JP5245351B2 - Active material for lithium secondary battery and lithium secondary battery - Google Patents

Active material for lithium secondary battery and lithium secondary battery Download PDF

Info

Publication number
JP5245351B2
JP5245351B2 JP2007272874A JP2007272874A JP5245351B2 JP 5245351 B2 JP5245351 B2 JP 5245351B2 JP 2007272874 A JP2007272874 A JP 2007272874A JP 2007272874 A JP2007272874 A JP 2007272874A JP 5245351 B2 JP5245351 B2 JP 5245351B2
Authority
JP
Japan
Prior art keywords
component
secondary battery
active material
lithium secondary
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007272874A
Other languages
Japanese (ja)
Other versions
JP2009104794A (en
Inventor
匠昭 奥田
要二 竹内
良雄 右京
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2007272874A priority Critical patent/JP5245351B2/en
Publication of JP2009104794A publication Critical patent/JP2009104794A/en
Application granted granted Critical
Publication of JP5245351B2 publication Critical patent/JP5245351B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Compounds Of Iron (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウム二次電池用活物質、その製造方法及びリチウム二次電池に関する。   The present invention relates to an active material for a lithium secondary battery, a manufacturing method thereof, and a lithium secondary battery.

従来、リチウム二次電池の正極活物質として、オリビン型リン酸鉄リチウム(LiFePO4)を使用することが知られている。正極活物質としてリン酸鉄リチウムを用いると電子伝導性が低くなるが、反応表面積を向上させることにより電子伝導性を高め、リチウム二次電池の放電容量の低下を防いでいる。 Conventionally, it is known to use olivine-type lithium iron phosphate (LiFePO 4 ) as a positive electrode active material of a lithium secondary battery. When lithium iron phosphate is used as the positive electrode active material, the electron conductivity is lowered. However, by increasing the reaction surface area, the electron conductivity is increased and the reduction of the discharge capacity of the lithium secondary battery is prevented.

例えば、特許文献1では、熱水処理を用いてリン酸鉄リチウムを製造する方法及び電極材として利用する方法が開示されている。熱水処理を用いると、溶解・再析出を繰り返して合成反応が進むため、粒径の小さな合成物を得やすい傾向があり、反応表面積を向上することができる。   For example, Patent Document 1 discloses a method of producing lithium iron phosphate using hot water treatment and a method of using it as an electrode material. When hot water treatment is used, the synthesis reaction proceeds by repeating dissolution and reprecipitation, so that it tends to be easy to obtain a composite having a small particle size, and the reaction surface area can be improved.

また、特許文献2では、鉄粉、リチウム塩及びリン酸基化合物を混合し、500℃以上に加熱してリン酸鉄リチウムを製造する方法が開示されている。この方法は安価な鉄粉を用いてリン酸鉄リチウムを製造するため、安価に製造することができる。このとき得られたリン酸鉄リチウムの粒径はSEM写真で観察したところ2μmであったと報告されている。
特表2007−511458 特開2006−131485
Patent Document 2 discloses a method for producing lithium iron phosphate by mixing iron powder, a lithium salt and a phosphate group compound and heating to 500 ° C. or higher. Since this method produces lithium iron phosphate using cheap iron powder, it can be produced at low cost. It was reported that the particle size of the lithium iron phosphate obtained at this time was 2 μm as observed by SEM photographs.
Special table 2007-511458 JP 2006-131485 A

しかしながら、特許文献1に記載の製造方法では、熱水処理を行うため、収率が低いという問題点があった。また、特許文献2に記載の製造方法で作製したリン酸鉄リチウムを正極活物質としてリチウム二次電池を作製した場合、0.1Cにおける放電容量が165mAh/gであるのに対して、2Cにおける放電容量が123mAh/gであり、優れた放電レート特性が得られないという問題点があった。   However, the manufacturing method described in Patent Document 1 has a problem in that the yield is low because the hot water treatment is performed. Further, when a lithium secondary battery is produced using lithium iron phosphate produced by the production method described in Patent Document 2 as a positive electrode active material, the discharge capacity at 0.1 C is 165 mAh / g, whereas at 2 C The discharge capacity was 123 mAh / g, and there was a problem that excellent discharge rate characteristics could not be obtained.

本発明は、上述した課題に鑑みなされたものであり、優れた放電レート特性が得られるリチウム二次電池用活物質及びその製造方法を提供すること、また、こうしたリチウム二次電池用活物質を正極活物質とするリチウム二次電池を提供することを主目的とする。   The present invention has been made in view of the above-described problems, and provides a lithium secondary battery active material and a method for producing the same capable of obtaining excellent discharge rate characteristics, and also provides such a lithium secondary battery active material. The main object is to provide a lithium secondary battery as a positive electrode active material.

上述した目的を達成するために、本発明者らは、Li成分及びPO4成分としてリン酸二水素リチウム(LiH2PO4)を、Fe成分としてシュウ酸鉄(II)二水和物(FeC24・2H2O)を、SiO4成分としてオルトケイ酸リチウム(Li4SiO4)を、それぞれFe:PO4:SiO4のモル比が1:0.97:0.03になるように混合し、高気密性管状炉で減圧後アルゴンガス置換した後に600℃で12時間焼成し、室温まで降温後に解砕することで活物質を製造し、この活物質を正極活物質とするリチウム二次電池を作製したところ、優れた放電レート特性が得られることを見いだし、本発明を完成するに至った。 In order to achieve the above-described object, the present inventors have used lithium dihydrogen phosphate (LiH 2 PO 4 ) as the Li component and the PO 4 component, and iron (II) oxalate dihydrate (FeC) as the Fe component. 2 O 4 .2H 2 O) and lithium orthosilicate (Li 4 SiO 4 ) as the SiO 4 component so that the molar ratio of Fe: PO 4 : SiO 4 is 1: 0.97: 0.03, respectively. The mixture was mixed, depressurized in a highly airtight tube furnace, purged with argon gas, fired at 600 ° C. for 12 hours, and cooled to room temperature and then crushed to produce an active material. When a secondary battery was produced, it was found that excellent discharge rate characteristics were obtained, and the present invention was completed.

すなわち、本発明の第1のリチウム二次電池用活物質は、Li成分と、M成分(MはFe、Ni、Mn及びCoからなる群より選ばれた少なくとも1つの金属元素)と、PO4成分と、SiO4成分及びSO4成分のうちの少なくとも1つである粒成長抑制成分とを含む混合物を焼成し、得られた焼成物を解砕することにより製造されるものである。 That is, the first active material for a lithium secondary battery of the present invention includes an Li component, an M component (M is at least one metal element selected from the group consisting of Fe, Ni, Mn and Co), PO 4 It is manufactured by firing a mixture containing a component and a grain growth inhibiting component that is at least one of an SiO 4 component and an SO 4 component, and crushing the resulting fired product.

また、本発明の第2のリチウム二次電池用活物質は、基本構造がLiMPO4(MはFe、Ni、Mn及びCoからなる群より選ばれた少なくとも1つの金属元素)で表され、組成の一部にSiO4及びSO4のうちの少なくとも1つを含むものである。 In addition, the second active material for a lithium secondary battery of the present invention has a basic structure represented by LiMPO 4 (M is at least one metal element selected from the group consisting of Fe, Ni, Mn, and Co). Includes at least one of SiO 4 and SO 4 .

本発明のリチウム二次電池は、本発明の第1又は第2のリチウム二次電池用活物質を正極活物質とする正極と、リチウムイオンを吸蔵放出する材料を負極活物質とする負極と、リチウムイオンを含む電解質と、を備えたものである。   The lithium secondary battery of the present invention includes a positive electrode using the first or second active material for a lithium secondary battery of the present invention as a positive electrode active material, a negative electrode using a material that absorbs and releases lithium ions as a negative electrode active material, And an electrolyte containing lithium ions.

本発明のリチウム二次電池用活物質の製造方法は、(a)Li成分と、M成分(MはFe、Ni、Mn及びCoからなる群より選ばれた少なくとも1つの金属元素)と、PO4成分と、SiO4成分及びSO4成分のうちの少なくとも1つである粒成長抑制成分とを含む混合物を焼成するステップと、(b)前記ステップ(a)で得られた焼成物を解砕するステップと、を含むものである。 The method for producing an active material for a lithium secondary battery according to the present invention includes: (a) a Li component, an M component (M is at least one metal element selected from the group consisting of Fe, Ni, Mn, and Co); crushed 4 and component, and the step of firing the mixture containing the grain growth inhibiting component is at least one of SiO 4 components and SO 4 component, the fired product obtained in (b) said step (a) And the step of performing.

本発明の第1のリチウム二次電池用活物質は、コンマ数μm程度の粒径を持つものとなり、これを二次電池の正極活物質に使用したときに優れた放電レート特性が得られる。このようにリチウム二次電池用活物質がコンマ数μm程度の粒径を持つものとなる理由は定かではないが、混合物を焼成するときに粒成長抑制成分が粒径の成長を抑制する作用を発揮したものと推定される。   The first active material for a lithium secondary battery of the present invention has a particle size of about a few μm of comma, and excellent discharge rate characteristics are obtained when this is used as a positive electrode active material of a secondary battery. The reason why the active material for a lithium secondary battery has a particle size of about a few μm is not clear, but when the mixture is baked, the particle growth inhibiting component has the effect of suppressing the particle size growth. It is presumed that it was demonstrated.

本発明の第2のリチウム二次電池用活物質は、コンマ数μm程度の粒径を持つものとなり、これを二次電池の正極活物質に使用したときに優れた放電レート特性が得られる。ここで、本発明の第2のリチウム二次電池用活物質は、組成の一部にSiO4及びSO4のうちの少なくとも1つである粒成長抑制成分を含んでいるが、これは、焼成前の混合物中に粒成長抑制成分が含まれていたからであり、混合物を焼成するときにこの粒成長抑制成分が粒径の成長を抑制する作用を発揮してコンマ数μm程度の粒径を持つものになったと推定される。 The second active material for a lithium secondary battery of the present invention has a particle size of about a few μm comma, and excellent discharge rate characteristics can be obtained when this is used as a positive electrode active material of a secondary battery. Here, the second lithium secondary battery active material of the invention has included the grain growth inhibiting component is at least one of SiO 4 and SO 4 in a part of the composition, which is fired This is because the grain growth inhibitory component was contained in the previous mixture, and when the mixture was baked, the grain growth inhibitory component exerts an action of suppressing the growth of the grain size and has a particle size of about several μm comma. It is estimated that

本発明のリチウム二次電池によれば、優れた放電レート特性が得られる。このような効果が得られる理由は定かではないが、粒径の小さなリチウム二次電池用活物質を用いることにより、表面積が増え、良好な放電レート特性が得られたと推定される。   According to the lithium secondary battery of the present invention, excellent discharge rate characteristics can be obtained. The reason why such an effect can be obtained is not clear, but it is presumed that by using an active material for a lithium secondary battery having a small particle size, the surface area is increased and good discharge rate characteristics are obtained.

本発明のリチウム二次電池用活物質の製造方法によれば、水熱合成法によりリチウム二次電池用活物質を製造する場合に比べて高い収率でコンマ数μm程度の粒径を持つリチウム二次電池用活物質が得られる。このリチウム二次電池用活物質は、二次電池の正極活物質に使用したときに優れた放電レート特性が得られる。このようにコンマ数μm程度の粒径を持つリチウム二次電池用活物質が得られる理由は定かではないが、混合物を焼成するときに粒成長抑制成分が粒径の成長を抑制する作用を発揮したものと推定される。   According to the method for producing an active material for a lithium secondary battery of the present invention, lithium having a particle size of about a few μm in a high yield compared to the case of producing an active material for a lithium secondary battery by a hydrothermal synthesis method. An active material for a secondary battery is obtained. When this lithium secondary battery active material is used as a positive electrode active material of a secondary battery, excellent discharge rate characteristics can be obtained. The reason why an active material for a lithium secondary battery having a particle diameter of about several μm in this way is not certain, but when the mixture is fired, the particle growth inhibiting component has an effect of suppressing the growth of the particle diameter. It is estimated that

本発明の第1のリチウム二次電池用活物質は、Li成分と、M成分(MはFe、Ni、Mn及びCoからなる群より選ばれた少なくとも1つの金属元素)と、PO4成分と、SiO4成分及びSO4成分のうちの少なくとも1つである粒成長抑制成分とを含む混合物を焼成し、得られた焼成物を解砕することにより製造されるものである。また、本発明の第1のリチウム二次電池用活物質の製造方法は、(a)Li成分と、M成分(MはFe、Ni、Mn及びCoからなる群より選ばれた少なくとも1つの金属元素)と、PO4成分と、SiO4成分及びSO4成分のうちの少なくとも1つである粒成長抑制成分とを含む混合物を焼成するステップと、(b)前記ステップ(a)で得られた焼成物を解砕するステップと、を含むものである。 The first active material for a lithium secondary battery of the present invention includes an Li component, an M component (M is at least one metal element selected from the group consisting of Fe, Ni, Mn, and Co), a PO 4 component, , A mixture containing a grain growth inhibiting component that is at least one of the SiO 4 component and the SO 4 component is fired, and the obtained fired product is crushed. The first method for producing an active material for a lithium secondary battery according to the present invention includes (a) an Li component and an M component (M is at least one metal selected from the group consisting of Fe, Ni, Mn, and Co). Element), a PO 4 component, and a step of firing a mixture containing a grain growth inhibiting component that is at least one of an SiO 4 component and an SO 4 component; and (b) obtained in step (a). Crushing the fired product.

ここで、Li成分としては、例えば、炭酸リチウム(Li2CO3)や水酸化リチウム(LiOH)などの公知のリチウム化合物を用いることができる。PO4成分としては、例えば、リン酸二水素アンモニウム(NH42PO4)やリン酸水素二アンモニウム((NH42HPO4)などの公知のリン酸塩を用いることができる。このようにLi成分とPO4成分とをそれぞれ個別に含む化合物を用いてもよいが、Li成分とPO4成分との両方を含む化合物を用いることが秤量の回数を減らすことができるため好ましい。このような化合物としては、例えば、リン酸二水素リチウム(LiH2PO4)などが挙げられる。M成分としては、M成分がFeを含む場合には、例えば、シュウ酸鉄(II)二水和物(FeC24・2H2O)や塩化(II)鉄(FeCl2)などの公知の2価の鉄化合物を用いることができる。このとき、シュウ酸鉄(II)二水和物がより好ましい。シュウ酸鉄(II)二水和物は塩化(II)鉄に比べて、焼成時に発生するガスの腐食性が低いためである。また、M成分がNiを含む場合には、例えば、酸化ニッケル(NiO)や水酸化ニッケル(Ni(OH)2)などの公知の2価のニッケル化合物を用いることができる。また、M成分がMnを含む場合には、例えば、炭酸マンガン(MnCO3)や塩化マンガン四水和物(MnCl2・4H2O)などの公知の2価のマンガン化合物を用いることができる。また、M成分がCoを含む場合には、例えば、酸化コバルト(CoO)や塩化コバルト(CoCl2)などの公知の2価のコバルト化合物を用いることができる。粒成長抑制成分としては、粒成長抑制成分がSiO4成分を含む場合には、例えば、オルトケイ酸リチウム(Li4SiO4)などの公知のケイ酸塩を用いることができる。また、粒成長抑制成分がSO4成分を含む場合には、例えば、硫酸鉄(II)七水和物(FeSO4・7H2O)や硫酸リチウム(Li2SO4)などの公知の硫酸塩を用いることができる。なお、粒成長抑制成分としては、SO4成分よりもSiO4成分を用いることが、放電容量の低下が少ないためより好ましい。また、各成分は、ここに列記したものに限定されるものではない。 Here, as the Li component, for example, it may be a known lithium compound such as lithium carbonate (Li 2 CO 3) or lithium hydroxide (LiOH). As the PO 4 component, for example, known phosphates such as ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ) and diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) can be used. Thus may be a compound of the Li component and PO 4 components, each containing individually, it is a compound containing both Li component and PO 4 components preferably possible to reduce the number of weighing. Examples of such a compound include lithium dihydrogen phosphate (LiH 2 PO 4 ). As the M component, when the M component contains Fe, for example, known iron (II) oxalate dihydrate (FeC 2 O 4 .2H 2 O), iron (II) chloride (FeCl 2 ), etc. These divalent iron compounds can be used. At this time, iron (II) oxalate dihydrate is more preferable. This is because iron (II) oxalate dihydrate is less corrosive to the gas generated during firing than iron (II) chloride. When the M component contains Ni, for example, a known divalent nickel compound such as nickel oxide (NiO) or nickel hydroxide (Ni (OH) 2 ) can be used. Further, when the M component containing Mn, for example, may be used manganese carbonate (MnCO 3) and manganese chloride tetrahydrate (MnCl 2 · 4H 2 O) known divalent manganese compound, such as. When the M component contains Co, for example, a known divalent cobalt compound such as cobalt oxide (CoO) or cobalt chloride (CoCl 2 ) can be used. As the grain growth inhibiting component, when the grain growth inhibiting component contains a SiO 4 component, for example, a known silicate such as lithium orthosilicate (Li 4 SiO 4 ) can be used. When the grain growth inhibiting component contains an SO 4 component, for example, known sulfates such as iron (II) sulfate heptahydrate (FeSO 4 .7H 2 O) and lithium sulfate (Li 2 SO 4 ). Can be used. As the grain growth inhibiting component, it is more preferable to use the SiO 4 component than the SO 4 component because the decrease in the discharge capacity is small. Moreover, each component is not limited to what was listed here.

これらの成分を含む混合物を調整するには、M成分におけるFeの割合が80%以上含まれることが好ましい。Feは資源として豊富であり安価でもあるためである。また、オリビン型単相のリチウム化合物となるように混合物に含まれる粒成長抑制成分の量を調整することが好ましい。具体的には、1モルのM成分に対して、粒成長抑制成分が0.01〜0.2モルであることが好ましい。粒成長抑制成分が0.2モル以上では、オリビン型単相とならないため好ましくなく、0.01モル未満では、十分に粒成長抑制効果が得られないおそれがあるため好ましくない。粒成長抑制成分は、1モルのM成分に対して0.01〜0.05モル、例えば0.03モルであることがより好ましい。こうすれば、オリビン型単相となるため、安全性に優れ、粒成長抑制効果を得つつ十分な放電容量を確保することができる。これらの成分はいずれも粉末状のものを用いることができ、混合には通常の粉末の混合に用いられる方法を用いることができる。具体的には、特に限定されるものではないが、例えば、ボールミルやミキサ、乳鉢等を用いて混合する方法が挙げられる。   In order to adjust the mixture containing these components, the proportion of Fe in the M component is preferably 80% or more. This is because Fe is abundant as a resource and is inexpensive. Moreover, it is preferable to adjust the quantity of the grain growth inhibitory component contained in the mixture so as to be an olivine type single phase lithium compound. Specifically, it is preferable that the grain growth inhibiting component is 0.01 to 0.2 mol with respect to 1 mol of the M component. When the grain growth inhibiting component is 0.2 mol or more, it is not preferable because it does not become an olivine type single phase, and when it is less than 0.01 mol, the grain growth inhibiting effect may not be obtained sufficiently, which is not preferred. The grain growth inhibiting component is more preferably 0.01 to 0.05 mol, for example 0.03 mol, relative to 1 mol of the M component. By doing so, since it becomes an olivine type single phase, it is excellent in safety, and a sufficient discharge capacity can be secured while obtaining the effect of suppressing grain growth. Any of these components can be used in a powder form, and mixing can be performed by a method used for mixing ordinary powders. Specific examples include, but are not limited to, a method of mixing using a ball mill, a mixer, a mortar, or the like.

これらの成分を含む混合物を焼成するには、特に限定されるものではないが、例えば、焼成温度は400℃以上であることが好ましく、600℃以上800℃以下であることがより好ましい。焼成温度が400℃未満では、反応が十分に進行せず、結晶性が悪くなるため好ましくない。また、800℃以上で焼成すると、粒成長が促成され粒子径が大きくなるため好ましくない。焼成時間は、混合物の焼成が完了するために十分な時間であれば特に限定されるものではないが、例えば、12時間程度であることが好ましい。焼成は、不活性雰囲気下など、酸素が存在しない環境下で行うことが好ましい。酸素が存在する環境下で焼成を行うと一部の鉄が3価となり、放電容量が低下するため好ましくない。具体的には、特に限定されるものではないが、例えば、ヘリウムガスやネオンガス、アルゴンガスなどの希ガス属元素ガス気流下や、窒素ガスなどの不活性ガス気流下などが挙げられる。このとき、アルゴンガスは酸素より重いため、アルゴンガス気流下で行うことがより好ましい。   For firing the mixture containing these components, there is no particular limitation. For example, the firing temperature is preferably 400 ° C. or higher, more preferably 600 ° C. or higher and 800 ° C. or lower. A calcination temperature of less than 400 ° C. is not preferable because the reaction does not proceed sufficiently and the crystallinity deteriorates. Further, firing at 800 ° C. or higher is not preferable because grain growth is promoted and the particle diameter is increased. The firing time is not particularly limited as long as it is sufficient to complete the firing of the mixture. For example, it is preferably about 12 hours. Firing is preferably performed in an environment where oxygen is not present, such as in an inert atmosphere. If firing is performed in an environment where oxygen is present, part of iron becomes trivalent and discharge capacity decreases, which is not preferable. Specifically, it is not particularly limited, and examples thereof include a rare gas group element gas stream such as helium gas, neon gas, and argon gas, and an inert gas stream such as nitrogen gas. At this time, since argon gas is heavier than oxygen, it is more preferable to perform under argon gas flow.

これらの成分を含む焼成物は、粒成長抑制成分により粒径の成長が抑制され、コンマ数μm程度の粒径を持つ一次粒子の集合体として得られると考えられるが、二次電池用活物質として用いるためには、導電材と混合し電子伝導性が高めることが好ましい。このため、焼成物を解砕することが好ましい。焼成物を解砕する方法としては、後述する導電材等と十分に混合できる程度に解砕することができる方法であれば特に限定されるものではないが、例えば、ボールミルやミキサ、乳鉢等を用いる方法が挙げられる。   The fired product containing these components is considered to be obtained as an aggregate of primary particles having a particle size of about several μm comma, with the growth of the particle size being suppressed by the particle growth suppressing component. Therefore, it is preferable to increase the electronic conductivity by mixing with a conductive material. For this reason, it is preferable to crush the fired product. The method for pulverizing the fired product is not particularly limited as long as it can be pulverized to such an extent that it can be sufficiently mixed with a conductive material described later. For example, a ball mill, a mixer, a mortar, etc. The method to use is mentioned.

本発明の第1のリチウム二次電池用活物質は、ここに記載した製造方法によって得られた結果物であってもよいし、この結果物と実質的に同じものであれば別の製造方法によって得られたものであってもよい。   The first active material for a lithium secondary battery of the present invention may be a result obtained by the production method described herein, or another production method as long as it is substantially the same as this result. It may be obtained by.

本発明の第2のリチウム二次電池用活物質は、基本構造がLiMPO4(MはFe、Ni、Mn及びCoからなる群より選ばれた少なくとも1つの金属元素)で表され、組成の一部にSiO4及びSO4のうちの少なくとも1つを含むものである。こうしたリチウム二次電池用活物質は、例えば、Li成分と、M成分(MはFe、Ni、Mn及びCoからなる群より選ばれた少なくとも1つの金属元素)と、PO4成分と、SiO4成分及びSO4成分のうちの少なくとも1つである粒成長抑制成分とを含む混合物を焼成し、得られた焼成物を解砕することにより得られると推測される。 The second active material for a lithium secondary battery of the present invention has a basic structure represented by LiMPO 4 (M is at least one metal element selected from the group consisting of Fe, Ni, Mn, and Co), and has one composition. The part contains at least one of SiO 4 and SO 4 . Such an active material for a lithium secondary battery includes, for example, a Li component, an M component (M is at least one metal element selected from the group consisting of Fe, Ni, Mn, and Co), a PO 4 component, and SiO 4. It is presumed that it can be obtained by firing a mixture containing a grain growth inhibiting component that is at least one of the components and the SO 4 component and crushing the obtained fired product.

本発明の第1及び第2のリチウム二次電池用活物質は、オリビン型単相であることが好ましい。オリビン型構造とは、酸素の六方最密充填を基本とし、その4面体サイトにリンが、八面体サイトにリチウムとMとがそれぞれ位置する構造であり、このような構造は安定性が高いため好ましい。このオリビン型単相構造のリチウム二次電池用活物質を正極活物質としてリチウム二次電池に用いると、酸素を放出しにくいため、安全性に優れたリチウム二次電池を作製することができる。   It is preferable that the 1st and 2nd active material for lithium secondary batteries of this invention is an olivine type single phase. The olivine type structure is based on the hexagonal close-packed packing of oxygen, in which phosphorus is located at the tetrahedral site and lithium and M are located at the octahedral site, and such a structure is highly stable. preferable. When this active material for lithium secondary batteries having an olivine type single phase structure is used as a positive electrode active material for a lithium secondary battery, it is difficult to release oxygen, so that a lithium secondary battery excellent in safety can be manufactured.

本発明の第1及び第2のリチウム二次電池用活物質は、MがFeであることが好ましい。Feは資源として豊富であり安価でもあるためである。   In the first and second active materials for a lithium secondary battery of the present invention, M is preferably Fe. This is because Fe is abundant as a resource and is inexpensive.

本発明のリチウム二次電池は、上述したいずれかに記載のリチウム二次電池用活物質を正極活物質とする正極と、リチウムイオンを吸蔵放出する材料を負極活物質とする負極と、リチウムイオンを含む電解質とを備えたものである。   The lithium secondary battery of the present invention includes a positive electrode using the active material for a lithium secondary battery as described above as a positive electrode active material, a negative electrode using a material that absorbs and releases lithium ions as a negative electrode active material, and lithium ions. And an electrolyte containing.

本発明のリチウム二次電池において、正極は、導電材を含んでいてもよい。導電材としては、導電性を有する材料であれば特に限定されない。例えば、ケッチェンブラックやアセチレンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック類でもよいし、鱗片状黒鉛のような天然黒鉛や人造黒鉛、膨張黒鉛などのグラファイト類でもよいし、炭素繊維や金属繊維などの導電性繊維類でもよいし、銅や銀、ニッケル、アルミニウムなどの金属粉末類でもよいし、ポリフェニレン誘導体などの有機導電性材料でもよい。また、これらを単体で用いてもよいし、複数を混合して用いてもよい。   In the lithium secondary battery of the present invention, the positive electrode may contain a conductive material. The conductive material is not particularly limited as long as it is a conductive material. For example, carbon blacks such as ketjen black, acetylene black, channel black, furnace black, lamp black and thermal black may be used, and natural graphite such as flake graphite, graphite such as artificial graphite and expanded graphite may be used. Further, conductive fibers such as carbon fibers and metal fibers, metal powders such as copper, silver, nickel, and aluminum, or organic conductive materials such as polyphenylene derivatives may be used. These may be used alone or in combination.

本発明のリチウム二次電池において、正極は、バインダを含んでいてもよい。バインダとしては、特に限定されるものではないが、熱可塑性樹脂や熱硬化性樹脂などが挙げられる。例えば、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンゴム、フッ素ゴム、テトラフルオロエチレン−ヘキサフルオロエチレン共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−クロロトリフルオロエチレン共重合体、エチレン−テトラフルオロエチレン共重合体(ETFE樹脂)、ポリクロロトリフルオロエチレン(PCTFE)、フッ化ビニリデン−ペンタフルオロプロピレン共重合体、プロピレン−テトラフルオロエチレン共重合体、エチレン−クロロトリフルオロエチレン共重合体(ECTFE)、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体、フッ化ビニリデン−パーフルオロメチルビニルエーテル−テトラフルオロエチレン共重合体、エチレン−アクリル酸共重合体などが挙げられる。これらの材料は単独で用いてもよいし、複数を混合して用いてもよい。   In the lithium secondary battery of the present invention, the positive electrode may contain a binder. Although it does not specifically limit as a binder, A thermoplastic resin, a thermosetting resin, etc. are mentioned. For example, polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), styrene butadiene rubber, fluoro rubber, tetrafluoroethylene-hexafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer ( FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer ( ETFE resin), polychlorotrifluoroethylene (PCTFE), vinylidene fluoride-pentafluoropropylene copolymer, propylene-tetrafluoroethylene copolymer, ethylene- Rollotrifluoroethylene copolymer (ECTFE), vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer, vinylidene fluoride-perfluoromethyl vinyl ether-tetrafluoroethylene copolymer, ethylene-acrylic acid copolymer, etc. Is mentioned. These materials may be used alone or in combination.

本発明のリチウム二次電池において、負極は、リチウムイオンを吸蔵放出する材料を負極活物質として含んでいるものであれば、特に限定されるものではない。ここで、リチウムイオンを吸蔵放出する材料としては、例えば金属リチウムやリチウム合金のほか、金属酸化物、金属硫化物、リチウムイオンを吸蔵放出する炭素質物質などが挙げられる。リチウム合金としては、例えば、アルミニウムやシリコン、スズ、マグネシウム、インジウム、カルシウムなどとリチウムとの合金が挙げられる。金属酸化物としては、例えばスズ酸化物、ケイ素酸化物、リチウムチタン酸化物、ニオブ酸化物、タングステン酸化物などが挙げられる。金属硫化物としては、例えばスズ硫化物やチタン硫化物などが挙げられる。リチウムイオンを吸蔵放出する炭素質物質としては、例えばハードカーボン、ソフトカーボンを用いることができ、あるいはこれらと、天然又は人造の黒鉛、メソカーボンマイクロビーズ(MCMB)、メソフェーズピッチ系炭素繊維、気相法炭素化繊維、フェノール樹脂等の有機化合物焼成体、コークス等とを混合したものを用いることができる。   In the lithium secondary battery of the present invention, the negative electrode is not particularly limited as long as it contains a material that absorbs and releases lithium ions as a negative electrode active material. Here, examples of materials that occlude and release lithium ions include metal lithium and lithium alloys, metal oxides, metal sulfides, and carbonaceous substances that occlude and release lithium ions. Examples of the lithium alloy include alloys of lithium with aluminum, silicon, tin, magnesium, indium, calcium, and the like. Examples of the metal oxide include tin oxide, silicon oxide, lithium titanium oxide, niobium oxide, and tungsten oxide. Examples of the metal sulfide include tin sulfide and titanium sulfide. As the carbonaceous material that occludes and releases lithium ions, for example, hard carbon and soft carbon can be used, or natural or artificial graphite, mesocarbon microbeads (MCMB), mesophase pitch-based carbon fiber, gas phase, and the like. A mixture of carbon fiber, a fired organic compound such as phenol resin, coke, or the like can be used.

本発明のリチウム二次電池において、電解質については、特に限定されるものではないが、支持塩を含む電解液やゲル電解質、固体電解質などを用いることができる。支持塩としては、例えば、LiPF6,LiClO4,LiBF4,Li(CF3SO3)、LiAsF6、LiN(CF3SO22、LiN(C25SO2)などの公知の支持塩を用いることができる。電解液の溶媒としては、例えば、非プロトン性の有機溶媒を用いることができる。このような有機溶媒としては、例えば環状カーボネート、鎖状カーボネート、環状エステル、環状エーテル、鎖状エーテル等が挙げられる。環状カーボネートとしては、例えばエチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート、ビニルカーボネート等がある。鎖状カーボネートとしては、例えばジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート等がある。環状エステルカーボネートとしては、例えばガンマブチロラクトン、ガンマバレロラクトン等がある。環状エーテルとしては、例えばテトラヒドロフラン、2−メチルテトラヒドロフラン等がある。鎖状エーテルとしては、例えばジメトキシエタン、エチレングリコールジメチルエーテル等が挙げられる。これらは単独で用いてもよいし、複数を混合して用いてもよい。ゲル電解質としては、特に限定されるものではないが、例えば、ポリフッ化ビニリデンやポリエチレングリコール、ポリアクリロニトリルなどの高分子類またはアミノ酸誘導体やソルビトール誘導体などの糖類に、支持塩を含む電解液を含ませてなるゲル電解質が挙げられる。固体電解質としては、無機固体電解質や有機固体電解質などが挙げられる。無機固体電解質としては、例えば、Liの窒化物、ハロゲン化物、酸素酸塩などがよく知られている。なかでも、Li4SiO4、Li4SiO4−LiI−LiOH、xLi3PO4−(1−x)Li4SiO4、Li2SiS3、Li3PO4−Li2S−SiS2、硫化リン化合物などが挙げられる。これらは単独で用いてもよいし、複数を混合して用いてもよい。有機固体電解質としては、例えば、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリビニルアルコール、ポリフッ化ビニリデン、ポリホスファゼン、ポリエチレンスルフィド、ポリヘキサフルオロプロピレンなどやこれらの誘導体が挙げられる。これらは単独で用いてもよいし、複数を混合して用いてもよい。 In the lithium secondary battery of the present invention, the electrolyte is not particularly limited, but an electrolytic solution containing a supporting salt, a gel electrolyte, a solid electrolyte, or the like can be used. Examples of the supporting salt include known supports such as LiPF 6 , LiClO 4 , LiBF 4 , Li (CF 3 SO 3 ), LiAsF 6 , LiN (CF 3 SO 2 ) 2 , and LiN (C 2 F 5 SO 2 ). A salt can be used. As a solvent for the electrolytic solution, for example, an aprotic organic solvent can be used. Examples of such an organic solvent include cyclic carbonates, chain carbonates, cyclic esters, cyclic ethers, chain ethers, and the like. Examples of the cyclic carbonate include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate, and vinyl carbonate. Examples of the chain carbonate include dimethyl carbonate (DMC), diethyl carbonate (DEC), and methyl ethyl carbonate. Examples of the cyclic ester carbonate include gamma butyrolactone and gamma valerolactone. Examples of the cyclic ether include tetrahydrofuran and 2-methyltetrahydrofuran. Examples of the chain ether include dimethoxyethane and ethylene glycol dimethyl ether. These may be used alone or in combination. The gel electrolyte is not particularly limited. For example, a polymer such as polyvinylidene fluoride, polyethylene glycol, or polyacrylonitrile, or a saccharide such as an amino acid derivative or sorbitol derivative is added with an electrolyte containing a supporting salt. And a gel electrolyte. Examples of the solid electrolyte include inorganic solid electrolytes and organic solid electrolytes. Well-known inorganic solid electrolytes include, for example, Li nitrides, halides, oxyacid salts, and the like. Among them, Li 4 SiO 4, Li 4 SiO 4 -LiI-LiOH, xLi 3 PO 4 - (1-x) Li 4 SiO 4, Li 2 SiS 3, Li 3 PO 4 -Li 2 S-SiS 2, sulfide Examples thereof include phosphorus compounds. These may be used alone or in combination. Examples of the organic solid electrolyte include polyethylene oxide, polypropylene oxide, polyvinyl alcohol, polyvinylidene fluoride, polyphosphazene, polyethylene sulfide, polyhexafluoropropylene, and derivatives thereof. These may be used alone or in combination.

本発明のリチウム二次電池は、負極と正極との間にセパレータを備えていてもよい。セパレータとしては、リチウム二次電池の使用範囲に耐えうる組成であれば特に限定されないが、例えば、ポリプロピレン製不織布やポリフェニレンスルフィド製不織布などの高分子不織布、ポリエチレンやポリプロピレンなどのオレフィン系樹脂の薄い微多孔膜が挙げられる。これらは単独で用いてもよいし、複数を混合して用いてもよい。   The lithium secondary battery of the present invention may include a separator between the negative electrode and the positive electrode. The separator is not particularly limited as long as it has a composition that can withstand the range of use of the lithium secondary battery. For example, a polymer nonwoven fabric such as a polypropylene nonwoven fabric or a polyphenylene sulfide nonwoven fabric, or a thin fine olefin resin such as polyethylene or polypropylene is used. A porous membrane is mentioned. These may be used alone or in combination.

本発明のリチウム二次電池の形状は、特に限定されないが、例えばコイン型、ボタン型、シート型、積層型、円筒型、偏平型、角型などが挙げられる。また、電気自動車等に用いる大型のものなどに適用してもよい。いずれの形状を採る場合であっても、正極及び負極にセパレータを挟装させ電極体とし、正極及び負極から外部に通ずる正極端子及び負極端子までの間をそれぞれ導通させるようにして、この電極体を電解質とともに電池ケースに密閉して電池を完成させることができる。   The shape of the lithium secondary battery of the present invention is not particularly limited, and examples thereof include a coin type, a button type, a sheet type, a laminated type, a cylindrical type, a flat type, and a square type. Moreover, you may apply to the large sized thing etc. which are used for an electric vehicle etc. Regardless of which shape is used, a separator is sandwiched between the positive electrode and the negative electrode to form an electrode body, and the electrode body is electrically connected between the positive electrode and the negative electrode to the positive electrode terminal and the negative electrode terminal. Can be sealed in a battery case together with an electrolyte to complete the battery.

以下、本発明の具体例を実施例を用いて説明する。   Hereinafter, specific examples of the present invention will be described using examples.

[実施例1]
Li成分及びPO4成分としてリン酸二水素リチウム(LiH2PO4)を、Fe成分としてシュウ酸鉄(II)二水和物(FeC24・2H2O)を、SiO4成分としてオルトケイ酸リチウム(Li4SiO4)を、それぞれFe:PO4:SiO4のモル比が1:0.97:0.03になるように精秤した。次に、これらをエタノールとともにボールミルを用いて十二分に混合した後に、エタノールを揮発させ乳鉢で解砕して得た粉末を1t/cm2の圧力でペレット化し、焼成用試料とした。この焼成用試料を高気密性管状炉で減圧後、アルゴンガス置換した後に600℃で12時間焼成した。その後、室温まで降温後に乳鉢で解砕し、粉末試料を得た。なお、焼成中は高気密性管状炉にアルゴンガスを30ml/minでフローさせた。
[Example 1]
Lithium dihydrogen phosphate (LiH 2 PO 4 ) as the Li component and PO 4 component, iron (II) oxalate dihydrate (FeC 2 O 4 .2H 2 O) as the Fe component, and orthosilicate as the SiO 4 component Lithium acid (Li 4 SiO 4 ) was precisely weighed so that the molar ratio of Fe: PO 4 : SiO 4 was 1: 0.97: 0.03, respectively. Next, after thoroughly mixing these together with ethanol using a ball mill, the powder obtained by volatilizing ethanol and pulverizing with a mortar was pelletized at a pressure of 1 t / cm 2 to obtain a sample for firing. The sample for firing was decompressed in a highly airtight tubular furnace, and after being replaced with argon gas, was fired at 600 ° C. for 12 hours. Then, after lowering to room temperature, it was crushed in a mortar to obtain a powder sample. During firing, argon gas was allowed to flow at 30 ml / min in a highly airtight tubular furnace.

このようにして得られた粉末試料をX線回折装置(株式会社リガク製,RINT−2200)により測定したところ、図1に示すような結果が得られた。図1はX線回折装置の測定結果を示したものであり、横軸に回折角度、縦軸に強度を示したものである。図1から明らかなように、オリビン型単相であることが知られている後述する比較例1のLiFePO4とピークパターンが一致していたことから、この粉末試料がオリビン型単相であることが確認できた。次に、この粉末試料を走査型電子顕微鏡(株式会社日立製作所製,S−4300)を用いて観察したところ、図2(a)に示すような画像が得られた。図2は、走査型電子顕微鏡写真である。図2(a)中の全ての粒子について、つまり、ピントを合わせた状態で縦35μm、横50μmの範囲を撮影した写真中に含まれる各粒子について、最長径と最短径とを目視で測定をし、これら二つの値の平均値を1つの粒子の粒径とし、写真中に含まれる全ての粒径の平均値を求めたところ、この値は約0.1μmであった。 When the powder sample thus obtained was measured with an X-ray diffractometer (manufactured by Rigaku Corporation, RINT-2200), a result as shown in FIG. 1 was obtained. FIG. 1 shows the measurement results of the X-ray diffractometer, with the horizontal axis representing the diffraction angle and the vertical axis representing the intensity. As is clear from FIG. 1, since the peak pattern coincided with LiFePO 4 of Comparative Example 1 described later, which is known to be an olivine type single phase, this powder sample is an olivine type single phase. Was confirmed. Next, when this powder sample was observed using a scanning electron microscope (manufactured by Hitachi, Ltd., S-4300), an image as shown in FIG. 2A was obtained. FIG. 2 is a scanning electron micrograph. For all the particles in FIG. 2 (a), that is, for each particle included in a photograph taken in the range of 35 μm in length and 50 μm in width in a focused state, the longest diameter and the shortest diameter are visually measured. Then, when the average value of these two values was taken as the particle size of one particle and the average value of all the particle sizes contained in the photograph was determined, this value was about 0.1 μm.

このようにして得られた粉末試料とカーボンブラック(東海カーボン株式会社製,#TB−5500)とポリテトラフルオロエチレンとを重量パーセントが70:25:5になるように混合し、混合粉末14mgをφ10mmのペレットに成形した。そして、このペレットを用いてコイン型セル20を組み立てた。図3は、コイン型セル20の構成の概略を示す断面図である。このコイン型セル20は、以下の手順で組み立てた。すなわち、SUS304製の電池ケース21を準備し、この電池ケース21の下部に正極22を配置し、ポリプロピレン製のセパレータ24を介して対向する位置に負極23としてφ14mm、厚さ0.4mmのリチウム金属を配置した。一方、エチレンカーボネートとジエチルカーボネートとを体積比が3:7となるように混合したものに、LiPF6を1M添加した溶液を調整し、これを電解液とした。そして、電池ケース21内にPTFE製のガスケット25を配置し、電解液を0.2ml注入して含浸させた。最後に、電池ケース21の開口部にSUS304製の封口板26を配置し、電池ケース21の端部をかしめ加工することにより、電池ケース21を密封して、コイン型セル20を作製した。 The powder sample thus obtained, carbon black (manufactured by Tokai Carbon Co., Ltd., # TB-5500) and polytetrafluoroethylene were mixed so that the weight percentage was 70: 25: 5, and 14 mg of the mixed powder was mixed. It formed into a φ10 mm pellet. And the coin-type cell 20 was assembled using this pellet. FIG. 3 is a cross-sectional view schematically showing the configuration of the coin cell 20. The coin-type cell 20 was assembled in the following procedure. That is, a battery case 21 made of SUS304 is prepared, a positive electrode 22 is arranged at the lower part of the battery case 21, and a lithium metal having a diameter of 14 mm and a thickness of 0.4 mm as a negative electrode 23 at a position facing through a polypropylene separator 24. Arranged. On the other hand, a solution prepared by adding 1 M of LiPF 6 to a mixture of ethylene carbonate and diethyl carbonate so that the volume ratio was 3: 7 was prepared, and this was used as an electrolytic solution. Then, a PTFE gasket 25 was placed in the battery case 21, and 0.2 ml of electrolyte was injected and impregnated. Finally, a sealing plate 26 made of SUS304 was placed in the opening of the battery case 21, and the end of the battery case 21 was crimped to seal the battery case 21, thereby producing a coin-type cell 20.

このようにして作製したコイン型セル20を用いて、評価を行った。まず、4.2Vになるまで電流密度0.2mA/cm2で定電流充電を行ったあと、終止電圧が2.0Vになるまで定電流放電を電流密度を変化させて行った。なお、定電流放電の電流密度は0.1C、1C、2C、5Cの4段階となるように調整した。また、評価は20℃で行った。このときの評価結果を表1に示す。表1から明らかなように、0.1Cにおける放電容量は169mAh/gとほぼ理論容量であり、2Cにおける放電容量は162mAh/g、5Cにおける放電容量は158mAh/gであった。このことから、放電時の出力を上げても放電容量はほとんど低下しないことが分かる。このため、優れた放電レート特性を有しているといえる。

Figure 0005245351
Evaluation was performed using the coin-type cell 20 produced in this manner. First, constant current charging was performed at a current density of 0.2 mA / cm 2 until reaching 4.2 V, and then constant current discharging was performed while changing the current density until the final voltage reached 2.0 V. In addition, the current density of the constant current discharge was adjusted so as to be four stages of 0.1C, 1C, 2C, and 5C. Moreover, evaluation was performed at 20 degreeC. The evaluation results at this time are shown in Table 1. As is clear from Table 1, the discharge capacity at 0.1 C was 169 mAh / g, which was almost theoretical capacity, the discharge capacity at 2 C was 162 mAh / g, and the discharge capacity at 5 C was 158 mAh / g. From this, it can be seen that the discharge capacity hardly decreases even when the output during discharge is increased. For this reason, it can be said that it has the outstanding discharge rate characteristic.
Figure 0005245351

[実施例2]
実施例1のSiO4成分として用いたオルトケイ酸リチウムをSO4成分として硫酸鉄(II)七水和物(FeSO4・7H2O)に代えた以外は、実施例1と同様にして粉末試料を調整した。この粉末試料につき、実施例1と同様の条件でX線回折を測定したところ、図1に示すような結果が得られた。この結果から、実施例1と同様にオリビン型単相であることが分かった。次に、実施例1と同様の条件で走査型電子顕微鏡による観察を行ったところ、図2(b)に示すような画像が得られた。この結果につき、実施例1と同様に粒径の平均値を求めたところ、この値は約0.1μmであった。
[Example 2]
Powder sample in the same manner as in Example 1, except that lithium orthosilicate used as the SiO 4 component in Example 1 was replaced with iron (II) sulfate heptahydrate (FeSO 4 .7H 2 O) as the SO 4 component Adjusted. When this powder sample was measured for X-ray diffraction under the same conditions as in Example 1, the results shown in FIG. 1 were obtained. From this result, it was found that it was an olivine type single phase as in Example 1. Next, observation with a scanning electron microscope was performed under the same conditions as in Example 1. As a result, an image as shown in FIG. 2B was obtained. With respect to this result, when the average value of the particle diameters was determined in the same manner as in Example 1, this value was about 0.1 μm.

この粉末試料を用いて実施例1と同様にしてコイン型セルを作製し、このコイン型セルにつき、実施例1と同様の条件で評価を行った。このときの評価結果を表1に示す。表1から明らかなように、0.1Cにおける放電容量は168mAh/gとほぼ理論容量であり、2Cにおける放電容量は160mAh/g、5Cにおける放電容量は153mAh/gであった。このことから、SiO4成分をSO4成分に変更しても、優れた放電レート特性を有しているといえる。 Using this powder sample, a coin-type cell was produced in the same manner as in Example 1, and this coin-type cell was evaluated under the same conditions as in Example 1. The evaluation results at this time are shown in Table 1. As is apparent from Table 1, the discharge capacity at 0.1 C was almost theoretical capacity of 168 mAh / g, the discharge capacity at 2 C was 160 mAh / g, and the discharge capacity at 5 C was 153 mAh / g. From this, it can be said that even if the SiO 4 component is changed to the SO 4 component, it has excellent discharge rate characteristics.

[比較例1]
実施例1のSiO4成分として用いたオルトケイ酸リチウムを添加せず、Fe:PO4のモル比が1:1になるように精秤した以外は、実施例1と同様にして粉末試料を調整した。
[Comparative Example 1]
A powder sample was prepared in the same manner as in Example 1 except that lithium orthosilicate used as the SiO 4 component in Example 1 was not added and the Fe: PO 4 molar ratio was precisely adjusted to 1: 1. did.

この粉末試料がオリビン型単相であることはよく知られているところであるが、実施例1と同様の条件でX線回折を測定したところ、図1に示すような結果が得られた。つまり、図1の比較例1のピークパターンはオリビン型単相であることを示す。次に、実施例1と同様の条件で走査型電子顕微鏡による観察を行ったところ、図2(c)に示すような画像が得られた。この結果につき、実施例1と同様に粒径の平均値を求めたところ、この値は約1.0μmであった。このことから、実施例1,2で用いたSiO4成分又はSO4成分は粒径を小さくするための一助となっているといえる。 Although it is well known that this powder sample is an olivine type single phase, when X-ray diffraction was measured under the same conditions as in Example 1, the results shown in FIG. 1 were obtained. That is, the peak pattern of Comparative Example 1 in FIG. 1 is an olivine type single phase. Next, observation with a scanning electron microscope was performed under the same conditions as in Example 1. As a result, an image as shown in FIG. 2C was obtained. With respect to this result, the average value of the particle diameter was determined in the same manner as in Example 1, and this value was about 1.0 μm. From this, it can be said that the SiO 4 component or the SO 4 component used in Examples 1 and 2 helps to reduce the particle size.

この粉末試料を用いて実施例1と同様にしてコイン型セルを作製し、このコイン型セルにつき、実施例1と同様の条件で評価を行った。このときの評価結果を表1に示す。表1から明らかなように、0.1Cにおける放電容量は170mAh/gとほぼ理論容量であるが、2Cにおける放電容量は125mAh/g、5Cにおける放電容量は80mAh/gであった。このことから、放電時の出力を上げると放電容量が大きく低下することが分かる。このため、比較例1では優れた放電レート特性が得られないといえる。   Using this powder sample, a coin-type cell was produced in the same manner as in Example 1, and this coin-type cell was evaluated under the same conditions as in Example 1. The evaluation results at this time are shown in Table 1. As is clear from Table 1, the discharge capacity at 0.1 C was 170 mAh / g, which was almost theoretical, but the discharge capacity at 2 C was 125 mAh / g, and the discharge capacity at 5 C was 80 mAh / g. From this, it can be seen that the discharge capacity greatly decreases when the output during discharge is increased. For this reason, it can be said that excellent discharge rate characteristics cannot be obtained in Comparative Example 1.

[実施例3]
実施例1のFe:PO4:SiO4のモル比が1:0.80:0.20になるように精秤した以外は、実施例1と同様にして粉末試料を調整した。この粉末試料につき、実施例1と同様の条件でX線回折を測定したところ、図1に示すような結果が得られた。この結果から、オリビン型単相のピークではアサインできないピークが多数あるため、オリビン型単相ではなく、何らかの副生成物が生じていることが分かる。次に、実施例1と同様の条件で走査型電子顕微鏡による観察を行ったところ、図2(d)に示すような画像が得られた。この結果につき、実施例1と同様に粒径の平均値を求めたところ、この値は約0.1μmであった。このことから、SiO4成分を混合して焼成することで粒径が小さくなるといえる。
[Example 3]
A powder sample was prepared in the same manner as in Example 1, except that the molar ratio of Fe: PO 4 : SiO 4 in Example 1 was precisely adjusted to 1: 0.80: 0.20. When this powder sample was measured for X-ray diffraction under the same conditions as in Example 1, the results shown in FIG. 1 were obtained. From this result, it can be seen that there are many peaks that cannot be assigned to the olivine-type single-phase peak, so that some by-product is generated instead of the olivine-type single phase. Next, observation with a scanning electron microscope was performed under the same conditions as in Example 1. As a result, an image as shown in FIG. 2D was obtained. With respect to this result, when the average value of the particle diameters was determined in the same manner as in Example 1, this value was about 0.1 μm. From this, it can be said that the particle size is reduced by mixing and baking the SiO 4 component.

この粉末試料を用いて実施例1と同様にしてコイン型セルを作製し、このコイン型セルにつき、実施例1と同様の条件で評価を行った。このときの評価結果を表1に示す。表1から明らかなように、0.1Cにおける放電容量は108mAh/gと理論充電容量から低下しているものの、2Cにおける放電容量は92mAh/g、5Cにおける放電容量は72mAh/gであった。このことから、比較例1と比べて優れた放電レート特性を有しているといえる。   Using this powder sample, a coin-type cell was produced in the same manner as in Example 1, and this coin-type cell was evaluated under the same conditions as in Example 1. The evaluation results at this time are shown in Table 1. As is apparent from Table 1, the discharge capacity at 0.1 C was 108 mAh / g, which was lower than the theoretical charge capacity, but the discharge capacity at 2 C was 92 mAh / g, and the discharge capacity at 5 C was 72 mAh / g. From this, it can be said that it has excellent discharge rate characteristics as compared with Comparative Example 1.

[実施例4]
実施例2のFe:PO4:SO4のモル比が1:0.80:0.20になるように精秤した以外は、実施例1と同様にして粉末試料を調整した。この粉末試料につき、実施例1と同様の条件でX線回折を測定したところ、図1に示すような結果が得られた。この結果より、実施例3と同様にオリビン型単相ではなく、何らかの副生成物が生じていることが分かる。次に、実施例1と同様の条件で走査型電子顕微鏡による観察を行ったところ、図2(e)に示すような画像が得られた。この結果につき、実施例1と同様に粒径の平均値を求めたところ、この値は約0.1μmであった。このことから、SO4を混合して焼成することで粒径が小さくなるといえる。
[Example 4]
A powder sample was prepared in the same manner as in Example 1, except that the molar ratio of Fe: PO 4 : SO 4 in Example 2 was precisely weighed so as to be 1: 0.80: 0.20. When this powder sample was measured for X-ray diffraction under the same conditions as in Example 1, the results shown in FIG. 1 were obtained. From this result, it is understood that some by-product is generated instead of the olivine type single phase as in Example 3. Next, observation with a scanning electron microscope was performed under the same conditions as in Example 1. As a result, an image as shown in FIG. With respect to this result, when the average value of the particle diameters was determined in the same manner as in Example 1, this value was about 0.1 μm. From this, it can be said that the particle size is reduced by mixing and firing SO 4 .

この粉末試料を用いて実施例1と同様にしてコイン型セルを作製し、このコイン型セルにつき、実施例1と同様の条件で評価を行った。このときの評価結果を表1に示す。表1から明らかなように、0.1Cにおける放電容量は103mAh/gと理論充電容量から低下しているものの、2Cにおける放電容量は88mAh/g、5Cにおける放電容量は70mAh/gであった。このことから、比較例1と比べて優れた放電レート特性を有しているといえる。   Using this powder sample, a coin-type cell was produced in the same manner as in Example 1, and this coin-type cell was evaluated under the same conditions as in Example 1. The evaluation results at this time are shown in Table 1. As is apparent from Table 1, the discharge capacity at 0.1 C was 103 mAh / g, which was lower than the theoretical charge capacity, but the discharge capacity at 2 C was 88 mAh / g, and the discharge capacity at 5 C was 70 mAh / g. From this, it can be said that it has excellent discharge rate characteristics as compared with Comparative Example 1.

上述した各実施例では金属元素MがFeである場合について説明したが、Ni,Co,Mnであっても、これらはFeと同程度のイオン半径を有しているため、金属元素MがFe以外にNi,Co,Mnのいずれかを含むものであったとしても、また、金属元素MがFeでなくNi,Co,Mnのいずれかであったとしても、上述した各実施例と同様の効果が得られることは、容易に類推されることである。   In each of the above-described embodiments, the case where the metal element M is Fe has been described. However, even though Ni, Co, and Mn have the same ionic radius as Fe, the metal element M is Fe. In addition to Ni, Co, or Mn, or even if the metal element M is not Fe but Ni, Co, or Mn, It is easy to analogize that the effect is obtained.

X線回折測定のスペクトルを表すグラフである。It is a graph showing the spectrum of a X-ray-diffraction measurement. 走査型電子顕微鏡写真である。It is a scanning electron micrograph. コイン型セル20の構成の概略を表す断面図である。2 is a cross-sectional view illustrating an outline of the configuration of a coin-type cell 20. FIG.

符号の説明Explanation of symbols

20 コイン型セル、21 電池ケース、22 正極、23 負極、24 セパレータ、25 ガスケット、26 封口板。   20 coin cell, 21 battery case, 22 positive electrode, 23 negative electrode, 24 separator, 25 gasket, 26 sealing plate.

Claims (2)

Li成分と、Fe成分と、PO4成分と、SiO4成分である粒成長抑制成分とを含む混合物を焼成し、得られた焼成物を解砕することにより製造され、
前記混合物は、1モルのFe成分に対して0.01モル以上0.05モル以下の前記粒成長抑制成分を含み、
前記焼成は、不活性ガス雰囲気下で行われ、
オリビン型単相であり、基本構造がLiFePO 4 で表される、
リチウム二次電池用活物質。
It is manufactured by firing a mixture containing a Li component, an Fe component, a PO 4 component, and a grain growth inhibiting component that is a SiO 4 component, and crushing the obtained fired product,
The mixture includes 0.01 to 0.05 mol of the grain growth inhibiting component with respect to 1 mol of Fe component,
The firing is performed in an inert gas atmosphere,
Olivine single phase der is, the basic structure is represented by LiFePO 4,
Active material for lithium secondary battery.
請求項1に記載のリチウム二次電池用活物質を正極活物質とする正極と、
リチウムイオンを吸蔵放出する材料を負極活物質とする負極と、
リチウムイオンを含む電解質と、
を備えたリチウム二次電池。
A positive electrode using the active material for a lithium secondary battery according to claim 1 as a positive electrode active material;
A negative electrode using a material that absorbs and releases lithium ions as a negative electrode active material;
An electrolyte containing lithium ions;
Rechargeable lithium battery.
JP2007272874A 2007-10-19 2007-10-19 Active material for lithium secondary battery and lithium secondary battery Expired - Fee Related JP5245351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007272874A JP5245351B2 (en) 2007-10-19 2007-10-19 Active material for lithium secondary battery and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007272874A JP5245351B2 (en) 2007-10-19 2007-10-19 Active material for lithium secondary battery and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2009104794A JP2009104794A (en) 2009-05-14
JP5245351B2 true JP5245351B2 (en) 2013-07-24

Family

ID=40706285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007272874A Expired - Fee Related JP5245351B2 (en) 2007-10-19 2007-10-19 Active material for lithium secondary battery and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP5245351B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5234862B2 (en) 2009-05-22 2013-07-10 シャープ株式会社 Positive electrode active material, positive electrode and non-aqueous secondary battery
JP5566723B2 (en) 2010-03-01 2014-08-06 古河電気工業株式会社 Fine particle mixture, active material aggregate, positive electrode active material, positive electrode, secondary battery, and production method thereof
JP5653637B2 (en) 2010-03-01 2015-01-14 古河電気工業株式会社 Positive electrode active material, positive electrode, secondary battery, and production method thereof
WO2011125722A1 (en) * 2010-04-01 2011-10-13 三菱化学株式会社 Positive electrode material for lithium secondary battery, method for producing the same, positive electrode for lithium secondary battery, and lithium secondary battery
JP5271975B2 (en) 2010-07-01 2013-08-21 シャープ株式会社 Positive electrode active material, positive electrode and non-aqueous electrolyte secondary battery
CN103069624B (en) 2010-07-01 2016-06-22 夏普株式会社 Positive electrode active materials, positive pole and non-aqueous secondary batteries
US9373844B2 (en) 2010-07-01 2016-06-21 Sharp Kabushiki Kaisha Positive electrode active substance containing lithium-containing metal oxide
JP5132727B2 (en) * 2010-07-12 2013-01-30 シャープ株式会社 Positive electrode active material, positive electrode and non-aqueous electrolyte secondary battery
WO2012057340A1 (en) * 2010-10-29 2012-05-03 旭硝子株式会社 Silicate-phosphate compound, secondary-battery positive electrode, secondary battery, and manufacturing methods therefor
JP5451671B2 (en) 2011-03-23 2014-03-26 シャープ株式会社 Positive electrode active material, positive electrode and non-aqueous secondary battery
JP5451681B2 (en) 2011-05-09 2014-03-26 シャープ株式会社 Positive electrode active material, positive electrode and non-aqueous secondary battery
US9472805B2 (en) 2011-09-01 2016-10-18 Semiconductor Energy Laboratory Co., Ltd. Alkali metal silicate, alkali transition metal silicate, and method for synthesizing silicate
EP2698346A1 (en) * 2012-08-14 2014-02-19 Clariant International Ltd. Mixed sulphate containing lithium-manganese-metal phosphate
CN111710846A (en) * 2020-06-29 2020-09-25 上海华谊(集团)公司 Lithium iron manganese phosphate powder material and preparation method and application thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5910382A (en) * 1996-04-23 1999-06-08 Board Of Regents, University Of Texas Systems Cathode materials for secondary (rechargeable) lithium batteries
US6777132B2 (en) * 2000-04-27 2004-08-17 Valence Technology, Inc. Alkali/transition metal halo—and hydroxy-phosphates and related electrode active materials
JP5324731B2 (en) * 2001-07-31 2013-10-23 三井造船株式会社 Method for producing secondary battery positive electrode material and secondary battery
JP2003157850A (en) * 2001-11-22 2003-05-30 Kyushu Univ Positive electrode material for secondary battery and secondary battery
JP3631202B2 (en) * 2001-12-21 2005-03-23 三洋電機株式会社 Non-aqueous electrolyte battery
JP4233349B2 (en) * 2003-02-25 2009-03-04 三洋電機株式会社 Lithium secondary battery
JP4641375B2 (en) * 2003-10-20 2011-03-02 日立マクセル株式会社 Method for producing composite of olivine type lithium phosphate and carbon material
JP2007257862A (en) * 2006-03-20 2007-10-04 Nissan Motor Co Ltd Electrode for secondary battery, and secondary battery

Also Published As

Publication number Publication date
JP2009104794A (en) 2009-05-14

Similar Documents

Publication Publication Date Title
JP5245351B2 (en) Active material for lithium secondary battery and lithium secondary battery
KR102005513B1 (en) positive active material for rechargeable lithium battery, method for preparing the same, electrode including the same, and rechargeable lithium battery including the electrode
KR101718054B1 (en) Positive active material, and electrode and lithium battery containing the material
JP4963330B2 (en) Lithium iron composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP2008147068A (en) Lithium composite oxide for nonaqueous electrolyte secondary battery
US9379376B2 (en) Positive electrode containing lithium nickel composite oxide for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, and method for producing the same
JP7402566B2 (en) Positive electrode active material, manufacturing method thereof, and lithium secondary battery including positive electrode containing the same
WO2014104234A1 (en) Surface-modified lithium-containing composite oxide particles, positive electrode using surface-modified lithium-containing composite oxide particles, and nonaqueous electrolyte secondary battery
WO2017150020A1 (en) Nonaqueous electrolyte secondary battery
WO2011068255A1 (en) Pyrophosphate compound and method for producing same
JP2007335325A (en) Cathode active material for nonaqueous electrolyte secondary battery and battery
JP2008153017A (en) Positive active material for nonaqueous electrolyte secondary battery
KR20100105387A (en) Non-aqueous electrolyte secondary battery
KR20120129816A (en) Accumulator device and positive electrode
JP2002117833A (en) Nonaqueous electrolyte secondary battery
CA2751819A1 (en) Non-homogeneous positive electrode materials combining high safety and high power in a li rechargeable battery
JP2004362895A (en) Negative electrode material, and battery using it
JP5157365B2 (en) Lithium ion secondary battery and electric vehicle power source using the same
JP2014022319A (en) NEGATIVE ELECTRODE ACTIVE MATERIAL FOR SECONDARY BATTERY, METHOD FOR PRODUCING THE SAME, NEGATIVE ELECTRODE FOR SECONDARY BATTERY, SECONDARY BATTERY, AND Si-OXIDE SOLID ELECTROLYTE COMPLEX
KR20090012162A (en) A process for preparing lithium iron phosphorus based composite oxide carbon complex and a process for preparing coprecipitate comprising lithium, iron and phosphorus
WO2018043188A1 (en) Negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP2002083597A (en) Lithium secondary battery
JP2010232091A (en) Method for manufacturing positive active material for lithium ion battery, positive active material for lithium ion battery, electrode for lithium ion battery, and lithium ion battery
JP5586116B2 (en) Positive electrode mixture for lithium secondary battery and use thereof
JP6784013B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130325

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees