JP2006228505A - Graphite particles for anode of lithium-ion secondary battery, its manufacturing method, as well as anode for lithium-ion secondary battery and lithium-ion secondary battery using the same - Google Patents

Graphite particles for anode of lithium-ion secondary battery, its manufacturing method, as well as anode for lithium-ion secondary battery and lithium-ion secondary battery using the same Download PDF

Info

Publication number
JP2006228505A
JP2006228505A JP2005038986A JP2005038986A JP2006228505A JP 2006228505 A JP2006228505 A JP 2006228505A JP 2005038986 A JP2005038986 A JP 2005038986A JP 2005038986 A JP2005038986 A JP 2005038986A JP 2006228505 A JP2006228505 A JP 2006228505A
Authority
JP
Japan
Prior art keywords
ion secondary
secondary battery
lithium ion
negative electrode
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005038986A
Other languages
Japanese (ja)
Inventor
Yoshito Ishii
義人 石井
Keiji Okabe
圭児 岡部
Takamasa Ishigaki
隆正 石垣
Masahito Kurihara
雅人 栗原
Satoru Maruyama
哲 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
TDK Corp
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
National Institute for Materials Science
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, National Institute for Materials Science, TDK Corp filed Critical Hitachi Chemical Co Ltd
Priority to JP2005038986A priority Critical patent/JP2006228505A/en
Publication of JP2006228505A publication Critical patent/JP2006228505A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium-ion secondary battery with higher capacity and charge/discharge efficiency, and also with better cycling characteristics and rapid charge/discharge properties than the conventional ones. <P>SOLUTION: Provided are the graphite particles for the anode of the lithium-ion secondary battery, having a mean particle diameter of 5 to 50 micrometers, a true specific gravity of 2.20 or larger, a specific surface area by nitrogen gas absorption of 8 m<SP>2</SP>/g or lower, a specific surface area by carbon dioxide absorption of 1 m<SP>2</SP>/g or lower, and an oxygen element richness measured by X-ray photoelectron spectroscopy (XPS) of 0.7 at% or higher, and its manufacturing method, as well as the anode for the lithium-ion secondary battery and the lithium-ion secondary battery using the graphite particles. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、リチウムイオン二次電池負極用黒鉛粒子とその製造方法、並びに該黒鉛粒子を用いてなるリチウムイオン二次電池用負極及びリチウムイオン二次電池に関する。さらに詳しくは、高容量、高充放電効率で、かつ急速充放電特性、サイクル特性に優れ、ポータブル機器、電気自動車、電力貯蔵等に用いるのに好適なリチウムイオン二次電池、並びにそれを得るためのリチウムイオン二次電池負極用黒鉛粒子とその製造方法、及び該黒鉛粒子を用いてなるリチウムイオン二次電池用負極に関する。   The present invention relates to a graphite particle for a lithium ion secondary battery negative electrode, a method for producing the same, and a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery using the graphite particles. More specifically, a lithium-ion secondary battery having high capacity, high charge / discharge efficiency, excellent rapid charge / discharge characteristics and cycle characteristics, and suitable for use in portable devices, electric vehicles, power storage, etc., and to obtain the same The present invention relates to a graphite particle for a negative electrode of a lithium ion secondary battery, a production method thereof, and a negative electrode for a lithium ion secondary battery using the graphite particle.

従来、リチウムイオン二次電池の負極用材料には、例えば、天然黒鉛粒子、コークスを黒鉛化した人造黒鉛粒子、有機系高分子材料、ピッチ等を黒鉛化した人造黒鉛粒子、これらを粉砕した黒鉛粒子、メソフェーズカーボンを黒鉛化した球状黒鉛などが用いられている。また、これらの黒鉛粒子を用いたリチウムイオン二次電池用負極は、一般的に、黒鉛粒子、有機系結着剤(バインダー)及び溶剤を混合して黒鉛ペーストとし、これを銅箔の表面に塗布し、溶剤を乾燥させた後、必要に応じてロール等で圧縮し密度を調整することで製造される。   Conventionally, negative electrode materials for lithium ion secondary batteries include, for example, natural graphite particles, artificial graphite particles graphitized with coke, organic polymer materials, artificial graphite particles graphitized with pitch, etc., and graphite obtained by pulverizing these Particles, spherical graphite obtained by graphitizing mesophase carbon, and the like are used. In addition, a negative electrode for a lithium ion secondary battery using these graphite particles is generally mixed with graphite particles, an organic binder (binder) and a solvent to form a graphite paste, and this is applied to the surface of the copper foil. It is manufactured by applying and drying the solvent, and then adjusting the density by compressing with a roll or the like as necessary.

リチウムイオン二次電池の充放電電位、充放電容量、サイクル特性といった電気化学特性は、負極に用いられる黒鉛粒子の結晶性(結晶構造、結晶化度)、表面形態、内部構造、表面化学組成などに強く依存する。さらに、初回充電時に負極表面上に形成されるSEI(Solid Electrolyte Interface)による特性への影響も大きい。このSEIは、負極と電解液との反応によって形成され、いったん形成されるとそれ以上の反応が抑制されるため、黒鉛の層間へのリチウム挿入が可能となる。しかし、SEIは、不可逆容量を生む原因の一つである。また、電池の安全性のかかわる熱安定性は、SEIの安定性に左右される。さらに、SEIは、負極と電解液との反応により形成されるという機構上、カルボキシル基やカルボニル基などの酸素官能基の黒鉛粒子表面における量や、黒鉛粒子の表面結晶性、細孔構造といった黒鉛粒子の表面構造の影響を大きく受ける。   Electrochemical characteristics such as charge / discharge potential, charge / discharge capacity, and cycle characteristics of the lithium ion secondary battery include crystallinity (crystal structure, crystallinity), surface morphology, internal structure, surface chemical composition, etc. of the graphite particles used in the negative electrode. Strongly depends on. Furthermore, the influence on the characteristic by SEI (Solid Electrolyte Interface) formed on the negative electrode surface at the time of the first charge is great. This SEI is formed by the reaction between the negative electrode and the electrolytic solution, and once formed, further reaction is suppressed, so that lithium can be inserted between the graphite layers. However, SEI is one of the causes that cause irreversible capacity. Further, the thermal stability related to the safety of the battery depends on the stability of SEI. Furthermore, because of the mechanism that SEI is formed by the reaction between the negative electrode and the electrolyte, the amount of oxygen functional groups such as carboxyl groups and carbonyl groups on the surface of the graphite particles, the surface crystallinity of the graphite particles, and the graphite such as the pore structure It is greatly affected by the surface structure of the particles.

これまで、良好な電池特性を得るために、黒鉛粒子の表面改質を行うことが提案されている。例えば、特許文献1〜3には、熱プラズマによって炭素材料を表面処理する方法が開示されている。   Heretofore, it has been proposed to perform surface modification of graphite particles in order to obtain good battery characteristics. For example, Patent Documents 1 to 3 disclose a method for surface-treating a carbon material by thermal plasma.

特開平10−92432号公報JP-A-10-92432 特開2000−223121号公報JP 2000-223121 A 特開2004−265733号公報JP 2004-265733 A

本発明は、従来のリチウムイオン二次電池と比較して、その容量および充放電効率が高く、サイクル特性および急速充放電特性に優れたリチウムイオン二次電池、並びにそれを得るためのリチウムイオン二次電池負極用黒鉛粒子とその製造方法、及び該黒鉛粒子を用いてなるリチウムイオン二次電池用負極を提供することを目的とするものである。   The present invention has a high capacity and charge / discharge efficiency compared to conventional lithium ion secondary batteries, and is excellent in cycle characteristics and rapid charge / discharge characteristics, and a lithium ion secondary battery for obtaining the same. It aims at providing the negative electrode for lithium ion secondary batteries which uses the graphite particle for secondary battery negative electrodes, its manufacturing method, and this graphite particle.

すなわち、本発明は、下記(1)〜(7)に記載の事項をその特徴とするものである。   That is, the present invention is characterized by the following items (1) to (7).

(1)平均粒径が5〜50μm、真比重が2.20以上、窒素ガス吸着による比表面積が8m/g以下、炭酸ガス吸着による比表面積が1m/g以下、X線光電子分光スペクトル(XPS)で測定される酸素元素濃度が0.7at%以上であることを特徴とするリチウムイオン二次電池負極用黒鉛粒子。 (1) Average particle diameter is 5 to 50 μm, true specific gravity is 2.20 or more, specific surface area by nitrogen gas adsorption is 8 m 2 / g or less, specific surface area by carbon dioxide gas adsorption is 1 m 2 / g or less, X-ray photoelectron spectroscopy spectrum A graphite particle for a negative electrode of a lithium ion secondary battery, wherein the oxygen element concentration measured by (XPS) is 0.7 at% or more.

(2)黒鉛粒子原料に対し、還元性雰囲気中、酸化性雰囲気中または反応性雰囲気中において、熱プラズマ処理を施してなることを特徴とする上記(1)記載のリチウムイオン二次電池負極用黒鉛粒子。   (2) The lithium ion secondary battery negative electrode according to (1), wherein the graphite particle material is subjected to thermal plasma treatment in a reducing atmosphere, an oxidizing atmosphere, or a reactive atmosphere. Graphite particles.

(3)表面に結晶面が積層したc軸方向のエッジ面が露出していることを特徴とする上記(1)又は(2)記載のリチウムイオン二次電池負極用黒鉛粒子。   (3) The graphite particles for a lithium ion secondary battery negative electrode according to (1) or (2) above, wherein an edge surface in the c-axis direction in which crystal faces are laminated on the surface is exposed.

(4)平均粒径が5〜50μm、真比重が2.20以上、窒素ガス吸着による比表面積が10m/g以下の黒鉛粒子原料に対し、還元性雰囲気中、酸化性雰囲気中または反応性雰囲気中において、熱プラズマ処理を施すことを特徴とするリチウムイオン二次電池負極用黒鉛粒子の製造法。 (4) Reducing atmosphere, oxidizing atmosphere or reactivity against graphite particle raw materials having an average particle size of 5 to 50 μm, a true specific gravity of 2.20 or more, and a specific surface area by nitrogen gas adsorption of 10 m 2 / g or less. A method for producing graphite particles for a negative electrode of a lithium ion secondary battery, characterized by performing a thermal plasma treatment in an atmosphere.

(5)平均粒径が5〜50μm、真比重が2.20以上の黒鉛粒子原料に対し、還元性雰囲気中、酸化性雰囲気中または反応性雰囲気中において、熱プラズマ処理を施し、その表面に結晶面が積層したc軸方向のエッジ面を露出させることを特徴とするリチウムイオン二次電池負極用黒鉛粒子の製造法。   (5) A thermal plasma treatment is performed on the surface of a graphite particle raw material having an average particle diameter of 5 to 50 μm and a true specific gravity of 2.20 or more in a reducing atmosphere, an oxidizing atmosphere or a reactive atmosphere. A method for producing graphite particles for a negative electrode of a lithium ion secondary battery, wherein an edge surface in the c-axis direction in which crystal faces are laminated is exposed.

(6)請求項1〜3のいずれかに記載のリチウムイオン二次電池負極用黒鉛粒子及び/又は請求項4〜5に記載の製造法で作製したリチウムイオン二次電池負極用黒鉛粒子を用いてなることを特徴とするリチウムイオン二次電池用負極。   (6) Using the graphite particles for a lithium ion secondary battery negative electrode according to any one of claims 1 to 3 and / or the graphite particles for a lithium ion secondary battery negative electrode produced by the production method according to claims 4 to 5. A negative electrode for a lithium ion secondary battery.

(7)請求項6に記載のリチウムイオン二次電池用負極を備えるリチウムイオン二次電池。   (7) A lithium ion secondary battery comprising the negative electrode for a lithium ion secondary battery according to claim 6.

本発明によれば、従来のリチウムイオン二次電池と比較して、その容量および充放電効率が高く、サイクル特性および急速充放電特性に優れたリチウムイオン二次電池、並びにそれを得るためのリチウムイオン二次電池負極用黒鉛粒子とその製造方法、及び該黒鉛粒子を用いてなるリチウムイオン二次電池用負極を提供することが可能となる。   According to the present invention, compared to a conventional lithium ion secondary battery, the capacity and charge / discharge efficiency are high, the lithium ion secondary battery is excellent in cycle characteristics and rapid charge / discharge characteristics, and lithium for obtaining the same. It becomes possible to provide a graphite particle for an ion secondary battery negative electrode, a production method thereof, and a negative electrode for a lithium ion secondary battery using the graphite particle.

本発明のリチウムイオン二次電池負極用黒鉛粒子は、平均粒径が5〜50μm、真比重が2.20以上、窒素ガス吸着による比表面積が8m/g以下、炭酸ガス吸着による比表面積が1m/g以下、X線光電子分光スペクトル(XPS)で測定される酸素元素濃度が0.7at%以上であることをその特徴とする。このような黒鉛粒子は、該黒鉛粒子を用いた負極を備えるリチウムイオン二次電池の容量および充放電効率、サイクル特性を向上させることが可能である。これはリチウムイオン二次電池の充電時において、電解液の分解と、上記黒鉛粒子中に固定化され充放電に関与しないリチウムイオンとを共に低減することが可能であるためと考えられる。 The graphite particles for the negative electrode of the lithium ion secondary battery of the present invention have an average particle diameter of 5 to 50 μm, a true specific gravity of 2.20 or more, a specific surface area of 8 m 2 / g or less by nitrogen gas adsorption, and a specific surface area of carbon dioxide gas adsorption. 1 m 2 / g or less and the oxygen element concentration measured by X-ray photoelectron spectroscopy (XPS) is 0.7 at% or more. Such graphite particles can improve the capacity, charge / discharge efficiency, and cycle characteristics of a lithium ion secondary battery including a negative electrode using the graphite particles. This is considered to be because it is possible to reduce both the decomposition of the electrolytic solution and the lithium ions that are fixed in the graphite particles and do not participate in charge / discharge during charging of the lithium ion secondary battery.

本発明のリチウムイオン二次電池負極用黒鉛粒子の平均粒径は、5〜50μmであることが必要とされ、5〜35μmであることが好ましく、5〜25μmであることがより好ましく、8〜20μmであることが特に好ましい。平均粒径が5μm未満であると、集電体との密着性が不十分となり易いため、リチウムイオン二次電池用負極を作製する際に用いるバインダーを通常より多め使用する必要が生じ、その結果、負極の抵抗が増加してしまうという問題が生じる。一方、平均粒径が50μmを超えると、作製するリチウムイオン二次電池負極の表面に凹凸が発生し易くなるため、充放電時の電流密度バラツキが大きくなり、その結果、充放電サイクル特性が低下するという問題が生じる。なお、本発明における平均粒径は、レーザー回折式粒度分布計により測定することができ、粒子が球状でないときは投影面積を円に換算した相当径を平均粒径とする。   The average particle size of the graphite particles for lithium ion secondary battery negative electrode of the present invention is required to be 5 to 50 μm, preferably 5 to 35 μm, more preferably 5 to 25 μm, and 8 to A thickness of 20 μm is particularly preferable. If the average particle size is less than 5 μm, the adhesion to the current collector tends to be insufficient, so that it is necessary to use more binder than usual when producing a negative electrode for a lithium ion secondary battery. This causes a problem that the resistance of the negative electrode increases. On the other hand, if the average particle size exceeds 50 μm, unevenness is likely to occur on the surface of the negative electrode of the lithium ion secondary battery to be produced, resulting in a large current density variation during charge / discharge, resulting in a decrease in charge / discharge cycle characteristics. Problem arises. In addition, the average particle diameter in this invention can be measured with a laser diffraction type particle size distribution meter, and when a particle is not spherical, let the equivalent diameter which converted the projection area into a circle be an average particle diameter.

本発明のリチウムイオン二次電池負極用黒鉛粒子の真比重は、2.20以上であることが必要とされ、2.21以上であることが好ましく、2.22以上であることがより好ましく、2.23以上であることがさらに好ましく、2.24以上であることが特に好ましい。真比重が2.20未満であると、作製するリチウムイオン二次電池の放電容量が低下する傾向がある。上記真比重の測定は、例えばブタノール置換法など、既知の方法により行うことができる。   The true specific gravity of the graphite particles for lithium ion secondary battery negative electrode of the present invention is required to be 2.20 or more, preferably 2.21 or more, more preferably 2.22 or more, More preferably, it is 2.23 or more, and particularly preferably 2.24 or more. If the true specific gravity is less than 2.20, the discharge capacity of the lithium ion secondary battery to be produced tends to decrease. The true specific gravity can be measured by a known method such as a butanol substitution method.

本発明のリチウムイオン二次電池負極用黒鉛粒子の比表面積は、窒素ガス(N)で測定した比表面積が8m/g以下、炭酸ガス(CO)で測定した比表面積が1m/g以下であることを同時に満たすことが必要とされる。これにより、充電時の電解液分解と黒鉛粒子中に固定化され充放電に関与しないリチウムイオンを同時に低減することができ、作製するリチウムイオン二次電池の充放電効率を向上させることができる。窒素ガス(N)で測定した比表面積は、0.5〜8m/gの範囲であることが好ましく、1〜8m/gの範囲であることがより好ましく、2〜5m/gの範囲であることが特に好ましい。窒素ガスで測定した比表面積が0.5m/g未満であると、入出力特性が低下する傾向があり、この比表面積が8m/gを超えると、作製するリチウムイオン二次電池の第一サイクル目の不可逆容量が大きくなり、その結果、作製するリチウムイオン二次電池の放電容量が小さくなる傾向があるばかりでなく、第一サイクル目充電時に負極表面に生成する電解液の分解皮膜が多くなり、その結果、抵抗が増大し入出力特性が低下する傾向もある。また、炭酸ガスで測定した比表面積は、0.8m/g以下であることが好ましく、0.5m/g以下であることがより好ましく、0.1m/g以下であることが特に好ましい。炭酸ガスで測定した比表面積が1.0m/gを超えると、作製するリチウムイオン二次電池の第一サイクル目の不可逆容量が大きくなり、その結果、作製するリチウムイオン二次電池の放電容量が小さくなる傾向がある。上記比表面積の測定は、窒素ガス吸着、炭酸ガス吸着によるBET法など、既知の方法により行うことができる。 The specific surface area of the lithium-ion secondary battery negative electrode graphite particles of the present invention, nitrogen gas (N 2) measured specific surface area of 8m 2 / g or less, a specific surface area as measured by carbon dioxide (CO 2) is 1 m 2 / It is necessary to satisfy simultaneously that it is below g. Thereby, the electrolyte solution decomposition at the time of charge and the lithium ion which is fixed in the graphite particles and does not participate in charge / discharge can be reduced at the same time, and the charge / discharge efficiency of the lithium ion secondary battery to be manufactured can be improved. Nitrogen gas (N 2) specific surface area measured by is preferably in the range of 0.5~8m 2 / g, more preferably in the range of 1~8m 2 / g, 2~5m 2 / g It is particularly preferable that the range is When the specific surface area measured with nitrogen gas is less than 0.5 m 2 / g, the input / output characteristics tend to deteriorate. When the specific surface area exceeds 8 m 2 / g, the lithium ion secondary battery to be produced is As a result, the irreversible capacity of the first cycle increases, and as a result, the discharge capacity of the lithium ion secondary battery to be produced tends to decrease. As a result, there is a tendency that resistance increases and input / output characteristics deteriorate. The specific surface area measured by the carbon dioxide gas is preferably at 0.8 m 2 / g or less, more preferably 0.5 m 2 / g or less, particularly not less 0.1 m 2 / g or less preferable. When the specific surface area measured with carbon dioxide exceeds 1.0 m 2 / g, the irreversible capacity of the first cycle of the lithium ion secondary battery to be manufactured becomes large, and as a result, the discharge capacity of the lithium ion secondary battery to be manufactured Tends to be smaller. The specific surface area can be measured by a known method such as nitrogen gas adsorption or BET method using carbon dioxide gas adsorption.

本発明のリチウムイオン二次電池負極用黒鉛粒子のX線光電子分光スペクトル(XPS)で測定される酸素元素濃度は、0.7at%以上であることが必要とされ、1.0at%以上であることが好ましく、1.5at%以上であることがより好ましく、2.0at%以上であることが特に好ましい。X線光電子分光スペクトル(XPS)で測定される酸素元素濃度を0.7at%以上とすることで、酸素官能基が導入され、黒鉛粒子表面の充電時に電解液の分解を生じさせる部位の不活性化と電解液との相互作用に変化が生じ、作製するリチウムイオン二次電池の充放電効率を向上させることができる。X線光電子分光スペクトル(XPS)で測定される酸素元素濃度が0.7at%未満であると、作製するリチウムイオン二次電池の充放電効率が低下する傾向がある。上記X線光電子分光スペクトルで測定される酸素元素濃度の測定は、照射X線強度45〜150WのX線光電子分光スペクトルで検出された元素から、O1sピークの強度より算出する。   The oxygen element concentration measured by X-ray photoelectron spectroscopy (XPS) of the graphite particles for the negative electrode of the lithium ion secondary battery of the present invention is required to be 0.7 at% or more, and is 1.0 at% or more. It is preferably 1.5 at% or more, more preferably 2.0 at% or more. By making the oxygen element concentration measured by X-ray photoelectron spectroscopy (XPS) 0.7 at% or more, oxygen functional groups are introduced, and the inertness of the site that causes decomposition of the electrolyte during charging of the graphite particle surface A change occurs in the interaction between the electrolyte and the electrolytic solution, and the charge / discharge efficiency of the manufactured lithium ion secondary battery can be improved. When the oxygen element concentration measured by X-ray photoelectron spectroscopy (XPS) is less than 0.7 at%, the charge / discharge efficiency of the lithium ion secondary battery to be manufactured tends to decrease. The oxygen element concentration measured by the X-ray photoelectron spectrum is calculated from the intensity of the O1s peak from the element detected by the X-ray photoelectron spectrum having an irradiation X-ray intensity of 45 to 150 W.

本発明のリチウムイオン二次電池負極用黒鉛粒子における黒鉛結晶の層間距離d(002)は、3.38オングストローム以下であることが好ましく、3.37オングストローム以下であることがより好ましく、3.36オングストローム以下であることが特に好ましい。黒鉛結晶の層間距離d(002)が3.38オングストロームを超えると、作製するリチウムイオン二次電池の放電容量が低下する傾向がある。また、黒鉛結晶のC軸方向の結晶子の大きさLc(002)は、作製するリチウムイオン二次電池の充放電容量向上の観点から、300オングストローム以上であることが好ましく、600オングストローム以上であることがより好ましく、900オングストローム以上であることがさらに好ましく、1000オングストローム以上であることが特に好ましい。上記黒鉛結晶の層間距離d(002)及びC軸方向の結晶子の大きさLc(002)は、CuKα線を使用した広角X線回折法により測定することができる。   The interlayer distance d (002) between graphite crystals in the graphite particles for lithium ion secondary battery negative electrode of the present invention is preferably 3.38 angstroms or less, more preferably 3.37 angstroms or less. It is particularly preferable that the thickness is not more than angstrom. When the interlayer distance d (002) of the graphite crystal exceeds 3.38 angstroms, the discharge capacity of the lithium ion secondary battery to be produced tends to decrease. The crystallite size Lc (002) in the C-axis direction of the graphite crystal is preferably 300 angstroms or more and 600 angstroms or more from the viewpoint of improving the charge / discharge capacity of the lithium ion secondary battery to be produced. More preferably, it is 900 angstroms or more, more preferably 1000 angstroms or more. The interlayer distance d (002) of the graphite crystals and the crystallite size Lc (002) in the C-axis direction can be measured by a wide angle X-ray diffraction method using CuKα rays.

本発明のリチウムイオン二次電池負極用黒鉛粒子は、波長532nmのレーザー光で測定されるラマンスペクトルにおいて、1580cm−1付近に現れるピーク(Gピーク)と1350cm−1付近に現れるピーク(Dピーク)の高さ強度比(D/G)が0.05以上であることが好ましく、0.08以上であることがより好ましく、0.10以上であることがさらに好ましく、0.10〜0.40であることが特に好ましい。強度比(D/G)が0.05未満又は0.40を超えると作製するリチウムイオン二次電池の充放電効率が低下する傾向がある。 For lithium-ion secondary battery negative electrode graphite particles of the present invention, in the Raman spectrum measured by laser light having a wavelength of 532 nm, a peak appearing in the vicinity of 1350 cm -1 peak (G peak) appearing near 1580 cm -1 (D peak) The height intensity ratio (D / G) is preferably 0.05 or more, more preferably 0.08 or more, further preferably 0.10 or more, and 0.10 to 0.40. It is particularly preferred that When the intensity ratio (D / G) is less than 0.05 or exceeds 0.40, the charge / discharge efficiency of the lithium ion secondary battery to be produced tends to be reduced.

本発明のリチウムイオン二次電池負極用黒鉛粒子は、水銀圧入法により測定した10〜10オングストロームの範囲の細孔の細孔体積が0.2〜2.5cc/gの範囲であることが好ましく、0.4〜2.0cc/gの範囲であることがより好ましく、0.4〜1.5cc/gの範囲であることがさらに好ましく、0.6〜1.2cc/gの範囲であることが特に好ましい。10〜10オングストロームの範囲の細孔の細孔体積が0.2cc/g未満ではサイクル特性が低下する傾向があり、2.5cc/gを超えるとリチウムイオン二次電池用負極材料と集電体との密着強度が低下する傾向がある。上記細孔体積は水銀圧入法による細孔径分布測定により求めることができる。 The graphite particles for lithium ion secondary battery negative electrode of the present invention have a pore volume in the range of 10 2 to 10 6 angstroms measured by mercury porosimetry in the range of 0.2 to 2.5 cc / g. Is more preferable, is in the range of 0.4 to 2.0 cc / g, more preferably is in the range of 0.4 to 1.5 cc / g, and is in the range of 0.6 to 1.2 cc / g It is particularly preferred that If the pore volume of the pores in the range of 10 2 to 10 6 angstroms is less than 0.2 cc / g, the cycle characteristics tend to deteriorate, and if it exceeds 2.5 cc / g, the anode material for lithium ion secondary batteries and There exists a tendency for the adhesive strength with an electric body to fall. The pore volume can be determined by measuring the pore size distribution by mercury porosimetry.

本発明のリチウムイオン二次電池負極用黒鉛粒子のアスペクト比は、5以下であることが好ましく、1.1〜5であることがより好ましく、1.1〜3であることがさらに好ましく、1.2〜2.5であることが特に好ましい。アスペクト比が5を超えると、リチウムイオン二次電池用負極材料が集電体の面方向に配向しやすくなり、その結果、得られるリチウムイオン二次電池の急速充放電特性、出力特性及びサイクル特性が低下する傾向がある。アスペクト比が1.1未満では、粒子間の接触面積が減ることにより、作製する負極の導電性が低下する傾向にある。なお、アスペクト比は、黒鉛粒子の長軸方向の長さをA、短軸方向の長さをBとしたとき、A/Bで表される。本発明におけるアスペクト比は、電子顕微鏡で黒鉛粒子を拡大し、粒子を任意に10個選択し、電子顕微鏡の観察角度を変えながらA/Bを測定し、その平均値をとることで得られる。また、黒鉛粒子が、例えばリン片状、板状、ブロック状などのように厚さ方向を有する場合には、厚さを短軸方向の長さBとする。また、アスペクト比が5以下の黒鉛粒子は、複数の粒子を集合又は結合させたものでもよく、また、1つの粒子に機械的な力を加えアスペクト比が5以下となるように形状を変えたものでもよく、さらに、これらを組み合わせて作製したものでもよい。   The aspect ratio of the graphite particles for a lithium ion secondary battery negative electrode of the present invention is preferably 5 or less, more preferably 1.1 to 5, and further preferably 1.1 to 3. 2 to 2.5 is particularly preferable. When the aspect ratio exceeds 5, the negative electrode material for a lithium ion secondary battery tends to be oriented in the surface direction of the current collector, and as a result, the rapid charge / discharge characteristics, output characteristics and cycle characteristics of the resulting lithium ion secondary battery Tends to decrease. When the aspect ratio is less than 1.1, the contact area between the particles decreases, and the conductivity of the negative electrode to be produced tends to decrease. The aspect ratio is represented by A / B, where A is the length in the major axis direction of the graphite particles and B is the length in the minor axis direction. The aspect ratio in the present invention can be obtained by enlarging graphite particles with an electron microscope, selecting 10 particles arbitrarily, measuring A / B while changing the observation angle of the electron microscope, and taking the average value. Further, when the graphite particles have a thickness direction such as a flake shape, a plate shape, or a block shape, the thickness is set to a length B in the minor axis direction. Further, the graphite particles having an aspect ratio of 5 or less may be aggregated or bonded together, and the shape is changed so that the aspect ratio is 5 or less by applying mechanical force to one particle. It may be a thing, and what was produced combining these further may be sufficient.

本発明のリチウムイオン二次電池負極用黒鉛粒子は、当該黒鉛粒子表面に結晶面が積層したC軸方向のエッジ面が露出していることが好ましい。黒鉛粒子表面に結晶面が積層したC軸方向のエッジ面が露出していることで、黒鉛結晶層間へのリチウムの充放電がし易くなり、急速充放電特性を向上させることができる。黒鉛粒子表面に結晶面が積層したC軸方向のエッジ面が露出状態は、黒鉛粒子を走査型電子顕微鏡で黒鉛粒子の表面を3000倍以上に拡大することで観察することできる。   In the graphite particles for a negative electrode of the lithium ion secondary battery of the present invention, it is preferable that an edge surface in the C-axis direction in which crystal surfaces are laminated on the surface of the graphite particles is exposed. By exposing the edge surface in the C-axis direction in which crystal faces are laminated on the surface of the graphite particles, it becomes easy to charge and discharge lithium between graphite crystal layers, and rapid charge / discharge characteristics can be improved. The exposed state of the edge surface in the C-axis direction in which crystal faces are laminated on the surface of the graphite particles can be observed by enlarging the surface of the graphite particles with a scanning electron microscope to 3000 times or more.

上記のような特性を有する本発明のリチウムイオン二次電池負極用黒鉛粒子は、特に限定されないが、例えば、還元性雰囲気中、酸化性雰囲気中または反応性雰囲気中において、黒鉛粒子原料にプラズマ処理等を施すことで製造することができる。   The graphite particles for lithium ion secondary battery negative electrode of the present invention having the above-mentioned characteristics are not particularly limited. For example, in a reducing atmosphere, an oxidizing atmosphere or a reactive atmosphere, the graphite particles are subjected to plasma treatment. It can manufacture by giving etc.

上記黒鉛粒子原料としては、特に制限はないが、例えば、平均粒径が5〜50μmで、真比重が2.20以上の人造黒鉛粒子及び/又は天然黒鉛粒子、または平均粒径が5〜50μmで、真比重が2.20以上で、窒素ガス吸着による比表面積が10m/g以下である人造黒鉛粒子及び/又は天然黒鉛粒子であることが好ましい。黒鉛粒子原料の形状は、特に制限はないが、熱プラズマ処理を効果的なものとするために、例えば、球状、塊状等であることが好ましく、アスペクト比が5以下であることがより好ましく、アスペクト比が3以下であることがさらに好ましい。なお、上記した黒鉛粒子原料の各物性の定義や測定は、前述の、本発明のリチウムイオン二次電池負極用黒鉛粒子の場合と同様である。 The graphite particle raw material is not particularly limited. For example, artificial graphite particles and / or natural graphite particles having an average particle diameter of 5 to 50 μm and a true specific gravity of 2.20 or more, or an average particle diameter of 5 to 50 μm. Thus, it is preferable to use artificial graphite particles and / or natural graphite particles having a true specific gravity of 2.20 or more and a specific surface area by nitrogen gas adsorption of 10 m 2 / g or less. The shape of the graphite particle raw material is not particularly limited, but in order to make the thermal plasma treatment effective, for example, it is preferably spherical, massive, etc., and the aspect ratio is more preferably 5 or less, More preferably, the aspect ratio is 3 or less. In addition, the definition and measurement of each physical property of the above-described graphite particle raw material are the same as in the case of the above-described graphite particles for a negative electrode of a lithium ion secondary battery of the present invention.

また、黒鉛粒子原料のかさ密度は、特に限定されないが、後述する熱プラズマ処理の均一性の観点から、0.2g/cm以上であることが好ましく、0.3g/cm以上であることがより好ましく、0.4g/cm以上であることがさらに好ましく、0.5g/cm以上であることが特に好ましい。上記かさ密度の測定は、100mlのメスシリンダに黒鉛粒子原料を上部から落下させて100ml入れ、5cmの高さからメスシリンダを50回タッピングさせた後の体積と重量から算出する。 Further, the bulk density of the graphite particle raw material is not particularly limited, but is preferably 0.2 g / cm 3 or more, and preferably 0.3 g / cm 3 or more from the viewpoint of the uniformity of the thermal plasma treatment described later. Is more preferably 0.4 g / cm 3 or more, and particularly preferably 0.5 g / cm 3 or more. The measurement of the bulk density is calculated from the volume and weight after dropping the graphite particle material from the top into a 100 ml graduated cylinder and placing 100 ml of the graduated cylinder 50 times from a height of 5 cm.

上記プラズマ処理としては、特に制限はないが、熱プラズマ処理であることが、作製するリチウムイオン二次電池の充放電容量、充放電効率、サイクル特性、急速充放電特性を向上させる観点から好ましい。熱プラズマは、中圧(10〜70kPa程度)から1気圧において発生するプラズマであり、通常の低圧プラズマと異なり熱平衡に近いプラズマが得られるため、単にプラズマ等で局所的な反応を行うだけでなく、系に存在する物質まで高温にすることができる。したがって、熱プラズマにより高温相の生成および表面改質の両方が可能になる。   Although there is no restriction | limiting in particular as said plasma processing, It is preferable from a viewpoint of improving the charging / discharging capacity | capacitance, charging / discharging efficiency, cycling characteristics, and rapid charging / discharging characteristic of the lithium ion secondary battery to produce. Thermal plasma is a plasma generated from medium pressure (about 10 to 70 kPa) to 1 atm. Unlike normal low-pressure plasma, a plasma close to thermal equilibrium is obtained. The material present in the system can be elevated to high temperatures. Thus, the thermal plasma allows both the generation of a high temperature phase and surface modification.

熱プラズマ処理は、例えば「石垣正隆,セラミックス,30(1995)No.11,1013〜1016」、特開平7−31873号公報、前記特許文献1〜3にしたがって行うことができる。より具体的には、例えば、図1に示すような高周波熱プラズマの発生装置(熱プラズマトーチ)を用いることができる。これは、プラズマトーチ中へ連続的に処理対象物を導入し、下部において処理物を回収するものである。図1の装置(トーチ)10は、水冷二重管11の外に高周波コイル12が巻まかれた構造であり、その内部において高周波電磁誘導により熱プラズマを発生させるものである。水冷二重管11の上部は蓋13が取り付けられており、蓋13には熱プラズマ処理に供する黒鉛粒子原料の粉末とキャリアガスとを供給する粉末供給用水冷プローブ14が設置されている。プラズマトーチの大きさは特に限定されないが、図1に示す構造とする場合には、管径10〜1000mm、特に50〜100mm程度、高さ50〜3000mm、特に200〜3000mm程度とすることが好ましい。また、装置(トーチ)10内部には、主としてプラズマ流を形成するためのセントラルガスGp、主としてプラズマ流の外側を包むためのシースガスGsが導入される。なお、以下では、セントラルガス、シースガスおよびキャリアガスをあわせてプラズマガスということがある。   The thermal plasma treatment can be performed according to, for example, “Masataka Ishigaki, Ceramics, 30 (1995) No. 11, 1013 to 1016”, Japanese Patent Laid-Open No. 7-31873, and Patent Documents 1 to 3. More specifically, for example, a high-frequency thermal plasma generator (thermal plasma torch) as shown in FIG. 1 can be used. In this method, a processing object is continuously introduced into the plasma torch, and the processing object is recovered at the lower part. The apparatus (torch) 10 in FIG. 1 has a structure in which a high-frequency coil 12 is wound outside a water-cooled double tube 11 and generates thermal plasma by high-frequency electromagnetic induction therein. A lid 13 is attached to the upper part of the water-cooled double tube 11, and a powder-feeding water-cooled probe 14 for supplying a graphite particle raw material powder and a carrier gas for thermal plasma processing is installed on the lid 13. The size of the plasma torch is not particularly limited, but in the case of the structure shown in FIG. 1, it is preferable that the tube diameter is 10 to 1000 mm, particularly about 50 to 100 mm, and the height is 50 to 3000 mm, particularly about 200 to 3000 mm. . Further, a central gas Gp for mainly forming a plasma flow and a sheath gas Gs for mainly wrapping the outside of the plasma flow are introduced into the apparatus (torch) 10. Hereinafter, the central gas, the sheath gas, and the carrier gas may be collectively referred to as plasma gas.

熱プラズマの発生条件(熱プラズマによる処理条件)としては、通常、周波数0.5〜30MHz、投入電力3〜200kW、トーチ内部の圧力1〜100kPaとすればよく、特に、周波数0.5〜6MHz、投入電力10〜100kW、トーチ内部の圧力10〜70kPaとすることが好ましい。   As conditions for generating thermal plasma (processing conditions using thermal plasma), the frequency is usually 0.5 to 30 MHz, the input power is 3 to 200 kW, and the pressure inside the torch is 1 to 100 kPa. In particular, the frequency is 0.5 to 6 MHz. The input power is preferably 10 to 100 kW, and the pressure inside the torch is preferably 10 to 70 kPa.

また、プラズマガスは、その種類を適宜選択することにより、熱プラズマ処理による効果を制御できる。用いるプラズマガス、すなわち、セントラルガス、シースガスおよびキャリアガスとしては、特に限定されないが、それぞれに少なくともArを用いることが好ましく、Arと、N、H、COおよびCOの少なくとも1種とを併用することがより好ましい。特に、HまたはNとArとの併用や、これらにさらにCOを加えることが好ましい。プラズマガス中において、Ar以外のガスの体積比は1〜20%であることが好ましい。プラズマガスとして少なくともArを用いることで、本発明の効果、特に初回の充放電効率を向上させることができる。また、Nに比べHは熱伝導率が高いので、Hを使う場合には、通常、加熱効率がより高くなる。また、シースガスには、トーチ内壁を保護するため、H、Nのような二原子気体を混合することが好ましい。セントラルガスとシースガスとの合計流量は、通常、2〜200リットル/分、好ましくは30〜130リットル/分とすればよい。 In addition, the effect of thermal plasma treatment can be controlled by appropriately selecting the type of plasma gas. Plasma gas used, i.e., central gas, as the sheath gas and the carrier gas is not particularly limited, it is preferable to use at least Ar respectively, and Ar, and at least one N 2, H 2, CO 2 and CO It is more preferable to use together. In particular, it is preferable to use H 2 or N 2 in combination with Ar, and to add CO 2 to these. In the plasma gas, the volume ratio of gases other than Ar is preferably 1 to 20%. By using at least Ar as the plasma gas, the effects of the present invention, particularly the first charge / discharge efficiency, can be improved. Further, since H 2 is a high thermal conductivity compared to N 2, when using of H 2 typically heating efficiency is higher. The sheath gas is preferably mixed with a diatomic gas such as H 2 or N 2 in order to protect the inner wall of the torch. The total flow rate of the central gas and the sheath gas is usually 2 to 200 liters / minute, preferably 30 to 130 liters / minute.

上記のような装置、条件により、3,000〜15,000℃の還元性、酸化性または反応性の雰囲気中での黒鉛粒子原料の熱プラズマ処理が可能になる。本発明では、3,000〜15,000℃の温度域における黒鉛粒子原料の滞留時間を、0.001〜10秒、特に0.02〜0.5秒程度とすることが好ましい。また、熱プラズマ処理に供される黒鉛粒子原料の量は、1分あたりの導入量で0.001〜0.5kgとすることが好ましい。したがって、キャリアガスの流量は1〜100リットル/分とすればよい。   The apparatus and conditions as described above enable thermal plasma treatment of the graphite particle raw material in a reducing, oxidizing or reactive atmosphere at 3,000 to 15,000 ° C. In the present invention, the residence time of the graphite particle raw material in the temperature range of 3,000 to 15,000 ° C. is preferably about 0.001 to 10 seconds, particularly about 0.02 to 0.5 seconds. Moreover, it is preferable that the quantity of the graphite particle raw material provided to a thermal plasma process shall be 0.001-0.5 kg by the introduction amount per minute. Therefore, the flow rate of the carrier gas may be 1 to 100 liters / minute.

上記黒鉛粒子原料は、単独で熱プラズマ処理してもよいが、金属、金属化合物、樹脂等の有機系化合物など、黒鉛粒子原料以外の物質と混合して熱プラズマ処理してもよい。特に金属酸化物と共に熱プラズマ処理することが好ましい。金属酸化物としては、特に限定されないが、例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)、およびこれらの複酸化物(LiCoxNiyMnzO、X+Y+X=1)、リチウムマンガンスピネル(LiMn)、リチウムバナジウム化合物、V、オリビン型LiMPO(M:Co、Ni、Mn、Fe)などが好ましい。なお、混合物中の黒鉛粒子原料以外の物質の混合比率は、5質量%以下とすることが好ましい。 The graphite particle raw material may be subjected to thermal plasma treatment alone, or may be mixed with a material other than the graphite particle raw material, such as an organic compound such as a metal, a metal compound, or a resin, and may be subjected to thermal plasma treatment. It is particularly preferable to perform a thermal plasma treatment together with the metal oxide. The metal oxide is not particularly limited, for example, lithium cobalt oxide (LiCoO 2), lithium nickelate (LiNiO 2), lithium manganate (LiMnO 2), and these mixed oxide (LiCoxNiyMnzO 2, X + Y + X = 1 ), Lithium manganese spinel (LiMn 2 O 4 ), lithium vanadium compound, V 2 O 5 , olivine type LiMPO 4 (M: Co, Ni, Mn, Fe) and the like are preferable. In addition, it is preferable that the mixture ratio of substances other than the graphite particle raw material in a mixture shall be 5 mass% or less.

黒鉛粒子原料に対する処理として上記のような熱プラズマ処理を行うことは、本発明のリチウムイオン二次電池の各種特性を向上させることに大きく寄与するため、非常に有効であるが、もちろん上記熱プラズマ処理以外の処理により本発明のリチウムイオン二次電池負極用黒鉛粒子を製造しても良い。   Performing the above thermal plasma treatment as a treatment for the graphite particle raw material is very effective because it greatly contributes to improving various characteristics of the lithium ion secondary battery of the present invention. You may manufacture the graphite particle for lithium ion secondary battery negative electrodes of this invention by processes other than a process.

上記熱プラズマ処理以外の処理には、例えば、黒鉛粒子原料の表面に対し活性点を付加する処理(たとえば官能基で修飾する処理)が挙げられる。このような処理後に黒鉛粒子を空気にさらすと、水分の吸着や電極特性を害する官能基の吸着が生じ、程度の差こそあれ電極特性を低下させる恐れがあるが、この点については、後述するように、表面処理後に空気との接触を避けるように黒鉛粒子を扱えばよい。なお、本発明において黒鉛粒子原料に対して行う処理には、空気中等の酸化性雰囲気中に放置する処理は含まれない。   Examples of the treatment other than the thermal plasma treatment include a treatment for adding an active site to the surface of the graphite particle raw material (for example, a treatment with a functional group). If the graphite particles are exposed to air after such treatment, moisture adsorption and adsorption of functional groups that impair the electrode characteristics may occur, which may reduce the electrode characteristics to some extent, but this point will be described later. Thus, the graphite particles may be handled so as to avoid contact with air after the surface treatment. In addition, the process performed with respect to the graphite particle raw material in the present invention does not include the process of leaving in an oxidizing atmosphere such as air.

また、別の処理としては、例えば、黒鉛粒子原料の粉砕またはミリングが含まれる。粉砕またはミリングにより黒鉛粒子原料表面の活性が向上し、電極材料としての特性が向上する。粉砕またはミリングに用いる手段および具体的条件は、電極材料としての特性が向上するように設定すればよく、特に限定はされないが、処理は希ガス中で行うことが好ましい。また、粉砕手段としては、たとえば、黒鉛粒子とアルミナボール等の粉砕媒体とを入れたポットを回転させることにより行うことができる。処理時間はたとえば1〜48時間程度とすればよい。   Moreover, as another process, the grinding | pulverization or milling of a graphite particle raw material is contained, for example. By crushing or milling, the activity of the graphite particle raw material surface is improved, and the characteristics as an electrode material are improved. Means and specific conditions used for pulverization or milling may be set so as to improve the characteristics as an electrode material, and are not particularly limited, but the treatment is preferably performed in a rare gas. Moreover, as a grinding | pulverization means, it can carry out by rotating the pot in which the graphite particle and grinding media, such as an alumina ball | bowl, were put, for example. The processing time may be about 1 to 48 hours, for example.

さらに別の処理としては、例えば、黒鉛粒子原料を分散させた特定の有機溶媒に超音波を印加する処理が挙げられる。この処理では、進行波型超音波印加により有機溶媒が炭化して析出する。析出は、分散している黒鉛粒子原料の表面で生じるため、黒鉛粒子原料の表面に、不要な官能基等の吸着がない炭素被覆を形成することができる。上記特定の有機溶媒としては、例えば、o−ジクロロベンゼン等が挙げられる。   Still another treatment includes, for example, a treatment in which ultrasonic waves are applied to a specific organic solvent in which a graphite particle raw material is dispersed. In this treatment, the organic solvent is carbonized and deposited by applying traveling wave ultrasonic waves. Since precipitation occurs on the surface of the dispersed graphite particle raw material, a carbon coating free from adsorption of unnecessary functional groups or the like can be formed on the surface of the graphite particle raw material. Examples of the specific organic solvent include o-dichlorobenzene.

本発明のリチウムイオン二次電池用負極は、例えば、本発明のリチウムイオン二次電池負極用黒鉛粒子、バインダーおよび各種添加剤等を溶剤などとともに撹拌機、ボールミル、スーパーサンドミル、加圧ニーダー等の分散装置により混合分散し、負極層用塗料を調整し、これを集電体に塗布して負極層を形成する、または、ペースト状の負極層用塗料をシート状、ペレット状等の形状に成形し、これを集電体と一体化することで得ることができる。なお、負極層用塗料を塗布する場合における本発明のリチウムイオン二次電池負極用黒鉛粒子の平均粒径は、15〜40μmであることが好ましい。   The negative electrode for a lithium ion secondary battery of the present invention includes, for example, a graphite particle for a negative electrode of the lithium ion secondary battery of the present invention, a binder, various additives, etc. together with a solvent, a stirrer, a ball mill, a super sand mill, a pressure kneader, etc. Mix and disperse with a dispersing device to adjust the negative electrode layer coating material and apply it to the current collector to form the negative electrode layer, or form the paste negative electrode layer coating material into a sheet shape, pellet shape, etc. However, it can be obtained by integrating this with the current collector. In addition, it is preferable that the average particle diameter of the graphite particle for lithium ion secondary battery negative electrodes of this invention in the case of apply | coating the coating material for negative electrode layers is 15-40 micrometers.

プラズマ処理等の表面処理終了後の黒鉛粒子を用いてリチウムイオン二次電池用負極を製造する際には、出来る限り水分や空気に暴露させないことが、リチウムイオン二次電池の充放電効率向上の観点から好ましい。例えば、図1に示す熱プラズマ処理装置においては、水冷二重管11の下側にあるチャンバ15内に堆積した処理済みの黒鉛粒子を空気に触れさせることなくチャンバ15外に回収し、そのまま空気に触れさせることなくバインダで結合して電極を得ることが可能である。空気に触れさせないためには、例えば、チャンバ15の取り出し口をエアロック構造とすればよい。チャンバ15から取り出した後、電極作製完了までは、露点−5℃以下の乾燥空気内、またはアルゴン等の不活性ガス雰囲気中で電極作製を行うことが好ましい。露点としては、−10℃がより好ましく、−30℃以下がさらに好ましく、−50℃以下が特に好ましく、−70℃が最も好ましい。   When manufacturing negative electrodes for lithium ion secondary batteries using graphite particles that have been subjected to surface treatment such as plasma treatment, it is best not to expose them to moisture and air as much as possible to improve the charge / discharge efficiency of lithium ion secondary batteries. It is preferable from the viewpoint. For example, in the thermal plasma processing apparatus shown in FIG. 1, the processed graphite particles deposited in the chamber 15 below the water-cooled double tube 11 are collected outside the chamber 15 without being exposed to air, and the air is left as it is. It is possible to obtain an electrode by bonding with a binder without touching. In order not to touch the air, for example, the take-out port of the chamber 15 may have an air lock structure. After taking out from the chamber 15, it is preferable to carry out electrode preparation in dry air having a dew point of −5 ° C. or lower or in an inert gas atmosphere such as argon until completion of electrode preparation. The dew point is more preferably −10 ° C., further preferably −30 ° C. or less, particularly preferably −50 ° C. or less, and most preferably −70 ° C.

上記バインダーとしては、特に制限はないが、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン−テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン−クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)などのフッ素樹脂、ビニリデンフルオライド−ヘキサフルオロプロピレン系フッ素ゴム(VDF−HFP系フッ素ゴム)、ビニリデンフルオライド−ヘキサフルオロプロピレン−テトラフルオロエチレン系フッ素ゴム(VDF−HFP−TFE系フッ素ゴム)、ビニリデンフルオライド−ペンタフルオロプロピレン系フッ素ゴム(VDF−PFP系フッ素ゴム)、ビニリデンフルオライド−ペンタフルオロプロピレン−テトラフルオロエチレン系フッ素ゴム(VDF−PFP−TFE系フッ素ゴム)、ビニリデンフルオライド−パーフルオロメチルビニルエーテル−テトラフルオロエチレン系フッ素ゴム(VDF−PFMVE−TFE系フッ素ゴム)、ビニリデンフルオライド−クロロトリフルオロエチレン系フッ素ゴム(VDF−CTFE系フッ素ゴム)などのビニリデンフルオライド系フッ素ゴム、テトラフルオロエチレン−プロピレン系フッ素ゴム(TFE−P系フッ素ゴム)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル系フッ素ゴムおよび熱可塑性フッ素ゴム(例えば、ダイキン工業製ダイエルサーモプラスチック)等が好適である。もちろん、フッ素系以外のバインダ、例えば、スチレンブタジエンゴム(SBR)等も使用可能である。   The binder is not particularly limited. For example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether. Fluorine such as copolymer (PFA), ethylene-tetrafluoroethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), ethylene-chlorotrifluoroethylene copolymer (ECTFE), polyvinyl fluoride (PVF) Resin, vinylidene fluoride-hexafluoropropylene-based fluororubber (VDF-HFP-based fluororubber), vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene-based fluororubber (VDF-HFP) TFE fluorine rubber), vinylidene fluoride-pentafluoropropylene fluorine rubber (VDF-PFP fluorine rubber), vinylidene fluoride-pentafluoropropylene-tetrafluoroethylene fluorine rubber (VDF-PFP-TFE fluorine rubber), Vinylidene fluorides such as vinylidene fluoride-perfluoromethyl vinyl ether-tetrafluoroethylene fluorine rubber (VDF-PFMVE-TFE fluorine rubber), vinylidene fluoride-chlorotrifluoroethylene fluorine rubber (VDF-CTFE fluorine rubber) -Based fluoro rubber, tetrafluoroethylene-propylene-based fluoro rubber (TFE-P-based fluoro rubber), tetrafluoroethylene-perfluoroalkyl vinyl ether-based fluoro rubber, and heat Sex fluororubber (e.g., manufactured by Daikin Industries DAI-EL Thermoplastic) or the like is preferable. Of course, binders other than fluorine-based ones such as styrene butadiene rubber (SBR) can also be used.

上記バインダーは、通常、粉末状として溶媒(溶剤)中に溶解あるいは分散した状態で使用されるが、溶媒を用いずに粉末のまま使用される場合もある。用いる溶媒は非水系のものであり、例えば、メチルエチルケトン、シクロヘキサノン、イソホロン、N−メチルピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、トルエン等の各種溶媒を適宜選択すればよい。   The binder is usually used in the form of a powder dissolved or dispersed in a solvent (solvent), but may be used as a powder without using a solvent. The solvent to be used is a non-aqueous solvent. For example, various solvents such as methyl ethyl ketone, cyclohexanone, isophorone, N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide and toluene may be appropriately selected.

また、上記負極層用塗料には、酸化物を加えてもよい。この場合の酸化物としては、上述した熱プラズマ処理の際に黒鉛粒子原料と混合され得るものとして挙げた金属酸化物であることが好ましい。酸化物の配合量は、(酸化物の質量/黒鉛粒子と酸化物の合計質量)が5質量%以下であることが好ましい。   Moreover, you may add an oxide to the said coating material for negative electrode layers. In this case, the oxide is preferably a metal oxide that can be mixed with the graphite particle raw material in the above-described thermal plasma treatment. The compounding amount of the oxide is preferably (mass of oxide / total mass of graphite particles and oxide) of 5% by mass or less.

また、上記負極層用塗料には、導電助剤を混合することが好ましい。導電助剤としては、例えば、カーボンブラック、グラファイト、アセチレンブラック、あるいは導電性を示す酸化物や窒化物等が挙げられる。導電助剤の使用量は、本発明の黒鉛粒子の1〜15質量%程度とすればよい。   Moreover, it is preferable to mix a conductive support agent with the said coating material for negative electrode layers. Examples of the conductive assistant include carbon black, graphite, acetylene black, or an oxide or nitride that exhibits conductivity. The usage-amount of a conductive support agent should just be about 1-15 mass% of the graphite particle | grains of this invention.

上記バインダーの使用量は、上記負極層用塗料に含まれる固形分とバインダーの比が重量比で、80:20〜99:1の範囲であることが好ましく、85:15〜98:2の範囲であることがより好ましい。このような範囲でバインダーを使用することで結着性が良好になる。なお、上記固形分は、本発明の黒鉛粒子の他に、酸化物や導電助剤等の添加剤が含まれうる。   The binder is used in an amount of 80:20 to 99: 1, preferably in the range of 85:15 to 98: 2, with the weight ratio of the solid content and binder contained in the negative electrode layer coating. It is more preferable that By using the binder in such a range, the binding property is improved. In addition to the graphite particles of the present invention, the solid content can include additives such as oxides and conductive assistants.

上記集電体の材質および形状については、負極の場合は特に限定されず、アルミニウム、銅、ニッケル、チタン、ステンレス鋼等を、箔状、穴開け箔状、メッシュ状等にした帯状のものを用いればよい。また、多孔性材料、たとえばポーラスメタル(発泡メタル)やカーボンペーパーなども使用可能である。   The material and shape of the current collector are not particularly limited in the case of a negative electrode, and a strip-shaped one made of aluminum, copper, nickel, titanium, stainless steel, etc. in a foil shape, a punched foil shape, a mesh shape, or the like. Use it. A porous material such as porous metal (foamed metal) or carbon paper can also be used.

上記負極層用塗料を集電体に塗布する方法としては、特に限定されないが、例えば、メタルマスク印刷法、静電塗装法、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、グラビアコート法、スクリーン印刷法など公知の方法が挙げられる。塗布後は、必要に応じて平板プレス、カレンダーロール等による圧延処理を行う。また、シート状、ペレット状等の形状に成形された負極層用塗料と集電体との一体化は、例えば、ロール、プレス、もしくはこれらの組み合わせ等、公知の方法によりで行うことができる。   The method for applying the negative electrode layer coating to the current collector is not particularly limited. For example, a metal mask printing method, an electrostatic coating method, a dip coating method, a spray coating method, a roll coating method, a doctor blade method, a gravure. Known methods such as a coating method and a screen printing method may be mentioned. After the application, a rolling process using a flat plate press, a calendar roll or the like is performed as necessary. Moreover, integration of the negative electrode layer coating material and the current collector formed into a sheet shape, pellet shape, or the like can be performed by a known method such as a roll, a press, or a combination thereof.

本発明のリチウムイオン二次電池は、例えば、本発明の負極と正極とをセパレータを介して対向して配置し、電解液を注入することにより得ることができる。なお、電池製造に際しては、負極製造に引き続いて負極を空気にさらさないことが望ましい。そのために、少なくとも負極が電池の外装体中に封入されるまでの工程を、たとえばグローブボックスなどを用いて希ガス中で実施することが望ましい。また、負極は、電池製造工程に供されるまで、乾燥した希ガス中に保管することが望ましい。   The lithium ion secondary battery of the present invention can be obtained, for example, by placing the negative electrode and the positive electrode of the present invention facing each other with a separator interposed therebetween and injecting an electrolytic solution. In manufacturing the battery, it is desirable not to expose the negative electrode to air following the negative electrode manufacturing. Therefore, it is desirable to carry out at least the process until the negative electrode is sealed in the battery case in a rare gas using, for example, a glove box. Moreover, it is desirable to store the negative electrode in a dry rare gas until it is used in the battery manufacturing process.

上記正極は、負極と同様にして、集電体表面上に正極層を形成することで得ることができる。この場合の集電体はアルミニウム、チタン、ステンレス鋼等の金属や合金を、箔状、穴開け箔状、メッシュ状等にした帯状のものを用いることができる。   The positive electrode can be obtained by forming a positive electrode layer on the current collector surface in the same manner as the negative electrode. In this case, the current collector may be a band-shaped material made of a metal or an alloy such as aluminum, titanium, or stainless steel in a foil shape, a punched foil shape, a mesh shape, or the like.

上記正極層に用いる正極材料としては、リチウムイオンをドーピングまたはインターカレーション可能な金属化合物、金属酸化物、金属硫化物、または導電性高分子材料を用ればよく、特に限定されないが、例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)、およびこれらの複酸化物(LiCoxNiyMnzO、X+Y+X=1)、リチウムマンガンスピネル(LiMn)、リチウムバナジウム化合物、V、オリビン型LiMPO(M:Co、Ni、Mn、Fe)、ポリアセチレン、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセンなどが挙げられ、特公昭61−53828号公報、特公昭63−59507号公報等に記載のものが挙げられる。なお、正極材料に金属酸化物や金属硫化物等を用いる場合、導電剤として、グラファイト、アセチレンブラック、ケッチェンブラック等の炭素質材料等を含有させることが好ましい。 The positive electrode material used for the positive electrode layer may be a metal compound, metal oxide, metal sulfide, or conductive polymer material that can be doped or intercalated with lithium ions, and is not particularly limited. Lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 ), and their double oxides (LiCoxNiyMnzO 2 , X + Y + X = 1), lithium manganese spinel (LiMn 2 O 4 ), lithium Examples include vanadium compounds, V 2 O 5 , olivine-type LiMPO 4 (M: Co, Ni, Mn, Fe), polyacetylene, polyaniline, polypyrrole, polythiophene, polyacene, and the like. Japanese Patent Publication No. 61-53828, Japanese Patent Publication No. 63- No. 59507 Those placing of, and the like. In addition, when using a metal oxide, a metal sulfide, etc. for positive electrode material, it is preferable to contain carbonaceous materials, such as a graphite, acetylene black, and ketjen black, as a electrically conductive agent.

上記電解液は、リチウム含有電解質を非水溶媒に溶解して調製する。リチウム含有電解質としては、例えば、LiClO、LiBF、LiPF等から適宜選択すればよく、また、Li(CFSON、Li(CSONのようなリチウムイミド塩や、LiB(Cを使用することもできる。非水溶媒としては、例えば、エーテル類、ケトン類、カーボネート類等、特開昭63−121260号公報などに例示される有機溶媒から適宜選択することができるが、本発明では特にカーボネート類を用いることが好ましい。カーボネート類のうちでは、特にエチレンカーボネートを主成分とし、他の溶媒を1種類以上添加した混合溶媒を用いることが好ましい。混合比率は、通常、エチレンカーボネート:他の溶媒=5〜70:95〜30(体積比)とすることが好ましい。エチレンカーボネートは凝固点が36.4℃と高く、常温では固化しているため、エチレンカーボネート単独では電池の電解液としては使用できないが、凝固点の低い他の溶媒を1種類以上添加することにより、混合溶媒の凝固点が低くなり、使用可能となる。他の溶媒としては、エチレンカーボネートの凝固点を低くできるものであれば特に限定されず、例えば、ジエチルカーボネート、ジメチルカーボネート、プロピレンカーボネート、1,2−ジメトキシエタン、メチルエチルカーボネート、γ−ブチロラクトン、γ−パレロラクトン、γ−オクタノイックラクトン、1,2−ジエトキシエタン、1,2−エトキシメトキシエタン、1,2−ジブトキシエタン、1,3−ジオキソラナン、テトラヒドロフラン、2−メチルテトラヒドロフラン、4,4−ジメチル−1,3−ジオキサン、ブチレンカーボネート、蟻酸メチルなどが挙げられる。電解液として上記のような混合溶媒を用い、なおかつ負極の活物質として本発明の黒鉛粒子を用いることにより、電池容量が著しく向上し、不可逆容量率を十分に低くすることができる。 The electrolytic solution is prepared by dissolving a lithium-containing electrolyte in a non-aqueous solvent. The lithium-containing electrolyte may be appropriately selected from, for example, LiClO 4 , LiBF 4 , LiPF 6 and the like, and Li (CF 3 SO 2 ) 2 N, Li (C 2 F 5 SO 2 ) 2 N, etc. Lithium imide salt and LiB (C 2 O 4 ) 2 can also be used. As the non-aqueous solvent, for example, ethers, ketones, carbonates, and the like can be appropriately selected from organic solvents exemplified in JP-A No. 63-121260, but carbonates are particularly used in the present invention. It is preferable. Among carbonates, it is preferable to use a mixed solvent in which ethylene carbonate is a main component and one or more other solvents are added. Usually, the mixing ratio is preferably ethylene carbonate: other solvent = 5 to 70:95 to 30 (volume ratio). Since ethylene carbonate has a high freezing point of 36.4 ° C and is solidified at room temperature, ethylene carbonate alone cannot be used as a battery electrolyte, but it can be mixed by adding one or more other solvents having a low freezing point. The freezing point of the solvent is lowered and it can be used. Other solvents are not particularly limited as long as the freezing point of ethylene carbonate can be lowered. For example, diethyl carbonate, dimethyl carbonate, propylene carbonate, 1,2-dimethoxyethane, methyl ethyl carbonate, γ-butyrolactone, γ- Parerolactone, γ-octanoic lactone, 1,2-diethoxyethane, 1,2-ethoxymethoxyethane, 1,2-dibutoxyethane, 1,3-dioxolanane, tetrahydrofuran, 2-methyltetrahydrofuran, 4,4- Examples include dimethyl-1,3-dioxane, butylene carbonate, and methyl formate. By using the above mixed solvent as the electrolytic solution and using the graphite particles of the present invention as the negative electrode active material, the battery capacity is remarkably improved, and the irreversible capacity ratio can be sufficiently reduced.

また、電解液を有機高分子によりゲル化した固体電解質もしくはリチウム塩を高分子中に溶解させた電解質、例えばポリエチレンオキサイドにリチウム塩を溶解させた、電解液を全く含まない電解質を使用することもできる。また、リチウムイオン導電性無機化合物(例えばヨウ化リチウム)と有機高分子化合物の複合化材料を使用することもできる。   Alternatively, a solid electrolyte obtained by gelling an electrolytic solution with an organic polymer or an electrolyte in which a lithium salt is dissolved in a polymer, for example, an electrolyte in which a lithium salt is dissolved in polyethylene oxide and does not contain an electrolytic solution at all may be used. it can. In addition, a composite material of a lithium ion conductive inorganic compound (for example, lithium iodide) and an organic polymer compound can be used.

上記セパレータとしては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィンを主成分とした不織布、クロス、微孔フィルム又はそれらを組み合わせたものを使用することができる。なお、作製するリチウムイオン二次電池の正極と負極が直接接触しない構造にした場合は、セパレータを使用する必要はない。   As the separator, for example, a nonwoven fabric mainly composed of polyolefin such as polyethylene and polypropylene, cloth, microporous film, or a combination thereof can be used. In addition, when it is set as the structure where the positive electrode and negative electrode of the lithium ion secondary battery to produce are not in direct contact, it is not necessary to use a separator.

本発明のリチウムイオン二次電池の構造は、特に限定されないが、通常、正極および負極と、必要に応じて設けられるセパレータとを、扁平渦巻状に巻回して巻回式極板群としたり、これらを平板状として積層して積層式極板群とし、これら極板群を外装体中に封入した構造とするのが一般的である。   Although the structure of the lithium ion secondary battery of the present invention is not particularly limited, usually, a positive electrode and a negative electrode, and a separator provided as necessary, are wound into a flat spiral to form a wound electrode group, In general, these are laminated as a flat plate to form a laminated electrode plate group, and the electrode plate group is enclosed in an exterior body.

図2に、リチウムイオン二次電池の構成例を示す。この電池は、負極31、固体電解質からなるセパレータ4および正極51とを熱圧着して発電要素を作製し、これを袋状の外装体101内に封入したものである。なお、図2では、外装体101から引き出すリード線の図示は省略してある。外装体101には、金属(Al等)やガラス、セラミクスなどの無機材料から構成される無機箔からなるガスバリア層と、合成樹脂からなる補強層、接着層とを積層したラミネートフィルムを用いるのが一般的である。フィルムを用いて袋状の外装体を形成するには、フィルム同士を熱溶着したり、フィルム同士を接着剤や接合部材により接着したりすればよい。   FIG. 2 shows a configuration example of a lithium ion secondary battery. In this battery, a power generation element is produced by thermocompression bonding of a negative electrode 31, a separator 4 made of a solid electrolyte, and a positive electrode 51, and this is enclosed in a bag-shaped outer package 101. In FIG. 2, illustration of lead wires drawn out from the exterior body 101 is omitted. For the outer package 101, a laminate film in which a gas barrier layer made of an inorganic foil made of an inorganic material such as metal (Al or the like), glass, ceramics, a reinforcing layer made of a synthetic resin, and an adhesive layer is laminated is used. It is common. In order to form a bag-shaped exterior body using a film, the films may be thermally welded together or the films may be bonded together with an adhesive or a bonding member.

本発明のリチウムイオン二次電池は、ぺーパー型電池、ボタン型電池、コイン型電池、積層型電池、円筒型電池などとして使用される。   The lithium ion secondary battery of the present invention is used as a paper-type battery, a button-type battery, a coin-type battery, a laminated battery, a cylindrical battery, or the like.

上記では、本発明の黒鉛粒子をリチウムイオン二次電池用途として説明したが、電気化学素子一般にも適用可能である。   In the above description, the graphite particles of the present invention have been described as being used for lithium ion secondary batteries, but the present invention can also be applied to electrochemical devices in general.

以下、本発明を実施例により詳しく説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these.

実施例1
(リチウムイオン二次電池負極用黒鉛粒子の製造と評価)
図1に示すプラズマトーチを用い、平均粒径21.4μm、真比重2.24、窒素ガス吸着による比表面積3.5m/gの塊状人造黒鉛粒子(日立化成工業(株)製 人造黒鉛粉末サンプル)を連続的に散布して熱プラズマ処理を施し、リチウムイオン二次電池負極用黒鉛粒子を得た。熱プラズマ処理の際には、プラズマガスとしてAr+H混合ガスをガス流量比Ar:H=93:7で用い、トーチ内の圧力を53kPaとし、周波数を2MHzとし、投入電力を40kWとし、供給速度を4g/分とし、供給開始から処理終了までの時間を5分間とした。モデル計算によれば、プラズマ温度は10,000℃以上となる。
Example 1
(Production and evaluation of graphite particles for negative electrodes of lithium ion secondary batteries)
Using the plasma torch shown in FIG. 1, massive artificial graphite particles having an average particle size of 21.4 μm, a true specific gravity of 2.24, and a specific surface area of 3.5 m 2 / g by adsorption of nitrogen gas (manufactured graphite powder manufactured by Hitachi Chemical Co., Ltd.) Sample) was continuously sprayed and subjected to thermal plasma treatment to obtain graphite particles for a negative electrode of a lithium ion secondary battery. At the time of thermal plasma treatment, Ar + H 2 mixed gas is used as a plasma gas at a gas flow ratio Ar: H 2 = 93: 7, the pressure in the torch is 53 kPa, the frequency is 2 MHz, the input power is 40 kW, and the supply The speed was 4 g / min, and the time from the start of supply to the end of treatment was 5 minutes. According to the model calculation, the plasma temperature is 10,000 ° C. or higher.

上記のように熱プラズマ処理して得られたリチウムイオン二次電池負極用黒鉛粒子を走査型電子顕微鏡(Philip社製XL30)で5000倍に拡大して観察した結果、黒鉛粒子表面に結晶面が積層したc軸方向のエッジ面が露出している様子が確認された。また、得られたリチウムイオン二次電池負極用黒鉛粒子の各種物性値を表1に示す。各種物性値の測定方法は以下のとおりである。   As a result of observing the graphite particles for a lithium ion secondary battery negative electrode obtained by thermal plasma treatment as described above with a scanning electron microscope (XL30 manufactured by Philip) at a magnification of 5000 times, a crystal plane was observed on the surface of the graphite particles. It was confirmed that the stacked edge surfaces in the c-axis direction were exposed. In addition, Table 1 shows various physical property values of the obtained graphite particles for a lithium ion secondary battery negative electrode. The measuring method of various physical property values is as follows.

<平均粒径>
得られたリチウムイオン二次電池負極用黒鉛粒子試料を界面活性剤と共に精製水中に分散させた溶液を、レーザー回折式粒度分布測定装置((株)島津製作所製SALD−3000J)の試料水槽に入れ、超音波をかけながらポンプで循環させながらレーザー回折式で測定した。得られた粒度分布の累積50%粒径を平均粒径とした。
<Average particle size>
A solution in which the obtained graphite particle sample for a lithium ion secondary battery negative electrode and a surfactant are dispersed in purified water is placed in a sample water tank of a laser diffraction particle size distribution analyzer (SALD-3000J, manufactured by Shimadzu Corporation). Measured by laser diffraction while circulating with a pump while applying ultrasonic waves. The 50% cumulative particle size of the obtained particle size distribution was defined as the average particle size.

<窒素ガス吸着による比表面積>
得られたリチウムイオン二次電池負極用黒鉛粒子試料を200℃で1時間真空乾燥した後、Quantachrome社製AUTOSORB−1を用い、試料を液体窒素で冷却しながら液体窒素温度で窒素ガス吸着量を多点法で測定し、BET法に従って算出した。
<Specific surface area by nitrogen gas adsorption>
The obtained graphite particle sample for the negative electrode of a lithium ion secondary battery was vacuum-dried at 200 ° C. for 1 hour, and then the amount of nitrogen gas adsorbed was measured at liquid nitrogen temperature while cooling the sample with liquid nitrogen using Quantachrome AUTOSORB-1. Measured by the multipoint method and calculated according to the BET method.

<炭酸ガス吸着による比表面積>
得られたリチウムイオン二次電池負極用黒鉛粒子試料を200℃で1時間真空乾燥した後、Quantachrome社製AUTOSORB−1を用い、試料を氷水で冷却しながら温度273Kで二酸化炭素ガス吸着量を多点法で測定し、BET法に従って算出した。
<Specific surface area by carbon dioxide adsorption>
The obtained graphite particle sample for the negative electrode of a lithium ion secondary battery was vacuum-dried at 200 ° C. for 1 hour, and then the amount of carbon dioxide gas adsorbed was increased at a temperature of 273 K while cooling the sample with ice water using AUTASORB-1 manufactured by Quantachrome. Measured by the point method and calculated according to the BET method.

<ラマン強度比D/G>
レーザーラマン分光装置(日本分光(株)製NRS−1000)を用い、得られたリチウムイオン二次電池負極用黒鉛粒子試料を20倍の対物レンズで拡大し、波長532nm、3.9mWのレーザー光を試料に照射し、CCD検出器でラマン散乱光を露光時間120秒、積算回数2回で測定した。得られたスペクトルの波数は、インデン(和光一級試薬)を前記同一条件で800〜2000cm−1の範囲を測定して得られるピークの波数とインデンの各ピークの波数理論値との差から求めた検量線を用いて補正した。
<Raman intensity ratio D / G>
Using a laser Raman spectrometer (NRS-1000 manufactured by JASCO Corporation), the obtained graphite particle sample for a negative electrode of a lithium ion secondary battery was magnified with a 20 × objective lens, and a laser beam having a wavelength of 532 nm and 3.9 mW. The sample was irradiated with Raman scattered light with a CCD detector, and the exposure time was 120 seconds and the number of integrations was 2 times. The wave number of the obtained spectrum was determined from the difference between the wave number of the peak obtained by measuring the range of 800 to 2000 cm −1 of indene (Wako primary reagent) under the same conditions and the theoretical wave number of each peak of indene. Correction was made using a calibration curve.

<真比重>
比重瓶を用いたブタノール置換法(JIS R 7212)により測定した。
<True specific gravity>
It was measured by a butanol replacement method (JIS R 7212) using a specific gravity bottle.

<XPSによる酸素元素濃度>
得られたリチウムイオン二次電池負極用黒鉛粒子試料を露点−70℃のグローブボックス中で、両面導電テープが貼られたXPS試料台上に乗せ、トランスファーベッセルを用いて密封した後、これをXPS装置(島津製作所/Kratos製AXIS−165)に移動、設置し、真空にした後、トランスファーベッセルを開放し、測定に供した。測定は、測定面積0.3×0.7mm、照射X線強度45〜150WのX線光電子スペクトルで検出された元素から、O1sピークの強度より算出した。
<Oxygen element concentration by XPS>
The obtained graphite particle sample for a negative electrode of a lithium ion secondary battery was placed on an XPS sample table with a double-sided conductive tape in a glove box having a dew point of -70 ° C., sealed with a transfer vessel, and then XPS. After moving to a device (Shimadzu Corporation / Kratos AXIS-165), evacuating, the transfer vessel was opened and subjected to measurement. The measurement was calculated from the intensity of the O1s peak from an element detected in an X-ray photoelectron spectrum having a measurement area of 0.3 × 0.7 mm 2 and an irradiation X-ray intensity of 45 to 150 W.

<層間距離d002>
広角X線回折装置(リガク社製 MultiFlex)を使用し、Cu−Kα線をモノクロメータで単色化し、高純度シリコンを標準物質として測定した(002)面回折ピークの角度から算出した。
<Interlayer distance d002>
Using a wide-angle X-ray diffractometer (MultiFlex, manufactured by Rigaku Corporation), Cu-Kα rays were monochromatized with a monochromator and calculated from the angle of the (002) plane diffraction peak measured using high-purity silicon as a standard substance.

(リチウムイオン二次電池の作製と評価)
ついで、得られたリチウムイオン二次電池負極用黒鉛粒子を、プラズマ処理装置内おいて密閉容器内に封入し、アルゴンガス雰囲気(露点−70℃以下、酸素濃度10ppm以下)のグローブボックス中で取り出して、試料電極及び電池を作製した。
(Production and evaluation of lithium ion secondary battery)
Next, the obtained graphite particles for the negative electrode of the lithium ion secondary battery are sealed in a sealed container in a plasma processing apparatus, and taken out in a glove box in an argon gas atmosphere (dew point: −70 ° C. or lower, oxygen concentration: 10 ppm or lower). Thus, a sample electrode and a battery were produced.

試料電極は、得られたリチウムイオン二次電池負極用黒鉛粒子90重量%に、N−メチル−2ピロリドンに溶解したポリフッ化ビニリデン(PVDF)を固形分で10重量%加えて混練、調整して得た黒鉛ペーストを厚さが10μmの圧延銅箔に、メタルマスクを使用して、直径9.5mmφの円形状に塗布し、さらに、120℃で減圧乾燥してN−メチル−2ピロリドンを除去して製造した。   A sample electrode was prepared by adding 10% by weight of a solid content of polyvinylidene fluoride (PVDF) dissolved in N-methyl-2pyrrolidone to 90% by weight of the obtained graphite particles for a negative electrode of a lithium ion secondary battery. The obtained graphite paste was applied to a rolled copper foil with a thickness of 10 μm in a circular shape with a diameter of 9.5 mmφ using a metal mask, and further dried under reduced pressure at 120 ° C. to remove N-methyl-2pyrrolidone. And manufactured.

また、電池は、上記で作製した試料電極(負極)を、セパレータを介して対極(正極)とともに積層し、電解液を注入してCR2016型コインセルとした。対極には表面を研磨して酸化皮膜を除去した金属リチウムを使用した。また、電解液にはLiPFをエチレンカーボネート(EC)及びジエチルカーボネート(DEC)(ECとDECは体積比で1:2)の混合溶媒に1.2モル/リットルの濃度になるように溶解した溶液を使用した。セパレータには厚み25μmのポリエチレン微孔膜を使用した。 In addition, the battery was prepared by laminating the sample electrode (negative electrode) prepared above together with a counter electrode (positive electrode) through a separator, and injecting an electrolyte solution to obtain a CR2016 type coin cell. For the counter electrode, metallic lithium whose surface was polished to remove the oxide film was used. In the electrolyte, LiPF 6 was dissolved in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) (EC and DEC are in a volume ratio of 1: 2) to a concentration of 1.2 mol / liter. The solution was used. A polyethylene microporous film having a thickness of 25 μm was used as the separator.

ついで、上記のようにして得られた電池について、電気化学的測定を行った。試料電極と対極の間に、電流密度0.25mA/cmの定電流で0V(Vvs.Li/Li)まで充電したのち、0Vの定電圧で電流が0.025mA/cmになるまで充電した。ついで、電流密度0.25mA/cmの定電流で電圧が1.5V(Vvs.Li/Li)になるまで放電し、充放電容量、初回充放電効率を測定した。結果を表1に示す。 Next, electrochemical measurement was performed on the battery obtained as described above. After charging to 0 V (Vvs. Li / Li + ) with a constant current of 0.25 mA / cm 2 between the sample electrode and the counter electrode, until the current becomes 0.025 mA / cm 2 with a constant voltage of 0 V Charged. Next, the battery was discharged at a constant current of 0.25 mA / cm 2 until the voltage became 1.5 V (Vvs. Li / Li + ), and charge / discharge capacity and initial charge / discharge efficiency were measured. The results are shown in Table 1.

さらに、第二サイクル目に、電流密度2mA/cmの定電流で0V(Vvs.Li/Li)まで充電したのち、電流密度2mA/cmの定電流で電圧が1.5V(Vvs.Li/Li)になるまで放電し、急速充放電容量を測定した。結果を表1に示す。 Further, the second cycle, after charging at a constant current of current density of 2 mA / cm 2 until 0V (Vvs.Li/Li +), a voltage at a constant current of current density of 2 mA / cm 2 is 1.5V (Vvs. The battery was discharged until Li / Li + ), and the rapid charge / discharge capacity was measured. The results are shown in Table 1.

また、上記充放電容量測定と同様の条件で充放電を繰り返した回数と放電容量維持率の関係(サイクル特性)を図3に示す。   FIG. 3 shows the relationship (cycle characteristics) between the number of times charge / discharge is repeated under the same conditions as the charge / discharge capacity measurement and the discharge capacity retention rate.

実施例2
熱プラズマ処理のガスとして、Ar+H+CO混合ガスを、ガス流量比Ar:H:CO=87:7:6で用いた以外は実施例1と同様の方法でリチウムイオン二次電池負極用黒鉛粒子、試料電極および電池を作製し、実施例1と同様の試験を行った。結果を表1および図3に示す。また、実施例1と同様にして黒鉛粒子を観察したところ、表面に結晶面が積層したc軸方向のエッジ面が露出している様子が確認された。
Example 2
A negative electrode for a lithium ion secondary battery in the same manner as in Example 1 except that Ar + H 2 + CO 2 mixed gas was used as the gas for thermal plasma treatment at a gas flow ratio Ar: H 2 : CO 2 = 87: 7: 6. Graphite particles, a sample electrode, and a battery were prepared, and the same test as in Example 1 was performed. The results are shown in Table 1 and FIG. Further, when the graphite particles were observed in the same manner as in Example 1, it was confirmed that the edge surface in the c-axis direction in which crystal surfaces were laminated on the surface was exposed.

比較例1
実施例1で用いた塊状人造黒鉛粒子粉末を、熱プラズマ処理をしないでそのままリチウムイオン二次電池負極用黒鉛粒子として使用した以外は、実施例1と同様の方法で試験電極および電池を作製し、実施例1と同様の試験を行った。結果を表1および図3に示す。また、実施例1と同様にして黒鉛粒子を観察したところ、表面に結晶面が積層したc軸方向のエッジ面が露出している様子は確認されなかった。
Comparative Example 1
A test electrode and a battery were prepared in the same manner as in Example 1 except that the massive artificial graphite particle powder used in Example 1 was used as it was as a graphite particle for a negative electrode of a lithium ion secondary battery without performing thermal plasma treatment. The same test as in Example 1 was performed. The results are shown in Table 1 and FIG. Further, when the graphite particles were observed in the same manner as in Example 1, it was not confirmed that the edge surface in the c-axis direction in which crystal faces were laminated on the surface was exposed.

比較例2
実施例1で用いた塊状人造黒鉛粒子粉末の代わりに、石炭ピッチを原料とし、2800℃で黒鉛化して作製した平均粒径10μm、真比重2.185、窒素ガス吸着による比表面積5.2m/gの黒鉛を用いた以外は、実施例1と同様の方法でリチウムイオン二次電池負極用黒鉛粒子、試料電極および電池を作製し、実施例1と同様の試験を行った。結果を表1および図3に示す。また、実施例1と同様にして黒鉛粒子を観察したところ、表面に結晶面が積層したc軸方向のエッジ面が露出している様子は確認されなかった。
Comparative Example 2
Instead of the bulk artificial graphite particles used in Example 1, coal pitch was used as a raw material and graphitized at 2800 ° C. to produce an average particle size of 10 μm, true specific gravity of 2.185, specific surface area of 5.2 m 2 by nitrogen gas adsorption Except for using / g of graphite, graphite particles for a negative electrode of a lithium ion secondary battery, a sample electrode, and a battery were prepared in the same manner as in Example 1, and the same test as in Example 1 was performed. The results are shown in Table 1 and FIG. Further, when the graphite particles were observed in the same manner as in Example 1, it was not confirmed that the edge surface in the c-axis direction in which crystal faces were laminated on the surface was exposed.

Figure 2006228505
Figure 2006228505

表1および図3に示されるように、実施例のリチウムイオン二次電池は、高容量、高充放電効率で、かつリサイクル特性および急速充放電特性に優れていることが示された。   As shown in Table 1 and FIG. 3, it was shown that the lithium ion secondary batteries of the examples had high capacity, high charge / discharge efficiency, and excellent recycling characteristics and rapid charge / discharge characteristics.

高周波熱プラズマの発生装置の概略図。Schematic of the high frequency thermal plasma generator. リチウムイオン二次電池の構成の一形態を示す断面図。Sectional drawing which shows one form of a structure of a lithium ion secondary battery. 実施例および比較例で作製したリチウムイオン二次電池のサイクル特性。The cycle characteristic of the lithium ion secondary battery produced in the Example and the comparative example.

符号の説明Explanation of symbols

10 トーチ
11 水冷二重管
12 高周波コイル
13 蓋
14 粉末供給用水冷プローブ
15 チャンバ
31 負極
4 セパレータ
51 正極
101 外装体
DESCRIPTION OF SYMBOLS 10 Torch 11 Water-cooled double tube 12 High frequency coil 13 Lid 14 Water-cooled probe for powder supply 15 Chamber 31 Negative electrode 4 Separator 51 Positive electrode 101 Exterior body

Claims (7)

平均粒径が5〜50μm、真比重が2.20以上、窒素ガス吸着による比表面積が8m/g以下、炭酸ガス吸着による比表面積が1m/g以下、X線光電子分光スペクトル(XPS)で測定される酸素元素濃度が0.7at%以上であることを特徴とするリチウムイオン二次電池負極用黒鉛粒子。 Average particle size is 5 to 50 μm, true specific gravity is 2.20 or more, specific surface area by nitrogen gas adsorption is 8 m 2 / g or less, specific surface area by carbon dioxide gas adsorption is 1 m 2 / g or less, X-ray photoelectron spectroscopy spectrum (XPS) A graphite particle for a negative electrode of a lithium ion secondary battery, characterized in that the oxygen element concentration measured by (1) is 0.7 at% or more. 黒鉛粒子原料に対し、還元性雰囲気中、酸化性雰囲気中または反応性雰囲気中において、熱プラズマ処理を施してなることを特徴とする請求項1記載のリチウムイオン二次電池負極用黒鉛粒子。   The graphite particles for a lithium ion secondary battery negative electrode according to claim 1, wherein the graphite particle raw material is subjected to a thermal plasma treatment in a reducing atmosphere, an oxidizing atmosphere or a reactive atmosphere. 表面に結晶面が積層したc軸方向のエッジ面が露出していることを特徴とする請求項1又は2記載のリチウムイオン二次電池負極用黒鉛粒子。   3. The graphite particles for a negative electrode of a lithium ion secondary battery according to claim 1, wherein an edge surface in the c-axis direction in which crystal faces are laminated on the surface is exposed. 平均粒径が5〜50μm、真比重が2.20以上、窒素ガス吸着による比表面積が10m/g以下の黒鉛粒子原料に対し、還元性雰囲気中、酸化性雰囲気中または反応性雰囲気中において、熱プラズマ処理を施すことを特徴とするリチウムイオン二次電池負極用黒鉛粒子の製造法。 In a reducing atmosphere, an oxidizing atmosphere or a reactive atmosphere with respect to a graphite particle material having an average particle diameter of 5 to 50 μm, a true specific gravity of 2.20 or more, and a specific surface area by nitrogen gas adsorption of 10 m 2 / g or less A method for producing graphite particles for a negative electrode of a lithium ion secondary battery, characterized by performing a thermal plasma treatment. 平均粒径が5〜50μm、真比重が2.20以上の黒鉛粒子原料に対し、還元性雰囲気中、酸化性雰囲気中または反応性雰囲気中において、熱プラズマ処理を施し、その表面に結晶面が積層したc軸方向のエッジ面を露出させることを特徴とするリチウムイオン二次電池負極用黒鉛粒子の製造法。   A graphite particle material having an average particle size of 5 to 50 μm and a true specific gravity of 2.20 or more is subjected to a thermal plasma treatment in a reducing atmosphere, an oxidizing atmosphere or a reactive atmosphere, and a crystal plane is formed on the surface. A method for producing graphite particles for a negative electrode of a lithium ion secondary battery, wherein the laminated c-axis edge surface is exposed. 請求項1〜3のいずれかに記載のリチウムイオン二次電池負極用黒鉛粒子及び/又は請求項4〜5に記載の製造法で作製したリチウムイオン二次電池負極用黒鉛粒子を用いてなることを特徴とするリチウムイオン二次電池用負極。   It uses the graphite particle for lithium ion secondary battery negative electrodes in any one of Claims 1-3, and / or the graphite particle for lithium ion secondary battery negative electrodes produced with the manufacturing method of Claims 4-5. A negative electrode for a lithium ion secondary battery. 請求項6に記載のリチウムイオン二次電池用負極を備えるリチウムイオン二次電池。
A lithium ion secondary battery comprising the negative electrode for a lithium ion secondary battery according to claim 6.
JP2005038986A 2005-02-16 2005-02-16 Graphite particles for anode of lithium-ion secondary battery, its manufacturing method, as well as anode for lithium-ion secondary battery and lithium-ion secondary battery using the same Pending JP2006228505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005038986A JP2006228505A (en) 2005-02-16 2005-02-16 Graphite particles for anode of lithium-ion secondary battery, its manufacturing method, as well as anode for lithium-ion secondary battery and lithium-ion secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005038986A JP2006228505A (en) 2005-02-16 2005-02-16 Graphite particles for anode of lithium-ion secondary battery, its manufacturing method, as well as anode for lithium-ion secondary battery and lithium-ion secondary battery using the same

Publications (1)

Publication Number Publication Date
JP2006228505A true JP2006228505A (en) 2006-08-31

Family

ID=36989707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005038986A Pending JP2006228505A (en) 2005-02-16 2005-02-16 Graphite particles for anode of lithium-ion secondary battery, its manufacturing method, as well as anode for lithium-ion secondary battery and lithium-ion secondary battery using the same

Country Status (1)

Country Link
JP (1) JP2006228505A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008103094A (en) * 2006-10-17 2008-05-01 Samsung Sdi Co Ltd Non-aqueous secondary battery
JP2009238584A (en) * 2008-03-27 2009-10-15 Hitachi Chem Co Ltd Carbon particle for lithium-ion secondary battery anode, anode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2010205846A (en) * 2009-03-02 2010-09-16 Asahi Kasei Corp Nonaqueous lithium type electricity storage element
JP2010219036A (en) * 2009-02-20 2010-09-30 Mitsubishi Chemicals Corp Carbon material for lithium ion secondary battery
JP2010251126A (en) * 2009-04-15 2010-11-04 Mitsubishi Chemicals Corp Negative electrode material for nonaqueous electrolyte secondary battery, negative electrode using the same, and nonaqueous electrolyte secondary battery
JP2011090869A (en) * 2009-10-22 2011-05-06 Shin-Etsu Chemical Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery, method of manufacturing the same, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2011159490A (en) * 2010-02-01 2011-08-18 Nissan Motor Co Ltd Aggregated particle decomposing apparatus, contamination separating apparatus, and aggregated particle decomposing method
JP2011173770A (en) * 2010-02-25 2011-09-08 Hitachi Chem Co Ltd Graphite particle, negative electrode for lithium ion secondary battery using the same, and lithium ion secondary battery
WO2011145177A1 (en) * 2010-05-18 2011-11-24 トヨタ自動車株式会社 Method for evaluating negative active material, and negative active material
WO2012025963A1 (en) * 2010-08-26 2012-03-01 日立ビークルエナジー株式会社 Nonaqueous-electrolyte battery
WO2012132387A1 (en) * 2011-03-28 2012-10-04 株式会社豊田自動織機 Electrode material, method for producing same, electrode, secondary battery, and vehicle
WO2016204278A1 (en) * 2015-06-19 2016-12-22 株式会社日本触媒 Nonaqueous electrolytic solution and nonaqueous electrolytic solution secondary battery using same
JP2017212102A (en) * 2016-05-25 2017-11-30 株式会社日本触媒 Nonaqueous electrolyte secondary battery
CN115893400A (en) * 2022-11-15 2023-04-04 晖阳(贵州)新能源材料有限公司 Preparation method of negative electrode material for long-cycle lithium ion battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07235294A (en) * 1994-02-21 1995-09-05 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JPH07245098A (en) * 1994-03-02 1995-09-19 Hitachi Maxell Ltd Nonaqueous secondary battery
JPH1012241A (en) * 1996-06-21 1998-01-16 Mitsui Mining Co Ltd Negative electrode material for lithium ion secondary battery
JP2002348109A (en) * 1995-11-14 2002-12-04 Osaka Gas Co Ltd Anode material for lithium secondary battery, method for producing the same and secondary battery using the same
JP2003272624A (en) * 2002-03-15 2003-09-26 Tdk Corp Carbon material and its manufacturing method as well as battery
JP2004083398A (en) * 2002-06-27 2004-03-18 Jfe Chemical Corp Polycrystalline mesocarbon microsphere graphitized article, its manufacturing method, and lithium-ion secondary battery
JP2004265733A (en) * 2003-02-28 2004-09-24 Tdk Corp Manufacturing method of electrode and manufacturing method of battery
JP2005032571A (en) * 2003-07-04 2005-02-03 Hitachi Chem Co Ltd Graphite particle for nonaqueous electrolytic solution secondary battery negative electrode and its production method, nonaqueous electrolytic solution secondary battery negative electrode and nonaqueous electrolytic solution secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07235294A (en) * 1994-02-21 1995-09-05 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JPH07245098A (en) * 1994-03-02 1995-09-19 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2002348109A (en) * 1995-11-14 2002-12-04 Osaka Gas Co Ltd Anode material for lithium secondary battery, method for producing the same and secondary battery using the same
JPH1012241A (en) * 1996-06-21 1998-01-16 Mitsui Mining Co Ltd Negative electrode material for lithium ion secondary battery
JP2003272624A (en) * 2002-03-15 2003-09-26 Tdk Corp Carbon material and its manufacturing method as well as battery
JP2004083398A (en) * 2002-06-27 2004-03-18 Jfe Chemical Corp Polycrystalline mesocarbon microsphere graphitized article, its manufacturing method, and lithium-ion secondary battery
JP2004265733A (en) * 2003-02-28 2004-09-24 Tdk Corp Manufacturing method of electrode and manufacturing method of battery
JP2005032571A (en) * 2003-07-04 2005-02-03 Hitachi Chem Co Ltd Graphite particle for nonaqueous electrolytic solution secondary battery negative electrode and its production method, nonaqueous electrolytic solution secondary battery negative electrode and nonaqueous electrolytic solution secondary battery

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008103094A (en) * 2006-10-17 2008-05-01 Samsung Sdi Co Ltd Non-aqueous secondary battery
JP2009238584A (en) * 2008-03-27 2009-10-15 Hitachi Chem Co Ltd Carbon particle for lithium-ion secondary battery anode, anode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2010219036A (en) * 2009-02-20 2010-09-30 Mitsubishi Chemicals Corp Carbon material for lithium ion secondary battery
JP2010205846A (en) * 2009-03-02 2010-09-16 Asahi Kasei Corp Nonaqueous lithium type electricity storage element
JP2010251126A (en) * 2009-04-15 2010-11-04 Mitsubishi Chemicals Corp Negative electrode material for nonaqueous electrolyte secondary battery, negative electrode using the same, and nonaqueous electrolyte secondary battery
JP2011090869A (en) * 2009-10-22 2011-05-06 Shin-Etsu Chemical Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery, method of manufacturing the same, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2011159490A (en) * 2010-02-01 2011-08-18 Nissan Motor Co Ltd Aggregated particle decomposing apparatus, contamination separating apparatus, and aggregated particle decomposing method
JP2011173770A (en) * 2010-02-25 2011-09-08 Hitachi Chem Co Ltd Graphite particle, negative electrode for lithium ion secondary battery using the same, and lithium ion secondary battery
WO2011145177A1 (en) * 2010-05-18 2011-11-24 トヨタ自動車株式会社 Method for evaluating negative active material, and negative active material
JP5527633B2 (en) * 2010-05-18 2014-06-18 トヨタ自動車株式会社 Method for evaluating negative electrode active material and negative electrode active material
WO2012025963A1 (en) * 2010-08-26 2012-03-01 日立ビークルエナジー株式会社 Nonaqueous-electrolyte battery
JP5620499B2 (en) * 2010-08-26 2014-11-05 日立オートモティブシステムズ株式会社 Non-aqueous electrolyte battery
US9123938B2 (en) 2010-08-26 2015-09-01 Hitachi Automotive Systems, Ltd. Nonaqueous-electrolyte battery
WO2012132387A1 (en) * 2011-03-28 2012-10-04 株式会社豊田自動織機 Electrode material, method for producing same, electrode, secondary battery, and vehicle
JPWO2012132387A1 (en) * 2011-03-28 2014-07-24 株式会社豊田自動織機 ELECTRODE MATERIAL AND ITS MANUFACTURING METHOD, AND ELECTRODE, SECONDARY BATTERY AND VEHICLE
WO2016204278A1 (en) * 2015-06-19 2016-12-22 株式会社日本触媒 Nonaqueous electrolytic solution and nonaqueous electrolytic solution secondary battery using same
JP2017212102A (en) * 2016-05-25 2017-11-30 株式会社日本触媒 Nonaqueous electrolyte secondary battery
CN115893400A (en) * 2022-11-15 2023-04-04 晖阳(贵州)新能源材料有限公司 Preparation method of negative electrode material for long-cycle lithium ion battery
CN115893400B (en) * 2022-11-15 2023-10-10 贵州晖阳科技创新研究有限公司 Preparation method of negative electrode material for long-cycle lithium ion battery

Similar Documents

Publication Publication Date Title
JP2006228505A (en) Graphite particles for anode of lithium-ion secondary battery, its manufacturing method, as well as anode for lithium-ion secondary battery and lithium-ion secondary battery using the same
CN108565463B (en) Negative electrode material for lithium ion secondary battery, method for producing same, slurry for same, lithium ion secondary battery, and negative electrode for same
EP1361194B1 (en) Artificial graphite particle and method for producing the same, nonaqueous electrolyte secondary battery negative electrode and method for producing the same, and lithium secondary battery
JP5326567B2 (en) Positive electrode material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery equipped with the same, and method for producing the same
Xu et al. A two-step method for preparing Li 4 Ti 5 O 12–graphene as an anode material for lithium-ion hybrid capacitors
JP5098146B2 (en) Method for producing positive electrode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery comprising the same
JP5162945B2 (en) Mixture of lithium phosphate transition metal compound and carbon, electrode provided with the same, battery provided with the electrode, method for producing the mixture, and method for producing the battery
JP4591717B2 (en) Lithium nickel manganese cobalt based composite oxide powder for lithium secondary battery positive electrode material, method for producing the same, spray-dried powder, positive electrode for lithium secondary battery and lithium secondary battery using the same
JP2014232728A (en) Negative electrode active material for lithium secondary battery, process of manufacturing the same, and lithium secondary battery containing the same
JP5940529B2 (en) Lithium titanate aggregate, lithium ion secondary battery and lithium ion capacitor using the same
JP2008305777A (en) Lithium transition metal compound powder, its production method, spray dried product being baking precursor of the powder, positive electrode for lithium secondary battery using the product, and lithium secondary battery
JP2010135314A (en) Negative electrode material for nonaqueous secondary battery
KR20140009921A (en) Anode active material of high density and methode for preparation of the same
JP2006236752A (en) Negative electrode material for lithium secondary battery, lithium secondary battery, and automobile
WO2018043481A1 (en) Electrode material for electricity storage devices, electrode for electricity storage devices, and electricity storage device
JP2010278015A (en) Lithium-nickel-manganese-cobalt-based compound oxide powder for positive electrode material in lithium rechargeable battery, method for manufacturing the powder, spray dried product of the powder, and positive electrode for lithium rechargeable battery, and lithium rechargeable battery using the powder
JP2013025887A (en) Positive electrode for lithium secondary battery and lithium secondary battery including the same
JP4765109B2 (en) Carbon material for electrode and manufacturing method thereof, electrode and manufacturing method thereof, and electrochemical device and manufacturing method thereof
JP2006236753A (en) Lithium secondary battery and automobile using it
Wang et al. Preparation and electrochemical properties of Li4Ti5O12/Si3N4 composites as anode materials for high-performance lithium-ion batteries
JP6220365B2 (en) Lithium titanate powder and active material for electrode of power storage device, and electrode sheet and power storage device using the same
JP2021166163A (en) Anode electrode material, manufacturing method thereof, and lithium ion secondary battery using the same
JP4444572B2 (en) Electrode manufacturing method and battery manufacturing method
EP4270540A1 (en) Negative electrode material, electrode plate comprising the negative electrode material, and electrochemical device
JP7004093B2 (en) Negative electrode material for lithium ion secondary battery, method for manufacturing negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110803