JP3546597B2 - Non-aqueous electrolyte battery - Google Patents

Non-aqueous electrolyte battery Download PDF

Info

Publication number
JP3546597B2
JP3546597B2 JP14291696A JP14291696A JP3546597B2 JP 3546597 B2 JP3546597 B2 JP 3546597B2 JP 14291696 A JP14291696 A JP 14291696A JP 14291696 A JP14291696 A JP 14291696A JP 3546597 B2 JP3546597 B2 JP 3546597B2
Authority
JP
Japan
Prior art keywords
solvent
carbonate
electrolyte battery
aqueous
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14291696A
Other languages
Japanese (ja)
Other versions
JPH09326262A (en
Inventor
英司 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP14291696A priority Critical patent/JP3546597B2/en
Publication of JPH09326262A publication Critical patent/JPH09326262A/en
Application granted granted Critical
Publication of JP3546597B2 publication Critical patent/JP3546597B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、非水電解液電池に関し、特に非水溶媒の改良に関する。
【0002】
【従来の技術】
リチウム、ナトリウム等の軽金属を可動イオン種として含む炭素質材料を負極に用いた非水電解液は、高電圧かつ高エネルギー密度を有するため、広く民生用電子機器などの電源に用いられており、最近ではこの種の二次電池への研究、開発も盛んに行われている。このような炭素質材料を用いた非水電解液二次電池としてLiCoO、LiNiO等のリチウム複合酸化物を用いた4V系二次電池が実現されている。
【0003】
【発明が解決しようとする課題】
ところで、負極に炭素質材料を、正極に上記リチウム複合酸化物を使用する非水電解液二次電池の非水溶媒においては、充放電特性や保存特性の観点からこれまで種々の検討がなされてきている。それにより、化学的安定性に優れる炭酸プロピレン等の環状炭酸エステルと、粘度が低く高い誘電率が期待される炭酸ジメチル等の鎖状炭酸エステルとの混合溶媒が、現在主として用いられている。
【0004】
しかしながら、このような非水混合溶媒を使用する非水電解液二次電池も、充電電位を4V以上に設定して充放電サイクルを繰り返したり充電状態で保存することにより、電極及び電解液が劣化し、内部抵抗の上昇などにより電池特性が劣化するという問題を依然として抱えている。
【0005】
そこで、本発明はこのような従来の実情に鑑みて提案されたものであり、4V以上の充電電位により充放電サイクルを重ねたり充電状態で保存した場合においても優れた電池特性を得ることができる非水電解液電池を提供することを目的とする。
【0006】
【課題を解決するための手段】
上述の目的を達成するために本発明者が検討を重ねた結果、従来の非水電解液二次電池において、充放電サイクルを重ねたり充電状態で保存することによって生じる電池特性の劣化は、主として充電に際して副反応として電解液成分が分解し、電極及び電解液が劣化することに起因することが判明した。さらに、電子スピン共鳴(ESR)を用いた解析から、初充電後の電解液の経時的な劣化は溶媒のラジカル重合反応が進行することによるものであることが判明した。そして、適量のラジカル重合抑制剤或いは停止剤を加えることにより、上述した電池特性劣化を抑制することができることを見い出すに至った。
【0007】
本発明に係る非水電解液電池は、軽金属、軽金属を電荷移動のための可動イオン種として含む炭素質材料からなる負極と、正極と、軽金属の塩からなる電解質を非水溶媒に溶解した電解液とからなり、非水溶媒がニトロソベンゼンを含有し、非水溶媒中におけるニトロソベンゼンの含有量が、モル比で0.0001〜0.001であることを特徴とするものである。
【0008】
本発明に係る非水電解液電池においては、非水溶媒にニトロソベンゼンが添加されてなることから、初充電後の電解液の経時的な劣化が抑制され、従来の電池に比べ充放電サイクル特性や充電状態での保存特性が優れたものとなる。
【0009】
【発明の実施の形態】
本発明に係る非水電解液電池は、軽金属、軽金属を電荷移動のための可動イオン種として含む炭素質材料、化合物、合金のいずれかからなる負極と、正極と、前記軽金属の塩からなる電解質を非水溶媒に溶解した電解液とを有して構成される。前記非水溶媒には、ニトロソベンゼンが添加される。
【0010】
このニトロソベンゼンの添加量は、モル比で0.0001〜0.001が好ましく、より好ましくは0.0005程度が好ましい。
【0011】
このように、ニトロソベンゼンを適量添加することによって、初充電後の電解液の経時的な劣化が抑制され、充放電サイクル特性及び保存特性を向上させることができる。添加量がモル比で0.0001未満、あるいは0.005を越えた場合には、このような添加効果が見られない。
【0012】
上記非水電解液電池において使用される非水溶媒としては、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチルの中から選ばれた少なくとも1種と炭酸プロピレンまたは炭酸エチレンから選ばれた溶媒との混合溶媒等が用いられる。
【0013】
この場合、非水溶媒中における炭酸プロピレンまたは炭酸エチレンから選ばれた溶媒の混合比は、電解質の解離度、導電率の観点からモル比で0.3〜0.6であることが望ましい。
【0014】
一方、負極としては、リチウム、ナトリウム等のアルカリ金属や、充放電反応に伴いリチウム等のアルカリ金属をドープ・脱ドープする材料を用いることができる。後者の例としては、ポリアセチレン、ポリピロール等の導電性ポリマー、あるいはコークス、ポリマー炭、カーボンファイバー等の炭素質材料を用いることができるが、単位体積当たりのエネルギー密度が大きい点から、炭素質材料を使用することが望ましい。炭素質材料としては、熱分解炭素類、コークス類(石油コークス、ピッチコークス、石炭コークス等)、カーボンブラック(アセチレンブラック等)、ガラス状炭素、有機高分子材料焼成体(有機高分子材料を500℃以上の適当な温度で不活性ガス気流中、あるいは真空中で焼成したもの)、炭素繊維等が用いられる。
【0015】
また、正極としては、二酸化マンガン、五酸化バナジウムのような遷移金属酸化物や、硫化鉄、硫化チタンのような遷移金属カルコゲン化物、さらにはこれら遷移金属とリチウムとの複合酸化物{LiMO(但し、Mは、Co,Ni又はMnを表し、0.5≦x≦1である)で表される複合酸化物}、あるいはリチウムとニッケル、コバルトとの複合酸化物、即ちLiNiM1M2と表される正極活物質(但しM1、M2はAl、Mn,Fe、Ni、Co、Cr、Ti、Znから選ばれる少なくとも1種の元素、又はP、B等の非金属元素でもよい。さらにp+q+r=1)等を用いることができる。特に、高電圧、高エネルギー密度が得られ、サイクル特性にも優れることから、リチウム・コバルト複合酸化物やリチウム・コバルト・ニッケル複合酸化物が望ましい。
【0016】
【実施例】
本発明の好適なサンプルについて実験結果に基づいて説明する。
【0017】
サンプル1
図1にサンプルとして作製する円筒型非水電解液二次電池を示す。まず、帯状正極1を以下のようにして作製した。市販の炭酸リチウムと炭酸コバルトを、組成比Li/Co=1となるように混合し、空気中で900℃−5時間焼成して、リチウム・コバルト酸化物LiCoOを得た。この得られたリチウム複合酸化物を正極活物質として91重量部、導電剤として黒鉛6重量部、結着剤としてポリフッ化ビニリデン3重量部を混合し、更にN−メチル−2−ピロリドンで混練して、ペースト状とした。そして、このペーストを帯状のアルミニウム箔の両面に塗布して帯状正極1を作製した。
【0018】
次に、帯状負極2を以下のようにして作製した。粉砕したピッチコークス90重量部に、結着剤としてポリフッ化ビニリデン10重量部を混合し、N−メチル−2−ピロリドンで混練して、ペースト状とした。そして、このペーストを帯状の銅箔の両面に塗布して帯状負極2を作製した。
【0019】
なお、正極1及び負極2には集電を行うため、それぞれアルミニウム製の正極リード端子3と、ニッケル製の負極リード端子4とを接触してある。このようにして作製された正極1及び負極2の間に、ポリプロピレン製のマイクロポーラス・フィルムからなるセパレータ5を介在させながら互いに積層し、多数回巻回して、渦巻型の電極体を作った。
【0020】
そして、該電極体と該電極体の上下に絶縁体9、10を配した状態で、ニッケル・メッキを施した鉄製電池容器6中に収納し、負極リード端子4を電池容器6の内底部にスポット溶接により接続し、一方、正極リード端子3を電池封口板7に同様にして接続した。
【0021】
次いで、電極を収納した電池容器6中に、炭酸プロピレンと炭酸ジメチルとの体積比50:50の混合溶媒にニトロソベンゼンをモル比で0.0001加え、さらに六フッ化燐酸リチウム(LiPF)1モル/lを溶解させて得られた電解液を注液し、該電池容器6と前記電池封口板7とをポリプロピレン製パッキング8を介して嵌合してかしめ、密封することで、円筒型非水電解液二次電池(サンプル1)を作製した。なお、上記円筒型非水電解液二次電池の寸法は外径18mm、高さ65mmであった。
【0022】
サンプル2〜サンプル6
非水溶媒として表1に示す組成を有する混合溶媒を使用する以外はサンプル1と同様にして非水電解液二次電池(サンプル2〜サンプル6)を作製した。
【0023】
【表1】

Figure 0003546597
【0024】
充放電サイクルの条件
そして、作製されたサンプル1〜サンプル6の充放電試験を以下の条件で行った。充電は、1000mAで定電流充電を電池電圧が4.2Vになるまで行い、次いで4.2Vで定電圧充電を総計の充電時間が2.5時間になるまで行った。放電は、700mAで電池電圧が2.5Vになるまで行った。
【0025】
充放電サイクル繰り返し後の容量維持率の検討
まず、各サンプルの電池について、充放電試験により、サイクル特性を検討した。その結果を図2及び図3に示す。図2からわかるように、初期放電容量に対する容量維持率は、サンプル6に比べ、サンプル2、サンプル1、サンプル3がこの順に優れている。また、図3からわかるように、サンプル4及びサンプル5の容量維持率は、それぞれサンプル6に比べ優れている。
【0026】
充電状態での保存特性の検討
次に充電状態での保存特性を検討するために、各サンプルの電池について初充電の後1週間充電状態で保存し、放電容量を比較した。その結果を表2に示す。
【0027】
【表2】
Figure 0003546597
【0028】
表2からわかるように、サンプル2、サンプル1、サンプル3、サンプル4、サンプル5は、この順にいずれもサンプル6に比べ保存後の放電容量が大きくなっている。
【0029】
なお、ニトロソベンゼン、ニトロベンゼンのいずれについても、添加量がモル比で0.0001未満、或いは0.001を越えたものには、このような効果は見られなかった。このようなラジカル重合停止剤、抑制剤は、化合物の種類による能力の差は差が少ないことから、添加量としては、いずれもモル比で0.0001〜0.001が好ましく、より好ましくは0.0005程度が望ましいといえる。
【0030】
したがって、以上の結果から、非水溶媒にニトロソベンゼン、ニトロベンゼンの中から選ばれた化合物を適量添加することによって、初充電後の電解液の経時的な劣化が抑制され、充放電サイクル特性及び保存特性の優れた極めて高特性の非水電解液二次電池を得ることができることがわかった。
【0031】
【発明の効果】
以上の説明からも明らかなように、本発明においては、軽金属、軽金属を電荷移動のための可動イオン種として含む炭素質材料、化合物、合金のいずれかからなる負極と、正極と、前記軽金属の塩からなる電解質を非水溶媒に溶解した電解液とからなる非水電解液電池において、前記非水溶媒がニトロソベンゼンを含有するので、4V以上の充電電位で用いた場合においても安定で、充放電サイクル特性、充電状態での保存特性にも優れる極めて高特性の非水電解液電池が得られる。
【図面の簡単な説明】
【図1】本発明を適用した非水電解液電池の一構成例示す縦断面図である。
【図2】サイクル数と初期放電容量に対する容量維持率との関係を示す特性図である。
【図3】サイクル数と初期放電容量に対する容量維持率との関係を示す特性図である。
【符号の説明】
1 帯状電極、2 帯状負極、3 正極リード端子、4 負極リード端子、5 セパレータ、6 電池容器、7 電池封口板、8 パッキング、9 絶縁体、10 絶縁体[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a non-aqueous electrolyte battery, and more particularly to improvement of a non-aqueous solvent.
[0002]
[Prior art]
Non-aqueous electrolytes using a carbonaceous material containing a light metal such as lithium or sodium as a mobile ion species as a negative electrode have a high voltage and a high energy density, and are widely used as power sources for consumer electronic devices and the like. Recently, research and development on this type of secondary battery has been actively conducted. As a nonaqueous electrolyte secondary battery using such a carbonaceous material, a 4V secondary battery using a lithium composite oxide such as LiCoO 2 or LiNiO 2 has been realized.
[0003]
[Problems to be solved by the invention]
By the way, in the non-aqueous solvent of the non-aqueous electrolyte secondary battery using the carbonaceous material for the negative electrode and the lithium composite oxide for the positive electrode, various studies have been made from the viewpoint of charge / discharge characteristics and storage characteristics. ing. Accordingly, a mixed solvent of a cyclic carbonate such as propylene carbonate having excellent chemical stability and a chain carbonate such as dimethyl carbonate which is expected to have a low viscosity and a high dielectric constant is mainly used at present.
[0004]
However, the non-aqueous electrolyte secondary battery using such a non-aqueous solvent also deteriorates the electrodes and the electrolyte by setting the charging potential to 4 V or more and repeating the charge / discharge cycle or storing the battery in the charged state. However, there is still a problem that the battery characteristics are deteriorated due to an increase in internal resistance or the like.
[0005]
Therefore, the present invention has been proposed in view of such conventional circumstances, and excellent battery characteristics can be obtained even when charge / discharge cycles are repeated or stored in a charged state with a charge potential of 4 V or more. An object is to provide a non-aqueous electrolyte battery.
[0006]
[Means for Solving the Problems]
As a result of repeated studies by the present inventor to achieve the above object, in conventional nonaqueous electrolyte secondary batteries, deterioration of battery characteristics caused by repeated charge / discharge cycles or storage in a charged state is mainly due to It has been found that the electrolyte component is decomposed as a side reaction during charging, and the electrode and the electrolyte are deteriorated. Furthermore, analysis using electron spin resonance (ESR) revealed that the deterioration of the electrolyte over time after the initial charge was due to the progress of the radical polymerization reaction of the solvent. Then, they have found that the above-mentioned deterioration of battery characteristics can be suppressed by adding an appropriate amount of a radical polymerization inhibitor or a terminator.
[0007]
The non-aqueous electrolyte battery according to the present invention has a light metal, a negative electrode made of a carbonaceous material containing the light metal as a mobile ionic species for charge transfer, a positive electrode, and an electrolyte in which an electrolyte made of a light metal salt is dissolved in a non-aqueous solvent. Liquid, wherein the non-aqueous solvent contains nitrosobenzene, and the content of nitrosobenzene in the non-aqueous solvent is 0.0001 to 0.001 in molar ratio.
[0008]
In the non-aqueous electrolyte battery according to the present invention, since nitrosobenzene is added to the non-aqueous solvent, deterioration over time of the electrolyte after the initial charge is suppressed, and the charge-discharge cycle characteristics are lower than those of the conventional battery. And excellent storage characteristics in a charged state.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
The nonaqueous electrolyte battery according to the present invention is a light metal, a negative electrode composed of any of a carbonaceous material, a compound, and an alloy containing the light metal as a mobile ionic species for charge transfer, a positive electrode, and an electrolyte composed of a salt of the light metal. And an electrolytic solution in which is dissolved in a non-aqueous solvent. Nitrosobenzene is added to the non-aqueous solvent.
[0010]
The amount of nitrosobenzene added is preferably 0.0001 to 0.001 in terms of molar ratio, and more preferably about 0.0005.
[0011]
As described above, by adding an appropriate amount of nitrosobenzene, the deterioration with time of the electrolyte after the initial charge is suppressed, and the charge / discharge cycle characteristics and the storage characteristics can be improved. When the amount added is less than 0.0001 or exceeds 0.005 in molar ratio, such an effect is not obtained.
[0012]
Examples of the non-aqueous solvent used in the non-aqueous electrolyte battery include a mixed solvent of at least one selected from dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate and a solvent selected from propylene carbonate or ethylene carbonate. Is used.
[0013]
In this case, the mixing ratio of the solvent selected from propylene carbonate or ethylene carbonate in the non-aqueous solvent is desirably 0.3 to 0.6 in terms of molar ratio from the viewpoint of the degree of dissociation of the electrolyte and the conductivity.
[0014]
On the other hand, as the negative electrode, an alkali metal such as lithium or sodium, or a material that is doped or dedoped with an alkali metal such as lithium in association with a charge / discharge reaction can be used. As an example of the latter, a conductive polymer such as polyacetylene and polypyrrole, or a carbonaceous material such as coke, polymer charcoal, and carbon fiber can be used.However, in view of a high energy density per unit volume, a carbonaceous material is used. It is desirable to use. Examples of the carbonaceous material include pyrolytic carbons, cokes (such as petroleum coke, pitch coke, and coal coke), carbon black (such as acetylene black), glassy carbon, and organic polymer material fired bodies (organic polymer material 500 Baked in an inert gas stream or in a vacuum at a suitable temperature of not less than ℃), carbon fiber or the like.
[0015]
Further, as the positive electrode, transition metal oxides such as manganese dioxide and vanadium pentoxide, transition metal chalcogenides such as iron sulfide and titanium sulfide, and a composite oxide of these transition metals and lithium {Li x MO 2 (where M represents Co, Ni or Mn and 0.5 ≦ x ≦ 1) or a composite oxide of lithium, nickel and cobalt, ie, LiNi p M1 q M2 r O 2 and represented by the positive electrode active material (wherein M1, M2 is Al, Mn, Fe, Ni, at least one element selected Co, Cr, Ti, and Zn, or P, nonmetal such as B Alternatively, p + q + r = 1) or the like can be used. In particular, a lithium-cobalt composite oxide or a lithium-cobalt-nickel composite oxide is desirable because a high voltage, a high energy density can be obtained, and cycle characteristics are excellent.
[0016]
【Example】
Preferred samples of the present invention will be described based on experimental results.
[0017]
Sample 1
FIG. 1 shows a cylindrical nonaqueous electrolyte secondary battery manufactured as a sample. First, the belt-shaped positive electrode 1 was produced as follows. Commercially available lithium carbonate and cobalt carbonate were mixed at a composition ratio of Li / Co = 1, and fired in air at 900 ° C. for 5 hours to obtain lithium cobalt oxide LiCoO 2 . The obtained lithium composite oxide was mixed with 91 parts by weight as a positive electrode active material, 6 parts by weight of graphite as a conductive agent, and 3 parts by weight of polyvinylidene fluoride as a binder, and further kneaded with N-methyl-2-pyrrolidone. Into a paste. Then, the paste was applied to both sides of a strip-shaped aluminum foil to prepare a strip-shaped positive electrode 1.
[0018]
Next, the strip-shaped negative electrode 2 was produced as follows. 90 parts by weight of the crushed pitch coke was mixed with 10 parts by weight of polyvinylidene fluoride as a binder, and kneaded with N-methyl-2-pyrrolidone to form a paste. Then, this paste was applied to both sides of a strip-shaped copper foil to produce a strip-shaped negative electrode 2.
[0019]
The positive electrode 1 and the negative electrode 2 are in contact with a positive electrode lead terminal 3 made of aluminum and a negative electrode lead terminal 4 made of nickel, respectively, in order to collect current. The thus-produced positive electrode 1 and negative electrode 2 were laminated with a separator 5 made of a microporous polypropylene film interposed therebetween, and wound many times to form a spiral electrode body.
[0020]
Then, the electrode body and the insulators 9 and 10 disposed above and below the electrode body are housed in a nickel-plated iron battery container 6, and the negative electrode lead terminal 4 is attached to the inner bottom of the battery container 6. The connection was made by spot welding, while the positive electrode lead terminal 3 was connected to the battery sealing plate 7 in the same manner.
[0021]
Next, 0.0001 of nitrosobenzene was added to a mixed solvent of propylene carbonate and dimethyl carbonate at a volume ratio of 50:50 in a molar ratio of 0.0001 in a battery container 6 containing the electrodes, and lithium hexafluorophosphate (LiPF 6 ) 1 was further added. The electrolytic solution obtained by dissolving mol / l was injected, and the battery container 6 and the battery sealing plate 7 were fitted and caulked via a polypropylene packing 8, and then sealed to form a cylindrical non-woven fabric. A water electrolyte secondary battery (sample 1) was produced. The dimensions of the cylindrical nonaqueous electrolyte secondary battery were 18 mm in outer diameter and 65 mm in height.
[0022]
Sample 2 to Sample 6
Non-aqueous electrolyte secondary batteries (Samples 2 to 6) were produced in the same manner as in Sample 1, except that a mixed solvent having the composition shown in Table 1 was used as the non-aqueous solvent.
[0023]
[Table 1]
Figure 0003546597
[0024]
Charge / discharge cycle conditions Charge / discharge tests of the manufactured samples 1 to 6 were performed under the following conditions. Charging was performed at 1000 mA at a constant current until the battery voltage reached 4.2 V, and then at 4.2 V at a constant voltage until the total charging time was 2.5 hours. Discharging was performed at 700 mA until the battery voltage reached 2.5 V.
[0025]
Examination of capacity retention ratio after repeated charge / discharge cycles First, cycle characteristics of batteries of each sample were examined by a charge / discharge test. The results are shown in FIGS. As can be seen from FIG. 2, the sample 2, sample 1, and sample 3 are superior to the sample 6 in the capacity retention ratio with respect to the initial discharge capacity in this order. Further, as can be seen from FIG. 3, the capacity retention ratios of Sample 4 and Sample 5 are superior to Sample 6, respectively.
[0026]
Examination of storage characteristics in charged state Next, in order to examine storage characteristics in the charged state, the batteries of each sample were stored in the charged state for one week after the initial charge, and the discharge capacities were compared. Table 2 shows the results.
[0027]
[Table 2]
Figure 0003546597
[0028]
As can be seen from Table 2, Sample 2, Sample 1, Sample 3, Sample 4, and Sample 5 all have a larger discharge capacity after storage than Sample 6 in this order.
[0029]
It should be noted that such effects were not observed in the case where the molar ratio of both nitrosobenzene and nitrobenzene was less than 0.0001 or more than 0.001. Such radical polymerization terminators and inhibitors have a small difference in ability depending on the type of the compound. Therefore, the addition amount is preferably 0.0001 to 0.001 in terms of molar ratio, more preferably 0 to 0.001. It can be said that about .0005 is desirable.
[0030]
Therefore, from the above results, by adding an appropriate amount of a compound selected from nitrosobenzene and nitrobenzene to the non-aqueous solvent, deterioration of the electrolytic solution after initial charging with time is suppressed, and the charge-discharge cycle characteristics and storage It was found that a non-aqueous electrolyte secondary battery having excellent characteristics and extremely high characteristics can be obtained.
[0031]
【The invention's effect】
As is clear from the above description, in the present invention, a light metal, a carbonaceous material containing a light metal as a mobile ion species for charge transfer, a compound, an anode made of any of an alloy, a positive electrode, and a light metal In a non-aqueous electrolyte battery comprising an electrolyte in which a salt-based electrolyte is dissolved in a non-aqueous solvent, the non-aqueous solvent contains nitrosobenzene, so that it is stable even when used at a charging potential of 4 V or more. An extremely high-performance nonaqueous electrolyte battery having excellent discharge cycle characteristics and storage characteristics in a charged state can be obtained.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a configuration example of a nonaqueous electrolyte battery to which the present invention is applied.
FIG. 2 is a characteristic diagram showing a relationship between the number of cycles and a capacity retention ratio with respect to an initial discharge capacity.
FIG. 3 is a characteristic diagram showing a relationship between the number of cycles and a capacity retention ratio with respect to an initial discharge capacity.
[Explanation of symbols]
Reference Signs List 1 strip electrode, 2 strip negative electrode, 3 positive electrode lead terminal, 4 negative electrode lead terminal, 5 separator, 6 battery container, 7 battery sealing plate, 8 packing, 9 insulator, 10 insulator

Claims (3)

軽金属、軽金属を電荷移動のための可動イオン種として含む炭素質材料からなる負極と、正極と、前記軽金属の塩からなる電解質を非水溶媒に溶解した電解液とからなる非水電解液電池において、
前記非水溶媒がニトロソベンゼンを含有し、前記非水溶媒中におけるニトロソベンゼンの含有量が、モル比で0.0001〜0.001であることを特徴とする非水電解液電池。
In a nonaqueous electrolyte battery comprising a light metal, a negative electrode made of a carbonaceous material containing a light metal as a mobile ionic species for charge transfer, a positive electrode, and an electrolyte obtained by dissolving an electrolyte made of the light metal salt in a nonaqueous solvent. ,
The nonaqueous solvent contains a nitrosobenzene, the content of nitrosobenzene in the nonaqueous solvent, the nonaqueous electrolyte battery which is a 0.0001 to 0.001 in molar ratio.
前記非水溶媒が、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチルの中から選ばれた少なくとも1種と、炭酸プロピレンまたは炭酸エチレンから選ばれた溶媒との混合溶媒であることを特徴とする請求項1記載の非水電解液電池。2. The non-aqueous solvent is a mixed solvent of at least one selected from dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate, and a solvent selected from propylene carbonate or ethylene carbonate. The non-aqueous electrolyte battery according to the above. 前記非水溶媒中における炭酸プロピレンまたは炭酸エチレンから選ばれた溶媒の混合比が、モル比で0.3〜0.6であることを特徴とする請求項2記載の非水電解液電池。The non-aqueous electrolyte battery according to claim 2, wherein a mixing ratio of a solvent selected from propylene carbonate and ethylene carbonate in the non-aqueous solvent is 0.3 to 0.6 in a molar ratio.
JP14291696A 1996-06-05 1996-06-05 Non-aqueous electrolyte battery Expired - Fee Related JP3546597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14291696A JP3546597B2 (en) 1996-06-05 1996-06-05 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14291696A JP3546597B2 (en) 1996-06-05 1996-06-05 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JPH09326262A JPH09326262A (en) 1997-12-16
JP3546597B2 true JP3546597B2 (en) 2004-07-28

Family

ID=15326614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14291696A Expired - Fee Related JP3546597B2 (en) 1996-06-05 1996-06-05 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP3546597B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3687736B2 (en) 2000-02-25 2005-08-24 日本電気株式会社 Secondary battery
WO2012049856A1 (en) 2010-10-15 2012-04-19 パナソニック株式会社 Electrode for electrochemical capacitor and electrochemical capacitor using same

Also Published As

Publication number Publication date
JPH09326262A (en) 1997-12-16

Similar Documents

Publication Publication Date Title
US7416813B2 (en) Lithium secondary battery
KR100439448B1 (en) Aqueous electrolyte and a lithium secondary battery using the same
JP4218098B2 (en) Nonaqueous electrolyte secondary battery and negative electrode material thereof
US7635542B2 (en) Non-aqueous electrolyte secondary battery
US6984471B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte battery
JP3705774B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte battery for nonaqueous electrolyte battery
JPH05182689A (en) Nonaqueous electrolyte secondary battery
JPH08335465A (en) Nonaqueous electrolytic battery
JPH1092467A (en) Nonaqueous electrolyte secondary battery
JP3232636B2 (en) Non-aqueous electrolyte battery
JP4560854B2 (en) Nonaqueous electrolyte secondary battery
JP4915025B2 (en) Nonaqueous electrolyte and lithium secondary battery
JP3480764B2 (en) Non-aqueous electrolyte secondary battery
JP3546597B2 (en) Non-aqueous electrolyte battery
JP3565478B2 (en) Non-aqueous electrolyte secondary battery
JP2001052760A (en) Charging method of nonaqueous electrolyte secondary battery
JP3211259B2 (en) Non-aqueous electrolyte secondary battery
JP3363585B2 (en) Non-aqueous electrolyte battery
JP2000195550A (en) Nonaqueous electrolyte secondary battery
JPH0574423A (en) High capacity battery
JPH08124597A (en) Solid electrolytic secondary cell
JPH09129240A (en) Nonaqueous electrolytic secondary battery
JP3346739B2 (en) Non-aqueous electrolyte secondary battery
JP4938923B2 (en) Secondary battery
CN112673503A (en) Nonaqueous electrolyte electricity storage element and electricity storage device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040218

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees