部から両集電タブ7・8が突出するように電極体1を配置した。次に、この状態で、両集電タブ7・8が突出している開口部のアルミラミネート材を溶着して封止し、封止部4aを形成した。この際、溶着は高周波誘導溶着装置を用いて行った。
【0020】
次いで、エチレンカーボネート30体積%とジエチルカーボネート70体積%とが混合された混合溶媒に、電解質塩としてのLiPF6 が1Mの割合で添加された電解液を調製し、この電解液を収納空間2内に注入した。この後、上記封止部4aとは反対側のアルミラミネート材の端部を溶着し、封止部4bを形成することにより非水電解質電池(電池容量:600mAh)を作製した。
【0021】
〔第2の形態〕
炭酸リチウム(Li2 CO3 )と、酸化コバルト(CoO)と、五酸化二燐(P25 )と三酸化硫黄(SO3 )とが量論比0.5:1.0:0.45:0.05となるように〔後述のLiM(PO 4 1-X (SO 4 X において、X=0.1となるように〕秤量した後、メノー乳鉢を用いてよく混合し、大気中600℃で15時間焼成してオリビン型燐酸リチウムのPO4 の一部がSO4 で置換された正極活物質〔LiCo(PO40.9 (SO40.1 で表されるものであり、また、上記LiM(PO41-X (SO4X を、以下、SO4 置換オリビン型燐酸リチウムと称する〕を作製する他は、上記第1の形態と同様にして電池を作製した。
〔その他の事項〕
(1)負極活物質としては、上記黒鉛に限定するものではなく、グラファイト、コークス、酸化スズ、金属リチウム、珪素、およびそれらの混合物等のリチウムイオンを挿入離脱できうるものであれば良い。
(2)正極活物質と導電剤との混合は上記メカノフュージョン法に限定するものではなく、これら材料をスラリー状態で混合しても良く、また他の方法で混合しても良い。
(3)電池の形状は上記アルミラミネートを用いた薄型電池に限定するものではなく、外装缶に鉄やアルミニウム材質を用いた角型や円筒型の電池にも適用しうることは勿論であり、また、そのサイズについても特に制限はない。
(4)電解液としては上記のものに限定されるものではなく、リチウム塩としては、例えばLiClO4 、LiBF4 、LiN(SO2 CF32 、LiN(SO225 2 、LiPF6-X (Cn2n+1x 〔但し、1<x<6で、n=
1又は2〕等が挙げられ、これらの1種もしくは2種以上を混合して使用できる。リチウム塩の濃度は特に限定されないが、電解液1リットル当り0.2〜1.5モルであることが望ましい。また、電解液の溶媒としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、γ一ブチロラクトンなどが挙げられ、これらの1種もしくは2種以上を混合して使用できる。これらの中では、環状カーボネートと非環状(鎖状)カーボネートとを混合して用いるのが望ましく、特に、環状カーボネートとしてはエチレンカーボネートを、鎖状カーボネートとしてはジエチルカーボネートを用いることが望ましい。
(5)本発明は、上記液系の電池に限定するものではなく、ポリエーテル系固体高分子、ポリカーボネート系固体高分子、ポリアクリロニトリル系固体高分子、又はこれらの2種以上からなる共重合体もしくは架橋した高分子と、リチウム塩及び電解質を組合せてゲル状にした固体電解質を用いたポリマー電池にも適用しうることは勿論である。ここで、上記ポリマー電池の作製の一例を示す。
先ず、エチレンカーボネート30体積%とジエチルカーボネート70体積%とが混合された混合溶媒に、電解質塩としてのLiPF6 が1Mの割合で添加された電解液を調製し、更に、ポリエチレングリコールジアクリレート(分子量:約300)と電解液とを質量比で1:15となるように混合し、この混合液に重合開始剤としてのt−ヘキシルパーオキシピバレート5000ppm添加したものを収納空間内に注液(5ml)した後、50℃で3時間加熱して硬化処理することにより作製する。尚、ポリエチレングリコールジアクリレートと電解液との混合比率は上記の比率に限定するものではないが、導電性や液保持性の点を考慮すると、質量比で1:6〜1:25程度であることが望ましい。
【0022】
【実施例】
(第1実験例)
〔実施例1〕
実施例1としては、上記第1の形態と同様にして作製した正極活物質を用いた。
このようにして作製した正極活物質を、以下、本発明正極活物質A1と称する。
【0023】
〔実施例2、3〕
正極活物質の材料の一つである酸化コバルトの代わりに、それぞれ、酸化ニッケル(NiO)、二酸化マンガン(MnO2 )を用いる他は、上記実施例1と同様にして正極活物質(それぞれ、F置換LiNiPO4 、F置換LiMnPO4 )を作製した。
このようにして作製した正極活物質を、以下、それぞれ本発明正極活物質A2、A3と称する。
【0024】
〔参考例〕
正極活物質の材料の一つである酸化コバルトの代わりにシュウ酸鉄(FeC25 ・H2 O)を用い、且つ、五酸化二燐の代わりに燐酸二水素アンモニウム〔(NH42 HPO4 ・4H2 O〕を用いると共に、炭酸リチウムとシュウ酸鉄と燐酸二水素アンモニウムとを、量論比0.5:1.0:1.0となるように秤量し、更に、大気中ではなくAr−H2 雰囲気下で焼成する他は、上記実施例1と同様にして正極活物質(F置換LiFePO4 )を作製した。
このようにして作製した正極活物質を、以下、参考正極活物質A4と称する。
【0025】
〔実施例4〕
正極活物質の材料の一つである酸化コバルトの代わりに二酸化マンガン(MnO2 )とシュウ酸鉄(FeC25 ・H2 O)を用い、且つ、五酸化二燐の代わりに燐酸二水素アンモニウム〔(NH42 HPO4 ・4H2 O〕を用いると共に、炭酸リチウムと二酸化マンガンとシュウ酸鉄と燐酸二水素アンモニウムとを、量論比0.5:0.5:0.5:1.0となるように秤量し、更に、大気中ではなくAr−H2 雰囲気下で焼成する他は、上記実施例1と同様にして正極活物質(F置換LiMn0.5 Fe0.5PO4 )を作製した。
このようにして作製した正極活物質を、以下、本発明正極活物質A5と称する。
【0026】
〔比較例1〜5〕
フッ化リチウムを添加しない他は、それぞれ上記実施例1〜4及び参考例と同様にして正極活物質(それぞれ、LiCoPO4 、LiNiPO4 、LiMnPO4 、LiFePO4 、LiMn0.5 Fe0.5PO4 で表される)を作製した。
このようにして作製した正極活物質を、以下、それぞれ比較正極活物質X1〜X5と称する。
【0027】
〔実験〕
上記本発明正極活物質A1〜A3、参考正極活物質A4、本発明正極活物質A5及び比較正極活物質X1〜X5の粉体抵抗を四端子法にて測定し、導電率を求めたので、その結果を表1に示す。また、それぞれの正極活物質を用いて上記発明の実施の形態と同様にして作製した正極と、対極及び参照極としてのリチウム金属とを用い、本発明正極活物質A1、比較正極活物質X1は4.9〜2.85Vの電位領域での充放電、それ以外は4.3V〜2.85Vの電位領域での充放電を行って初期容量を求めたので、その結果を表1に示す。尚、試験電流は1It(600mA)にて行った。
【0028】
【表1】

Figure 0003631202
【0029】
表1から明らかなように、比較正極活物質X1〜X5における導電率は3.6×10-9〜8.1×10-9S/cmであるのに対して、本発明正極活物質A1〜A3及び本発明正極活物質A5における導電率は1.9×10-7〜5.7×10-7S/cmであり、本発明正極活物質A1〜A3及び本発明正極活物質A5は比較正極活物質X1〜X5に比べて10-2S/cm以上導電率を向上させることができることが分かった。このように、本発明正極活物質A1〜A3及び本発明正極活物質A5は導電性を向上させることができることから、本発明正極活物質A1〜A3及び本発明正極活物質A5は比較正極活物質X1〜X5に比べて、同一のM種を用いた場合(例えば、本発明正極活物質A1と比較正極活物質X1との対比した場合)、放電容量が増大していることが認められる。尚、放電容量は導電性のみに起因するものではないが、一般に、導電性が高いものほど放電容量は高くなるので、上記のような実験結果が得られたものと考えられる。
【0030】
ここで、従来の技術で説明したように、導電性で且つ酸化還元電位がLiFePO4 よりも貴な物質を導電助材として混合すれば、トータルの導電性は向上するが、混合方法にも依存するが正極活物質に対して5質量%程度混合しただけでは10-2S/cm程度しか導電性を向上させることができない。また、導電助材の量を多くすれば導電性は向上するが、導電助材の混合は単位質量当りの正極容量を低下させる要因となる為、導電助剤を余り多く添加することはできない。そこで、本発明の如くF置換オリビン型燐酸リチウムを用いて、P−O結合の影響を弱めることが出来れば、少ない添加量で導電性を飛躍的に向上させることができることがわかる。
【0031】
参考までに、従来使用されている正極活物質の導電性を同方法で測定した結果、コバルト酸リチウムは1.0×10-4〜1.0×10-5S/cm程度であり、マンガン酸リチウムは1.0×10-5S/cm程度であった。したがって、本発
明により、コバルト酸リチウム等の導電性に近づけることが可能となる。
【0032】
(第2実験例)
〔参考例1〜4〕
オリビン型燐酸リチウムに対するフッ素量が、それぞれ、0.01質量%、0.1質量%、1質量%、5質量%となるようにフッ化リチウムを添加する他は、上記第1実験例の参考例と同様にして、正極活物質を作製した。
このようにして作製した正極活物質を、以下、それぞれ参考正極活物質B1〜B4と称する。
【0033】
〔実験〕
上記参考正極活物質B1〜B4の粉体抵抗と、初期容量を求めたので、その結果を表2に示す。尚、実験条件は、4.3V〜2.85Vの電位領域での充放電を行ったこと以外は、上記第1実験例の実験と同様の条件であり、また、上記参考正極活物質A4の結果についても表2に併せて示す。
【0034】
【表2】
Figure 0003631202
【0035】
上記表2から明らかなように、フッ素置換量の増加に伴い活物質の導電性が向上していくことが認められる。しかしながら、フッ素はオリビン型燐酸リチウムの結晶の形態を変化させる要因となっているため、2質量%を越えてフッ素で置換した参考正極活物質B4では、活物質の形態そのものが変化してしまうため、単位質量当りから取り出すことができるリチウムの量が減少して、放電容量が減少していることが認められる。したがって、フッ素置換量は2質量%以下であることが望ましい。
(第3実験例)
〔実施例1〕
実施例1としては、上記第2の形態と同様にして作製した正極活物質を用いた。
このようにして作製した正極活物質を、以下、本発明正極活物質C1と称する。
【0036】
〔実施例2、3〕
正極活物質の材料の一つである酸化コバルトの代わりに、それぞれ、酸化ニッケル(NiO)、二酸化マンガン(MnO2 )を用いる他は、上記実施例1と同様にして正極活物質〔それぞれ、LiNi(PO40.9 (SO4)0.1 、LiMn(PO40.9 (SO4)0.1 〕を作製した。
このようにして作製した正極活物質を、以下、それぞれ本発明正極活物質C2、C3と称する。
【0037】
〔実施例4〕
正極活物質の材料の一つである酸化コバルトの代わりにシュウ酸鉄(FeC25 ・H2 O)を用い、且つ、五酸化二燐の代わりに燐酸二水素アンモニウム〔(NH42 HPO4 ・4H2 O〕を用いると共に、炭酸リチウムとシュウ酸鉄と燐酸二水素アンモニウムと三酸化硫黄とを、量論比0.5:1.0:0.9:0.1となるように〔LiM(PO41-X (SO4)X において、X=0.1となるように〕秤量し、更に、大気中ではなくAr−H2 雰囲気下で焼成する他は、上記実施例1と同様にして正極活物質〔LiFe(PO40.9 (SO4)0.1 〕を作製した。
このようにして作製した正極活物質を、以下、本発明正極活物質C4と称する。
【0038】
〔実施例5〕
正極活物質の材料の一つである酸化コバルトの代わりに二酸化マンガン(MnO2 )とシュウ酸鉄(FeC25 ・H2 O)を用い、且つ、五酸化二燐の代わりに燐酸二水素アンモニウム〔(NH42 HPO4 ・4H2 O〕を用いると共に、炭酸リチウムと二酸化マンガンとシュウ酸鉄と燐酸二水素アンモニウムと三酸化硫黄とを、量論比0.5:0.5:0.5:0.9:0.1となるように〔LiM(PO41-X (SO4)X において、X=0.1となるように〕秤量し、更に、大気中ではなくAr−H2 雰囲気下で焼成する他は、上記実施例1と同様にして正極活物質〔LiMn0.5 Fe0.5 (PO40.9 (SO4)0.1 〕を作製した。
このようにして作製した正極活物質を、以下、本発明正極活物質C5と称する。
【0039】
〔比較例1〜5〕
比較例としては、上記第1実験例の比較例1〜5に示す比較正極活物質X1〜X5を用いた。
【0040】
〔実験〕
上記本発明正極活物質C1〜C5及び比較正極活物質X1〜X5の粉体抵抗と、初期容量とを求めたので、その結果を表3に示す。尚、実験条件は、本発明正極活物質C1、比較正極活物質X1は4.9〜2.85Vの電位領域での充放電、それ以外は4.3V〜2.85Vの電位領域での充放電を行ったこと以外は、上記第1実験例の実験と同様の条件である。
【0041】
【表3】
Figure 0003631202
【0042】
表3から明らかなように、比較正極活物質X1〜X5における導電率は3.6×10-9〜8.1×10-9S/cmであるのに対して、本発明正極活物質C1〜C5における導電率は3.6×10-6〜9.2×10-6S/cmであり、本発明正極活物質C1〜C5は比較正極活物質X1〜X5に比べて10-3S/cm程度導電率を向上させることができることが分かった。このように、本発明正極活物質C1〜C5は導電性を向上させることができることから、本発明正極活物質C1〜C5は比較正極活物質X1〜X5に比べて、同一のM種を用いた場合(例えば、本発明正極活物質C1と比較正極活物質X1との対比した場合)、放電容量が増大していることが認められる。
【0043】
尚、オリビン型燐酸リチウムのPO4 の一部をSO4 で置換した本発明正極活物質C1〜C5は、オリビン型燐酸リチウムの一部をフッ素で置換した本発明正極活物質A1〜A3、参考正極活物質A4、本発明正極活物質A5よりも、導電率が向上し、放電容量も増大していることが認められる。
【0044】
(第4実験例)
〔実施例1〜5〕
LiM(PO41-X (SO4X におけるXが、それぞれ、0.05、0.
15、0.2、0.3、0.5となるように三酸化硫黄を添加する他は、上記第3実験例の実施例4と同様にして、正極活物質を作製した。
このようにして作製した正極活物質を、以下、それぞれ本発明正極活物質D1〜D5と称する。
【0045】
〔実験〕
上記本発明正極活物質D1〜D5の粉体抵抗と、初期容量とを求めたので、その結果を表4に示す。尚、実験条件は、4.3V〜2.85Vの電位領域での充放電を行ったこと以外は、上記第1実験例の実験と同様の条件であり、また、上記本発明正極活物質C4の結果についても表4に併せて示す。
【0046】
【表4】
Figure 0003631202
【0047】
上記表4から明らかなように、SO4 置換量の増加に伴い活物質の導電性が向上していくことが認められる。しかしながら、SO4 はオリビン型燐酸リチウムの結晶の形態を変化させる要因となっているため、LiM(PO41-X (SO4X におけるXが0.5の本発明正極活物質D4では、活物質の形態そのものが変化してしまう。このため、単位質量当りから取り出すことができるリチウムの量が減少して、放電容量が減少していることが認められる。また、上記表4には示さないが、本発明正極活物質D4では、結晶の形態の変化により、放電作動電圧の低下等も生じていた。したがって、LiM(PO41-X (SO4X におけるXは0<X≦0.3であることが望ましい。
【0048】
〔第5実験例〕
〔参考例〕
参考例としては、上記第1実験例の参考例で示した本発明正極活物質を用いて、上記実施の形態における第1の形態で示した方法と同様の方法で電池を作製した。尚、電池の製造に際しては、25℃で600mAhの電池容量となるように各電極における活物質の塗布量を調整した。
このようにして作製した電池の正極活物質は、上記第1実験例の参考例で示した参考正極活物質A4と同じであるので、上記のようにして作製した電池を、以下、参考電池 a と称する。
【0049】
〔実施例1〕
実施例1としては、上記第3実験例の実施例4で示した本発明正極活物質を用いて、上記実施の形態における第1の形態で示した方法と同様の方法で電池を作製した。尚、電池の製造に際しては、25℃で600mAhの電池容量となるように各電極における活物質の塗布量を調整した。
このようにして作製した電池の正極活物質は、上記第3実験例の実施例4で示した本発明正極活物質C4と同じであるので、上記のようにして作製した電池を、以下、本発明電池c4と称する。
【0050】
〔比較例〕
フッ化リチウムを添加しない他は、上記参考例と同様にして電池を作製した。尚、電池の製造に際しては、25℃で600mAhの電池容量となるように各電極における活物質の塗布量を調整した。
このようにして作製した電池の正極活物質は、上記第1実験例の比較例4で示した比較正極活物質X4と同じであるので、上記のようにして作製した電池を、以下、比較電池x4と称する。
【0051】
〔実験〕
上記参考電池 a 4、本発明電池 c 4及び比較電池x4を下記の条件で充放電し、各電池の放電容量を調べたので、その結果を表5に示す。2It及び3Itでの放電容量については、1Itでの放電容量に対する比率を調べたので、その結果を表5の2It及び3Itでの放電容量の下段に示している。
〔充放電条件〕
・充電条件
充電電流1It(600mA)で電池電圧が4.2Vになるまで定電流で充電し、4.2Vに到達した後は電流値が30mA以下になるまで定電圧で充電を行った。この後、10分間休止した。
・放電条件
それぞれ、放電電流1It(600mA)、放電電流2It(1200mA)、放電電流3It(1800mA)で電池電圧が2.75Vになるまで定電流で放電した。
【0052】
【表5】
Figure 0003631202
【0053】
上記表5から明らかなように、本発明電池 c は比較電池x4と比べて、1Itでの放電容量は略同等であるが、2It及び3Itでの放電容量は格段に増加していることが認められる。これは、本発明電池 c に用いた本発明正極活物質C4は、比較電池x4に用いた比較活物質X4に比べて、正極活物質の導電性が高いといことに起因するものと考えられる。
したがって、正極活物質の導電性を高めれば、高率放電容量も増加するということが分かる。
【0054】
【発明の効果】
以上で説明したように本発明によれば、正極活物質の電気抵抗を飛躍的に低減させて導電性を高めることにより、特に高率放電特性を向上させることができるといった優れた効果を奏する。
【図面の簡単な説明】
【図1】本発明に係る非水電解質電池の正面図。
【図2】図1のA−A線矢視断面図。
【図3】本発明に係る非水電解質電池に用いるアルミラミネート外装体の断面図。
【図4】本発明に係る非水電解質電池に用いる電極体の斜視図。
【符号の説明】
1:電極体
2:収納空間
3:アルミラミネート外装体
5:正極
6:負極[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous electrolyte battery including a positive electrode including a positive electrode active material, a negative electrode, and a non-aqueous electrolyte, and more particularly to improvement of the positive electrode active material.
[0002]
[Prior art]
In recent years, lithium cobaltate (LiCoO2 A non-aqueous electrolyte battery using a lithium-containing composite oxide such as) as a positive electrode material and a carbon material capable of occluding and releasing lithium ions as a negative electrode material has been attracting attention as a battery capable of increasing the capacity.
[0003]
At present, the lithium cobaltate is mainly used as the positive electrode active material of the non-aqueous electrolyte battery, and when this lithium cobaltate is used as the positive electrode active material, it has extremely excellent battery characteristics. However, when lithium cobaltate is used as the positive electrode active material, the cost of cobalt increases because of its high cost, and there is a problem that safety is not sufficient when battery abnormality such as overcharge occurs. is there.
[0004]
Therefore, in order to solve such problems, it has been proposed to use lithium manganate, lithium nickelate, etc. as the positive electrode active material, but when lithium manganate is used, the discharge capacity is reduced, While problems such as dissolution of manganese at high temperatures occur, when lithium nickelate is used, there are problems such as a lower discharge voltage. Therefore, recently, as a positive electrode active material for lithium secondary batteries, LiCoPOFour And LiFePOFour Olivine type lithium phosphate such as LiMPOFour (M isCo, Composed of at least one element selected from Ni, Mn, and Fe).
[0005]
The olivine-type lithium phosphate has an advantage that the battery voltage can be freely controlled because the operating voltage varies depending on the type of the core metal element M, and the theoretical capacity is relatively high at about 140 to 170 mAh / g. There is also an advantage that the battery capacity per unit mass can be increased. Further, when iron is used as the metal element M, iron is produced in a large amount and inexpensive compared to cobalt, so that the production cost is reduced and the expectation as a lithium cobaltate alternative active material is high. For this reason, various studies have been made as a positive electrode active material for a lithium secondary battery in JP-A-9-134724, JP-A-9-134725, JP-A-2001-85010, and the like.
[0006]
However, olivine-type lithium phosphate has a slow lithium desorption / insertion reaction during battery charging / discharging, and has an extremely high electric resistance as compared to lithium cobaltate, lithium nickelate, lithium manganate or the like described above. For this reason, in order to flow a constant current, it is necessary to apply a voltage higher than that of lithium cobalt oxide or the like (that is, the overvoltage increases), and the discharge operating voltage decreases accordingly, and the discharge capacity also decreases. . In particular, the high rate discharge characteristic in which discharge is performed with a large current has a problem that the discharge operating voltage and the discharge capacity are remarkably reduced due to the increase of the overvoltage. This is because the P—O bond in the olivine-type lithium phosphate is very strong, and thus the Li—O interaction directly involved in lithium insertion / release is relatively weak, making it difficult for lithium to be inserted / released. This is probably due to the reason.
Therefore, as a means for solving this problem, as disclosed in Japanese Patent Laid-Open No. 2001-110414, LiFePOFour The powder is conductive and has a redox potential of LiFePOFour Attempts have been made to improve conductivity by supporting a powder of a precious substance. However, with this method, LiFePOFour In order to mix and sinter the conductive material after the synthesis of the material, it is considered difficult to spread the conductivity to the details of the particles, and a method for increasing the conductivity has been desired.
[0007]
[Problems to be solved by the invention]
The present invention has been made in consideration of the above-described conventional problems, and can particularly improve high-rate discharge characteristics by dramatically reducing the electrical resistance of the positive electrode active material and increasing the conductivity. The purpose is to provide a non-aqueous electrolyte battery.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the nonaqueous electrolyte battery of the present invention includes a positive electrode having a positive electrode active material, a negative electrode, and a nonaqueous electrolyte battery having a nonaqueous electrolyte.Four (M is selected from Co, Ni, and MnIt is characterized in that a part of the olivine type lithium phosphate represented by the formula (1) composed of at least one element is substituted with fluorine.
If a part of the olivine-type lithium phosphate is substituted with fluorine as in the above configuration, the insertion and removal of lithium is facilitated. As a result, the discharge characteristics (particularly high rate discharge characteristics) are dramatically improved.
[0009]
The invention according to claim 2 is the invention according to claim 1, wherein the LiMPO is used.Four The ratio of the fluorine with respect to is 2% by mass or less.
The reason for the restriction is that fluorine is a factor that changes the crystal form of olivine-type lithium phosphate, so when it is substituted in large quantities with fluorine (when more than 2% by mass is substituted with fluorine) This is because, although the conductivity is improved, the form of the active material itself is changed, so that the amount of lithium that can be taken out per unit mass is reduced.
[0010]
In order to achieve the above object, the non-aqueous electrolyte battery of the present invention is a positive electrode provided with a positive electrode active material, a negative electrode, and a non-aqueous electrolyte battery provided with a non-aqueous electrolyte. LiMPOFour (M isCoOf olivine type lithium phosphate represented by at least one element selected from Ni, Mn, Fe)Four Part of SOFour LiM (POFour )1-X(SOFour)X It is characterized by using.
PO of olivine type lithium phosphateFour Part of SOFour LiM (POFour )1-X (SOFour)X Is used as the positive electrode active material, SOFour The existence ratio of O that was strongly bonded to P decreases due to the presence of O, and instead, the ratio of O that bonds to S, which is weaker than P, increases. As a result, the Li-O interaction directly involved in lithium insertion / extraction is relatively strong, and as in the case where a part of the olivine-type lithium phosphate is replaced with fluorine, the insertion / extraction of lithium is facilitated, Discharge characteristics (particularly high rate discharge characteristics) are dramatically improved.
[0011]
The invention according to claim 4 is the invention according to claim 3, wherein the LiM (POFour ) 1-X (SOFour) X in X is restricted to 0 <X ≦ 0.3.
It is SO that regulates as described above.Four Is a factor that changes the crystal form of the olivine-type lithium phosphate like the above-mentioned fluorine.Four In the case of a large amount of substitution (when X is 0.3 <X), the conductivity is improved, but the form of the active material itself is changed. The amount is reduced and SOFour This is because, when a large amount of replacement is performed, there is a problem that the discharge operating voltage is lowered.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to FIGS.
1 is a front view of a non-aqueous electrolyte secondary battery according to the present invention, FIG. 2 is a cross-sectional view taken along line AA in FIG. 1, and FIG. 3 is an aluminum laminate exterior used in the non-aqueous electrolyte secondary battery according to the present invention. FIG. 4 is a perspective view of an electrode body used in the nonaqueous electrolyte secondary battery according to the present invention.
[0013]
[First embodiment]
As shown in FIG. 2, the thin battery of the present invention has an electrode body 1, and the electrode body 1 is disposed in a storage space 2. As shown in FIG. 1, the storage space 2 is formed by sealing the upper and lower ends and the center of the aluminum laminate outer package 3 with sealing portions 4a, 4b, and 4c, respectively. As shown in FIG. 4, the electrode body 1 is mainly composed of a positive electrode 5 mainly composed of a positive electrode active material composed of olivine type lithium phosphate partially substituted with fluorine, and a negative electrode active material composed of natural graphite. The negative electrode 6 to be manufactured and a separator (not shown in FIG. 4) separating these two electrodes are wound into a flat spiral shape.
[0014]
The separator includes LiPF as an electrolyte salt (lithium salt) in a mixed solvent composed of 30% by volume of ethylene carbonate (EC) and 70% by volume of diethyl carbonate (DEC).6 Is impregnated with 1M (mol / liter) added.
[0015]
Further, as shown in FIG. 3, the specific structure of the aluminum laminate outer package 3 is such that adhesive layers 12 and 12 (thickness: 5 μm) made of modified polypropylene are formed on both sides of the aluminum layer 11 (thickness: 30 μm), respectively. ) Through which the resin layers 13 and 13 (thickness: 30 μm) made of polypropylene are bonded.
Further, the positive electrode 5 is connected to a positive electrode lead 7 made of aluminum, and the negative electrode 6 is connected to a negative electrode lead 8 made of copper, so that chemical energy generated inside the battery can be taken out as electric energy to the outside. .
[0016]
Here, the battery having the above structure was produced as follows.
(Preparation of positive electrode)
First, lithium carbonate (Li2COThree ), Cobalt oxide (CoO) and diphosphorus pentoxide (P2 OFive ) And a stoichiometric ratio of 0.5: 1.0: 0.5, and then mixed well using a menor mortar. Further, this mixture is mixed with an olivine type lithium phosphate (which is expected to be synthesized) LiCoPOFour ) Lithium fluoride (LiF) was added so that the amount of fluorine with respect to 2% by mass was baked at 600 ° C. for 15 hours in the atmosphere, and a portion of the olivine-type lithium phosphate was replaced with fluorine (F) Substituted LiCoPOFour)Obtained.
Next, the F-substituted LiCoPO which is the positive electrode active materialFourThen, carbon and graphite, which are conductive agents, are mixed at a mass ratio of 90: 5 to form a positive electrode mixture powder, and 200 g is filled into a mixing apparatus [for example, Hosokawa Micron Mechanofusion apparatus (AM-15F)]. This is operated for 10 minutes at a rotational speed of 1500 rpm, causing compression, impact and shearing action to be mixed to obtain a mixed positive electrode active material. Next, the mixed positive electrode active material and the fluorine-based resin binder (PVdF) are mixed in an N-methylpyrrolidone (NMP) solvent so that the mass ratio of 95: 5 is obtained. Prepared. Thereafter, the positive electrode mixture slurry was applied to both surfaces of the aluminum foil, and then dried and rolled to produce the positive electrode 5.
[0017]
(Preparation of negative electrode)
First, a negative electrode mixture slurry was prepared by mixing both in an N-methylpyrrolidone solvent so that the mass ratio of the negative electrode active material made of graphite and the styrene-based binder was 98: 2. Next, this negative electrode mixture slurry was uniformly applied over the entire surface of both sides of the negative electrode core made of copper foil, and then dried and rolled to prepare the negative electrode 6.
[0018]
(Production of electrode body)
After the positive electrode lead 7 or the negative electrode lead 8 was attached to the positive electrode 5 and the negative electrode 6 prepared as described above, both the electrodes 5 and 6 were overlapped via a polyethylene separator. Thereafter, it was wound by a winder, and the outermost periphery was taped and pressed to produce a flat spiral electrode body 1.
[0019]
(Production of battery)
First, after preparing a sheet-like aluminum laminate material, the vicinity of the end portions in the aluminum laminate material was overlapped, and the overlapped portion was further welded to form the sealing portion 4c. Next, the electrode body 1 was inserted into the storage space 2 of the cylindrical aluminum laminate material. At this time, the electrode body 1 was arranged so that the current collecting tabs 7 and 8 protruded from one opening of the cylindrical aluminum laminate material. Next, in this state, the aluminum laminate material of the opening part from which both the current collection tabs 7 and 8 protrude was welded and sealed, and the sealing part 4a was formed. At this time, welding was performed using a high frequency induction welding apparatus.
[0020]
Next, LiPF as an electrolyte salt was added to a mixed solvent in which 30% by volume of ethylene carbonate and 70% by volume of diethyl carbonate were mixed.6 Was added at a rate of 1 M, and this electrolyte was injected into the storage space 2. Thereafter, an end portion of the aluminum laminate material opposite to the sealing portion 4a was welded to form the sealing portion 4b, thereby producing a nonaqueous electrolyte battery (battery capacity: 600 mAh).
[0021]
[Second form]
Lithium carbonate (Li2 COThree ), Cobalt oxide (CoO) and diphosphorus pentoxide (P2 OFive )WhenSulfur trioxide(SOThree ) And a stoichiometric ratio of 0.5: 1.0: 0.45: 0.05 [described later.LiM (PO Four ) 1-X (SO Four ) X  In order to satisfy X = 0.1, the mixture was weighed and mixed well using a menor mortar and baked at 600 ° C. for 15 hours in the atmosphere to obtain PO of olivine type lithium phosphate.Four Part of SOFour The positive electrode active material [LiCo (POFour )0.9 (SOFour)0.1 In addition, the above LiM (POFour )1-X (SOFour)X Hereafter, SOFour A battery was fabricated in the same manner as in the first embodiment, except that it was referred to as “substituted olivine-type lithium phosphate”.
[Other matters]
(1) The negative electrode active material is not limited to the above graphite, and may be any material that can insert and release lithium ions such as graphite, coke, tin oxide, metallic lithium, silicon, and a mixture thereof.
(2) The mixing of the positive electrode active material and the conductive agent is not limited to the mechano-fusion method, and these materials may be mixed in a slurry state or may be mixed by other methods.
(3) The shape of the battery is not limited to the thin battery using the aluminum laminate, but can be applied to a square or cylindrical battery using an iron or aluminum material for the outer can. Moreover, there is no restriction | limiting in particular also about the size.
(4) The electrolytic solution is not limited to the above, and the lithium salt may be, for example, LiClO.Four , LiBFFour , LiN (SO2 CFThree )2 , LiN (SO2 C2 FFive)2 , LiPF6-X (Cn F2n + 1)x [However, 1 <x <6, n =
1 or 2] and the like, and one or more of these can be mixed and used. The concentration of the lithium salt is not particularly limited, but is preferably 0.2 to 1.5 mol per liter of the electrolyte. Examples of the solvent for the electrolytic solution include propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and γ-butyrolactone. One or more of these may be used in combination. . Among these, it is desirable to use a mixture of a cyclic carbonate and an acyclic (chain) carbonate. In particular, it is desirable to use ethylene carbonate as the cyclic carbonate and diethyl carbonate as the chain carbonate.
(5) The present invention is not limited to the above-mentioned battery, but is a polyether solid polymer, a polycarbonate solid polymer, a polyacrylonitrile solid polymer, or a copolymer composed of two or more of these. Of course, the present invention can also be applied to a polymer battery using a solid electrolyte in which a crosslinked polymer, a lithium salt, and an electrolyte are combined to form a gel. Here, an example of production of the polymer battery is shown.
First, LiPF as an electrolyte salt is added to a mixed solvent in which 30% by volume of ethylene carbonate and 70% by volume of diethyl carbonate are mixed.6 Is prepared at a ratio of 1M, and polyethylene glycol diacrylate (molecular weight: about 300) and the electrolyte are mixed to a mass ratio of 1:15, and polymerization is started in this mixture. After adding 5000 ppm of t-hexylperoxypivalate as an agent into the storage space (5 ml), it is prepared by heating at 50 ° C. for 3 hours and curing. The mixing ratio of the polyethylene glycol diacrylate and the electrolytic solution is not limited to the above ratio, but is about 1: 6 to 1:25 in terms of mass ratio in view of conductivity and liquid retention. It is desirable.
[0022]
【Example】
(First Experiment Example)
[Example 1]
As Example 1, a positive electrode active material produced in the same manner as in the first embodiment was used.
The positive electrode active material thus produced is hereinafter referred to as the present invention positive electrode active material A1.
[0023]
[Examples 2 and 3]
Instead of cobalt oxide, which is one of the materials for the positive electrode active material, nickel oxide (NiO) and manganese dioxide (MnO), respectively.2 In the same manner as in Example 1 above, the positive electrode active material (respectively F-substituted LiNiPOFour , F-substituted LiMnPOFour ) Was produced.
The positive electrode active materials thus prepared are hereinafter referred to as the present invention positive electrode active materials A2 and A3, respectively.
[0024]
[Reference example]
Instead of cobalt oxide, which is one of the positive electrode active materials, iron oxalate (FeC2OFive ・ H2 O), and ammonium dihydrogen phosphate [(NHFour )2 HPOFour ・ 4H2 O] and lithium carbonate, iron oxalate, and ammonium dihydrogen phosphate were weighed so that the stoichiometric ratio was 0.5: 1.0: 1.0, and Ar-H was not used in the atmosphere.2 A positive electrode active material (F-substituted LiFePO 4) was prepared in the same manner as in Example 1 except that firing was performed in an atmosphere.Four ) Was produced.
The positive electrode active material thus produced is hereinafter referred to asReference positive electrode active material A4Called.
[0025]
Example 4
Manganese dioxide (MnO) instead of cobalt oxide, one of the positive electrode active materials2 ) And iron oxalate (FeC)2 OFive ・ H2 O), and ammonium dihydrogen phosphate [(NHFour )2 HPOFour ・ 4H2 O], and lithium carbonate, manganese dioxide, iron oxalate, and ammonium dihydrogen phosphate were weighed so that the stoichiometric ratio was 0.5: 0.5: 0.5: 1.0. Ar-H not in the atmosphere2 A positive electrode active material (F-substituted LiMnMn) was prepared in the same manner as in Example 1 except that firing was performed in an atmosphere.0.5 Fe0.5POFour ) Was produced.
The positive electrode active material thus produced is hereinafter referred to as the present invention positive electrode active material A5.
[0026]
[Comparative Examples 1-5]
Other than not adding lithium fluoride,Examples 1-4 and reference examplesIn the same manner as described above, the positive electrode active material (respectively LiCoPOFour , LiNiPOFour , LiMnPOFour LiFePOFour , LiMn0.5 Fe0.5POFour It was prepared.
The positive electrode active materials thus produced are hereinafter referred to as comparative positive electrode active materials X1 to X5, respectively.
[0027]
[Experiment]
the aboveThe positive electrode active materials A1 to A3 of the present invention, the reference positive electrode active material A4, the positive electrode active material A5 of the present invention andThe powder resistances of the comparative positive electrode active materials X1 to X5 were measured by a four-terminal method, and the conductivity was determined. The results are shown in Table 1. Also, using a positive electrode produced in the same manner as the embodiment of the present invention using each positive electrode active material, and lithium metal as a counter electrode and a reference electrode,The positive electrode active material A1 of the present invention and the comparative positive electrode active material X1 are charged / discharged in a potential region of 4.9 to 2.85 V, otherwiseTable 1 shows the results of charging and discharging in the potential region of 4.3 V to 2.85 V to determine the initial capacity. The test current was 1 It (600 mA).
[0028]
[Table 1]
Figure 0003631202
[0029]
As apparent from Table 1, the electrical conductivity of the comparative positive electrode active materials X1 to X5 is 3.6 × 10.-9~ 8.1 × 10-9Whereas S / cmThe positive electrode active materials A1 to A3 of the present invention and the positive electrode active material A5 of the present inventionThe electrical conductivity at 1.9 × 10-7~ 5.7 × 10-7S / cm,The positive electrode active materials A1 to A3 of the present invention and the positive electrode active material A5 of the present inventionIs 10 compared with the comparative positive electrode active materials X1 to X5.-2It has been found that the conductivity can be improved by S / cm or more. in this way,The positive electrode active materials A1 to A3 of the present invention and the positive electrode active material A5 of the present inventionCan improve conductivity,The positive electrode active materials A1 to A3 of the present invention and the positive electrode active material A5 of the present inventionCompared with the comparative positive electrode active materials X1 to X5, when the same M type is used (for example, when the positive electrode active material A1 of the present invention is compared with the comparative positive electrode active material X1), the discharge capacity is increased. Is recognized. Although the discharge capacity is not due to conductivity only, generally, the higher the conductivity, the higher the discharge capacity. Therefore, it is considered that the above experimental results were obtained.
[0030]
Here, as described in the prior art, the conductive and redox potential is LiFePO 4.Four If a more noble substance is mixed as a conductive additive, the total conductivity is improved. However, depending on the mixing method, only about 5% by mass with respect to the positive electrode active material is mixed.-2The conductivity can be improved only by about S / cm. Further, if the amount of the conductive additive is increased, the conductivity is improved. However, since mixing of the conductive additive causes a decrease in the positive electrode capacity per unit mass, it is not possible to add too much conductive additive. Thus, it can be seen that if F-substituted olivine-type lithium phosphate is used as in the present invention and the influence of P—O bond can be reduced, the conductivity can be drastically improved with a small addition amount.
[0031]
For reference, as a result of measuring the conductivity of a positive electrode active material used conventionally by the same method, lithium cobaltate was 1.0 × 10-Four~ 1.0 × 10-FiveS / cm, and lithium manganate is 1.0 × 10-FiveIt was about S / cm. Therefore, this departure
By virtue of the light, it becomes possible to approach conductivity such as lithium cobalt oxide.
[0032]
(Second Experimental Example)
[Reference Examples 1-4]
Other than adding lithium fluoride so that the fluorine amount with respect to the olivine-type lithium phosphate is 0.01% by mass, 0.1% by mass, 1% by mass, and 5% by mass, respectively,Reference example of the first experimental exampleIn the same manner as described above, a positive electrode active material was produced.
The positive electrode active materials thus prepared are respectively referred to below.Reference positive electrode active materials B1 to B4Called.
[0033]
[Experiment]
the aboveReference positive electrode active materials B1 to B4The powder resistance and initial capacity were determined, and the results are shown in Table 2. The experimental conditions areExcept for performing charging / discharging in a potential region of 4.3 V to 2.85 V,the aboveFirst experimental exampleThe same conditions as in the experiment ofReference positive electrode active material A4The results are also shown in Table 2.
[0034]
[Table 2]
Figure 0003631202
[0035]
As is apparent from Table 2 above, it is recognized that the conductivity of the active material is improved with an increase in the fluorine substitution amount. However, since fluorine is a factor that changes the crystal form of olivine-type lithium phosphate, it was substituted with fluorine in excess of 2% by mass.Reference positive electrode active material B4Then, since the form of the active material itself is changed, it is recognized that the amount of lithium that can be taken out per unit mass is reduced and the discharge capacity is reduced. Therefore, the fluorine substitution amount is desirably 2% by mass or less.
(Third experimental example)
[Example 1]
As Example 1, a positive electrode active material produced in the same manner as in the second embodiment was used.
The positive electrode active material thus produced is hereinafter referred to as the present invention positive electrode active material C1.
[0036]
[Examples 2 and 3]
Instead of cobalt oxide, which is one of the materials of the positive electrode active material, nickel oxide (NiO) and manganese dioxide (MnO), respectively.2 The positive electrode active material [respectively, LiNi (POFour )0.9 (SOFour)0.1 , LiMn (POFour )0.9 (SOFour)0.1 ] Was produced.
The positive electrode active materials thus produced are hereinafter referred to as the present invention positive electrode active materials C2 and C3, respectively.
[0037]
Example 4
Instead of cobalt oxide, which is one of the positive electrode active materials, iron oxalate (FeC2 OFive ・ H2 O), and ammonium dihydrogen phosphate [(NHFour )2 HPOFour ・ 4H2 O] and lithium carbonate, iron oxalate, and ammonium dihydrogen phosphateSulfur trioxideTo a stoichiometric ratio of 0.5: 1.0: 0.9: 0.1 [LiM (POFour )1-X (SOFour)X And so that X = 0.1], and Ar—H instead of in the air.2 The cathode active material [LiFe (POFour )0.9 (SOFour)0.1 ] Was produced.
The positive electrode active material thus produced is hereinafter referred to as the present invention positive electrode active material C4.
[0038]
Example 5
Manganese dioxide (MnO) instead of cobalt oxide, one of the positive electrode active materials2 ) And iron oxalate (FeC)2 OFive ・ H2 O), and ammonium dihydrogen phosphate [(NHFour )2 HPOFour ・ 4H2 O], lithium carbonate, manganese dioxide, iron oxalate, ammonium dihydrogen phosphate,Sulfur trioxideTo a stoichiometric ratio of 0.5: 0.5: 0.5: 0.9: 0.1 [LiM (POFour )1-X (SOFour)X And so that X = 0.1], and Ar—H instead of in the air.2 The positive electrode active material [LiMn] is the same as in Example 1 except that firing is performed in an atmosphere.0.5 Fe0.5 (POFour )0.9 (SOFour)0.1 ] Was produced.
The positive electrode active material thus produced is hereinafter referred to as the present invention positive electrode active material C5.
[0039]
[Comparative Examples 1-5]
As a comparative example, the aboveFirst experimental exampleComparative positive electrode active materials X1 to X5 shown in Comparative Examples 1 to 5 were used.
[0040]
[Experiment]
Since the powder resistance and the initial capacity of the positive electrode active materials C1 to C5 of the present invention and the comparative positive electrode active materials X1 to X5 were determined, the results are shown in Table 3. The experimental conditions areThe positive electrode active material C1 of the present invention and the comparative positive electrode active material X1 were charged / discharged in a potential region of 4.9 to 2.85V, and other than that charged / discharged in a potential region of 4.3V to 2.85V. Is,the aboveFirst experimental exampleThe conditions are the same as in the experiment.
[0041]
[Table 3]
Figure 0003631202
[0042]
As is clear from Table 3, the electrical conductivity of the comparative positive electrode active materials X1 to X5 is 3.6 × 10.-9~ 8.1 × 10-9In contrast to S / cm, the electrical conductivity of the positive electrode active materials C1 to C5 of the present invention is 3.6 × 10.-6~ 9.2 × 10-6S / cm, and the positive electrode active materials C1 to C5 of the present invention are 10 in comparison with the comparative positive electrode active materials X1 to X5.-3It has been found that the conductivity can be improved by about S / cm. Thus, since this invention positive electrode active material C1-C5 can improve electroconductivity, this invention positive electrode active material C1-C5 used the same M sort compared with comparative positive electrode active material X1-X5. In the case (for example, when the positive electrode active material C1 of the present invention is compared with the comparative positive electrode active material X1), it is recognized that the discharge capacity is increased.
[0043]
In addition, PO of olivine type lithium phosphateFour Part of SOFour In the positive electrode active materials C1 to C5 of the present invention substituted with olivine, a part of the olivine type lithium phosphate was substituted with fluorine.Cathode active materials A1 to A3 of the present invention, Reference cathode active material A4, Cathode active material A5 of the present inventionIt can be seen that the conductivity is improved and the discharge capacity is also increased.
[0044]
(Fourth experimental example)
[Examples 1 to 5]
LiM (POFour )1-X (SOFour)X X in each is 0.05, 0,.
To be 15, 0.2, 0.3, 0.5Sulfur trioxideOther than adding the aboveThird experimental exampleIn the same manner as in Example 4, a positive electrode active material was produced.
The positive electrode active materials thus produced are hereinafter referred to as the present invention positive electrode active materials D1 to D5, respectively.
[0045]
[Experiment]
Since the powder resistance and initial capacity of the positive electrode active materials D1 to D5 of the present invention were determined, the results are shown in Table 4. The experimental conditions areExcept for performing charging / discharging in a potential region of 4.3 V to 2.85 V,the aboveFirst experimental exampleThe results of the positive electrode active material C4 of the present invention are also shown in Table 4.
[0046]
[Table 4]
Figure 0003631202
[0047]
As apparent from Table 4 above, SOFour It can be seen that the conductivity of the active material improves as the amount of substitution increases. However, SOFour Is a factor that changes the crystal form of olivine-type lithium phosphate, so LiM (POFour )1-X (SOFour)X In the positive electrode active material D4 of the present invention in which X is 0.5, the form of the active material itself changes. For this reason, it is recognized that the amount of lithium that can be taken out per unit mass is reduced and the discharge capacity is reduced. Further, although not shown in Table 4 above, in the positive electrode active material D4 of the present invention, the discharge operating voltage was lowered due to the change in the crystal form. Therefore, LiM (POFour )1-X (SOFour)X X in is preferably 0 <X ≦ 0.3.
[0048]
[Fifth Experimental Example]
[Reference example]
Reference exampleAs aboveReference example of the first experimental exampleUsing the positive electrode active material according to the present invention, a battery was manufactured by the same method as that described in the first embodiment. In manufacturing the battery, the application amount of the active material in each electrode was adjusted so that the battery capacity was 600 mAh at 25 ° C.
The positive electrode active material of the battery thus fabricated isReference example of the first experimental exampleIndicated byReference positive electrode active material A4Therefore, the battery produced as described above isReference battery a 4Called.
[0049]
[Example 1]
Example 1As aboveOf the third experimental exampleUsing the positive electrode active material of the present invention shown in Example 4, a battery was manufactured by the same method as the method shown in the first embodiment in the above embodiment. In manufacturing the battery, the application amount of the active material in each electrode was adjusted so that the battery capacity was 600 mAh at 25 ° C.
The positive electrode active material of the battery thus fabricated isOf the third experimental exampleSince this is the same as the positive electrode active material C4 of the present invention shown in Example 4, the battery produced as described above is hereinafter referred to as the present invention battery c4.
[0050]
[Comparative Example]
Other than not adding lithium fluoride, the aboveReference exampleA battery was produced in the same manner as described above. In manufacturing the battery, the application amount of the active material in each electrode was adjusted so that the battery capacity was 600 mAh at 25 ° C.
The positive electrode active material of the battery thus fabricated is the firstExperimental exampleSince this is the same as the comparative positive electrode active material X4 shown in Comparative Example 4, the battery produced as described above is hereinafter referred to as a comparative battery x4.
[0051]
[Experiment]
the aboveReference battery a 4. Battery of the present invention c 4 and comparative battery x4Was charged and discharged under the following conditions, and the discharge capacity of each battery was examined. The results are shown in Table 5. Regarding the discharge capacity at 2 It and 3 It, since the ratio to the discharge capacity at 1 It was examined, the result is shown in the lower stage of the discharge capacity at 2 It and 3 It in Table 5.
(Charging / discharging conditions)
・ Charging conditions
The battery was charged at a constant current until the battery voltage reached 4.2 V at a charging current of 1 It (600 mA), and after reaching 4.2 V, the battery was charged at a constant voltage until the current value became 30 mA or less. This was followed by a 10 minute rest.
・ Discharge conditions
The discharge current was 1 It (600 mA), the discharge current 2 It (1200 mA), and the discharge current 3 It (1800 mA), respectively, and the battery was discharged at a constant current until the battery voltage reached 2.75V.
[0052]
[Table 5]
Figure 0003631202
[0053]
As apparent from Table 5 above,Invention battery c 4Compared to the comparative battery x4, the discharge capacity at 1 It is substantially the same, but it is recognized that the discharge capacities at 2 It and 3 It are remarkably increased. this is,Invention battery c 4The present invention used forCathode active material C4This is considered due to the fact that the positive electrode active material has higher conductivity than the comparative active material X4 used in the comparative battery x4.
Therefore, it can be seen that increasing the conductivity of the positive electrode active material increases the high rate discharge capacity.
[0054]
【The invention's effect】
As described above, according to the present invention, the electrical resistance of the positive electrode active material is drastically reduced and the conductivity is improved, so that an excellent effect can be obtained, in particular, the high rate discharge characteristics can be improved.
[Brief description of the drawings]
FIG. 1 is a front view of a nonaqueous electrolyte battery according to the present invention.
2 is a cross-sectional view taken along line AA in FIG.
FIG. 3 is a cross-sectional view of an aluminum laminate outer package used in the nonaqueous electrolyte battery according to the present invention.
FIG. 4 is a perspective view of an electrode body used in the nonaqueous electrolyte battery according to the present invention.
[Explanation of symbols]
1: Electrode body
2: Storage space
3: Aluminum laminate outer package
5: Positive electrode
6: Negative electrode

Claims (4)

正極活物質を備えた正極と、負極と、非水電解質とを備えた非水電解質電池において、
上記正極活物質として、LiMPO4 (MはCo、Ni、Mnから選ばれる少なくとも1種以上の元素から構成される) で表されるオリビン型燐酸リチウムの一部がフッ素で置換されたものを用いることを特徴とする非水電解質電池。
In a non-aqueous electrolyte battery comprising a positive electrode provided with a positive electrode active material, a negative electrode, and a non-aqueous electrolyte,
As the positive electrode active material, a material in which a part of an olivine-type lithium phosphate represented by LiMPO 4 (M is composed of at least one element selected from Co, Ni, and Mn ) is substituted with fluorine is used. The nonaqueous electrolyte battery characterized by the above-mentioned.
上記LiMPO4 に対する上記フッ素の割合が2質量%以下である、請求項1記載の非水電解質電池。The nonaqueous electrolyte battery according to claim 1, wherein a ratio of the fluorine to the LiMPO 4 is 2% by mass or less. 正極活物質を備えた正極と、負極と、非水電解質とを備えた非水電解質電池において、
上記正極活物質として、LiMPO4 (MはCo、Ni、Mn、Feから選ばれる少なくとも1種以上の元素から構成される) で表されるオリビン型燐酸リチウムのPO4 の一部をSO4 で置換したLiM(PO41-X (SO4)X を用いることを特徴とする非水電解質電池。
In a non-aqueous electrolyte battery comprising a positive electrode provided with a positive electrode active material, a negative electrode, and a non-aqueous electrolyte,
As the positive electrode active material, a part of PO 4 of olivine-type lithium phosphate represented by LiMPO 4 (M is composed of at least one element selected from Co , Ni, Mn, and Fe) is SO 4 . A nonaqueous electrolyte battery characterized by using substituted LiM (PO 4 ) 1-X (SO 4 ) X.
上記LiM(PO41-X (SO4XにおけるXが0<X≦0.3に規制される、請求項3記載の非水電解質電池。The nonaqueous electrolyte battery according to claim 3, wherein X in LiM (PO 4 ) 1-X (SO 4 ) X is regulated to 0 <X ≦ 0.3.
JP2001389525A 2001-12-21 2001-12-21 Non-aqueous electrolyte battery Expired - Fee Related JP3631202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001389525A JP3631202B2 (en) 2001-12-21 2001-12-21 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001389525A JP3631202B2 (en) 2001-12-21 2001-12-21 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JP2003187799A JP2003187799A (en) 2003-07-04
JP3631202B2 true JP3631202B2 (en) 2005-03-23

Family

ID=27597719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001389525A Expired - Fee Related JP3631202B2 (en) 2001-12-21 2001-12-21 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP3631202B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4747482B2 (en) * 2003-07-29 2011-08-17 三菱化学株式会社 Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
KR101156828B1 (en) * 2003-10-27 2012-06-18 자이단호우진 치큐칸쿄 산교기쥬츠 켄큐키코 Positive electrode material for secondary battery, method for producing positive electrode material for secondary battery, and secondary battery
US7960057B2 (en) * 2004-05-17 2011-06-14 Toyota Motor Engineering & Manufacturing North America, Inc. Battery with molten salt electrolyte and phosphorus-containing cathode
KR100725705B1 (en) * 2004-07-16 2007-06-07 주식회사 엘지화학 Electrode active material for lithium secondary battery
US7824581B2 (en) * 2007-06-18 2010-11-02 Advanced Lithium Electrochemistry Co., Ltd. Cocrystalline metallic compounds and electrochemical redox active material employing the same
JP4525474B2 (en) * 2005-06-06 2010-08-18 株式会社豊田中央研究所 Active material for lithium secondary battery and method for producing the same, lithium secondary battery
US8377586B2 (en) 2005-10-05 2013-02-19 California Institute Of Technology Fluoride ion electrochemical cell
US7563542B2 (en) 2005-10-05 2009-07-21 California Institute Of Technology Subfluorinated graphite fluorides as electrode materials
US8232007B2 (en) 2005-10-05 2012-07-31 California Institute Of Technology Electrochemistry of carbon subfluorides
US7794880B2 (en) 2005-11-16 2010-09-14 California Institute Of Technology Fluorination of multi-layered carbon nanomaterials
US8658309B2 (en) 2006-08-11 2014-02-25 California Institute Of Technology Dissociating agents, formulations and methods providing enhanced solubility of fluorides
JP5245351B2 (en) * 2007-10-19 2013-07-24 株式会社豊田中央研究所 Active material for lithium secondary battery and lithium secondary battery
JP5509598B2 (en) * 2009-01-09 2014-06-04 住友大阪セメント株式会社 Electrode material and method for producing the same, and electrode and battery
KR101865419B1 (en) * 2009-08-25 2018-06-07 에이일이삼 시스템즈, 엘엘씨 Mixed metal olivine electrode materials for lithium ion batteries having improved specific capacity and energy density
US9660267B2 (en) 2009-09-18 2017-05-23 A123 Systems, LLC High power electrode materials
JP5544981B2 (en) * 2010-03-31 2014-07-09 住友大阪セメント株式会社 Method for producing electrode active material
EP2698346A1 (en) * 2012-08-14 2014-02-19 Clariant International Ltd. Mixed sulphate containing lithium-manganese-metal phosphate
JP6385665B2 (en) * 2013-10-04 2018-09-05 株式会社東芝 Cathode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, battery pack and vehicle

Also Published As

Publication number Publication date
JP2003187799A (en) 2003-07-04

Similar Documents

Publication Publication Date Title
JP5937565B2 (en) Lithium secondary battery with fast charge / discharge performance
JP3631202B2 (en) Non-aqueous electrolyte battery
JP5162825B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP5070753B2 (en) battery
KR101749508B1 (en) Electrode active material for lithium secondary battery, electrode for lithium secondary battery including the same, and lithium secondary battery comprising the same
JP5164477B2 (en) Nonaqueous electrolyte secondary battery
US20070072081A1 (en) Non-aqueous electrolyte secondary battery
JP2012190786A (en) Positive electrode active material, and positive electrode and lithium battery adopting the same
KR20060101328A (en) Non-aqueous electrolyte secondary battery
JP2008181850A (en) Nonaqueous electrolyte secondary battery
JP3619807B2 (en) Non-aqueous electrolyte battery
JP2003203628A (en) Nonaqueous electrolyte battery and its manufacturing method
JP5412843B2 (en) battery
JP2008091236A (en) Nonaqueous electrolyte secondary battery
JP5279567B2 (en) Nonaqueous electrolyte secondary battery
WO2012105372A1 (en) Nonaqueous electrolyte secondary battery
JP2014072071A (en) Nonaqueous electrolytic secondary battery
JP4798951B2 (en) Non-aqueous electrolyte battery positive electrode and battery using this positive electrode
JPH09147863A (en) Nonaqueous electrolyte battery
JP4895625B2 (en) Lithium secondary battery
JP4780361B2 (en) Lithium secondary battery
JP2013197052A (en) Lithium ion power storage device
JP2017016905A (en) Charging/discharging method for lithium secondary battery
JP2013229299A (en) Negative electrode active material, electrode containing the same, and lithium ion secondary battery using the electrode
US6506518B1 (en) Lithium secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees