JP4895625B2 - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
JP4895625B2
JP4895625B2 JP2006017305A JP2006017305A JP4895625B2 JP 4895625 B2 JP4895625 B2 JP 4895625B2 JP 2006017305 A JP2006017305 A JP 2006017305A JP 2006017305 A JP2006017305 A JP 2006017305A JP 4895625 B2 JP4895625 B2 JP 4895625B2
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
lithium secondary
secondary battery
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006017305A
Other languages
Japanese (ja)
Other versions
JP2007200691A (en
JP2007200691A5 (en
Inventor
宏之 秋田
宏宜 白方
幸治 蓮見
英樹 北尾
佳典 喜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2006017305A priority Critical patent/JP4895625B2/en
Publication of JP2007200691A publication Critical patent/JP2007200691A/en
Publication of JP2007200691A5 publication Critical patent/JP2007200691A5/ja
Application granted granted Critical
Publication of JP4895625B2 publication Critical patent/JP4895625B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明はリチウム二次電池に係り、特に、LiFePO4で表されるオリビン型構造を有するリン酸鉄リチウム等の電気抵抗が大きい正極活物質を用いたリチウム二次電池において、大電流での充放電サイクル特性を向上させた点に特徴を有するものである。 The present invention relates to a lithium secondary battery, and in particular, in a lithium secondary battery using a positive electrode active material having a large electrical resistance, such as lithium iron phosphate having an olivine structure represented by LiFePO 4 , charging with a large current. It is characterized in that the discharge cycle characteristics are improved.

近年、電子機器などの電源として二次電池が使用され、特に、高出力,高エネルギー密度の新型二次電池として、非水電解液を用い、リチウムイオンを正極と負極との間で移動させて充放電を行うようにしたリチウム二次電池が利用されるようになった。   In recent years, secondary batteries have been used as power sources for electronic devices. Especially, as a new secondary battery with high output and high energy density, non-aqueous electrolyte is used and lithium ions are moved between the positive and negative electrodes. Rechargeable lithium secondary batteries have come to be used.

そして、このようなリチウム二次電池においては、一般に正極における正極活物質にコバルト酸リチウムLiCoO2が用いられると共に、負極における負極活物質にリチウム金属やリチウム合金やリチウムの吸蔵・放出が可能な炭素材料が用いられている。 In such a lithium secondary battery, lithium cobaltate LiCoO 2 is generally used as the positive electrode active material in the positive electrode, and carbon capable of occluding and releasing lithium metal, a lithium alloy, and lithium in the negative electrode active material in the negative electrode. Material is used.

しかし、正極活物質のLiCoO2に使用されるCoは埋蔵量が限られており、希少な資源であるため、生産コストが高くなるという問題があった。また、正極活物質にLiCoO2を用いたリチウム二次電池の場合、充電状態において、通常の使用状態では考えられないような高温になると、熱安定性が大きく低下するという問題もあった。 However, Co used for the positive electrode active material LiCoO 2 has a limited reserve and is a scarce resource, and thus has a problem of high production costs. In addition, in the case of a lithium secondary battery using LiCoO 2 as a positive electrode active material, there is a problem that the thermal stability is greatly reduced at a high temperature that cannot be considered in a normal use state in a charged state.

このため、近年においては、上記のLiCoO2に代わる正極活物質として、スピネルマンガン酸リチウムLiMn24やLiNiCoMnO2で表されるリチウム含有金属複合酸化物等を使用することが検討されている。 Therefore, in recent years, the use of lithium-containing metal composite oxides such as lithium spinel manganate LiMn 2 O 4 and LiNiCoMnO 2 as a positive electrode active material in place of LiCoO 2 has been studied.

しかし、正極活物質にLiMn24を用いた場合、充分な放電容量を得ることが困難であり、また電池温度が高まると、このLiMn24中におけるMnが溶解する等の問題があった。また、正極活物質にLiNiCoMnO2を用いた場合には、LiCoO2を用いた場合と同様の問題があった。 However, when LiMn 2 O 4 is used as the positive electrode active material, it is difficult to obtain a sufficient discharge capacity, and when the battery temperature increases, there are problems such as dissolution of Mn in this LiMn 2 O 4. It was. Further, when LiNiCoMnO 2 is used as the positive electrode active material, there is a problem similar to that when LiCoO 2 is used.

このため、近年においては、資源が豊富なFeを使用し、熱安定性にも優れたLiFePO4で表されるオリビン型構造を有するリン酸鉄リチウムを正極活物質に使用したリチウム二次電池が提案されている(例えば、特許文献1,2参照。)。 For this reason, in recent years, lithium secondary batteries using lithium iron phosphate having an olivine structure represented by LiFePO 4, which is rich in resources and excellent in thermal stability, are used as a positive electrode active material. It has been proposed (for example, see Patent Documents 1 and 2).

しかし、オリビン型構造を有するリン酸鉄リチウムは、上記のLiCoO2、LiMn24、LiNiCoMnO2等に比べて電気抵抗が大きく、正極における電気抵抗値が高くなるという問題があった。 However, lithium iron phosphate having an olivine type structure has a problem that the electrical resistance is higher than that of the above-described LiCoO 2 , LiMn 2 O 4 , LiNiCoMnO 2, and the like, and the electrical resistance value at the positive electrode is increased.

特に、長尺状の正極と長尺状の負極との間にセパータを介在させて巻いた電極体を非水電解液と一緒に電池容器内に収容させたリチウム二次電池において、上記のリン酸鉄リチウム等の電気抵抗が大きい正極活物質を使用した場合、大電流で充放電させると、電極体の内部において反応が起こりやすい箇所に電流が集中して反応の不均一が生じ、大電流で充放電を繰り返して行うと、次第に正極や負極における材料が局所的に劣化し、作動電圧が低下して電池容量が減少するという問題があった。
特表2000−509193号公報 特開2002−110162号公報
In particular, in a lithium secondary battery in which an electrode body wound with a separator interposed between a long positive electrode and a long negative electrode is housed in a battery container together with a non-aqueous electrolyte, the above phosphorous is used. When a positive electrode active material with high electrical resistance such as lithium iron oxide is used, charging and discharging with a large current causes the current to concentrate in a place where the reaction is likely to occur inside the electrode body, resulting in a non-uniform reaction. When charging / discharging is repeated, there is a problem that the materials in the positive electrode and the negative electrode gradually deteriorate locally, the operating voltage decreases, and the battery capacity decreases.
JP 2000-509193 A JP 2002-110162 A

本発明は、オリビン型構造を有するリン酸鉄リチウム等の電気抵抗が大きい正極活物質を用いたリチウム二次電池における上記のような問題を解決することを課題とするものであり、特に、長尺状の正極と長尺状の負極との間にセパータを介在させて巻いた電極体を非水電解液と一緒に電池容器内に収容させたリチウム二次電池において、大電流で充放電を繰り返して行った場合に、次第に正極や負極における材料が局所的に劣化するのを抑制し、大電流での充放電サイクル特性を向上させることを課題とするものである。   An object of the present invention is to solve the above problems in a lithium secondary battery using a positive electrode active material having a large electric resistance such as lithium iron phosphate having an olivine type structure, In a lithium secondary battery in which an electrode body wound with a separator interposed between a long positive electrode and a long negative electrode is housed in a battery container together with a non-aqueous electrolyte, charging and discharging are performed with a large current. When it repeats, it makes it a subject to suppress the material in a positive electrode or a negative electrode gradually degrading locally, and to improve the charging / discharging cycling characteristics in a large current.

本発明においては、上記のような課題を解決するため、リチウムを挿入脱離可能な正極活物質を含む正極層が形成された長尺状の正極と、リチウムを挿入脱離可能な負極活物質を含む負極層が形成された長尺状の負極との間にセパレータを介在させて巻いた電極体を非水電解液と一緒に電池容器内に収容させ、上記の正極に設けた正極集電タブを負極外部端子に接続させたリチウム二次電池において、上記の負極集電タブを少なくとも負極の長手方向両端部に設けるとともに、上記正極層における正極活物質がLiFePO で表されるオリビン型構造を有するリン酸鉄リチウムであることを特徴とする。
In the present invention, in order to solve the above-described problems, a long positive electrode having a positive electrode layer containing a positive electrode active material capable of inserting and extracting lithium, and a negative electrode active material capable of inserting and removing lithium A positive electrode current collector provided in the above positive electrode by accommodating a wound electrode body together with a non-aqueous electrolyte in a battery container with a separator interposed between a long negative electrode formed with a negative electrode layer containing the tab in connection to the lithium secondary battery was a negative electrode external terminal, olivine Rutotomoni provided in the longitudinal direction both end portions of at least the negative electrode a negative electrode current collector tabs above SL, a positive electrode active material in the positive electrode layer is represented by LiFePO 4 It is characterized by being lithium iron phosphate having a mold structure.

なお、負極集電タブの位置については、必ずしも厳格に長手方向両端部に限られず、電極体の巻き始め側と巻き終わり側とに位置させるようにすればよい。ただし、正極と負極とをセパータを介在させて巻き取る場合、負極集電タブが対向する正極部分には正極活物質が存在させることができない。これは、負極集電タブが対向する正極部分には正極活物質が存在すると、充電する際に正極活物質から離脱したリチウムが負極集電タブ近傍の負極活物質に挿入されるため、この部分で負極活物質に挿入されなかったリチウムが負極上に析出して、内部短絡や容量低下を引き起こすためである。従って、正極活物質の塗布部が減少して容量が低下する他、正極活物質を塗布していない対向面に確実に負極集電タブを位置させる技術が必要になる。上記の理由により、負極集電タブは正極と対向しない部分、すなわち長手方向両端部に設けることが好ましい。   The position of the negative electrode current collecting tab is not necessarily strictly limited to both ends in the longitudinal direction, and may be positioned on the winding start side and the winding end side of the electrode body. However, when the positive electrode and the negative electrode are wound with a separator interposed, the positive electrode active material cannot be present in the positive electrode portion where the negative electrode current collecting tab faces. This is because when the positive electrode active material is present in the positive electrode portion facing the negative electrode current collecting tab, lithium separated from the positive electrode active material during charging is inserted into the negative electrode active material in the vicinity of the negative electrode current collecting tab. This is because lithium that has not been inserted into the negative electrode active material precipitates on the negative electrode, causing an internal short circuit and a decrease in capacity. Therefore, a technique for surely positioning the negative electrode current collecting tab on the opposite surface where the positive electrode active material is not applied is required in addition to a decrease in capacity due to a decrease in the application portion of the positive electrode active material. For the above reasons, the negative electrode current collecting tab is preferably provided at a portion not facing the positive electrode, that is, at both ends in the longitudinal direction.

ここで、前記の正極層における正極活物質としては、例えば、LiFePO4で表されるオリビン型構造を有するリン酸鉄リチウムが用いられる。また、リン酸鉄リチウムの表面を炭素でコートしたものや、B,F,Mg,Al,Ti,Cr,V,Fe,Cu,Zn,Nb,Zr,Snから選択される少なくとも一種の元素を含むリン酸鉄リチウムなどを用いることができる。さらに、正極活物質にリン酸鉄リチウムを用いた場合に限られず、正極層の電気抵抗値が上記のような範囲になる正極に対して有効である。 Here, as the positive electrode active material in the positive electrode layer, for example, lithium iron phosphate having an olivine structure represented by LiFePO 4 is used. In addition, the surface of lithium iron phosphate is coated with carbon, or at least one element selected from B, F, Mg, Al, Ti, Cr, V, Fe, Cu, Zn, Nb, Zr, and Sn. For example, lithium iron phosphate can be used. Furthermore, the present invention is not limited to the case where lithium iron phosphate is used as the positive electrode active material, and is effective for the positive electrode in which the electric resistance value of the positive electrode layer is in the above range.

また、LiFePO4で表されるオリビン型構造を有するリン酸鉄リチウム等の電気抵抗が大きい正極活物質を用いた場合において、正極層における電気抵抗値を3000Ω/cm〜50000Ω/cmの範囲に調整するにあたっては、正極層中に導電剤を含有させるようにし、この導電剤としては、繊維状炭素を用いることが好ましい。これは、導電剤としてアセチレンブラックやケッチェンブラックを用いた場合、正極層における電気抵抗値を上記の範囲に調整するためには、これらの導電剤を多量に添加させることが必要となり、正極層を塗布によって形成することが困難になると共に、正極層における正極活物質の割合が減少して十分な電池容量が得られなくなる。これに対して、導電剤として繊維状炭素を用いた場合、アセチレンブラックやケッチェンブラックに比べて少量で正極層における電気抵抗値を低下させることができ、正極層を塗布によって形成することが容易になると共に、正極層における正極活物質の割合が減少するのも防止されて、十分な電池容量が得られるようになるためである。なお、上記の繊維状炭素としては、例えば、平均繊維径が50nm〜300nmの範囲で、繊維長が5μm〜100μmの範囲の場合に、良好な電子伝導性が得られる。 Further, when a positive electrode active material having a large electric resistance such as lithium iron phosphate having an olivine structure represented by LiFePO 4 is used, the electric resistance value in the positive electrode layer is adjusted to a range of 3000Ω / cm to 50000Ω / cm. In doing so, a conductive agent is contained in the positive electrode layer, and it is preferable to use fibrous carbon as the conductive agent. This is because, when acetylene black or ketjen black is used as a conductive agent, it is necessary to add a large amount of these conductive agents in order to adjust the electrical resistance value in the positive electrode layer to the above range. Is difficult to form by coating, and the ratio of the positive electrode active material in the positive electrode layer decreases, so that a sufficient battery capacity cannot be obtained. In contrast, when fibrous carbon is used as the conductive agent, the electrical resistance value in the positive electrode layer can be reduced with a small amount compared to acetylene black or ketjen black, and the positive electrode layer can be easily formed by coating. In addition, the ratio of the positive electrode active material in the positive electrode layer is also prevented from decreasing, and a sufficient battery capacity can be obtained. In addition, as said fibrous carbon, favorable electronic conductivity is obtained, for example, when the average fiber diameter is in the range of 50 nm to 300 nm and the fiber length is in the range of 5 μm to 100 μm.

ここで、導電剤として繊維状炭素を正極層中に添加させるにあたり、繊維状炭素の添加量が少ないと、正極層における電気抵抗値を十分に低下させることができなくなる一方、添加量が多くなりすぎると、正極層を塗布によって形成することが困難になると共に、正極層における正極活物質の割合が減少して十分な電池容量が得られなくなる。このため、正極層中に添加させる繊維状炭素の量を6wt%〜20wt%の範囲にすることが好ましい。   Here, when adding fibrous carbon to the positive electrode layer as a conductive agent, if the amount of fibrous carbon added is small, the electrical resistance value in the positive electrode layer cannot be sufficiently reduced, while the amount added is large. If the amount is too large, it becomes difficult to form the positive electrode layer by coating, and the ratio of the positive electrode active material in the positive electrode layer decreases, so that a sufficient battery capacity cannot be obtained. For this reason, it is preferable to make the quantity of the fibrous carbon added in a positive electrode layer into the range of 6 wt%-20 wt%.

また、上記の正極層の厚みが厚くなりすぎると、この正極層におけるリチウムイオンの拡散が遅くなって反応の不均一が大きくなるため、この正極層の厚みを100μm以下にすることが好ましい。   In addition, if the thickness of the positive electrode layer becomes too thick, the diffusion of lithium ions in the positive electrode layer becomes slow and the reaction becomes non-uniform. Therefore, the thickness of the positive electrode layer is preferably 100 μm or less.

また、上記の負極に用いる負極活物質は特に限定されるものではないが、例えば、天然黒鉛,人造黒鉛,難黒鉛化性炭素,コークスなどの炭素材料、Si,SnなどのLiと合金化するもの、及び上記の正極活物質よりも低い電位でリチウムの挿入離脱が行われる物質を用いることができ、特に、広い領域で高い電池電圧を得るためには、負極活物質に主として黒鉛を用いることが好ましい。   The negative electrode active material used for the negative electrode is not particularly limited. For example, it is alloyed with a carbon material such as natural graphite, artificial graphite, non-graphitizable carbon, or coke, or Li such as Si or Sn. In addition, in order to obtain a high battery voltage in a wide area, graphite is mainly used as a negative electrode active material. Is preferred.

また、負極集電タブを少なくとも負極の長手方向両端部に設ける場合において、負極の長さが長くなりすぎると、長さ方向における反応の不均一が大きくなるため、集電タブ1本あたりの負極の長さを100cm以下にすることが好ましい。   Further, in the case where the negative electrode current collecting tab is provided at least at both ends in the longitudinal direction of the negative electrode, if the length of the negative electrode becomes too long, the non-uniformity of the reaction in the length direction becomes large. The length is preferably 100 cm or less.

また、正極集電タブについては、正極の長手方向端部よりも中央部に設けることが好ましく、正極集電タブの間の長さが長くなりすぎると、長さ方向における反応の不均一が大きくなる。正極の長手方向の長さが200cm以内の場合には少なくとも1本、200cmを超える場合には、少なくとも正極長さ/100cmで求められる本数の正極集電タブを存在させることが好ましい。さらに、正極集電タブが1本の場合には、正極の長手方向中央部に設けるようにし、複数本設ける場合には、正極集電タブ間の間隔がほぼ一定になるようにすることが好ましい。   In addition, the positive electrode current collecting tab is preferably provided in the center portion rather than the longitudinal end portion of the positive electrode, and if the length between the positive electrode current collecting tabs is too long, the reaction in the length direction is highly uneven. Become. When the length of the positive electrode in the longitudinal direction is within 200 cm, it is preferable to have at least one positive electrode current collecting tab required when the positive electrode length / 100 cm is exceeded. Further, when there is one positive current collecting tab, it is preferably provided at the center in the longitudinal direction of the positive electrode. .

また、上記の非水電解液に用いる非水系溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート等の環状炭酸エステルや、ジメチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート、エチルメチルカーボネート、エチルプロピルカーボネート等の鎖状炭酸エステル等を1種または複数混合させたものを用いることができる。   Examples of the non-aqueous solvent used in the non-aqueous electrolyte include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate, dimethyl carbonate, diethyl carbonate, dipropyl carbonate, ethyl methyl carbonate, A mixture of one or more chain carbonates such as ethylpropyl carbonate can be used.

また、非水電解液に用いる溶質としては、例えば、ヘキサフルオロリン酸リチウム、トリフルオロメタンスルホン酸リチウム、過塩素酸リチウム、テトラフルオロホウ酸リチウム、トリフルオロメタンスルホン酸イミドリチウム、リチウム−ビス(オキサラト)ボレート等のリチウム化合物を用いることができる。   Examples of the solute used in the non-aqueous electrolyte include lithium hexafluorophosphate, lithium trifluoromethanesulfonate, lithium perchlorate, lithium tetrafluoroborate, lithium trifluoromethanesulfonate, and lithium-bis (oxalato). Lithium compounds such as borates can be used.

本発明におけるリチウム二次電池においては、リチウムを挿入脱離可能な負極活物質を含む負極層が形成された長尺状の負極における負極集電タブを少なくとも負極の長手方向両端部に設けたため、リチウムを挿入脱離可能な正極活物質を含む正極層が形成された長尺状の正極において、上記の正極層の電気抵抗値が3000Ω/cm〜50000Ω/cmの範囲にある場合においても、負極に設けた各負極集電タブを通して充放電が行われるようになる。   In the lithium secondary battery according to the present invention, the negative electrode current collecting tabs in the long negative electrode in which the negative electrode layer containing the negative electrode active material capable of inserting and removing lithium is provided at both ends in the longitudinal direction of the negative electrode. In the case of a long positive electrode having a positive electrode layer containing a positive electrode active material capable of inserting and desorbing lithium, the negative electrode even when the electric resistance value of the positive electrode layer is in the range of 3000Ω / cm to 50000Ω / cm Charging / discharging is performed through the negative electrode current collecting tabs provided in FIG.

この結果、本発明におけるリチウム二次電池においては、大電流で充放電を繰り返して行った場合においても、正極や負極における材料が局所的に劣化するのが抑制され、作動電圧が低下して電池容量が減少するのが防止され、大電流での充放電サイクル特性が向上する。   As a result, in the lithium secondary battery according to the present invention, even when charging and discharging are repeatedly performed with a large current, local deterioration of the material in the positive electrode and the negative electrode is suppressed, and the operating voltage is lowered. The capacity is prevented from decreasing, and the charge / discharge cycle characteristics at a large current are improved.

次に、本発明の実施例に係るリチウム二次電池について具体的に説明すると共に、この実施例に係るリチウム二次電池においては、大電流で充放電を繰り返して行った場合においても作動電圧が低下するのが抑制され、大電流での充放電サイクル特性が向上することを、比較例をあげて明らかにする。なお、この発明におけるリチウム二次電池は、下記の実施例に示したものに限定されず、その要旨を変更しない範囲において適宜変更して実施できるものである。   Next, the lithium secondary battery according to the embodiment of the present invention will be described in detail. In the lithium secondary battery according to this embodiment, even when charging and discharging are repeated with a large current, the operating voltage is high. It will be clarified by a comparative example that the decrease is suppressed and the charge / discharge cycle characteristics at a large current are improved. In addition, the lithium secondary battery in this invention is not limited to what was shown in the following Example, It can implement by changing suitably in the range which does not change the summary.

(実施例1)
実施例1においては、正極を作製するにあたり、正極活物質としてオリビン型構造を有するリン酸鉄リチウムLiFePO4を用いるようにした。
Example 1
In Example 1, when producing a positive electrode, lithium iron phosphate LiFePO 4 having an olivine structure was used as a positive electrode active material.

ここで、正極活物質のLiFePO4を製造するにあたっては、リン酸鉄八水和物Fe3(PO42・8H2Oとリン酸リチウムLi3(PO43とを1:1のモル比になるように混合し、この混合物と直径1cmのステンレス製ボールとを直径10cmのステンレス製ポットに投入し、公転半径30cm、公転回転数150rpm、自転回転数150rpmの条件で12時間混合させた。その後、この混合物を非酸化性雰囲気中の電気炉において600℃の温度で10時間焼成させて、上記のLiFePO4の粉末を得た。 Here, in producing LiFePO 4 as the positive electrode active material, iron phosphate octahydrate Fe 3 (PO 4 ) 2 .8H 2 O and lithium phosphate Li 3 (PO 4 ) 3 were mixed at a ratio of 1: 1. This mixture and a stainless steel ball having a diameter of 1 cm are put into a stainless steel pot having a diameter of 10 cm and mixed for 12 hours under the conditions of a revolution radius of 30 cm, a revolution speed of 150 rpm, and a rotational speed of 150 rpm. It was. Thereafter, this mixture was baked in an electric furnace in a non-oxidizing atmosphere at a temperature of 600 ° C. for 10 hours to obtain the above LiFePO 4 powder.

そして、上記の正極活物質のLiFePO4粉末と、導電剤の繊維状炭素(繊維径:150nm、繊維長:5〜20μm)と、結着剤のポリフッ化ビニリデンを溶解させたN−メチル−2−ピロリドン溶液とを、正極活物質と導電剤と結着剤との重量比が87:10:3となるように調整し、これらを混練して正極スラリーを作製した。 Then, N-methyl-2 in which LiFePO 4 powder as the positive electrode active material, fibrous carbon (fiber diameter: 150 nm, fiber length: 5 to 20 μm) as a conductive agent, and polyvinylidene fluoride as a binder are dissolved. The pyrrolidone solution was adjusted so that the weight ratio of the positive electrode active material, the conductive agent and the binder was 87: 10: 3, and these were kneaded to prepare a positive electrode slurry.

次いで、この正極スラリーをアルミニウム箔からなる正極集電体の両面に塗布し、これを乾燥させて、圧延ローラにより圧延させ、図1に示すように、正極集電体1aの両面に正極層1bを形成した後、正極集電タブ1cを正極層1bが形成されていない正極集電体1aの中央部に取り付けて長尺状の正極1を作製した。なお、この正極1の長さは70cmであり、片面の正極層1bの厚みは68μmであった。   Next, this positive electrode slurry is applied to both surfaces of a positive electrode current collector made of aluminum foil, dried, and rolled with a rolling roller. As shown in FIG. 1, positive electrode layers 1b are formed on both surfaces of the positive electrode current collector 1a. After that, the positive electrode current collecting tab 1c was attached to the central portion of the positive electrode current collector 1a on which the positive electrode layer 1b was not formed to produce a long positive electrode 1. The length of the positive electrode 1 was 70 cm, and the thickness of the positive electrode layer 1b on one side was 68 μm.

ここで、上記の正極1における正極層1bの電気抵抗値A[Ω/cm]を測定するにあたっては、図2に示すように、一対の端子t1,t2を正極層1bの表面に所要間隔を介して接触させ、抵抗測定器(三菱化学社製:MCP−T600)により一対の端子t1,t2の間の電気抵抗X[Ω]を測定した。この場合、図2に示すように、電流は正極層1bを通して、電気抵抗が正極層1bより著しく低い正極集電体1aを流れるため、正極層1bの電気抵抗値A[Ω/cm]を、上記の電気抵抗X[Ω]と、片面の正極層1bの厚みd[cm]とから下記の式により算出した。なお、正極集電体1aの電気抵抗は、上記のように正極層1bに比べて著しく低いため、無視できる程度であった。   Here, in measuring the electrical resistance value A [Ω / cm] of the positive electrode layer 1b in the positive electrode 1 as described above, as shown in FIG. 2, a pair of terminals t1 and t2 are placed on the surface of the positive electrode layer 1b at a required interval. The electrical resistance X [Ω] between the pair of terminals t1 and t2 was measured with a resistance measuring instrument (MCP-T600 manufactured by Mitsubishi Chemical Corporation). In this case, as shown in FIG. 2, the current flows through the positive electrode layer 1b and the positive electrode current collector 1a whose electric resistance is significantly lower than that of the positive electrode layer 1b. Therefore, the electric resistance value A [Ω / cm] of the positive electrode layer 1b is The electric resistance X [Ω] and the thickness d [cm] of the positive electrode layer 1b on one side were calculated by the following formula. In addition, since the electrical resistance of the positive electrode current collector 1a was significantly lower than that of the positive electrode layer 1b as described above, it was negligible.

A[Ω/cm]=X[Ω]÷d[cm]/2   A [Ω / cm] = X [Ω] ÷ d [cm] / 2

この結果、正極活物質にLiFePO4を用いた上記の正極層1bの電気抵抗値Aは9300Ω/cmであった。 As a result, the electrical resistance value A of the positive electrode layer 1b using LiFePO 4 as the positive electrode active material was 9300 Ω / cm.

また、負極を作製するにあたっては、負極活物質の黒鉛と、結着剤のスチレンブタジエンゴムと、増粘剤のカルボキシメチルセルロースを溶解させた水溶液とを、負極活物質と結着剤と増粘剤との重量比が98:1:1になるように調整し、これらを混練して負極スラリーを作製した。   In preparing the negative electrode, the negative electrode active material graphite, the binder styrene butadiene rubber, and the thickener carboxymethyl cellulose dissolved in the aqueous solution, the negative electrode active material, the binder and the thickener. The weight ratio was adjusted to 98: 1: 1, and these were kneaded to prepare a negative electrode slurry.

次いで、この負極スラリーを銅箔からなる負極集電体の両面に塗布し、これを乾燥させて、圧延ローラにより圧延させ、図3に示すように、負極集電体2aの両面に負極層2bを形成した後、負極集電タブ2cを負極層2bが形成されていない負極集電体2aの両端部に取り付けて長尺状の負極2を作製した。なお、この負極2の長さは77cmであり、片面の負極層2bの厚みは48μmであった。   Next, this negative electrode slurry is applied to both sides of a negative electrode current collector made of copper foil, dried, and rolled with a rolling roller. As shown in FIG. 3, a negative electrode layer 2b is formed on both sides of the negative electrode current collector 2a. After forming the negative electrode current collector tab 2c, the negative electrode current collector tab 2c was attached to both ends of the negative electrode current collector 2a on which the negative electrode layer 2b was not formed to produce a long negative electrode 2. The length of the negative electrode 2 was 77 cm, and the thickness of the negative electrode layer 2b on one side was 48 μm.

そして、上記の負極2と正極1との間にポリエチレン製のセパレータ3を挟み込むようにして、これらを巻き取って電極体10を作製した。この場合、上記の負極集電タブ2cは電極体10の巻き始め部分と巻き終わり部分とに位置するようになる。   Then, a polyethylene separator 3 was sandwiched between the negative electrode 2 and the positive electrode 1, and these were wound up to produce an electrode body 10. In this case, the negative electrode current collecting tab 2c is positioned at the winding start portion and the winding end portion of the electrode body 10.

また、非水電解液としては、エチレンカーボネートとジメチルカーボネートとを1:1の体積比で混合させた混合溶媒に、1モル/リットルの濃度になるようにLiPF6を溶解させた非水電解液を用いるようにした。 As the non-aqueous electrolyte, a non-aqueous electrolyte in which LiPF 6 is dissolved in a mixed solvent in which ethylene carbonate and dimethyl carbonate are mixed at a volume ratio of 1: 1 so as to have a concentration of 1 mol / liter. Was used.

そして、図4に示すように、上記のように巻き取った電極体10を電池容器20の電池缶21内に挿入し、上記の負極2における2本の負極集電タブ2cを重ねて負極外部端子となる電池缶21の底部に溶接させると共に、上記の正極1における正極集電タブ1cを正極外部端子となる封口体22に超音波溶接し、110℃で2時間真空乾燥処理した後、アルゴン雰囲気下において上記の電池缶20内に上記の非水電解液を注液し、電池缶21と封口体22との間に絶縁パッキン23を挟むようにしてかしめ、容量が約1Ahの円筒型18650サイズのリチウム二次電池を作製した。   Then, as shown in FIG. 4, the electrode body 10 wound up as described above is inserted into the battery can 21 of the battery container 20, and the two negative electrode current collecting tabs 2 c in the negative electrode 2 are overlapped to overlap the negative electrode exterior. While welding to the bottom part of the battery can 21 used as the terminal, the positive electrode current collecting tab 1c in the positive electrode 1 was ultrasonically welded to the sealing body 22 used as the positive electrode external terminal, vacuum-treated at 110 ° C. for 2 hours, In the atmosphere, the non-aqueous electrolyte is poured into the battery can 20 and caulked with the insulating packing 23 sandwiched between the battery can 21 and the sealing body 22, and a cylindrical 18650 size having a capacity of about 1 Ah. A lithium secondary battery was produced.

(比較例1)
比較例1においては、上記の実施例1における負極2の作製において、負極集電タブ2cを負極集電体2aの一端部にだけ取り付け、この負極集電タブ2cが上記の電極体10の巻き終わり部分に位置するようにし、それ以外は、上記の実施例1の場合と同様にして、比較例1のリチウム二次電池を作製した。
(Comparative Example 1)
In Comparative Example 1, in the production of the negative electrode 2 in Example 1 described above, the negative electrode current collector tab 2c was attached only to one end of the negative electrode current collector 2a, and the negative electrode current collector tab 2c was wound around the electrode body 10 described above. A lithium secondary battery of Comparative Example 1 was produced in the same manner as in Example 1 except that it was positioned at the end portion.

(参考例1)
参考例1においては、正極1を作製するにあたり、正極活物質として、LiNi1/3Co1/3Mn1/32とスピネル型構造を有するマンガン酸リチウムであるLi1.1Mn1.895Al0.0054とを1:1の重量比で混合させたものを用い、この正極活物質と、導電剤の繊維状炭素と、結着剤のポリフッ化ビニリデンを溶解させたN−メチル−2−ピロリドン溶液とを、正極活物質と導電剤と結着剤との重量比が94:3:3となるように調整した正極スラリーを用い、長さが67cm、片面の正極層1bの厚みが60μmの正極1を作製した。なお、この正極1についても、上記の実施例1の場合と同様にして、正極層1bの電気抵抗値A[Ω/cm]を測定した結果、この正極層の電気抵抗値Aは1800Ω/cmであった。
(Reference Example 1)
In Reference Example 1, Li 1.1 Mn 1.895 Al 0.005 O, which is a lithium manganate having a spinel structure with LiNi 1/3 Co 1/3 Mn 1/3 O 2 as a positive electrode active material in producing the positive electrode 1. N-methyl-2-pyrrolidone solution in which the positive electrode active material, the conductive carbon fiber, and the polyvinylidene fluoride binder are dissolved, using a mixture of 4 and 4 in a weight ratio of 1: 1. And a positive electrode slurry in which the weight ratio of the positive electrode active material, the conductive agent, and the binder is adjusted to 94: 3: 3, the length is 67 cm, and the positive electrode layer 1b on one side has a thickness of 60 μm. 1 was produced. As for the positive electrode 1, as in the case of Example 1, the electrical resistance value A [Ω / cm] of the positive electrode layer 1b was measured. As a result, the electrical resistance value A of the positive electrode layer was 1800 Ω / cm. Met.

また、負極2の作製においては、上記の比較例1と同様に、負極集電タブ2cを負極集電体2aの一端部にだけ取り付け、この負極集電タブ2cが上記の電極体10の巻き終わり部分に位置するようにした。   Further, in the production of the negative electrode 2, the negative electrode current collector tab 2 c is attached only to one end of the negative electrode current collector 2 a, and the negative electrode current collector tab 2 c is wound around the electrode body 10, as in Comparative Example 1 above. It was located at the end.

そして、これら以外は上記の実施例1の場合と同様にして、参考例1のリチウム二次電池を作製した。なお、この参考例1のリチウム二次電池は、容量が約1.2Ahであった。   Except for these, the lithium secondary battery of Reference Example 1 was produced in the same manner as in Example 1 above. The lithium secondary battery of Reference Example 1 had a capacity of about 1.2 Ah.

次に、上記の実施例1及び比較例1のリチウム二次電池を、それぞれ1Aの定電流で4.2Vまで充電した後、電流が50mAになるまで4.2Vの定電圧充電を行い、その後、10Aの定電流で2.0Vまで放電させ、これを1サイクルとして200サイクルの充放電を繰り返して行い、1サイクル及び200サイクル時における放電曲線を求め、その結果を図5に示すと共に、200サイクル時における作動電圧の低下量を求め、その結果を下記の表1に示した。   Next, the lithium secondary batteries of Example 1 and Comparative Example 1 were charged to 4.2 V with a constant current of 1 A, respectively, and then charged at a constant voltage of 4.2 V until the current reached 50 mA. The battery was discharged to 2.0 V at a constant current of 10 A, and this was regarded as one cycle, and 200 cycles of charging and discharging were repeated to obtain discharge curves at 1 cycle and 200 cycles. The results are shown in FIG. The amount of decrease in operating voltage during the cycle was determined and the results are shown in Table 1 below.

また、上記の参考例1のリチウム二次電池については、1Aの定電流で4.2Vまで充電した後、電流が50mAになるまで4.2Vの定電圧充電を行い、その後、10Aの定電流で2.5Vまで放電させ、これを1サイクルとして200サイクルの充放電を繰り返して行い、1サイクル及び200サイクル時における放電曲線を求め、その結果を図6に示すと共に、200サイクル時における作動電圧の低下量を求め、その結果を下記の表1に示した。   In addition, for the lithium secondary battery of Reference Example 1 described above, after charging to 4.2 V with a constant current of 1 A, constant voltage charging of 4.2 V was performed until the current reached 50 mA, and then a constant current of 10 A. The battery was discharged to 2.5V, and this was regarded as one cycle, and 200 cycles of charge / discharge were repeated. The discharge curves at the 1st cycle and the 200th cycle were obtained. The results are shown in FIG. The amount of decrease was determined and the results are shown in Table 1 below.

Figure 0004895625
Figure 0004895625

この結果、電気抵抗値Aが9300Ω/cmと高い正極層1bを用いた実施例1及び比較例1のリチウム二次電池を比較した場合、負極集電タブ2cが電極体10の巻き始め部分と巻き終わり部分とに位置するように負極2の両端部に設けた実施例1のリチウム二次電池は、負極集電タブ2cを電極体10の巻き終わり部分にだけ位置するように負極2の一端部にだけ設けた比較例1のリチウム二次電池に比べて、200サイクル時点における作動電圧の低下が大きく減少していた。   As a result, when comparing the lithium secondary batteries of Example 1 and Comparative Example 1 using the positive electrode layer 1b having a high electrical resistance value A of 9300 Ω / cm, the negative electrode current collecting tab 2c is In the lithium secondary battery of Example 1 provided at both ends of the negative electrode 2 so as to be positioned at the end of winding, one end of the negative electrode 2 is positioned so that the negative electrode current collecting tab 2 c is positioned only at the end of winding of the electrode body 10. Compared with the lithium secondary battery of Comparative Example 1 provided only in the part, the decrease in the operating voltage at the time of 200 cycles was greatly reduced.

一方、電気抵抗値Aが1800Ω/cmと低い正極層1bを用いた参考例1のリチウム二次電池においては、負極集電タブ2cを電極体10の巻き終わり部分にだけ位置するように負極2の一端部にだけ設けた場合であっても、作動電圧の低下が少なくなっていた。また、参考例1において、負極集電タブ2cを電極体10の巻き始め部分と巻き終わり部分とに位置するように負極2の両端部に設けた場合においても、作動電圧の低下は1本の場合とほとんど変化がなく、電気抵抗値Aが低い場合には、負極集電タブ2cを負極2の両端部に設けても、大電流で充放電を繰り返した場合における作動電圧の低下を抑制する効果は得られなかった。   On the other hand, in the lithium secondary battery of Reference Example 1 using the positive electrode layer 1b having a low electric resistance A of 1800 Ω / cm, the negative electrode 2 is arranged so that the negative electrode current collecting tab 2c is positioned only at the end of winding of the electrode body 10. Even when it was provided only at one end, the decrease in operating voltage was small. Further, in Reference Example 1, even when the negative electrode current collecting tab 2c is provided at both ends of the negative electrode 2 so as to be positioned at the winding start portion and the winding end portion of the electrode body 10, the operating voltage decreases by one. When there is almost no change and the electrical resistance value A is low, even if the negative electrode current collecting tab 2c is provided at both ends of the negative electrode 2, a decrease in operating voltage when charging / discharging is repeated with a large current is suppressed. The effect was not obtained.

この結果、上記の実施例1及び比較例1のリチウム二次電池のように、電気抵抗値Aが高い正極層1bを用いた場合において、負極集電タブ2cを電極体10の巻き始め部分と巻き終わり部分とに位置するように負極2の両端部に設けた場合に優れた効果が得られることが分かった。   As a result, when the positive electrode layer 1b having a high electric resistance A is used as in the lithium secondary batteries of Example 1 and Comparative Example 1 described above, the negative electrode current collecting tab 2c is It was found that an excellent effect can be obtained when it is provided at both ends of the negative electrode 2 so as to be positioned at the end of winding.

次に、上記の実施例1、比較例1及び参考例1の各リチウム二次電池について、上記の充放電サイクルを行う前と、行った後とにおいて、それぞれ10Aの放電時において上昇した電池温度を測定し、その結果を下記の表2に示した。   Next, for each of the lithium secondary batteries of Example 1, Comparative Example 1, and Reference Example 1, the battery temperature increased during the discharge of 10 A before and after the above charge / discharge cycle, respectively. The results are shown in Table 2 below.

Figure 0004895625
Figure 0004895625

この結果、比較例1のリチウム二次電池だけが、放電時における電池温度の上昇が、充放電サイクルを行った後において増加していた。これは、比較例1のリチウム二次電池の場合、電極体10の内部において反応の不均一が生じ、大電流で充放電を繰り返して行うと、次第に正極1や負極2における材料が局所的に劣化して、電池抵抗が増加したためであると考えられる。   As a result, only the lithium secondary battery of Comparative Example 1 had an increase in battery temperature during discharge after the charge / discharge cycle. This is because, in the case of the lithium secondary battery of Comparative Example 1, non-uniform reaction occurs inside the electrode body 10, and when charging and discharging are repeated with a large current, the materials in the positive electrode 1 and the negative electrode 2 gradually become locally. This is probably because the battery resistance has increased due to deterioration.

この結果、上記の実施例1及び比較例1のリチウム二次電池のように、電気抵抗値Aが高い正極層1bを用いた場合において、負極集電タブ2cを電極体10の巻き終わり部分にだけ設けた場合には、大電流で充放電を繰り返して行うにつれて、反応の不均一により正極や負極における材料が局所的に劣化して電池抵抗が増加するが、負極集電タブ2cを電極体10の巻き始め部分と巻き終わり部分とに位置するように負極2の両端部に設けた場合には、電極体の内部における反応の不均一が抑制され、大電流で充放電を繰り返して行った後においても、作動電圧が低下せず、優れた特性を示すことが分かった。   As a result, when the positive electrode layer 1b having a high electric resistance A is used as in the lithium secondary batteries of Example 1 and Comparative Example 1 described above, the negative electrode current collecting tab 2c is placed at the end of winding of the electrode body 10. However, as charging and discharging are repeated with a large current, the material in the positive electrode and the negative electrode is locally deteriorated due to non-uniform reaction, and the battery resistance increases. When it was provided at both ends of the negative electrode 2 so as to be positioned at the winding start portion and the winding end portion of 10, the reaction non-uniformity inside the electrode body was suppressed, and charging and discharging were repeated with a large current. Later, it was found that the operating voltage did not decrease and showed excellent characteristics.

(実施例2)
実施例2においては、上記の実施例1における正極1の作製において、正極活物質のLiFePO4粉末と、導電剤の繊維状炭素(繊維径:150nm、繊維長:5〜20μm)と、結着剤のポリフッ化ビニリデンを溶解させたN−メチル−2−ピロリドン溶液とを、正極活物質と導電剤と結着剤との重量比が82:15:3となるようにして正極スラリーを調整し、それ以外は、上記の実施例1の場合と同様にして、実施例2のリチウム二次電池を作製した。また、上記のようにして作製した正極1についても、上記の実施例1の場合と同様にして、正極層1bの電気抵抗値A[Ω/cm]を測定した結果、この正極層1bの電気抵抗値Aは4300Ω/cmであった。
(Example 2)
In Example 2, in preparation of positive electrode 1 in Example 1 above, LiFePO 4 powder as a positive electrode active material, fibrous carbon (fiber diameter: 150 nm, fiber length: 5 to 20 μm) as a conductive agent, binding The positive electrode slurry was prepared so that the weight ratio of the positive electrode active material, the conductive agent and the binder was 82: 15: 3 with the N-methyl-2-pyrrolidone solution in which the polyvinylidene fluoride as the agent was dissolved. Otherwise, the lithium secondary battery of Example 2 was fabricated in the same manner as in Example 1 above. In addition, with respect to the positive electrode 1 manufactured as described above, the electrical resistance value A [Ω / cm] of the positive electrode layer 1b was measured in the same manner as in Example 1 above. The resistance value A was 4300 Ω / cm.

(比較例2)
比較例2においては、上記の実施例1における正極1の作製において、正極活物質のLiFePO4粉末と、導電剤の繊維状炭素(繊維径:150nm、繊維長:5〜20μm)と、結着剤のポリフッ化ビニリデンを溶解させたN−メチル−2−ピロリドン溶液とを、正極活物質と導電剤と結着剤との重量比が92:5:3となるようにして正極スラリーを調整し、それ以外は、上記の実施例1の場合と同様にして、比較例2のリチウム二次電池を作製した。また、上記のようにして作製した正極1についても、上記の実施例1の場合と同様にして、正極層1bの電気抵抗値A[Ω/cm]を測定した結果、この正極層1bの電気抵抗値Aは59800Ω/cmであった。
(Comparative Example 2)
In Comparative Example 2, in preparation of positive electrode 1 in Example 1 above, LiFePO 4 powder as a positive electrode active material, fibrous carbon as a conductive agent (fiber diameter: 150 nm, fiber length: 5 to 20 μm), binding The positive electrode slurry was prepared by adjusting the weight ratio of the positive electrode active material, the conductive agent and the binder to 92: 5: 3 with the N-methyl-2-pyrrolidone solution in which the polyvinylidene fluoride as the agent was dissolved. Otherwise, a lithium secondary battery of Comparative Example 2 was produced in the same manner as in Example 1 above. In addition, with respect to the positive electrode 1 manufactured as described above, the electrical resistance value A [Ω / cm] of the positive electrode layer 1b was measured in the same manner as in Example 1 above. The resistance value A was 59800 Ω / cm.

(比較例3)
比較例3においては、上記の実施例1における正極1の作製において、導電剤としてアセチレンブラックを用い、正極活物質のLiFePO4粉末と、導電剤のアセチレンブラックと、結着剤のポリフッ化ビニリデンを溶解させたN−メチル−2−ピロリドン溶液とを、正極活物質と導電剤と結着剤との重量比が92:5:3となるようにして正極スラリーを調整し、それ以外は、上記の実施例1の場合と同様にして、比較例3のリチウム二次電池を作製した。また、上記のようにして作製した正極1についても、上記の実施例1の場合と同様にして、正極層1bの電気抵抗値A[Ω/cm]を測定した結果、この正極層1bの電気抵抗値Aは123000Ω/cmであった。なお、導電剤としてアセチレンブラックを用いた場合、このアセチレンブラックの量が10wt%になるようにすると、正極スラリーの調整が困難になり、正極スラリーを正極集電体1aに適切に塗布することが困難になった。
(Comparative Example 3)
In Comparative Example 3, acetylene black was used as the conductive agent in the production of the positive electrode 1 in Example 1 described above, LiFePO 4 powder as the positive electrode active material, acetylene black as the conductive agent, and polyvinylidene fluoride as the binder. The dissolved N-methyl-2-pyrrolidone solution was used to adjust the positive electrode slurry so that the weight ratio of the positive electrode active material, the conductive agent and the binder was 92: 5: 3. In the same manner as in Example 1, a lithium secondary battery of Comparative Example 3 was produced. In addition, with respect to the positive electrode 1 manufactured as described above, the electrical resistance value A [Ω / cm] of the positive electrode layer 1b was measured in the same manner as in Example 1 above. The resistance value A was 123000 Ω / cm. When acetylene black is used as the conductive agent, adjusting the amount of acetylene black to 10 wt% makes it difficult to adjust the positive electrode slurry, and the positive electrode slurry can be appropriately applied to the positive electrode current collector 1a. It became difficult.

次に、上記の実施例1,2及び比較例2のリチウム二次電池を、それぞれ1Aの定電流で4.2Vまで充電した後、電流が50mAになるまで4.2Vの定電圧充電を行い、その後、10Aの定電流で2.0Vまで放電させて、放電時の作動電圧を求め、その結果を下記の表2に示した。   Next, the lithium secondary batteries of Examples 1 and 2 and Comparative Example 2 were charged to 4.2 V with a constant current of 1 A, respectively, and then charged at a constant voltage of 4.2 V until the current reached 50 mA. Thereafter, the battery was discharged to 2.0 V at a constant current of 10 A to determine the operating voltage at the time of discharge, and the results are shown in Table 2 below.

Figure 0004895625
Figure 0004895625

この結果、正極層1bの電気抵抗値Aが50000Ω/cm以上になった比較例2のリチウム二次電池においては、正極1内における電子伝導性が悪くて、十分な作動電圧が得られなかった。   As a result, in the lithium secondary battery of Comparative Example 2 in which the electrical resistance value A of the positive electrode layer 1b was 50000 Ω / cm or more, the electron conductivity in the positive electrode 1 was poor and a sufficient operating voltage could not be obtained. .

なお、上記の各実施例のリチウム二次電池において、正極1における正極集電タブ1cの数を増やした場合にも、各正極集電タブ1cを通して充放電が行われるようになるが、この場合、正極集電タブ1cの位置に正極層1bが形成されなくなって、正極1における正極活物質の量が少なくなり、十分な容量が得られるなくなるという問題がある。   In addition, in the lithium secondary battery of each of the above embodiments, even when the number of the positive electrode current collecting tabs 1c in the positive electrode 1 is increased, charging / discharging is performed through each positive electrode current collecting tab 1c. There is a problem that the positive electrode layer 1b is not formed at the position of the positive electrode current collecting tab 1c, the amount of the positive electrode active material in the positive electrode 1 is reduced, and sufficient capacity cannot be obtained.

本発明の実施例に係るリチウム二次電池において作製した長尺状の正極の概略平面図である。It is a schematic plan view of the elongate positive electrode produced in the lithium secondary battery which concerns on the Example of this invention. 上記の正極における正極層の電気抵抗値を測定する状態を示した概略説明図である。It is the schematic explanatory drawing which showed the state which measures the electrical resistance value of the positive electrode layer in said positive electrode. 上記の実施例に係るリチウム二次電池において作製した長尺状の負極の概略平面図である。It is a schematic plan view of the elongate negative electrode produced in the lithium secondary battery which concerns on said Example. 上記の実施例に係るリチウム二次電池の概略断面図である。It is a schematic sectional drawing of the lithium secondary battery which concerns on said Example. 実施例1及び比較例1に係るリチウム二次電池の1サイクル時点及び200サイクル時点における放電曲線を示した図である。It is the figure which showed the discharge curve in the 1st cycle time and 200th cycle time of the lithium secondary battery which concerns on Example 1 and Comparative Example 1. FIG. 参考例1に係るリチウム二次電池の1サイクル時点及び200サイクル時点における放電曲線を示した図である。It is the figure which showed the discharge curve in the 1st cycle time of the lithium secondary battery which concerns on the reference example 1, and 200th cycle time.

符号の説明Explanation of symbols

1 正極
1a 正極集電体
1b 正極層
1c 正極集電タブ
2 負極
2a 負極集電体
2b 負極層
2c 負極集電タブ
3 セパレータ
10 電極体
20 電池容器
21 電池缶(負極外部端子)
22 封口体(正極外部端子)
23 絶縁パッキン
DESCRIPTION OF SYMBOLS 1 Positive electrode 1a Positive electrode collector 1b Positive electrode layer 1c Positive electrode current collection tab 2 Negative electrode 2a Negative electrode current collector 2b Negative electrode layer 2c Negative electrode current collection tab 3 Separator 10 Electrode body 20 Battery container 21 Battery can (negative electrode external terminal)
22 Sealing body (positive electrode external terminal)
23 Insulation packing

Claims (3)

リチウムを挿入脱離可能な正極活物質を含む正極層が形成された長尺状の正極と、リチウムを挿入脱離可能な負極活物質を含む負極層が形成された長尺状の負極との間にセパレータを介在させて巻いた電極体を非水電解液と一緒に電池容器内に収容させ、上記の正極に設けた正極集電タブを正極外部端子に接続させると共に、上記の負極に設けた負極集電タブを負極外部端子に接続させたリチウム二次電池において、上記の負極集電タブを少なくとも負極の長手方向両端部に設けると共に、上記正極層における正極活物質がLiFePO で表されるオリビン型構造を有するリン酸鉄リチウムであることを特徴とするリチウム二次電池。 A long positive electrode formed with a positive electrode layer containing a positive electrode active material capable of inserting and extracting lithium, and a long negative electrode formed with a negative electrode layer containing a negative electrode active material capable of inserting and removing lithium An electrode body wound with a separator interposed therebetween is accommodated in a battery container together with a non-aqueous electrolyte, and a positive electrode current collecting tab provided on the positive electrode is connected to a positive electrode external terminal and provided on the negative electrode. in the negative electrode current collector tab a lithium secondary battery was connected to the negative electrode external terminal was, Rutotomoni provided in the longitudinal direction both end portions of at least the negative electrode a negative electrode current collector tabs above SL, a positive electrode active material in the positive electrode layer in LiFePO 4 A lithium secondary battery characterized by being lithium iron phosphate having an olivine-type structure represented. 請求項1に記載のリチウム二次電池において、前記の正極層に繊維状炭素からなる導電剤が含有されていることを特徴とするリチウム二次電池。 The lithium secondary battery according to claim 1, wherein the positive electrode layer contains a conductive agent made of fibrous carbon . 求項2に記載のリチウム二次電池において、前記の正極層中に繊維状炭素が6wt%〜20wt%の範囲で含有されていることを特徴とするリチウム二次電池。
In the lithium secondary battery as claimed in Motomeko 2. Lithium secondary battery, characterized in that fibrous carbon is contained in the range of 6 wt% 20 wt% in the positive electrode layer.
JP2006017305A 2006-01-26 2006-01-26 Lithium secondary battery Active JP4895625B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006017305A JP4895625B2 (en) 2006-01-26 2006-01-26 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006017305A JP4895625B2 (en) 2006-01-26 2006-01-26 Lithium secondary battery

Publications (3)

Publication Number Publication Date
JP2007200691A JP2007200691A (en) 2007-08-09
JP2007200691A5 JP2007200691A5 (en) 2009-03-12
JP4895625B2 true JP4895625B2 (en) 2012-03-14

Family

ID=38455091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006017305A Active JP4895625B2 (en) 2006-01-26 2006-01-26 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4895625B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5205863B2 (en) * 2007-08-16 2013-06-05 ソニー株式会社 Non-aqueous electrolyte secondary battery
KR101250196B1 (en) 2010-01-12 2013-04-03 주식회사 엘지화학 Cylindrical Secondary Battery having Two More Cathode Taps
WO2014119248A1 (en) * 2013-01-31 2014-08-07 三洋電機株式会社 Winding type battery
KR101637890B1 (en) * 2013-05-30 2016-07-08 주식회사 엘지화학 A Secondary Battery having Two More anode Taps

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3140977B2 (en) * 1997-03-19 2001-03-05 三洋電機株式会社 Lithium secondary battery
JP3547952B2 (en) * 1997-09-30 2004-07-28 三洋電機株式会社 Lithium secondary battery
JP2000106167A (en) * 1998-09-30 2000-04-11 Mitsubishi Electric Corp Battery
JP2001110453A (en) * 1999-10-04 2001-04-20 Sony Corp Nonaqueous electrolytic solution secondary battery
JP4798750B2 (en) * 2003-07-28 2011-10-19 昭和電工株式会社 High density electrode and battery using the electrode
JP3930002B2 (en) * 2003-07-28 2007-06-13 昭和電工株式会社 High density electrode and battery using the electrode

Also Published As

Publication number Publication date
JP2007200691A (en) 2007-08-09

Similar Documents

Publication Publication Date Title
JP5224650B2 (en) Nonaqueous electrolyte secondary battery
US8568928B2 (en) Non-aqueous electrolyte secondary battery
JP5164477B2 (en) Nonaqueous electrolyte secondary battery
WO2015115051A1 (en) Nonaqueous-electrolyte secondary-battery negative electrode
JP2007234565A (en) Nonaqueous electrolyte secondary battery
JP2009224307A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP6254091B2 (en) Nonaqueous electrolyte secondary battery
JP2010009799A (en) Nonaqueous electrolyte secondary battery
JP2007123251A (en) Nonaqueous electrolyte secondary battery
WO2010035681A1 (en) Nonaqueous electrolyte secondary battery
JP3631202B2 (en) Non-aqueous electrolyte battery
JP2010231958A (en) Nonaqueous electrolyte secondary battery
JP2008091236A (en) Nonaqueous electrolyte secondary battery
JP5621869B2 (en) Lithium ion secondary battery
US10637048B2 (en) Silicon anode materials
JP5279567B2 (en) Nonaqueous electrolyte secondary battery
JP2010192230A (en) Nonaqueous electrolyte secondary battery
JP6484995B2 (en) Lithium ion secondary battery
JP2019175657A (en) Lithium ion secondary battery
JP3580209B2 (en) Lithium ion secondary battery
JP2014072071A (en) Nonaqueous electrolytic secondary battery
JPWO2013042421A1 (en) Secondary battery
JP2009218112A (en) Nonaqueous electrolyte secondary battery and manufacturing method therefor
JP3723444B2 (en) Positive electrode for lithium secondary battery, method for producing the same, and lithium secondary battery
JP4895625B2 (en) Lithium secondary battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111220

R151 Written notification of patent or utility model registration

Ref document number: 4895625

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350