JPH08111233A - Solid electrolytic secondary battery - Google Patents
Solid electrolytic secondary batteryInfo
- Publication number
- JPH08111233A JPH08111233A JP6270339A JP27033994A JPH08111233A JP H08111233 A JPH08111233 A JP H08111233A JP 6270339 A JP6270339 A JP 6270339A JP 27033994 A JP27033994 A JP 27033994A JP H08111233 A JPH08111233 A JP H08111233A
- Authority
- JP
- Japan
- Prior art keywords
- lithium
- oxide
- positive electrode
- solid electrolyte
- secondary battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、リチウムを吸蔵及び放
出することが可能な酸化物を活物質とする正極と、リチ
ウムを活物質とする負極と、固体電解質とを備える固体
電解質二次電池に係わり、詳しくは正極と固体電解質と
の界面の抵抗が小さい、容量特性、出力特性、サイクル
特性などに優れる固体電解質を使用したリチウム二次電
池(以下、「固体電解質二次電池」と称する。)を得る
ことを目的とした正極の改良に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolyte secondary battery comprising a positive electrode using an oxide capable of occluding and releasing lithium as an active material, a negative electrode using lithium as an active material, and a solid electrolyte. More specifically, the lithium secondary battery (hereinafter, referred to as “solid electrolyte secondary battery”) using a solid electrolyte having a small resistance at the interface between the positive electrode and the solid electrolyte and having excellent capacity characteristics, output characteristics, cycle characteristics, and the like. ) Is intended to improve the positive electrode.
【0002】[0002]
【従来の技術及び発明が解決しようとする課題】リチウ
ムを負極活物質とするリチウム二次電池が、高エネルギ
ー密度電池として注目されている。2. Description of the Related Art A lithium secondary battery using lithium as a negative electrode active material has been attracting attention as a high energy density battery.
【0003】このリチウム二次電池においては、リチウ
ムが水と極めて反応し易いことに鑑み、従来、非水電解
液が用いられていたが、最近、液洩れの無い、ポジショ
ンフリーの電池を得るべく、非水電解液(液体の電解
質)に代えて固体電解質を使用することが検討されてい
る。このような非水電解液のソリッドステート化によ
り、セパレータを別途配することが不要になることはも
とより、高温下で長期間保存した場合の漏液の虞れがな
くなる。加えて、負極に金属リチウムを使用した場合に
は、樹枝状リチウムの成長に因る内部短絡の危険性も解
消される。In this lithium secondary battery, a non-aqueous electrolyte has been conventionally used in view of the fact that lithium easily reacts with water. Recently, however, in order to obtain a position-free battery with no liquid leakage. The use of solid electrolytes instead of non-aqueous electrolytes (liquid electrolytes) has been studied. Such a solid state non-aqueous electrolyte solution eliminates the need for a separate separator and eliminates the risk of liquid leakage when stored at high temperature for a long period of time. In addition, when metallic lithium is used for the negative electrode, the risk of internal short circuit due to the growth of dendritic lithium is eliminated.
【0004】しかしながら、固体電解質を使用した場合
には、液体電解質を使用した場合に比べて、正極と固体
電解質との界面の抵抗及び正極活物質粒子同士の界面の
抵抗がいずれも大きくなるため、固体電解質二次電池に
は、液体電解質を使用したものに比べて、容量特性、出
力特性、サイクル特性などが良くないという問題があっ
た。However, when the solid electrolyte is used, the resistance at the interface between the positive electrode and the solid electrolyte and the resistance at the interface between the positive electrode active material particles are both higher than when using the liquid electrolyte. The solid electrolyte secondary battery has a problem that the capacity characteristic, the output characteristic, the cycle characteristic and the like are not good as compared with those using the liquid electrolyte.
【0005】そこで、従来は、上述した界面の抵抗を低
減させるべく、ポリエーテル又はポリチオエーテルを、
正極活物質の粒子表面にコーティングしたり、正極合剤
中に添加混合したりすることが行われていた。Therefore, conventionally, in order to reduce the resistance of the above-mentioned interface, a polyether or polythioether is used.
It has been performed to coat the surface of particles of the positive electrode active material or to add and mix it in the positive electrode mixture.
【0006】しかしながら、電子導電性が低いポリエー
テル又はポリチオエーテルを正極活物質の粒子表面にコ
ーティングしたのでは、導電剤と活物質粒子との接触が
ポリエーテル又はポリチオエーテルにより妨げられて不
十分となり、正極の電子導電性が低下する。特に、正極
に充放電時のリチウムの吸蔵又は放出に伴い体積変化
(膨張又は収縮)する活物質(リチウム含有マンガン酸
化物;リチウム含有ニッケル酸化物;リチウム含有コバ
ルト酸化物;マンガン、ニッケル及びコバルトよりなる
群から選ばれた少なくとも2種の遷移金属を含有するリ
チウム含有遷移金属複合酸化物など)を使用した場合
は、該活物質の収縮時にこれとポリエーテル又はポリチ
オエーテルとの接触が悪くなるので、イオン導電性もさ
ほど向上しない。However, if the surface of the particles of the positive electrode active material is coated with a polyether or polythioether having a low electronic conductivity, the contact between the conductive agent and the active material particles is hampered by the polyether or polythioether, and becomes insufficient. The electronic conductivity of the positive electrode is reduced. In particular, an active material (lithium-containing manganese oxide; lithium-containing nickel oxide; lithium-containing cobalt oxide; lithium-containing cobalt oxide; manganese, nickel, and cobalt) whose volume changes (expands or contracts) as the positive electrode is charged or discharged with lithium during charge and discharge When a lithium-containing transition metal composite oxide containing at least two kinds of transition metals selected from the group) is used, the contact between the active material and the polyether or polythioether deteriorates when the active material contracts. However, the ionic conductivity is not improved so much.
【0007】一方、正極合剤中にポリエーテル又はポリ
チオエーテルを添加混合しただけでは、正極活物質と固
体電解質との間のイオン導電性が充分には改善されない
ため、リチウムイオンを速やかに正極活物質の粒子表面
に到達させることができなくなる。On the other hand, the ionic conductivity between the positive electrode active material and the solid electrolyte cannot be sufficiently improved only by adding and mixing the polyether or polythioether into the positive electrode mixture, so that lithium ions can be rapidly activated. It becomes impossible to reach the particle surface of the substance.
【0008】このようなことから、従来においては、容
量特性、出力特性、サイクル特性などに優れた固体電解
質二次電池は未だ得られていないのが実情である。In view of the above, the actual situation is that a solid electrolyte secondary battery excellent in capacity characteristics, output characteristics, cycle characteristics and the like has not yet been obtained in the past.
【0009】本発明は、かかる実情に鑑みなされたもの
であって、その目的とするところは、正極と固体電解質
との界面の抵抗及び正極活物質粒子同士の界面の抵抗が
いずれも小さい、容量特性、出力特性、サイクル特性な
どに優れる固体電解質二次電池を提供するにある。The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a capacitor having a low resistance at the interface between the positive electrode and the solid electrolyte and a low resistance at the interface between the positive electrode active material particles. It is intended to provide a solid electrolyte secondary battery having excellent characteristics, output characteristics, cycle characteristics, and the like.
【0010】[0010]
【課題を解決するための手段】上記目的を達成するため
の本発明に係る固体電解質二次電池(本発明電池)は、
リチウムを吸蔵及び放出することが可能な酸化物を活物
質とする正極と、リチウムを活物質とする負極と、固体
電解質とを備える固体電解質二次電池において、前記酸
化物は、その粒子表面にポリエーテル、ポリチオエーテ
ル又はポリアクリレートの主鎖の両端又は一端が化学結
合したものであることを特徴とする。The solid electrolyte secondary battery (the battery of the present invention) according to the present invention for achieving the above object comprises:
In a solid electrolyte secondary battery comprising a positive electrode using an oxide capable of occluding and releasing lithium as an active material, a negative electrode using lithium as an active material, and a solid electrolyte, the oxide is on the particle surface. It is characterized in that both ends or one end of a main chain of polyether, polythioether or polyacrylate is chemically bonded.
【0011】リチウムを吸蔵及び放出することが可能な
酸化物としては、二酸化マンガン;リチウム含有マンガ
ン酸化物(LiMnO2 、LiMn2 O4 など);リチ
ウム含有コバルト酸化物(LiCoO2 など);リチウ
ム含有ニッケル酸化物(LiNiO2 );マンガン、ニ
ッケル及びコバルトよりなる群から選ばれた少なくとも
2種の遷移金属を含有するリチウム含有遷移金属複合酸
化物(LiNi0.5 Co0.5 O2 など)が例示される。Oxides capable of inserting and extracting lithium include manganese dioxide; lithium-containing manganese oxides (LiMnO 2 , LiMn 2 O 4, etc.); lithium-containing cobalt oxides (LiCoO 2, etc.); lithium-containing Nickel oxide (LiNiO 2 ); a lithium-containing transition metal composite oxide (LiNi 0.5 Co 0.5 O 2, etc.) containing at least two transition metals selected from the group consisting of manganese, nickel and cobalt.
【0012】上記リチウムを吸蔵及び放出することが可
能な酸化物の粒子表面に化学結合させるポリエーテル又
はポリチオエーテルとしては、ポリエチレンオキシド、
ポリプロピレンオキシド、ポリエーテルイミド、ポリエ
ーテルスルホン、ポリエーテルケトン、ポリオキシベン
ゾイン、ポリフェニレンスルフィド(チオエーテル)が
例示される。ポリエーテル、ポリチオエーテル及びポリ
アクリレートそのものには、イオン導電性は無く、電解
質(イオン性物質)が存在して初めてイオン導電体とし
て機能する。充放電時に固体電解質中の電解質が正極の
ポリエーテル、ポリチオエーテル又はポリアクリレート
の中に拡散してくるので、正極合剤中には電解質を含有
させる必要はない。しかし、固体電解質中の電解質とは
別に正極合剤中にも電解質を含有させることにより、正
極のイオン導電性を大幅に向上させることができる。The polyether or polythioether which is chemically bonded to the particle surface of the oxide capable of inserting and extracting lithium is polyethylene oxide,
Examples include polypropylene oxide, polyetherimide, polyether sulfone, polyether ketone, polyoxybenzoin, and polyphenylene sulfide (thioether). Polyether, polythioether, and polyacrylate itself do not have ionic conductivity, and function as an ionic conductor only when an electrolyte (ionic substance) is present. Since the electrolyte in the solid electrolyte diffuses into the polyether, polythioether or polyacrylate of the positive electrode during charging / discharging, it is not necessary to include the electrolyte in the positive electrode mixture. However, the ionic conductivity of the positive electrode can be significantly improved by including the electrolyte in the positive electrode mixture in addition to the electrolyte in the solid electrolyte.
【0013】リチウムを活物質とする負極としては、金
属リチウム及びリチウムを吸蔵及び放出することが可能
な物質を挙げることができる。リチウムを吸蔵及び放出
することが可能な物質としては、リチウム−アルミニウ
ム合金、リチウム−錫合金、リチウム−鉛合金等のリチ
ウム合金;金属酸化物;炭素が例示される。Examples of the negative electrode using lithium as an active material include metallic lithium and a substance capable of inserting and extracting lithium. Examples of the substance capable of inserting and extracting lithium include lithium alloys such as lithium-aluminum alloys, lithium-tin alloys and lithium-lead alloys; metal oxides; carbon.
【0014】セパレータを兼ねる固体電解質としては、
先に挙げた酸化物の粒子表面に化学結合させるポリエー
テル、ポリチオエーテル又はポリアクリレートに、Li
ClO4 、LiPF6 、LiCF3 SO3 、LiN(C
F3 SO2 )2 、LiBF4、LiAsF6 等の電解質
(イオン性物質)を添加したものが例示される。As the solid electrolyte also serving as a separator,
The polyether, polythioether or polyacrylate to be chemically bonded to the particle surface of the above-mentioned oxide is added with Li.
ClO 4 , LiPF 6 , LiCF 3 SO 3 , LiN (C
An example is one in which an electrolyte (ionic substance) such as F 3 SO 2 ) 2 , LiBF 4 , LiAsF 6 or the like is added.
【0015】[0015]
【作用】ポリエーテル、ポリチオエーテル又はポリアク
リレートは酸化物の粒子表面に化学結合しているに過ぎ
ないので、酸化物の粒子表面にポリエーテル又はポリチ
オエーテルをコーティングした場合に比べて、導電剤と
酸化物粒子との接触がポリエーテル、ポリチオエーテル
又はポリアクリレートにより妨げられることが少ない。
このため、本発明における正極は酸化物の粒子表面にポ
リエーテル又はポリチオエーテルをコーティングした正
極に比べて電子導電性に優れる。[Function] Since the polyether, polythioether or polyacrylate is only chemically bonded to the surface of the oxide particle, the conductive agent and the conductive agent are more effective than the case where the surface of the oxide particle is coated with polyether or polythioether. Contact with the oxide particles is less likely to be hindered by the polyether, polythioether or polyacrylate.
Therefore, the positive electrode in the present invention is superior in electron conductivity to the positive electrode in which the surface of oxide particles is coated with polyether or polythioether.
【0016】また、充放電時、すなわちリチウムを吸蔵
又は放出する際に、酸化物が体積変化するものであって
も、酸化物とポリエーテル、ポリチオエーテル又はポリ
アクリレートとは化学結合しているので、両者の接触が
悪くなることがない。このため、本発明における正極
は、酸化物の粒子表面にポリエーテル又はポリチオエー
テルをコーティングした正極に比べて、イオン導電性に
優れる。Further, even if the oxide changes in volume during charge / discharge, that is, when occluding or releasing lithium, the oxide and the polyether, polythioether or polyacrylate are chemically bonded. , The contact between them does not deteriorate. Therefore, the positive electrode in the present invention is superior in ionic conductivity as compared with the positive electrode in which the surface of oxide particles is coated with polyether or polythioether.
【0017】さらに、酸化物(正極活物質)の粒子表面
に、ポリエーテル、ポリチオエーテル又はポリアクリレ
ートの主鎖の少なくとも一端がエステル結合等により化
学結合しているので、酸化物とポリエーテル又はポリチ
オエーテルを単に混合した場合に比べて、リチウムイオ
ンが活物質表面に到達し易くなる。このため、本発明に
おける正極は、酸化物とポリエーテル又はポリチオエー
テルを単に混合した正極に比べて、イオン導電性に優れ
る。Furthermore, since at least one end of the main chain of polyether, polythioether or polyacrylate is chemically bonded to the particle surface of the oxide (positive electrode active material) by an ester bond or the like, the oxide and the polyether or polyacrylate are Lithium ions reach the surface of the active material more easily than when thioether is simply mixed. Therefore, the positive electrode in the present invention is superior in ionic conductivity as compared with a positive electrode in which an oxide and polyether or polythioether are simply mixed.
【0018】[0018]
【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲において適宜変
更して実施することが可能なものである。EXAMPLES The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited to the following examples, and various modifications may be made without departing from the scope of the invention. Is possible.
【0019】(実施例1)下記の正極、負極及び固体電
解質を用いてR2016サイズ(コイン型)の本発明電
池A1を組み立てた。Example 1 An R2016 size (coin type) battery A1 of the present invention was assembled using the following positive electrode, negative electrode and solid electrolyte.
【0020】〔正極〕ポリ(オキシエチレン)ジグリコ
ール酸(数平均分子量:3,000)と正極活物質とし
てのLiCoO2 (平均粒径:20μm)との重量比
1:1の混合物に、触媒としての濃硫酸を加え、120
°Cで3時間還流し、得られた生成物を吸引濾過したの
ち水洗して精製し、ポリエチレンオキシド(PEO)が
粒子表面に化学結合したLiCoO2 粉末を得た。[Cathode] A mixture of poly (oxyethylene) diglycolic acid (number average molecular weight: 3,000) and LiCoO 2 (average particle size: 20 μm) as a positive electrode active material in a weight ratio of 1: 1 was used as a catalyst. Concentrated sulfuric acid as
The resulting product was refluxed at ° C for 3 hours, and the obtained product was suction-filtered and washed with water to be purified to obtain LiCoO 2 powder in which polyethylene oxide (PEO) was chemically bonded to the particle surface.
【0021】このLiCoO2 粉末に電解質としてのL
iClO4 を[Li]:[EO]=1:20([Li]
はLiClO4 中のLiのモル数;[EO]はポリエチ
レンオキシド中のエチレンオキシド単位の数)となるよ
うに添加し、さらに導電剤としてのケッチェンブラック
(KB)と結着剤としてのポリテトラフルオロエチレン
(PTFE)とを添加して混合し、正極合剤を調製し
た。この正極合剤を構成する各成分の重量比は、LiC
oO2 :PEO:KB:PTFE=85:5:5:5で
ある。なお、LiCoO2 に化学結合したPEOの重量
は、反応前後のLiCoO2 粉末の重量差から求めた。This LiCoO 2 powder was mixed with L as an electrolyte.
iClO 4 was added to [Li]: [EO] = 1: 20 ([Li]
Is the number of moles of Li in LiClO 4 ; [EO] is the number of ethylene oxide units in polyethylene oxide), and Ketjen Black (KB) as a conductive agent and polytetrafluoro as a binder. Ethylene (PTFE) was added and mixed to prepare a positive electrode mixture. The weight ratio of each component constituting this positive electrode mixture is LiC.
oO 2 : PEO: KB: PTFE = 85: 5: 5: 5. The weight of PEO chemically bonded to LiCoO 2 was determined from the weight difference between the LiCoO 2 powder before and after the reaction.
【0022】次いで、上記正極合剤にアセトニトリルを
等重量加えて30分間混練してスラリーを調製し、この
スラリーをシャーレ上に展開し、60°Cで乾燥してア
セトニトリルを蒸発させた後、ローラープレスで充填密
度3.0g/ccとなるように圧延し、厚さ100μ
m、直径18mmの正極を得た。Next, an equal weight of acetonitrile was added to the positive electrode mixture and kneaded for 30 minutes to prepare a slurry, which was spread on a petri dish, dried at 60 ° C. to evaporate acetonitrile, and then a roller. Rolled to a packing density of 3.0 g / cc with a press, thickness 100μ
A positive electrode having a diameter of m and a diameter of 18 mm was obtained.
【0023】〔負極〕厚さ100μmのリチウム金属板
を打ち抜いて直径18mmの円板状の負極を作製した。[Negative Electrode] A lithium metal plate having a thickness of 100 μm was punched out to prepare a disk-shaped negative electrode having a diameter of 18 mm.
【0024】〔固体電解質〕ポリエチレンオキシド(数
平均分子量:400,000)にLiClO4 を[L
i]:[EO]=1:20([Li]はLiClO4 中
のLiのモル数;[EO]はポリエチレンオキシド中の
エチレンオキシド単位の数)となるように添加混合し、
さらにこの混合物にアセトニトリルを等重量加えて30
分間混練してスラリーを調製し、このスラリーをシャー
レ上に展開し、60°Cで乾燥してアセトニトリルを蒸
発させて固体電解質を作製した。[Solid Electrolyte] Polyethylene oxide (number average molecular weight: 400,000) and LiClO 4 [L
i]: [EO] = 1: 20 ([Li] is the number of moles of Li in LiClO 4 ; [EO] is the number of ethylene oxide units in polyethylene oxide).
Add an equal weight of acetonitrile to this mixture and add 30
A slurry was prepared by kneading for a minute, the slurry was spread on a petri dish, dried at 60 ° C., and acetonitrile was evaporated to prepare a solid electrolyte.
【0025】図1は、作製した本発明電池A1を模式的
に示す断面図であり、図示の本発明電池Aは、正極1及
び負極2、これら両極を離間する固体電解質3、正極缶
4、負極缶5、正極集電体6、負極集電体7及び絶縁パ
ッキング8などからなる。FIG. 1 is a cross-sectional view schematically showing the manufactured battery A1 of the present invention. The battery A of the present invention shown in the drawing has a positive electrode 1 and a negative electrode 2, a solid electrolyte 3 separating these electrodes, a positive electrode can 4, It comprises a negative electrode can 5, a positive electrode current collector 6, a negative electrode current collector 7, an insulating packing 8, and the like.
【0026】正極1及び負極2は、固体電解質3を介し
て対向して正負極缶4、5が形成する電池ケース内に収
納されており、正極1は正極集電体6を介して正極缶4
に、また、負極2は負極集電体7を介して負極缶5に接
続され、電池内部に生じた化学エネルギーを正極缶4及
び負極缶5に形成された両端子から電気エネルギーとし
て外部へ取り出し得るようになっている。The positive electrode 1 and the negative electrode 2 are housed in a battery case formed by positive and negative electrode cans 4 and 5 that face each other with a solid electrolyte 3 in between, and the positive electrode 1 has a positive electrode collector 6 and a positive electrode can. Four
In addition, the negative electrode 2 is connected to the negative electrode can 5 through the negative electrode current collector 7, and the chemical energy generated inside the battery is taken out as electric energy from both terminals formed on the positive electrode can 4 and the negative electrode can 5. I'm supposed to get it.
【0027】(実施例2)正極の作製において、ポリ
(オキシエチレン)ジグリコール酸に代えてポリ(オキ
シプロピレン)ジグリコール酸(数平均分子量:3,0
00)を同量使用したこと以外は実施例1と同様にし
て、ポリプロピレンオキシド(PPO)が粒子表面に化
学結合したLiCoO2 粉末を作製した。次いでこのL
iCoO2 粉末をポリエチレンオキシドが粒子表面に化
学結合したLiCoO2 粉末に代えて使用したこと以外
は実施例1と同様にして、本発明電池A2を組み立て
た。Example 2 In the production of a positive electrode, poly (oxyethylene) diglycolic acid was replaced with poly (oxypropylene) diglycolic acid (number average molecular weight: 3,0).
The same amount as in Example 1 was used to prepare LiCoO 2 powder in which polypropylene oxide (PPO) was chemically bonded to the particle surface. Then this L
A battery A2 of the invention was assembled in the same manner as in Example 1 except that the iCoO 2 powder was used instead of the LiCoO 2 powder in which polyethylene oxide was chemically bonded to the particle surfaces.
【0028】(実施例3)正極の作製において、ポリ
(オキシエチレン)ジグリコール酸に代えてポリ(メチ
ルアクリレート)ジグリコール酸(数平均分子量:2,
000)を同量使用したこと以外は実施例1と同様にし
て、ポリメチルアクリレートが粒子表面に化学結合した
LiCoO2 粉末を作製した。次いでこのLiCoO2
粉末をポリエチレンオキシドが粒子表面に化学結合した
LiCoO2 粉末に代えて使用したこと以外は実施例1
と同様にして、本発明電池A3を組み立てた。Example 3 In the production of the positive electrode, poly (oxyethylene) diglycolic acid was replaced with poly (methylacrylate) diglycolic acid (number average molecular weight: 2,
000) was used in the same manner as in Example 1 to prepare a LiCoO 2 powder in which polymethyl acrylate was chemically bonded to the particle surface. Then this LiCoO 2
Example 1 except that the powder was used in place of the LiCoO 2 powder with polyethylene oxide chemically bonded to the particle surface.
The battery A3 of the invention was assembled in the same manner as in.
【0029】(実施例4)正極の作製において、ポリ
(オキシエチレン)ジグリコール酸に代えてポリ(オキ
シイミド)ジグリコール酸(数平均分子量:3,00
0)を同量使用したこと以外は実施例1と同様にして、
ポリエーテルイミドが粒子表面に化学結合したLiCo
O2 粉末を作製した。次いでこのLiCoO2 粉末をポ
リエチレンオキシドが粒子表面に化学結合したLiCo
O2 粉末に代えて使用したこと以外は実施例1と同様に
して、本発明電池A4を組み立てた。Example 4 In the production of the positive electrode, poly (oxyethylene) diglycolic acid was used instead of poly (oxyethylene) diglycolic acid (number average molecular weight: 3,000).
0) was used in the same manner as in Example 1 except that the same amount was used.
LiCo in which polyetherimide is chemically bonded to the particle surface
O 2 powder was produced. Next, this LiCoO 2 powder was mixed with LiCo
A battery A4 of the invention was assembled in the same manner as in Example 1 except that it was used instead of the O 2 powder.
【0030】(実施例5)正極の作製において、ポリ
(オキシエチレン)ジグリコール酸に代えてポリ(オキ
シスルホン)ジグリコール酸(数平均分子量:5,00
0)を同量使用したこと以外は実施例1と同様にして、
ポリエーテルスルホンが粒子表面に化学結合したLiC
oO2 粉末を作製した。次いでこのLiCoO2 粉末を
ポリエチレンオキシドが粒子表面に化学結合したLiC
oO2 粉末に代えて使用したこと以外は実施例1と同様
にして、本発明電池A5を組み立てた。Example 5 In the production of a positive electrode, poly (oxyethylene) diglycolic acid was replaced with poly (oxysulfone) diglycolic acid (number average molecular weight: 5,000).
0) was used in the same manner as in Example 1 except that the same amount was used.
LiC in which polyethersulfone is chemically bonded to the particle surface
oO 2 powder was prepared. Next, this LiCoO 2 powder was mixed with polyethylene oxide on the surface of the particles to form LiC.
The present battery A5 was assembled in the same manner as in Example 1 except that it was used in place of oO 2 powder.
【0031】(実施例6)正極の作製において、ポリ
(オキシエチレン)ジグリコール酸に代えてポリ(オキ
シアセトン)ジグリコール酸(数平均分子量:3,00
0)を同量使用したこと以外は実施例1と同様にして、
ポリエーテルアセトンが粒子表面に化学結合したLiC
oO2 粉末を作製した。次いでこのLiCoO2 粉末を
ポリエチレンオキシドが粒子表面に化学結合したLiC
oO2 粉末に代えて使用したこと以外は実施例1と同様
にして、本発明電池A6を組み立てた。Example 6 In the production of a positive electrode, poly (oxyethylene) diglycolic acid was replaced with poly (oxyacetone) diglycolic acid (number average molecular weight: 3,000).
0) was used in the same manner as in Example 1 except that the same amount was used.
LiC in which polyetheracetone is chemically bonded to the particle surface
oO 2 powder was prepared. Next, this LiCoO 2 powder was mixed with polyethylene oxide on the surface of the particles to form LiC.
The present battery A6 was assembled in the same manner as in Example 1 except that it was used instead of the oO 2 powder.
【0032】(実施例7)正極の作製において、ポリ
(オキシエチレン)ジグリコール酸に代えてポリ(オキ
シベンゾイン)ジグリコール酸(数平均分子量:5,0
00)を同量使用したこと以外は実施例1と同様にし
て、ポリオキシベンゾインが粒子表面に化学結合したL
iCoO2 粉末を作製した。次いでこのLiCoO2 粉
末をポリエチレンオキシドが粒子表面に化学結合したL
iCoO2 粉末に代えて使用したこと以外は実施例1と
同様にして、本発明電池A7を組み立てた。Example 7 In the production of a positive electrode, poly (oxybenzoin) diglycolic acid (number average molecular weight: 5,0) was used instead of poly (oxyethylene) diglycolic acid.
00) was used in the same manner as in Example 1 except that polyoxybenzoin was chemically bonded to the particle surface of L.
An iCoO 2 powder was prepared. Then, this LiCoO 2 powder was mixed with L
The present battery A7 was assembled in the same manner as in Example 1 except that it was used instead of the iCoO 2 powder.
【0033】(実施例8)正極の作製において、ポリ
(オキシエチレン)ジグリコール酸に代えてポリ(p−
フェニレンスルフィド)ジグリコール酸(数平均分子
量:4,000)を同量使用したこと以外は実施例1と
同様にして、ポリ(p−フェニレンスルフィド)が粒子
表面に化学結合したLiCoO2 粉末を作製した。次い
でこのLiCoO2 粉末をポリエチレンオキシドが粒子
表面に化学結合したLiCoO2 粉末に代えて使用した
こと以外は実施例1と同様にして、本発明電池A8を組
み立てた。Example 8 In the production of the positive electrode, poly (p-ethylene) was used instead of poly (oxyethylene) diglycolic acid.
A LiCoO 2 powder in which poly (p-phenylene sulfide) was chemically bonded to the particle surface was prepared in the same manner as in Example 1 except that the same amount of phenylene sulfide) diglycolic acid (number average molecular weight: 4,000) was used. did. Next, the present battery A8 was assembled in the same manner as in Example 1 except that this LiCoO 2 powder was used instead of the LiCoO 2 powder in which polyethylene oxide was chemically bonded to the particle surface.
【0034】(比較例)LiCoO2 に、ポリエチレン
オキシド(数平均分子量:400,000)を、[L
i]:[EO]=1:20となるように添加し、さらに
導電剤としてのケッチェンブラックと結着剤としてのポ
リテトラフルオロエチレンとを添加して混合し、正極合
剤を調製した。この正極合剤を構成する各成分の重量比
は、LiCoO2 :PEO:KB:PTFE=85:
5:5:5である。(Comparative Example) LiCoO 2 was mixed with polyethylene oxide (number average molecular weight: 400,000) [L
i]: [EO] = 1: 20, and Ketjenblack as a conductive agent and polytetrafluoroethylene as a binder were added and mixed to prepare a positive electrode mixture. The weight ratio of each component constituting the positive electrode mixture is LiCoO 2 : PEO: KB: PTFE = 85:
It is 5: 5: 5.
【0035】次いで、上記正極合剤にアセトニトリルを
等重量加えて30分間混練してスラリーを調製し、この
スラリーをシャーレ上に展開し、60°Cで乾燥してア
セトニトリルを蒸発させた後、ローラープレスで充填密
度3.0g/ccとなるように圧延し、厚さ100μ
m、直径18mmの正極を得た。Next, an equal weight of acetonitrile was added to the positive electrode mixture and kneaded for 30 minutes to prepare a slurry, which was spread on a petri dish, dried at 60 ° C. to evaporate acetonitrile, and then a roller. Rolled to a packing density of 3.0 g / cc with a press, thickness 100μ
A positive electrode having a diameter of m and a diameter of 18 mm was obtained.
【0036】正極として、上記の正極を使用したこと以
外は実施例1と同様にして、比較電池Cを組み立てた。Comparative battery C was assembled in the same manner as in Example 1 except that the above positive electrode was used as the positive electrode.
【0037】〔I−V特性〕本発明電池A1〜A8及び
比較電池Cについて、20°CでのI−V特性(電流−
電圧特性)を調べた。結果を図2に示す。[IV Characteristics] Regarding the batteries A1 to A8 of the present invention and the comparative battery C, the IV characteristics (current −
Voltage characteristics). The results are shown in Figure 2.
【0038】図2は、各電池の電流−電圧特性を、縦軸
に電池電圧(V)を、また横軸に電流密度(mA/cm
2 )をとって示したグラフであり、同図より正極活物質
にポリエーテル、ポリチオエーテル又はポリアクリレー
トを化学結合させた本発明電池A1〜A8は、正極活物
質とポリエーテルを混合した比較電池Cに比し、高電流
密度においても電圧降下が小さいことが分かる。FIG. 2 shows the current-voltage characteristics of each battery, the vertical axis shows the battery voltage (V), and the horizontal axis shows the current density (mA / cm).
2 is a graph obtained by taking 2 ), and the batteries A1 to A8 of the present invention in which polyether, polythioether or polyacrylate is chemically bonded to the positive electrode active material are comparative batteries in which the positive electrode active material and polyether are mixed. It can be seen that the voltage drop is smaller than that of C even at high current density.
【0039】〔容量特性〕本発明電池A1〜A8及び比
較電池Cを、20°Cにおいて電流密度0.1mA/c
m2 で終止電圧4.1Vまで充電した後、電流密度0.
1mA/cm2 で終止電圧2.75Vまで放電して、各
電池の1サイクル目の容量特性を調べた。結果を図3に
示す。[Capacitance Characteristics] The batteries A1 to A8 of the present invention and the comparative battery C had a current density of 0.1 mA / c at 20 ° C.
After charging to the final voltage of 4.1V m 2, and the current density 0.
The battery was discharged at a final voltage of 2.75 V at 1 mA / cm 2 , and the capacity characteristics of the first cycle of each battery were examined. The results are shown in Fig. 3.
【0040】図3は、各電池の容量特性を、縦軸に電池
電圧(V)を、また横軸に電池容量(mAh)をとって
示したグラフであり、本発明電池A1〜A8は、比較電
池Cに比し、充放電容量が大きいことが分かる。FIG. 3 is a graph showing the capacity characteristics of each battery, with the vertical axis representing battery voltage (V) and the horizontal axis representing battery capacity (mAh). It can be seen that the charge / discharge capacity is larger than that of the comparative battery C.
【0041】〔サイクル特性〕本発明電池A1〜A8及
び比較電池Cについて、20°Cにおいて電流密度0.
1mA/cm2 で終止電圧4.1Vまで充電した後、終
止電圧2.75Vまで放電する工程を1サイクルとする
充放電サイクル試験を行い、各電池のサイクル特性を調
べた。結果を図4に示す。[Cycle Characteristics] Regarding the batteries A1 to A8 of the present invention and the comparative battery C, the current density was 0.
A charging / discharging cycle test in which one cycle includes a process of charging to a final voltage of 4.1 V at 1 mA / cm 2 and then discharging to a final voltage of 2.75 V was performed to examine the cycle characteristics of each battery. FIG. 4 shows the results.
【0042】図4は、各電池のサイクル特性を、縦軸に
放電容量(mAh)、横軸にサイクル数(回)をとって
示したグラフであり、同図より本発明電池A1〜A8
は、比較電池Cに比し、充放電サイクルの進行に伴う容
量低下が小さく、サイクル特性に優れることが分かる。FIG. 4 is a graph showing the cycle characteristics of each battery, in which the vertical axis represents the discharge capacity (mAh) and the horizontal axis represents the number of cycles (times).
It can be seen that in comparison with Comparative Battery C, the capacity decrease with the progress of charge / discharge cycles is small and the cycle characteristics are excellent.
【0043】上記実施例では、リチウムを吸蔵及び放出
することが可能な酸化物としてLiCoO2 を使用した
が、リチウム含有ニッケル酸化物、リチウム含有マンガ
ン酸化物など、先に挙げた他の正極活物質を使用した場
合においても、同様の傾向がみられた。In the above examples, LiCoO 2 was used as an oxide capable of inserting and extracting lithium, but other positive electrode active materials such as lithium-containing nickel oxide and lithium-containing manganese oxide mentioned above were used. A similar tendency was observed when was used.
【0044】また、上記実施例では、本発明をコイン型
電池に適用する場合を例に挙げて説明したが、本発明は
電池の形状に特に制限はなく、円筒型、角型など、種々
の形状の固体電解質二次電池に適用し得るものである。Further, in the above embodiments, the case where the present invention is applied to the coin type battery is described as an example, but the present invention is not particularly limited in the shape of the battery, and various types such as a cylindrical type and a square type can be used. It is applicable to a solid electrolyte secondary battery having a shape.
【0045】[0045]
【発明の効果】本発明電池においては、粒子表面にポリ
エーテル、ポリチオエーテル又はポリアクリレートが化
学結合した酸化物が正極に使用されているので、正極と
固体電解質との界面の抵抗及び正極活物質粒子同士の界
面の抵抗がいずれも小さい。それゆえ、本発明電池は、
容量特性、出力特性、サイクル特性などに優れる。In the battery of the present invention, since an oxide in which polyether, polythioether or polyacrylate is chemically bonded to the particle surface is used for the positive electrode, the resistance at the interface between the positive electrode and the solid electrolyte and the positive electrode active material are used. The interface resistance between the particles is low. Therefore, the battery of the present invention is
Excellent in capacity characteristics, output characteristics, cycle characteristics, etc.
【図1】実施例で組み立てたコイン型の固体電解質二次
電池の断面図である。FIG. 1 is a cross-sectional view of a coin-type solid electrolyte secondary battery assembled in an example.
【図2】本発明電池及び比較電池のI−V特性を示すグ
ラフである。FIG. 2 is a graph showing IV characteristics of a battery of the present invention and a comparative battery.
【図3】本発明電池及び比較電池の容量特性を示すグラ
フである。FIG. 3 is a graph showing capacity characteristics of a battery of the present invention and a comparative battery.
【図4】本発明電池及び比較電池のサイクル特性を示す
グラフである。FIG. 4 is a graph showing cycle characteristics of the battery of the present invention and the comparative battery.
A1 コイン型の固体電解質二次電池(本発明電池) 1 正極 2 負極 3 固体電解質 A1 coin type solid electrolyte secondary battery (cell of the present invention) 1 positive electrode 2 negative electrode 3 solid electrolyte
───────────────────────────────────────────────────── フロントページの続き (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 斎藤 俊彦 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Koji Nishio 2-5-5 Keihan Hondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Toshihiko Saito 2-chome, Keihanhondori, Moriguchi-shi, Osaka No. 5 Sanyo Electric Co., Ltd.
Claims (5)
酸化物を活物質とする正極と、リチウムを活物質とする
負極と、固体電解質とを備える固体電解質二次電池にお
いて、前記酸化物は、その粒子表面にポリエーテル、ポ
リチオエーテル又はポリアクリレートの主鎖の両端又は
一端が化学結合したものであることを特徴する固体電解
質二次電池。1. A solid electrolyte secondary battery comprising a positive electrode using an oxide capable of occluding and releasing lithium as an active material, a negative electrode using lithium as an active material, and a solid electrolyte. A solid electrolyte secondary battery in which both ends or one end of a main chain of polyether, polythioether or polyacrylate is chemically bonded to the particle surface.
能な酸化物が、二酸化マンガン、リチウム含有マンガン
酸化物、リチウム含有ニッケル酸化物、リチウム含有コ
バルト酸化物、又は、マンガン、ニッケル及びコバルト
よりなる群から選ばれた少なくとも2種の遷移金属を含
有するリチウム含有遷移金属複合酸化物である請求項1
記載の固体電解質二次電池。2. The oxide capable of inserting and extracting lithium is composed of manganese dioxide, lithium-containing manganese oxide, lithium-containing nickel oxide, lithium-containing cobalt oxide, or manganese, nickel and cobalt. A lithium-containing transition metal composite oxide containing at least two transition metals selected from the group.
The solid electrolyte secondary battery described.
リチウム、又は、リチウムを吸蔵及び放出することが可
能な、合金、酸化物若しくは炭素を負極材料とするもの
である請求項1記載の固体電解質二次電池。3. The negative electrode using lithium as an active material, wherein the negative electrode material is metallic lithium or an alloy, oxide or carbon capable of inserting and extracting lithium. Solid electrolyte secondary battery.
ド、ポリプロピレンオキシド、ポリエーテルイミド、ポ
リエーテルスルホン、ポリエーテルケトン又はポリオキ
シベンゾインである請求項1記載の固体電解質二次電
池。4. The solid electrolyte secondary battery according to claim 1, wherein the polyether is polyethylene oxide, polypropylene oxide, polyetherimide, polyether sulfone, polyether ketone or polyoxybenzoin.
ルフィドである請求項1記載の固体電解質二次電池。5. The solid electrolyte secondary battery according to claim 1, wherein the polythioether is polyphenylene sulfide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27033994A JP3432922B2 (en) | 1994-10-06 | 1994-10-06 | Solid electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27033994A JP3432922B2 (en) | 1994-10-06 | 1994-10-06 | Solid electrolyte secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08111233A true JPH08111233A (en) | 1996-04-30 |
JP3432922B2 JP3432922B2 (en) | 2003-08-04 |
Family
ID=17484884
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27033994A Expired - Fee Related JP3432922B2 (en) | 1994-10-06 | 1994-10-06 | Solid electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3432922B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000030709A (en) * | 1998-07-15 | 2000-01-28 | Nissan Motor Co Ltd | Manganese-lithium ion battery |
US6228531B1 (en) * | 1997-10-14 | 2001-05-08 | Mitsubishi Chemical Corporation | Electrode modification using surface associated lithium salts and an associated process for fabrication of an electrode |
JP2011138732A (en) * | 2010-01-04 | 2011-07-14 | Hitachi Maxell Ltd | Nonaqueous secondary battery |
JP2013538432A (en) * | 2010-09-17 | 2013-10-10 | コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブ | Electrochemical power generation device and method for producing such a power generation device |
US8771875B2 (en) | 2007-09-12 | 2014-07-08 | Sony Corporation | Substance and battery including the same |
-
1994
- 1994-10-06 JP JP27033994A patent/JP3432922B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6228531B1 (en) * | 1997-10-14 | 2001-05-08 | Mitsubishi Chemical Corporation | Electrode modification using surface associated lithium salts and an associated process for fabrication of an electrode |
JP2000030709A (en) * | 1998-07-15 | 2000-01-28 | Nissan Motor Co Ltd | Manganese-lithium ion battery |
US8771875B2 (en) | 2007-09-12 | 2014-07-08 | Sony Corporation | Substance and battery including the same |
JP2011138732A (en) * | 2010-01-04 | 2011-07-14 | Hitachi Maxell Ltd | Nonaqueous secondary battery |
JP2013538432A (en) * | 2010-09-17 | 2013-10-10 | コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブ | Electrochemical power generation device and method for producing such a power generation device |
Also Published As
Publication number | Publication date |
---|---|
JP3432922B2 (en) | 2003-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7326493B2 (en) | Lithium electrochemical generator comprising at least a bipolar electrode with conductive aluminium or aluminium alloy substrates | |
JP2002237293A (en) | Nonaqueous electrolyte secondary battery and its manufacturing method | |
JP2001236946A (en) | Pole plate for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same | |
JPH08250108A (en) | Manufacture of negative electrode for lithium secondary battery, and lithium secondary battery | |
JPH06310126A (en) | Nonaquous electrolytic secondary battery | |
JPH11120993A (en) | Nonaqueous electrolyte secondary battery | |
JPH0745304A (en) | Organic electrolyte secondary battery | |
JPH1145720A (en) | Lithium secondary battery | |
JP3432922B2 (en) | Solid electrolyte secondary battery | |
JPH11162467A (en) | Nonaqueous secondary battery | |
JP3530174B2 (en) | Positive electrode active material and lithium ion secondary battery | |
JP2003168427A (en) | Nonaqueous electrolyte battery | |
JP2002117832A (en) | Lithium secondary battery | |
JP2002075460A (en) | Lithium secondary cell | |
JP3699589B2 (en) | Positive electrode paste composition, positive electrode manufacturing method, positive electrode, and lithium secondary battery using the same | |
JP2000012026A (en) | Nonaqueous electrolyte secondary battery | |
JP2001015168A (en) | Lithium secondary battery | |
JPH10112307A (en) | Nonaqueous electrolyte secondary battery | |
JP2002015775A (en) | Nonaqueous solvent secondary cell and positive active material for the same | |
JP6125719B1 (en) | Charging system and method for charging non-aqueous electrolyte battery | |
JPH09171825A (en) | Secondary battery having nonaqueous solvent | |
JP3394020B2 (en) | Lithium ion secondary battery | |
JP2000058118A (en) | Nonaqueous electrolyte secondary battery | |
JPH10214629A (en) | Lithium secondary battery | |
JP2001313024A (en) | Lithium secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080523 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090523 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090523 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100523 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110523 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120523 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130523 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |