JP2010205846A - Nonaqueous lithium type electricity storage element - Google Patents

Nonaqueous lithium type electricity storage element Download PDF

Info

Publication number
JP2010205846A
JP2010205846A JP2009048302A JP2009048302A JP2010205846A JP 2010205846 A JP2010205846 A JP 2010205846A JP 2009048302 A JP2009048302 A JP 2009048302A JP 2009048302 A JP2009048302 A JP 2009048302A JP 2010205846 A JP2010205846 A JP 2010205846A
Authority
JP
Japan
Prior art keywords
storage element
active material
negative electrode
positive electrode
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009048302A
Other languages
Japanese (ja)
Inventor
Nobuhiro Okada
宣宏 岡田
Toshio Tsubata
敏男 津端
Hitoshi Morita
均 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2009048302A priority Critical patent/JP2010205846A/en
Publication of JP2010205846A publication Critical patent/JP2010205846A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous lithium type electricity storage element which has high durability in addition to high energy density and high output density. <P>SOLUTION: The nonaqueous lithium type electricity storage element is constituted by storing, in a housing, an electrode stack, constituted by stacking a negative electrode body formed by providing a negative electrode active material layer to a negative electrode collector, a positive electrode body formed by providing a positive electrode active material layer to a positive electrode collector, and a separator, and a nonaqueous lithium electrolyte containing an electrolyte containing lithium ions. The positive electrode active material contains activated carbon as a principal component, and the activated carbon satisfies 0.3<V1≤0.8 and 0.5≤V2≤1.0, where V1 is a mesopore amount (cc/g) originating from pores of 20 to 500 Å in diameter and V2 is a micropore amount (cc/g) originating from pores of <20 Å in diameter, and has a specific surface area of 1.500 to 3,000 m<SP>2</SP>/g. The negative electrode active material contains graphitized material as a principal component. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、非水系リチウム型蓄電素子に関する。   The present invention relates to a non-aqueous lithium storage element.

近年、地球環境の保全および省資源を目指したエネルギーの有効利用の観点から、深夜電力貯蔵システム、太陽光発電技術に基づく家庭用分散型蓄電システム、電気自動車用の蓄電システムなどが注目を集めている。
これらの蓄電システムにおける第一の要求事項は、用いられる蓄電素子のエネルギー密度が高いことである。この様な要求に対応可能な高エネルギー密度電池の有力候補として、リチウムイオン電池の開発が精力的に進められている。
In recent years, midnight power storage systems, home-use distributed power storage systems based on solar power generation technology, and power storage systems for electric vehicles have attracted attention from the viewpoint of the effective use of energy aimed at preserving the global environment and conserving resources. Yes.
The first requirement in these power storage systems is that the energy density of the power storage elements used is high. As a promising candidate for a high energy density battery capable of meeting such demands, development of a lithium ion battery has been vigorously advanced.

第二の要求事項は、出力特性が高いことである。例えば、高効率エンジンと蓄電システムとの組み合わせ(例えば、ハイブリッド電気自動車)、又は燃料電池と蓄電システムとの組み合わせ(例えば、燃料電池電気自動車)において、加速時には蓄電システムにおける高出力放電特性が要求されている。
現在、高出力蓄電素子としては、電極に活性炭を用いた電気二重層キャパシタ(以下、単に「キャパシタ」ともいう。)が開発されており、耐久性(サイクル特性、高温保存特性)が高く、0.5〜1kW/L程度の出力特性を有する。これら電気二重層キャパシタは、上記高出力が要求される分野で最適の蓄電素子と考えられてきたが、そのエネルギー密度は、1〜5Wh/L程度に過ぎず、実用化には出力持続時間が足枷となっている。
The second requirement is high output characteristics. For example, a combination of a high-efficiency engine and a power storage system (for example, a hybrid electric vehicle) or a combination of a fuel cell and a power storage system (for example, a fuel cell electric vehicle) requires high output discharge characteristics in the power storage system during acceleration. ing.
Currently, an electric double layer capacitor using activated carbon as an electrode (hereinafter also simply referred to as a “capacitor”) has been developed as a high-power storage element, and has high durability (cycle characteristics and high-temperature storage characteristics). It has an output characteristic of about 5 to 1 kW / L. These electric double layer capacitors have been considered as the most suitable power storage elements in the field where the above high output is required, but the energy density is only about 1 to 5 Wh / L, and the output duration time is not practical. It is a footpad.

一方、現在ハイブリッド電気自動車で採用されているニッケル水素電池は、電気二重層キャパシタと同等の高出力を実現し、かつ160Wh/L程度のエネルギー密度を有している。しかしながら、そのエネルギー密度、出力をより一層高めるとともに、高温での安定性をさらに改善し、耐久性を高めるための研究が精力的に進められている。
また、リチウムイオン電池においても、高出力化に向けての研究が進められている。例えば、放電深度(素子の放電容量の何%を放電した状態かをあらわす値)50%において3kW/Lを超える高出力が得られるリチウムイオン電池が開発されているが、そのエネルギー密度は、100Wh/L以下であり、リチウムイオン電池の最大の特徴である高エネルギー密度を敢えて抑制した設計となっている。また、その耐久性(サイクル特性、高温保存特性)については電気ニ重層キャパシタに比べ劣る。そのため、実用的な耐久性を持たせるためには放電深度が0〜100%の範囲よりも狭い範囲でしか使用することができない。そのため実際に使用できる容量はさらに小さくなり、耐久性をより一層向上させるための研究が精力的に進められている。
On the other hand, nickel-metal hydride batteries currently used in hybrid electric vehicles realize high output equivalent to electric double layer capacitors and have an energy density of about 160 Wh / L. However, research is underway energetically to further increase the energy density and output, further improve the stability at high temperatures, and enhance the durability.
In addition, research for higher output is also being conducted in lithium ion batteries. For example, a lithium ion battery has been developed that can obtain a high output exceeding 3 kW / L at a discharge depth (a value representing what percentage of the device discharge capacity is discharged) 50%, and its energy density is 100 Wh. / L or less, and a design that dares to suppress the high energy density, which is the greatest feature of the lithium ion battery. Further, its durability (cycle characteristics, high temperature storage characteristics) is inferior to that of an electric double layer capacitor. Therefore, in order to give practical durability, the depth of discharge can be used only in a range narrower than the range of 0 to 100%. For this reason, the capacity that can be actually used is further reduced, and research for further improving the durability is being actively pursued.

上記の様に高出力密度、高エネルギー密度、耐久性を兼ね備えた蓄電素子の実用化が強く求められているが、上述した既存の蓄電素子には一長一短がある。そのため、これらの技術的要求を充足する新たな蓄電素子が求められており、有力な候補としてリチウムイオンキャパシタと呼ばれる蓄電素子の開発が近年盛んになってきている。   As described above, there is a strong demand for practical use of a power storage device having high output density, high energy density, and durability. However, the existing power storage device described above has advantages and disadvantages. Therefore, a new power storage element that satisfies these technical requirements has been demanded, and the development of a power storage element called a lithium ion capacitor has become active in recent years as a promising candidate.

リチウムイオンキャパシタは、リチウムイオンを含有した電解質を含む非水系電解液を使用する蓄電素子(非水系リチウム型蓄電素子)であって、正極においては電気二重層キャパシタと同様の陰イオンの吸着・脱着による非ファラデー反応、負極においてはリチウムイオン電池と同様のリチウムイオンの吸蔵・放出によるファラデー反応によって充放電を行う蓄電素子である。上述のように、正極・負極の双方において非ファラデー反応による充放電を行う電気二重層キャパシタにおいては、出力特性に優れるがエネルギー密度が小さい。一方、正極・負極の双方においてファラデー反応による充放電を行う二次電池においては、エネルギー密度に優れるが、出力特性に劣る。リチウムイオンキャパシタは、正極では非ファラデー反応、負極ではファラデー反応による充放電を行うことによって、優れた出力特性と高いエネルギー密度の両立を狙う新たな蓄電素子である。   A lithium ion capacitor is a storage element that uses a non-aqueous electrolyte containing an electrolyte containing lithium ions (non-aqueous lithium type storage element), and the positive electrode adsorbs and desorbs the same as an electric double layer capacitor at the positive electrode. It is a power storage element that charges and discharges by a non-Faraday reaction caused by Faraday reaction and a Faraday reaction caused by insertion and extraction of lithium ions in the negative electrode similar to a lithium ion battery. As described above, an electric double layer capacitor that charges and discharges by a non-Faraday reaction in both the positive electrode and the negative electrode has excellent output characteristics but low energy density. On the other hand, a secondary battery that charges and discharges by a Faraday reaction in both the positive electrode and the negative electrode is excellent in energy density but inferior in output characteristics. The lithium ion capacitor is a new power storage element that aims to achieve both excellent output characteristics and high energy density by performing charge and discharge by a non-Faraday reaction at the positive electrode and a Faraday reaction at the negative electrode.

このようなリチウムイオンキャパシタとしては、正極活物質として活性炭を用い、負極活物質として、天然黒鉛又は人造黒鉛、黒鉛化メソフェーズカーボン小球体、黒鉛化メソフェーズカーボン繊維、黒鉛ウイスカ、あるいは黒鉛化炭素繊維等を用いた蓄電素子が提案されている(以下、特許文献1参照)。また、正極活物質として活性炭を用い、負極活物質として難黒鉛化炭素又は黒鉛を用いた蓄電素子が提案されている(以下、特許文献2参照)。   As such a lithium ion capacitor, activated carbon is used as a positive electrode active material, natural graphite or artificial graphite, graphitized mesophase carbon microspheres, graphitized mesophase carbon fiber, graphite whisker, graphitized carbon fiber, etc. A power storage element using the above has been proposed (see Patent Document 1 below). In addition, a power storage element using activated carbon as a positive electrode active material and non-graphitizable carbon or graphite as a negative electrode active material has been proposed (see Patent Document 2 below).

また、正極活物質として通常の活性炭とは異なる水素/炭素が0.05〜0.5であり、BET比表面積が300〜2,000m/gであり、、BJH法によるメソ孔容積が0.02〜0.3ml/gであり、MP法による全細孔容積が0.3〜1.0ml/gである細孔構造を有する炭化水素材料を用い、一方、負極活物質として黒鉛を除く光学的異方性炭素物質を賦活処理した材料を用いる蓄電素子が提案されている(以下、特許文献3参照)。 Moreover, hydrogen / carbon different from normal activated carbon as the positive electrode active material is 0.05 to 0.5, the BET specific surface area is 300 to 2,000 m 2 / g, and the mesopore volume by the BJH method is 0. A hydrocarbon material having a pore structure of 0.02 to 0.3 ml / g and a total pore volume by the MP method of 0.3 to 1.0 ml / g is used, while graphite is removed as a negative electrode active material An electric storage element using a material obtained by activating an optically anisotropic carbon substance has been proposed (see Patent Document 3 below).

また、正極活物質として易黒鉛化炭を活性化処理して得られた活性化非多孔性炭を用い、一方、負極材料として天然黒鉛、人造黒鉛、メソフェーズカーボンマイクロビーズ、メソフェーズカーボンファイバー、コークス、気相成長炭素繊維、難黒鉛化性炭素等を用いた蓄電素子が提案されている(以下、特許文献4参照)。   Moreover, activated non-porous charcoal obtained by activating the graphitized charcoal as a positive electrode active material is used, while natural graphite, artificial graphite, mesophase carbon microbeads, mesophase carbon fiber, coke, An electric storage element using vapor-grown carbon fiber, non-graphitizable carbon, or the like has been proposed (see Patent Document 4 below).

また、リチウムイオンキャパシタの負極材料としては、活性炭の表面に炭素質材料を被着させた炭素質材料であって、直径20Å以上500Å以下の細孔に由来するメソ孔量をVm1(cc/g)、直径20Å未満の細孔に由来するマイクロ孔量をVm2(cc/g)とする時、0.01≦Vm1≦0.20、かつ、0.01≦Vm2≦0.40を満足する蓄電素子用負極材料が提案されている(以下、特許文献5参照)。該負極材料はリチウムイオンに対する充放電効率が高く、出力特性に優れた材料である。   The negative electrode material of the lithium ion capacitor is a carbonaceous material obtained by depositing a carbonaceous material on the surface of activated carbon, and the amount of mesopores derived from pores having a diameter of 20 mm or more and 500 mm or less is Vm1 (cc / g ), When the amount of micropores derived from pores having a diameter of less than 20 mm is Vm2 (cc / g), the electric storage satisfying 0.01 ≦ Vm1 ≦ 0.20 and 0.01 ≦ Vm2 ≦ 0.40 A negative electrode material for an element has been proposed (see Patent Document 5 below). The negative electrode material has high charge / discharge efficiency for lithium ions and is excellent in output characteristics.

特開平8−107048号公報Japanese Patent Laid-Open No. 8-1007048 特開平9−283383号公報JP-A-9-283383 特開2005−93778号公報JP 2005-93778 A 特開2007−294539号公報JP 2007-294539 A 特開2003−346801号公報JP 2003-346801 A

本発明者らが検討を行ったところ、上述の特許文献3に記載された蓄電素子は、エネルギー密度は大きいものの出力特性が十分ではないという課題を有していることがわかった。また、上述の特許文献4に記載された記載の蓄電素子は、正極材料として非多孔性炭を用いているため、出力特性が十分ではないという課題を有していることがわかった。また、上述の特許文献5に記載された蓄電素子は、充放電効率が高く出力特性に優れる一方で、耐久性を重視する用途においてはさらなる改良の余地があることが判明した。
そこで、本発明は、高エネルギー密度及び高出力密度に加え、高耐久性を兼ね揃えた蓄電素子を提供することを課題とする。
As a result of investigations by the present inventors, it has been found that the power storage element described in Patent Document 3 has a problem that the output characteristics are not sufficient although the energy density is large. Moreover, since the electrical storage element described in the above-mentioned patent document 4 uses the non-porous charcoal as a positive electrode material, it turned out that it has the subject that output characteristics are not enough. The power storage device described in Patent Document 5 described above has high charge / discharge efficiency and excellent output characteristics, but it has been found that there is room for further improvement in applications in which durability is important.
Accordingly, an object of the present invention is to provide a power storage element that has both high energy density and high output density, as well as high durability.

本発明者らは、前記課題を解決するため鋭意研究を重ねた結果、非水系リチウム型蓄電素子において、特定の細孔構造を有する活性炭を正極活物質として使用し、更に黒鉛化物を負極活物質として使用することにより、予想外に、該非水系リチウム型蓄電素子の高いエネルギー密度及び出力密度を維持したまま耐久性をも飛躍的に向上できることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have used activated carbon having a specific pore structure as a positive electrode active material in a non-aqueous lithium storage element, and further used a graphitized product as a negative electrode active material. As a result, the present inventors have unexpectedly found that the durability can be dramatically improved while maintaining the high energy density and output density of the non-aqueous lithium storage element, and the present invention has been completed.

すなわち、本発明は、以下のとおりである。
[1]負極集電体に負極活物質層を設けた負極電極体、正極集電体に正極活物質層を設けた正極電極体、及びセパレータを積層してなる電極積層体、並びにリチウムイオンを含有した電解質を含む非水系電解液を外装体に収納してなる非水系リチウム型蓄電素子であって、該正極活物質は活性炭を主成分として含み、ここで、該活性炭は、BJH法により算出した直径20Å以上500Å以下の細孔に由来するメソ孔量をV1(cc/g)、MP法により算出した直径20Å未満の細孔に由来するマイクロ孔量をV2(cc/g)とする時、0.3<V1≦0.8、かつ、0.5≦V2≦1.0を満足し、かつ、BET法により測定される比表面積が1,500m/g以上3,000m/g以下であり、そして該負極活物質は黒鉛化物を主成分として含むことを特徴とする前記非水系リチウム型蓄電素子。
That is, the present invention is as follows.
[1] A negative electrode body in which a negative electrode active material layer is provided on a negative electrode current collector, a positive electrode body in which a positive electrode current collector is provided with a positive electrode active material layer, an electrode laminate formed by laminating a separator, and lithium ions A non-aqueous lithium-type electricity storage element in which a non-aqueous electrolyte solution containing a contained electrolyte is housed in an exterior body, wherein the positive electrode active material contains activated carbon as a main component, where the activated carbon is calculated by the BJH method When the amount of mesopores derived from pores having a diameter of 20 to 500 mm is V1 (cc / g) and the amount of micropores derived from pores of less than 20 mm calculated by the MP method is V2 (cc / g) 0.3 <V1 ≦ 0.8 and 0.5 ≦ V2 ≦ 1.0, and the specific surface area measured by the BET method is 1,500 m 2 / g or more and 3,000 m 2 / g. And the negative electrode active material is graphitized As a main component, the non-aqueous lithium storage element.

[2]波長532nmのレーザーを用いたラマンスペクトルにおいて測定される前記黒鉛化物の1360cm−1のピーク強度(I1360)と1580cm−1のピーク強度(I1580)の比(I1360/I1580)が0.05以上0.90未満である、前記[1]に記載の非水系リチウム型蓄電素子。 [2] Ratio (I 1360 / I 1580 ) of peak intensity (I 1360 ) of 1360 cm −1 and peak intensity (I 1580 ) of 1580 cm −1 of the graphitized material measured in a Raman spectrum using a laser having a wavelength of 532 nm The non-aqueous lithium storage element according to [1], in which is 0.05 or more and less than 0.90.

[3]X線広角回折法で得られる前記黒鉛化物の(002)面の面間隔が0.335nm以上0.340nm未満である、前記[1]又は[2]に記載の非水系リチウム型蓄電素子。   [3] The non-aqueous lithium-type electricity storage according to [1] or [2], wherein the (002) plane spacing of the graphitized product obtained by the X-ray wide angle diffraction method is 0.335 nm or more and less than 0.340 nm. element.

[4]BET法により測定される前記黒鉛化物の比表面積が1m/g以上20m/g未満である、前記[1]〜[3]のいずれかに記載の非水系リチウム型蓄電素子。 [4] The non-aqueous lithium storage element according to any one of [1] to [3], wherein a specific surface area of the graphitized material measured by a BET method is 1 m 2 / g or more and less than 20 m 2 / g.

[5]前記黒鉛化物の平均粒径が5〜30μmである、前記[1]〜[4]のいずれかに記載の非水系リチウム型蓄電素子。   [5] The non-aqueous lithium storage element according to any one of [1] to [4], wherein the graphitized material has an average particle size of 5 to 30 μm.

[6]前記黒鉛化物が、メソカーボン小球体黒鉛化物である、前記[1]〜[5]のいずれかに記載の非水系リチウム型蓄電素子。   [6] The nonaqueous lithium storage element according to any one of [1] to [5], wherein the graphitized material is mesocarbon microsphere graphitized material.

本願発明により、高エネルギー密度及び高出力密度に加え、高耐久性を兼ね揃えた非水系リチウム型蓄電素子が提供される。   According to the present invention, there is provided a non-aqueous lithium storage element that has both high energy density and high output density, as well as high durability.

以下、本発明の実施の形態につき詳細に説明する。
本発明は、負極集電体に負極活物質層を設けた負極電極体、正極集電体に正極活物質層を設けた正極電極体、及びセパレータを積層してなる電極積層体、並びにリチウムイオンを含有した電解質を含む非水系電解液を外装体に収納してなる非水系リチウム型蓄電素子であって、該正極活物質が活性炭を主成分として含み、該活性炭は、直径20Å以上500Å以下の細孔に由来するメソ孔量をV1(cc/g)、直径20Å未満の細孔に由来するマイクロ孔量をV2(cc/g)とする時、0.3<V1≦0.8、かつ、0.5≦V2≦1.0を満足し、BET法により測定される比表面積が1,500m/g以上3,000m/g以下であり、そして該負極活物質が黒鉛化物を主成分とすることを特徴とする。
Hereinafter, embodiments of the present invention will be described in detail.
The present invention relates to a negative electrode body in which a negative electrode active material layer is provided on a negative electrode current collector, a positive electrode body in which a positive electrode current collector is provided with a positive electrode active material layer, an electrode laminate in which a separator is laminated, and lithium ions A non-aqueous lithium storage element containing a non-aqueous electrolyte solution containing an electrolyte containing the active material, wherein the positive electrode active material contains activated carbon as a main component, and the activated carbon has a diameter of 20 to 500 mm When the amount of mesopores derived from the pores is V1 (cc / g) and the amount of micropores derived from the pores having a diameter of less than 20 mm is V2 (cc / g), 0.3 <V1 ≦ 0.8, and 0.5 ≦ V2 ≦ 1.0, the specific surface area measured by the BET method is 1,500 m 2 / g or more and 3,000 m 2 / g or less, and the negative electrode active material is mainly graphitized. It is characterized by being a component.

まず、本発明の蓄電素子における正極活物質について説明する。
本発明において、正極活物質は活性炭を主成分として含み、ここで、該活性炭は、BJH法により算出した直径20Å以上500Å以下の細孔に由来するメソ孔量をV1(cc/g)、MP法により算出した直径20Å未満の細孔に由来するマイクロ孔量をV2(cc/g)とする時、0.3<V1≦0.8、かつ、0.5≦V2≦1.0を満足し、かつ、BET法により測定される比表面積が1,500m/g以上3,000m/g以下であることを特徴とする。ここで、主成分として含むとは、正極活物質の総重量を100%とする時に50%より多い量を含むことを意味する。
First, the positive electrode active material in the electricity storage device of the present invention will be described.
In the present invention, the positive electrode active material contains activated carbon as a main component, where the activated carbon has a mesopore amount derived from pores having a diameter of 20 mm or more and 500 mm or less calculated by the BJH method as V1 (cc / g), MP. Satisfying 0.3 <V1 ≦ 0.8 and 0.5 ≦ V2 ≦ 1.0 when the amount of micropores derived from pores having a diameter of less than 20 mm calculated by the method is V2 (cc / g) In addition, the specific surface area measured by the BET method is 1,500 m 2 / g or more and 3,000 m 2 / g or less. Here, including as a main component means including more than 50% when the total weight of the positive electrode active material is 100%.

上記活性炭の原料として用いられる炭素質材料としては、通常活性炭原料として用いられる炭素源であれば特に限定されるものではなく、たとえば、木材、木粉、ヤシ殻、パルプ製造時の副産物、バカス、廃糖蜜などの植物系原料;泥炭、亜炭、褐炭、瀝青炭、無煙炭、石油蒸留残渣成分、石油ピッチ、コークス、コールタールなどの化石系原料;フェノール樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、メラミン樹脂、尿素樹脂、レゾルシノール樹脂、セルロイド、エポキシ樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂などの各種合成樹脂;ポリブチレン、ポリブタジエン、ポリクロロプレンなどの合成ゴム;その他合成木材、合成パルプなど、あるいはそれらの炭化物が挙げられる。これらの原料の中でも、ヤシ殻、木粉などの植物系原料、又はそれらの炭化物が好ましく、ヤシ殻炭化物が特に好ましい。   The carbonaceous material used as a raw material for the activated carbon is not particularly limited as long as it is a carbon source that is usually used as a raw material for activated carbon. For example, wood, wood flour, coconut shell, by-product during pulp production, bacus, Plant raw materials such as waste molasses; Fossil raw materials such as peat, lignite, lignite, bituminous coal, anthracite, petroleum distillation residue components, petroleum pitch, coke, coal tar; phenol resin, vinyl chloride resin, vinyl acetate resin, melamine resin, Various synthetic resins such as urea resin, resorcinol resin, celluloid, epoxy resin, polyurethane resin, polyester resin, polyamide resin; synthetic rubber such as polybutylene, polybutadiene, polychloroprene; other synthetic wood, synthetic pulp, or their carbides It is done. Among these raw materials, plant raw materials such as coconut shells and wood flour, or carbides thereof are preferable, and coconut shell carbides are particularly preferable.

これらの原料を上記活性炭とするための炭化、賦活方式として、例えば、固定床方式、移動床方式、流動床方式、スラリー方式、ロータリーキルン方式などの公知の方式を採用できる。
これらの原料の炭化方法としては、窒素、二酸化炭素、ヘリウム、アルゴン、キセノン、ネオン、一酸化炭素、燃焼排ガスなどの不活性ガス、あるいはこれらの不活性ガスを主成分とした他のガスとの混合ガスを使用して、400〜700℃(特に450〜600℃)程度で30分〜10時間程度焼成する方法が挙げられる。
上記炭化方法により得られた炭化物の賦活方法としては、水蒸気、二酸化炭素、酸素などの賦活ガスを用いて焼成するガス賦活法が挙げられる。このうち、賦活ガスとして、水蒸気又は二酸化炭素を使用する方法が好ましい。
As a carbonization and activation method for using these raw materials as the activated carbon, known methods such as a fixed bed method, a moving bed method, a fluidized bed method, a slurry method, and a rotary kiln method can be employed.
Carbonization methods for these raw materials include inert gases such as nitrogen, carbon dioxide, helium, argon, xenon, neon, carbon monoxide and combustion exhaust gas, or other gases mainly composed of these inert gases. The method of baking for about 30 minutes to about 10 hours at about 400-700 degreeC (especially 450-600 degreeC) using mixed gas is mentioned.
Examples of a method for activating the carbide obtained by the carbonization method include a gas activation method in which firing is performed using an activation gas such as water vapor, carbon dioxide, and oxygen. Among these, a method using water vapor or carbon dioxide as the activation gas is preferable.

この賦活方法では、賦活ガスを0.5〜3.0kg/h(特に0.7〜2.0kg/h)の割合で供給しながら、上記炭化物を3〜12時間(好ましくは5〜11時間、さらに好ましくは6〜10時間)かけて800〜1000℃まで昇温して賦活するのが好ましい。
さらに、上記炭化物の賦活処理に先立ち、予め上記炭化物を1次賦活してもよい。この1次賦活では、通常、炭素質材料を水蒸気、二酸化炭素、酸素などの賦活ガスを用いて、900℃未満の温度で焼成してガス賦活すればよい。
上記炭化方法における焼成温度/時間と、上記賦活方法における賦活ガス供給量/昇温速度/最高賦活温度とを適宜組み合わせることにより、以下の特徴を有する本発明の活性炭を製造することができる。
In this activation method, the carbide is supplied for 3 to 12 hours (preferably 5 to 11 hours) while supplying the activation gas at a rate of 0.5 to 3.0 kg / h (particularly 0.7 to 2.0 kg / h). Furthermore, it is preferable to activate by heating to 800 to 1000 ° C. over 6 to 10 hours).
Furthermore, prior to the activation treatment of the carbide, the carbide may be activated in advance. In this primary activation, the carbonaceous material is usually fired at a temperature of less than 900 ° C. using an activation gas such as water vapor, carbon dioxide, oxygen, etc. to activate the gas.
The activated carbon of the present invention having the following characteristics can be produced by appropriately combining the firing temperature / time in the carbonization method and the activation gas supply amount / temperature increase rate / maximum activation temperature in the activation method.

このようにして得られた活性炭は、本発明において以下の特徴を有することが好ましい。
すなわち、活性炭のBJH法により算出した直径20Å以上500Å以下の細孔に由来するメソ孔量をV1(cc/g)、MP法により算出した直径20Å未満の細孔に由来するマイクロ孔量をV2(cc/g)とする時、0.3<V1≦0.8、かつ、0.5≦V2≦1.0が満たされる。
蓄電素子に組み込んだときの出力特性を大きくする点で、メソ孔量V1が0.3g/ccより大きい値であることが好ましく、また、蓄電素子の容量の低下を抑える点から、0.8以下であることが好ましく、より好ましくは0.35g/cc以上0.7g/cc以下、さらに好ましくは、0.4g/cc以上0.6g/cc以下である。
The activated carbon thus obtained preferably has the following characteristics in the present invention.
That is, the amount of mesopores derived from pores having a diameter of 20 to 500 mm calculated by the BJH method of activated carbon is V1 (cc / g), and the amount of micropores derived from pores having a diameter of less than 20 mm calculated by the MP method is V2. (Cc / g), 0.3 <V1 ≦ 0.8 and 0.5 ≦ V2 ≦ 1.0 are satisfied.
The mesopore amount V1 is preferably a value larger than 0.3 g / cc from the viewpoint of increasing the output characteristics when incorporated in the storage element, and from the viewpoint of suppressing a decrease in the capacity of the storage element. Or less, more preferably 0.35 g / cc or more and 0.7 g / cc or less, and still more preferably 0.4 g / cc or more and 0.6 g / cc or less.

一方、マイクロ孔量V2は、活性炭の比表面積を大きくし、容量を増加させるために、0.5g/cc以上であることが好ましく、また、活性炭の嵩を抑え、電極としての密度を増加し、単位体積あたりの容量を増加させるという点から、1.0g/cc以下であることが好ましく、より好ましくは、0.6g/cc以上1.0g/cc以下、さらに好ましくは、0.8g/cc以上1.0g/cc以下である。   On the other hand, the micropore volume V2 is preferably 0.5 g / cc or more in order to increase the specific surface area of the activated carbon and increase the capacity, and also suppresses the bulk of the activated carbon and increases the density as an electrode. From the viewpoint of increasing the capacity per unit volume, it is preferably 1.0 g / cc or less, more preferably 0.6 g / cc or more and 1.0 g / cc or less, and still more preferably 0.8 g / cc. cc to 1.0 g / cc.

また、メソ孔量V1とマイクロ孔量V2は、0.3≦V1/V2≦0.9の範囲にあることが好ましい。これは、マイクロ孔量に比べてメソ孔量が多く、容量を得ながら、出力特性の低下を抑えるという点から、V1/V2が0.3以上であることが好ましく、また、メソ孔量に比べてマイクロ孔量が多く、出力特性を得ながら、容量の低下を抑えるという点から、V1/V2は0.9以下であることが好ましい。より好ましい範囲は、0.4≦V1/V2≦0.7、さらに好ましい範囲は、0.55≦V1/V2≦0.7である。   The mesopore volume V1 and the micropore volume V2 are preferably in the range of 0.3 ≦ V1 / V2 ≦ 0.9. This is because the amount of mesopores is larger than the amount of micropores, and it is preferable that V1 / V2 is 0.3 or more from the viewpoint of suppressing the decrease in output characteristics while obtaining the capacity. Compared to the fact that the amount of micropores is larger than that of the above, and the output characteristics are obtained while suppressing the decrease in capacity, V1 / V2 is preferably 0.9 or less. A more preferable range is 0.4 ≦ V1 / V2 ≦ 0.7, and a further preferable range is 0.55 ≦ V1 / V2 ≦ 0.7.

本発明において、マイクロ孔量及びメソ孔量は以下のような方法により求めた値である。すなわち、試料を500℃で一昼夜真空乾燥を行い、窒素を吸着質とし吸脱着の等温線の測定を行なう。このときの脱着側の等温線を用いて、マイクロ孔量はMP法により、メソ孔量はBJH法により算出した。
MP法とは、「t−プロット法」(B.C.Lippens,J.H.de Boer,J.Catalysis,4319(1965))を利用して、マイクロ孔容積、マイクロ孔面積、及びマイクロ孔の分布を求める方法を意味し、M.Mikhail, Brunauer, Bodorにより考案された方法である(R.S.Mikhail,S.Brunauer,E.E.Bodor,J.Colloid Interface Sci.,26,45 (1968))。また、BJH法は一般的にメソ孔の解析に用いられる計算方法で、BarrEtt, Joyner, Halendaらにより提唱されたものである(E. P. Barrett, L. G. Joyner and P. Halenda, J. Amer. Chem. Soc., 73, 373(1951))。
In the present invention, the micropore volume and mesopore volume are values determined by the following method. That is, the sample is vacuum-dried at 500 ° C. for a whole day and night, and adsorption and desorption isotherms are measured using nitrogen as an adsorbate. Using the isotherm on the desorption side at this time, the micropore volume was calculated by the MP method, and the mesopore volume was calculated by the BJH method.
The MP method uses a “t-plot method” (BC Lippens, JH de Boer, J. Catalysis, 4319 (1965)), and uses a micropore volume, a micropore area, and a micropore. Is a method for obtaining the distribution of M.M. It is a method devised by Mikhail, Brunauer, Bodor (R.S. Mikhal, S. Brunauer, EE Bodor, J. Colloid Interface Sci., 26, 45 (1968)). The BJH method is a calculation method generally used for analyzing mesopores and proposed by BarrEtt, Joyner, Halenda et al. (EP Barrett, LG Joyner and P. Halenda, J Amer. Chem. Soc., 73, 373 (1951)).

正極活物質として使用される活性炭の平均細孔径は、出力を最大にする点から、17Å以上であることが好ましく18Å以上であることがより好ましく、20Å以上であることがさらに好ましい。また容量を最大にする点から、25Å以下であることが好ましい。本発明でいうところの平均細孔径とは、液体窒素温度における各相対圧力下での窒素ガスの各平衡吸着量を測定して得られる重量当たりの全細孔容積をBET比表面積で除して求めたものを示す。   The average pore diameter of the activated carbon used as the positive electrode active material is preferably 17 mm or more, more preferably 18 mm or more, and further preferably 20 mm or more, from the viewpoint of maximizing the output. Further, from the point of maximizing the capacity, it is preferably 25 mm or less. The average pore diameter referred to in the present invention is obtained by dividing the total pore volume per weight obtained by measuring each equilibrium adsorption amount of nitrogen gas under each relative pressure at the liquid nitrogen temperature by the BET specific surface area. Show what you asked for.

また、正極活物質として使用される活性炭は、そのBET比表面積が1,500m/g以上、3,000m/g以下が好ましい。より好ましくは、1,500m/g以上2,500m/g以下である。BET比表面積が1,500m/g未満の場合には、十分なエネルギー密度が得られず、一方、BET比表面積が3,000m/gを超える場合には、バインダーを多量に入れないと十分な電極の強度を保てず体積当りの性能が低下する。 The activated carbon used as the positive electrode active material preferably has a BET specific surface area of 1,500 m 2 / g or more and 3,000 m 2 / g or less. More preferably not more than 1,500 m 2 / g or more 2,500 m 2 / g. When the BET specific surface area is less than 1,500 m 2 / g, sufficient energy density cannot be obtained. On the other hand, when the BET specific surface area exceeds 3,000 m 2 / g, a large amount of binder must be added. A sufficient electrode strength cannot be maintained, and the performance per volume is lowered.

尚、正極活物質には、蓄電素子のエネルギー密度を向上させるという観点から、上記活性炭に加えて、リチウムイオン二次電池の正極活物質として公知のリチウムイオンを吸蔵放出する金属酸化物、例えば、コバルト酸リチウムを添加することも好ましい。正極活物質を活性炭とリチウムイオンを吸蔵放出する金属酸化物との混合物とする場合は、活性炭の全正極活物質に対する比率は、50重量%以上とすることが好ましい。   In addition, from the viewpoint of improving the energy density of the electricity storage element, the positive electrode active material includes, in addition to the activated carbon, a metal oxide that occludes and releases lithium ions known as a positive electrode active material of a lithium ion secondary battery, for example, It is also preferable to add lithium cobaltate. When the positive electrode active material is a mixture of activated carbon and a metal oxide that occludes and releases lithium ions, the ratio of activated carbon to the total positive electrode active material is preferably 50% by weight or more.

次に、本発明の蓄電素子における負極活物質について説明する。
負極活物質は、黒鉛化物を主成分として含むことを特徴とする。ここで、主成分として含むとは、負極活物質の総重量を100%とする時に50%より多い量を含むことを意味する。前述した特定の細孔構造を有する活性炭を正極活物質として使用し、更に負極活物質に黒鉛化物を使用した本発明の蓄電素子は、正極活物質として活性炭を使用し負極活物質として活性炭の表面に炭素質材料を被着させた複合多孔性材料を使用した特許文献5に記載された蓄電素子に対して、高いエネルギー密度及び出力密度を維持したまま、耐久性が飛躍的に向上する。
Next, the negative electrode active material in the electricity storage device of the present invention will be described.
The negative electrode active material includes a graphitized material as a main component. Here, including as a main component means including more than 50% when the total weight of the negative electrode active material is 100%. The power storage device of the present invention using activated carbon having a specific pore structure as described above as the positive electrode active material and further using graphitized material as the negative electrode active material uses activated carbon as the positive electrode active material and the surface of the activated carbon as the negative electrode active material. As compared with the electric storage element described in Patent Document 5 using a composite porous material in which a carbonaceous material is deposited on the substrate, durability is dramatically improved while maintaining a high energy density and an output density.

上記理由は定かではないが、例えば、負極活物質に黒鉛化物を用いることで、負極における自己放電又はリーク電流を好適に防止することができるためであると考えられる。
本発明における黒鉛化物には、人造黒鉛及び/又は天然黒鉛が使用でき、特に制限はないが、以下のものを好ましいものとして例示することができる。石油又は石炭系ピッチと高分子化合物(例えばフェノール樹脂、フラン樹脂、フルフラール樹脂、セルロース系樹脂など)を加熱又は焼成して得られる炭素(例えばバルクメソフェーズ、メソフェース小球体など)を黒鉛化処理して得られる黒鉛、コークス(例えばコールタールピッチ、酸素架橋石油ピッチなど)を黒鉛化処理して得られる黒鉛が挙げられる。これらの黒鉛は単独で又は二種以上組み合わせて使用できる。
Although the said reason is not certain, it is thought that it is because the self-discharge or leakage current in a negative electrode can be prevented suitably by using a graphitized material for a negative electrode active material, for example.
Artificial graphite and / or natural graphite can be used for the graphitized material in the present invention, and there is no particular limitation, but the following can be exemplified as preferable ones. Graphitizing carbon (eg, bulk mesophase, mesophase globules, etc.) obtained by heating or firing petroleum or coal-based pitch and a polymer compound (eg, phenol resin, furan resin, furfural resin, cellulose resin, etc.) Examples thereof include graphite obtained by graphitizing the obtained graphite and coke (for example, coal tar pitch, oxygen-crosslinked petroleum pitch, etc.). These graphites can be used alone or in combination of two or more.

本発明における黒鉛化物としては、波長532nmのレーザーを用いたラマンスペクトルにおいて測定される1360cm−1のピーク強度(I1360)と1580cm−1のピーク強度(I1580)の比(I1360/I1580)が0.05以上0.90未満であるものが好ましい。黒鉛構造に基づく9種の格子振動のうち、網面内格子振動に相当するE2g型振動に対応した1580cm−1近傍のラマンスペクトルと、主に表層での結晶欠陥、積層不整などの結晶構造の乱れを反映した1360cm−1近傍のラマンスペクトルを、波長532nmのレーザーを用いたレーザーラマン分光装置(日本分光製、NRS−3200)により測定する。それぞれのラマンスペクトルのピーク強度からその強度比(I1360/I1580)を算出し、強度比が大きいものほど表面の結晶性が低いと評価する。 The graphite fluoride in the present invention, the ratio of the peak intensity of 1360cm peak intensity of -1 (I 1360) and 1580 cm -1 as measured in the Raman spectrum using laser with a wavelength of 532nm (I 1580) (I 1360 / I 1580 ) Is preferably 0.05 or more and less than 0.90. Of the nine types of lattice vibration based on the graphite structure, the Raman spectrum near 1580 cm −1 corresponding to the E2g type vibration corresponding to the in-plane lattice vibration, and the crystal structure such as crystal defects mainly in the surface layer and stacking irregularities A Raman spectrum in the vicinity of 1360 cm −1 reflecting the disturbance is measured with a laser Raman spectrometer (NRS-3200, manufactured by JASCO Corporation) using a laser with a wavelength of 532 nm. The intensity ratio (I 1360 / I 1580 ) is calculated from the peak intensity of each Raman spectrum, and the higher the intensity ratio, the lower the surface crystallinity.

強度比(I1360/I1580)が0.05以上であると、表層の結晶性が進みすぎるために起こる、電解液の分解反応が進みやすくなることによる不可逆容量の増大や、リチウムイオンのインターカーレーション/デインターカレーションが遅くなることによる出力特性の低下が少ない。また、強度比(I1360/I1580)が0.90未満であると、結晶性の著しい低下によるリーク電流の増大や自己放電の増大が起こりにくい。したがって、0.05以上0.90未満を示すものであることが好ましく、0.15以上0.50未満が更に好ましい。 When the intensity ratio (I 1360 / I 1580 ) is 0.05 or more, the irreversible capacity increases due to the progress of the decomposition reaction of the electrolytic solution, which occurs because the crystallinity of the surface layer proceeds excessively, and the lithium ion intercalation increases. There is little decrease in output characteristics due to slow curlation / deintercalation. Further, when the intensity ratio (I 1360 / I 1580 ) is less than 0.90, an increase in leakage current and an increase in self-discharge due to a significant decrease in crystallinity are unlikely to occur. Therefore, it is preferably 0.05 or more and less than 0.90, more preferably 0.15 or more and less than 0.50.

本発明における黒鉛化物の結晶構造としては、X線広角回折法で得られる(002)面の面間隔(以下、d002とする)が0.335nm以上0.340nm未満であるものが好ましい。ここでいうd002は、X線としてCuKα線を用い、高純度シリコンを標準物質に使用して黒鉛化物の(002)面の回折ピークを測定し、そのピーク位置から算出したものである。
002が0.340nm以上になると、黒鉛化度が低下してしまい適さないので、好ましくは0.337nm以下であり、更に好ましくは0.3365nm以下である。
The crystalline structure of the graphite product according to the present invention, obtained by X-ray wide angle diffraction method (002) plane of the surface interval (hereinafter referred to as d 002) are those preferably less than 0.340nm than 0.335 nm. The d 002 here is calculated from the peak position of the (002) plane of the graphitized product measured using CuKα rays as X-rays and high-purity silicon as a standard substance.
When d 002 is 0.340 nm or more, the degree of graphitization is lowered and is not suitable. Therefore, it is preferably 0.337 nm or less, and more preferably 0.3365 nm or less.

本発明における黒鉛化物の比表面積は、BET法により測定される比表面積で1m/g以上20m/g未満であることが好ましい。
黒鉛化物のBET比表面積が1m/g以上であれば、十分なエネルギー密度が得られやすい。一方、20m/g未満であれば、耐久性が低下しにくい。その理由は定かではないが、例えば、BET比表面積の向上に伴い電解液との接触面積も向上することにより、リーク電流の増大や自己放電の増大が起きやすいためと考えられる。従って、好ましくは2〜15m/gであり、更に好ましくは、3〜10m/gである。
The specific surface area of the graphite product in the present invention is preferably a specific surface area as measured by BET method is less than 1 m 2 / g or more 20 m 2 / g.
When the BET specific surface area of the graphitized material is 1 m 2 / g or more, a sufficient energy density is easily obtained. On the other hand, if it is less than 20 m < 2 > / g, durability will not fall easily. The reason for this is not clear, but it is considered that, for example, an increase in the contact area with the electrolyte accompanying an increase in the BET specific surface area tends to cause an increase in leakage current and an increase in self-discharge. Therefore, preferably 2 to 15 m 2 / g, more preferably 3 to 10 m 2 / g.

本発明における黒鉛化物の平均粒径は、5〜30μmであることが好ましい。ここで言う平均粒径とは、粒度分布測定装置を用いて粒度分布を測定した際、全体積を100%として累積カーブを求めたとき、その累積カーブが50%となる点の粒子径を50%径とし、その50%径(Median径)のことを指す。
平均粒径が5μm以上であると、活物質層の密度を高くでき、体積当たりの容量も高くできるので好ましい。更には、平均粒径が大きいことは耐久性の向上にも寄与する。平均粒径が30μm以下であれば、高速充放電には適する。従って、好ましくは6〜25μmであり、更に好ましくは、7〜20μmである。
The average particle size of the graphitized material in the present invention is preferably 5 to 30 μm. The average particle size referred to here is the particle size at which the cumulative curve becomes 50% when the cumulative curve is determined with the total volume being 100% when the particle size distribution is measured using a particle size distribution measuring device. % Diameter, and refers to the 50% diameter (Median diameter).
The average particle size of 5 μm or more is preferable because the density of the active material layer can be increased and the capacity per volume can be increased. Furthermore, a large average particle size contributes to an improvement in durability. An average particle size of 30 μm or less is suitable for high-speed charge / discharge. Accordingly, the thickness is preferably 6 to 25 μm, and more preferably 7 to 20 μm.

上記のような物性をもつ黒鉛化物の中でも、メソカーボン小球体黒鉛化物が好ましい。メソカーボン小球体黒鉛化物は結晶子が球状粒子の中でラメラ状に配向しているため、充放電時のリチウムイオンのインターカーレーション/デインターカレーションがスムーズに進行でき、急速充放電と耐久性の両方を兼ね揃えるには好適である。   Among the graphitized materials having the above physical properties, mesocarbon microsphere graphitized materials are preferable. Mesocarbon microsphere graphitized material has crystallites oriented in a lamellar shape in spherical particles, so that lithium ion intercalation / deintercalation can proceed smoothly during charge / discharge, rapid charge / discharge and durability It is suitable for combining both sexes.

尚、本発明における負極活物質は、上記黒鉛化物を中心炭素材として他の材料を被覆したものや、上記黒鉛化物に他の材料を混合したものも含む。例えば、上記黒鉛化物の表面を黒鉛化度の低い炭素質材料で被覆した複層(コア−シェル)構造(複合物)や、上記黒鉛化物と黒鉛化度の低い炭素質物を組み合わせたもの(混合物)が挙げられる。
黒鉛化度の低い炭素質物としては、易黒鉛化性炭素材料、難黒鉛化性炭素材料、活性炭の表面に炭素質材料を被着された複合多孔性材料、ポリアセン系物質などのアモルファス炭素質材料、ケッチェンブラックやアセチレンブラックといったカーボンブラック、カーボンナノチューブ、フラーレン、カーボンナノフォーン、繊維状炭素質材料などで、上記黒鉛化物において好ましい物性として規定されている範囲に入らない炭素質材料が挙げられる。
また、本発明における負極活物質は、上記黒鉛化物と、リチウムチタン複合酸化物、導電性高分子など、公知のリチウムイオン二次電池用負極材料との複合物又は混合物であってもよい。以上のように複合物又は混合物とする場合、黒鉛化物の全負極活物質に対する比率は、50重量%以上とすることが好ましい。
In addition, the negative electrode active material in the present invention includes those obtained by coating other materials with the above graphitized material as a central carbon material, and those obtained by mixing other materials with the above graphitized material. For example, a multilayer (core-shell) structure (composite) in which the surface of the graphitized material is coated with a carbonaceous material having a low graphitization degree, or a combination of the graphitized material and a carbonaceous material having a low graphitization degree (mixture) ).
Low-graphitizable carbonaceous materials include graphitizable carbon materials, non-graphitizable carbon materials, composite porous materials with a carbonaceous material deposited on the surface of activated carbon, and amorphous carbonaceous materials such as polyacene substances. And carbon black materials such as ketjen black and acetylene black, carbon nanotubes, fullerenes, carbon nanophones, fibrous carbonaceous materials, and the like, and carbonaceous materials that do not fall within the range defined as preferred physical properties in the graphitized material.
The negative electrode active material in the present invention may be a composite or mixture of the above graphitized material and a known negative electrode material for lithium ion secondary batteries such as lithium titanium composite oxide and conductive polymer. As mentioned above, when setting it as a composite or a mixture, it is preferable that the ratio with respect to all the negative electrode active materials of a graphitized material shall be 50 weight% or more.

次に、本発明の非水系リチウム型蓄電素子について説明する。
集電体の材質は、蓄電素子にした際、溶出や反応などの劣化が起こらない金属箔であれば特に制限はなく、例えば、銅箔、アルミニウム箔などが挙げられる。本発明の蓄電素子においては、正極集電体をアルミニウム箔、負極集電体を銅箔とすることが好ましい。
また、集電体は貫通孔を持たない通常の金属箔でもよいし、貫通孔を有する金属箔でも構わない。集電体の厚みは、特に制限はないが、1μmより小さいと電極体の形状や強度を十分に保持できなくなり、100μmより大きいと蓄電素子として重量及び体積が大きくなりすぎ、重量及び体積当たりの性能が劣ってしまうため、1〜100μmが好ましい。
Next, the non-aqueous lithium storage element of the present invention will be described.
The material of the current collector is not particularly limited as long as it is a metal foil that does not deteriorate due to elution or reaction when it is used as a power storage element, and examples thereof include copper foil and aluminum foil. In the electricity storage device of the present invention, the positive electrode current collector is preferably an aluminum foil and the negative electrode current collector is preferably a copper foil.
Further, the current collector may be a normal metal foil having no through hole or a metal foil having a through hole. The thickness of the current collector is not particularly limited, but if it is smaller than 1 μm, the shape and strength of the electrode body cannot be sufficiently maintained, and if it is larger than 100 μm, the weight and volume of the electricity storage device become too large. Since performance will be inferior, 1-100 micrometers is preferable.

活物質層には、公知のリチウムイオン電池、キャパシタ等で活物質層に含まれる公知の成分を用いることができる。活物質層には、前述した正極活物質及び負極活物質以外に、公知の成分、例えば、バインダー、導電フィラー、増粘剤を含ませることができ、その種類には特に制限はない。   As the active material layer, a known component contained in the active material layer of a known lithium ion battery, a capacitor, or the like can be used. In addition to the positive electrode active material and the negative electrode active material described above, the active material layer can contain known components, for example, a binder, a conductive filler, and a thickener, and the type thereof is not particularly limited.

以下、非水系リチウム型蓄電素子における活物質層の成分について、詳細に述べる。
活物質層には、必要に応じ導電性フィラーを添加してもよく、例えばカーボンブラックなどが挙げられる。その添加量は、活物質100質量%に対して0〜30質量%が好ましく、1〜20質量%がより好ましい。導電性フィラーは、高出力密度の観点からは、混合したほうが好ましいが、30質量%より多いと、電極層に占める活物質量の割合が下がり、体積当たりの出力密度が低下するので用途に応じて適宜設定する。
Hereinafter, the components of the active material layer in the non-aqueous lithium storage element will be described in detail.
If necessary, a conductive filler may be added to the active material layer, and examples thereof include carbon black. 0-30 mass% is preferable with respect to 100 mass% of active materials, and, as for the addition amount, 1-20 mass% is more preferable. The conductive filler is preferably mixed from the viewpoint of high power density, but if it exceeds 30% by mass, the proportion of the active material in the electrode layer decreases and the power density per volume decreases, so depending on the application. Set as appropriate.

上記の活物質、更に必要に応じて添加された導電性フィラーを、活物質層として集電体上に固着させるために、バインダーとして、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、フッ素ゴム、スチレンブタジエン共重合体、セルロース誘導体などを用いることができ、その添加量は活物質100質量%に対して3〜20質量%の範囲が好ましく、5〜15質量%の範囲がより好ましい。バインダーの添加量が20質量%よりも多いと、活物質の表面をバインダーが覆ってしまい、イオンの出入りが遅くなり高出力密度が得られなくなることがある。また、バインダーの添加量が3質量%未満であると、活物質層を集電体上に固着することが難しい。
尚、本発明における電極体は、活物質層を集電体の上面(片面)のみに形成したものでもよいし、上下面(両面)に形成したものでも構わない。
In order to fix the above-mentioned active material, and further optionally added conductive filler on the current collector as an active material layer, as a binder, polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), Fluororubber, styrene butadiene copolymer, cellulose derivative and the like can be used, and the addition amount thereof is preferably in the range of 3 to 20% by mass, more preferably in the range of 5 to 15% by mass with respect to 100% by mass of the active material. . When the added amount of the binder is more than 20% by mass, the surface of the active material is covered with the binder, so that the entry and exit of ions may be delayed and a high output density may not be obtained. Further, when the added amount of the binder is less than 3% by mass, it is difficult to fix the active material layer on the current collector.
The electrode body in the present invention may be one in which the active material layer is formed only on the upper surface (one surface) of the current collector, or may be formed on the upper and lower surfaces (both surfaces).

活物質層を集電体に固着させた電極体において、活物質層の厚みは、通常、30〜200μm程度が好ましい。活物質層の厚みが30μm未満であると、蓄電素子全体に対する活物質量の割合が少なくなり、エネルギー密度が低下する。また、活物質層の厚み200μmより大きくなると、電極内部の抵抗が大きくなり、出力密度が低下してしまう。
電極体は、公知のリチウムイオン電池、電気二重層キャパシタ等の電極製造技術により製造することが可能であり、例えば、各種材料を水または有機溶剤によりスラリー状にし、活物質層を集電体上に塗布して乾燥し、必要に応じてプレスすることにより得られる。また、溶剤を使用せずに、乾式で混合し、活物質をプレス成型した後、バインダーなどを用いて貼り付けることも可能である。
In the electrode body in which the active material layer is fixed to the current collector, the thickness of the active material layer is usually preferably about 30 to 200 μm. When the thickness of the active material layer is less than 30 μm, the ratio of the amount of the active material to the entire power storage element decreases, and the energy density decreases. On the other hand, when the thickness of the active material layer is larger than 200 μm, the resistance inside the electrode increases, and the output density decreases.
The electrode body can be manufactured by electrode manufacturing technology such as a known lithium ion battery or an electric double layer capacitor. For example, various materials are slurried with water or an organic solvent, and the active material layer is placed on the current collector. It is obtained by applying to the substrate, drying, and pressing as necessary. Further, without using a solvent, it is also possible to mix by a dry method and press-mold the active material, and then affix using a binder or the like.

成型された正極電極体及び負極電極体は、セパレータを介して積層又は捲廻積層され、金属缶又はラミネートフィルムから形成された外装体内に挿入される。セパレータはリチウムイオン二次電池に用いられるポリエチレン製の微多孔膜若しくはポリプロピレン製の微多孔膜又は電気二重層コンデンサで用いられるセルロース製の不織紙などを用いることができる。
セパレータの厚みは10μm以上50μm以下が好ましい。10μm未満の厚みでは、内部のマイクロショートによる自己放電が大きくなるため好ましくない。また、50μmより厚いと、蓄電素子のエネルギー密度が減少するだけでなく、出力特性も低下するため好ましくない。
The formed positive electrode body and negative electrode body are laminated or wound around via a separator, and inserted into an outer package formed from a metal can or a laminated film. As the separator, a polyethylene microporous film or a polypropylene microporous film used in a lithium ion secondary battery, or a cellulose non-woven paper used in an electric double layer capacitor can be used.
The thickness of the separator is preferably 10 μm or more and 50 μm or less. A thickness of less than 10 μm is not preferable because self-discharge due to an internal micro-short increases. On the other hand, when the thickness is larger than 50 μm, not only the energy density of the electricity storage device is reduced but also the output characteristics are deteriorated, which is not preferable.

外装体に使用される金属缶としては、アルミニウム製のものが好ましい。また、外装体に使用されるラミネートフィルムとしては、金属箔と樹脂フィルムを積層したフィルムが好ましく、外層樹脂フィルム/金属箔/内装樹脂フィルムからなる3層構成のものが例示される。外層樹脂フィルムは接触等により金属箔が損傷を受けることを防止するためのものであり、ナイロンやポリエステル等の樹脂が好適に使用できる。金属箔は水分やガスの透過を防ぐためのものであり、銅、アルミニウム、ステンレス等の箔が好適に使用できる。また、内装樹脂フィルムは、内部に収納する電解液から金属箔を保護するとともに、ヒートシール時に溶融封口させるためのものであり、ポリオレフィン、酸変成ポリオレフィンが好適に使用できる。   As a metal can used for an exterior body, the thing made from aluminum is preferable. Moreover, as a laminated film used for an exterior body, the film which laminated | stacked metal foil and the resin film is preferable, and the thing of the 3 layer structure which consists of an outer layer resin film / metal foil / interior resin film is illustrated. The outer layer resin film is for preventing the metal foil from being damaged by contact or the like, and a resin such as nylon or polyester can be suitably used. The metal foil is for preventing the permeation of moisture and gas, and foils of copper, aluminum, stainless steel, etc. can be suitably used. The interior resin film protects the metal foil from the electrolyte contained therein and melts and seals it during heat sealing, and polyolefins and acid-modified polyolefins can be suitably used.

本発明の蓄電素子に用いられる非水系電解液の溶媒としては、炭酸エチレン(EC)、炭酸プロピレン(PC)に代表される環状炭酸エステル、炭酸ジエチル(DEC)、炭酸ジメチル(DMC)、炭酸エチルメチル(MEC)に代表される鎖状炭酸エステル、γ−ブチロラクトン(γBL)などのラクトン類又はこれらの混合溶媒を用いることができる。
これら溶媒に溶解する電解質はリチウム塩である必要があり、好ましいリチウム塩としては、LiBF、LiPF、LiN(SO、LiN(SOCF)(SO)、LiN(SOCF)(SOH)又はこれらの混合塩を挙げることができる。
Examples of the solvent for the non-aqueous electrolyte used in the electricity storage device of the present invention include cyclic carbonates represented by ethylene carbonate (EC) and propylene carbonate (PC), diethyl carbonate (DEC), dimethyl carbonate (DMC), and ethyl carbonate. A chain carbonate typified by methyl (MEC), a lactone such as γ-butyrolactone (γBL), or a mixed solvent thereof can be used.
The electrolyte dissolved in these solvents must be a lithium salt, and preferred lithium salts include LiBF 4 , LiPF 6 , LiN (SO 2 C 2 F 5 ) 2 , LiN (SO 2 CF 3 ) (SO 2 C 2 ). F 5 ), LiN (SO 2 CF 3 ) (SO 2 C 2 F 4 H), or a mixed salt thereof.

非水系電解液中の電解質濃度は、0.5〜2.0mol/Lの範囲が好ましい。0.5mol/L未満では陰イオンが不足して蓄電素子の容量が低下する。また、2.0mol/Lを超えると未溶解の塩が該電解液中に析出したり、該電解液の粘度が高くなりすぎたりすることによって、逆に伝導度が低下して出力特性が低下する。
本発明の蓄電素子において、負極電極体には、リチウムイオンを予めドープしておくことができる。ドープする方法としては、公知の方法、例えば、負極電極体の負極活物質層にリチウム金属箔を積層した状態で電極体を組み立てて非水系電解液に入れる方法を使用することができる。リチウムイオンを予めドープしておくことにより、蓄電素子の容量および作動電圧を制御することが可能である。
The electrolyte concentration in the non-aqueous electrolyte is preferably in the range of 0.5 to 2.0 mol / L. If it is less than 0.5 mol / L, anions are insufficient and the capacity of the electricity storage device is reduced. On the other hand, if it exceeds 2.0 mol / L, undissolved salt precipitates in the electrolyte solution, or the viscosity of the electrolyte solution becomes too high, which conversely decreases the conductivity and decreases the output characteristics. To do.
In the electricity storage device of the present invention, the negative electrode body can be pre-doped with lithium ions. As a method for doping, a known method, for example, a method of assembling an electrode body in a state where a lithium metal foil is laminated on the negative electrode active material layer of the negative electrode body and putting it in a non-aqueous electrolyte can be used. By preliminarily doping with lithium ions, it is possible to control the capacity and operating voltage of the power storage element.

以下に、本発明を実施例及び比較例によって具体的に説明するが、本発明はこれらに限定されるものではない。
まず、実施例及び比較例に用いる負極材料(黒鉛化物)の作製方法を以下に示す。
コールタールを450℃で1時間加熱処理をして、ピッチマトリックス中に黒鉛化物前駆体を生成させる。次に、上記混合物から、黒鉛化物前駆体を取り出すために、抽出溶媒としてタール重油を使用し、ピッチマトリックス中から黒鉛化物を得た。得られた黒鉛化物を窒素気流中、500℃3時間で一度焼結した後室温まで冷却し、黒鉛質製容器に入れ、窒素気流中、3,000℃3時間で高温熱処理を行うことで、実施例4及び8に用いる黒鉛化物4を得た。
上記作製方法において、3,000℃の高温熱処理時間を短くすることで、実施例2及び6に用いる黒鉛化物2を得た。
上記黒鉛化物2を、ハイブリダイゼーションシステム((株)奈良機械製作所製)を用いて、周速40m/s、処理時間5分でメカノケミカル処理することで、実施例1及び5、比較例1及び4に用いる黒鉛化物1を得た。
上記黒鉛化物1に再度、同条件のメカノケミカル処理することで、実施例3及び7に用いる黒鉛化物3を得た。
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
First, a method for producing a negative electrode material (graphitized material) used in Examples and Comparative Examples is shown below.
The coal tar is heat-treated at 450 ° C. for 1 hour to produce a graphitized precursor in the pitch matrix. Next, in order to take out the graphitized material precursor from the above mixture, tar heavy oil was used as an extraction solvent, and graphitized material was obtained from the pitch matrix. The obtained graphitized material was sintered once at 500 ° C. for 3 hours in a nitrogen stream, cooled to room temperature, put in a graphite container, and subjected to high-temperature heat treatment at 3,000 ° C. for 3 hours in a nitrogen stream. Graphitized product 4 used in Examples 4 and 8 was obtained.
In the above production method, graphitized product 2 used in Examples 2 and 6 was obtained by shortening the high-temperature heat treatment time of 3,000 ° C.
The graphitized product 2 was mechanochemically treated with a hybridization system (manufactured by Nara Machinery Co., Ltd.) at a peripheral speed of 40 m / s and a treatment time of 5 minutes, so that Examples 1 and 5, Comparative Example 1 and Graphitized product 1 used in No. 4 was obtained.
The graphitized product 1 used in Examples 3 and 7 was obtained by subjecting the graphitized product 1 to mechanochemical treatment under the same conditions again.

<実施例1>
[正極電極体の作製]
破砕されたヤシ殻炭化物を、小型炭化炉において窒素中、500℃で3時間炭化処理した。処理後の該炭化物を賦活炉内へ入れ、1kg/hの水蒸気を予熱炉で加温した状態で該賦活炉内へ投入し、900℃まで8時間かけて昇温した後に取り出し、窒素雰囲気下で冷却して活性炭を得た。得られた活性炭を10時間通水洗浄を行った後に水切りした。その後、115℃に保持された電気乾燥機内で10時間乾燥した後に、ボールミルで1時間粉砕を行い、正極材料となる活性炭1を得た。
本活性炭1を、ユアサアイオニクス社製細孔分布測定装置(AUTOSORB−1 AS−1−MP)で、細孔分布を測定した。その結果、BET比表面積は2,360m/g、メソ孔量(V1)は0.52cc/g、マイクロ孔量(V2)は0.88cc/gであった。この活性炭1を正極活物質に用い、該活性炭1を80.8重量部、ケッチェンブラック6.20重量部、PVDF(ポリフッ化ビニリデン)10.0重量部およびPVP(ポリビニルピロリドン)3.00重量部とNMP(N−メチルピロリドン)を混合して、スラリーを得た。次いで、得られたスラリーを厚さ15μmのアルミニウム箔の片面に塗布し、乾燥し、プレスして、活物質層の厚さが55μmの正極電極体を得た。
<Example 1>
[Preparation of positive electrode body]
The crushed palm shell carbide was carbonized in nitrogen in a small carbonization furnace at 500 ° C. for 3 hours. The treated carbide is placed in an activation furnace, 1 kg / h of steam is heated in a preheating furnace, and the temperature is raised to 900 ° C. over 8 hours. To obtain activated carbon. The obtained activated carbon was washed with water for 10 hours and then drained. Then, after drying for 10 hours in an electric dryer maintained at 115 ° C., pulverization was performed for 1 hour by a ball mill to obtain activated carbon 1 as a positive electrode material.
The pore distribution of this activated carbon 1 was measured with a pore distribution measuring device (AUTOSORB-1 AS-1-MP) manufactured by Yuasa Ionics. As a result, the BET specific surface area was 2,360 m 2 / g, the mesopore volume (V1) was 0.52 cc / g, and the micropore volume (V2) was 0.88 cc / g. Using the activated carbon 1 as a positive electrode active material, the activated carbon 1 is 80.8 parts by weight, ketjen black 6.20 parts by weight, PVDF (polyvinylidene fluoride) 10.0 parts by weight, and PVP (polyvinylpyrrolidone) 3.00 parts by weight. And NMP (N-methylpyrrolidone) were mixed to obtain a slurry. Next, the obtained slurry was applied to one side of an aluminum foil having a thickness of 15 μm, dried, and pressed to obtain a positive electrode body having an active material layer thickness of 55 μm.

[負極電極体の作製]
上述した方法で作製した黒鉛化物1の物性評価を行った。レーザーラマン分光装置(日本分光製、NRS−3200)を用いて、レーザー波長532nmにおける強度比(I1360/I1580)を測定した結果、0.30であった。次に、ユアサアイオニクス社製細孔分布測定装置(AUTOSORB−1 AS−1−MP)を用いてBET比表面積を測定した結果、7.4m/gであった。また、島津製作所社製レーザー回折式粒度分布測定装置(SALD−2000J)を用いて平均粒径を測定した結果、7.5μmであった。さらに、X線広角回折測定(理学電機製、RINT−2500)をX線としてCuKα線を用いて行い、高純度Siを内標に使用して(002)面の回折ピークを測定した結果、d002は0.336であった。
上記黒鉛化物1を93.0重量部、アセチレンブラック2.0重量部およびPVDF(ポリフッ化ビニリデン)5.0重量部とNMP(N−メチルピロリドン)を混合して、スラリーを得た。次いで、得られたスラリーを厚さ15μmの銅箔の片面に塗布し、乾燥し、プレスして、活物質層の厚さが厚さ60μmの負極電極体を得た。この電極体に、黒鉛化物単位重量あたり290mAh/gに相当するリチウムイオンを、リチウム金属箔を用いて電気化学的にドーピングした。
[Preparation of negative electrode body]
The physical properties of the graphitized material 1 produced by the method described above were evaluated. The intensity ratio (I 1360 / I 1580 ) at a laser wavelength of 532 nm was measured using a laser Raman spectrometer (NRS-3200, manufactured by JASCO Corporation), and as a result, it was 0.30. Next, as a result of measuring the BET specific surface area using a pore distribution measuring device (AUTOSORB-1 AS-1-MP) manufactured by Yuasa Ionics, it was 7.4 m 2 / g. Moreover, it was 7.5 micrometers as a result of measuring an average particle diameter using the Shimadzu Corporation laser diffraction type particle size distribution analyzer (SALD-2000J). Further, X-ray wide-angle diffraction measurement (RINT-2500, manufactured by Rigaku Corporation) was performed using CuKα rays as X-rays, and the diffraction peak on the (002) plane was measured using high-purity Si as an internal standard. 002 was 0.336.
93.0 parts by weight of the graphitized product 1, 2.0 parts by weight of acetylene black, 5.0 parts by weight of PVDF (polyvinylidene fluoride) and NMP (N-methylpyrrolidone) were mixed to obtain a slurry. Next, the obtained slurry was applied to one side of a 15 μm thick copper foil, dried and pressed to obtain a negative electrode body having an active material layer thickness of 60 μm. This electrode body was electrochemically doped with lithium ions corresponding to 290 mAh / g per unit weight of graphitized material using a lithium metal foil.

[蓄電素子の組立と性能]
得られた負極電極体、及び正極電極体の間に、ポリエチレン系セパレータ(厚み30μm)を積層して、ラミネートフィルムから形成された外装体内に挿入し、電解液を注入して該外装体を密閉し、非水系リチウム型蓄電素子を組立てた。エチレンカーボネートとメチルエチルカーボネートを1:4重量比で混合した溶媒に1mol/lの濃度でLiN(SOを溶解した溶液を、電解液として使用した。
組立てた蓄電素子を0.5mAの電流で4.0Vまで充電し、その後、4.0Vの定電圧を印加する定電流定電圧充電を2時間行った。続いて、0.5mAの定電流で2.5Vまで放電した。これを1サイクルとし、続けて13サイクルまで充放電を繰り返した。13サイクル目の放電容量を本蓄電素子の容量とした際、本蓄電素子の容量は、44mAh/gであった。
また、作製した蓄電素子を1mAの電流で4.0Vまで充電し、その後4.0Vの定電圧を印加する定電流定電圧充電を2時間行った。次いで、1mAの定電流で2.5Vまで放電した。放電容量は、0.333mAhであった。次に同様の充電を行い250mAで2.5Vまで放電したところ、0.150mAhの容量が得られた。すなわち、1mAでの放電容量に対する250mAでの放電容量の比(以下「出力特性」ともいう。)は0.450であった。
さらに、組立てた蓄電素子の耐久性試験を60℃、3.8V印加の条件で行った。試験開始時(0hとする)と1000h経過後における抵抗倍率を測定した。ここでいう抵抗倍率とは、(1000h経過後の0.1Hzでの抵抗値)/(0hでの0.1Hzでの抵抗値)で表される数値とする。1000h経過後の抵抗倍率は1.05であった。
[Assembly and performance of storage element]
A polyethylene separator (thickness 30 μm) is laminated between the obtained negative electrode body and the positive electrode body, inserted into an outer package formed from a laminate film, and an electrolyte is injected to seal the outer package. Then, a non-aqueous lithium storage element was assembled. A solution obtained by dissolving LiN (SO 2 C 2 F 5 ) 2 at a concentration of 1 mol / l in a solvent in which ethylene carbonate and methyl ethyl carbonate were mixed at a weight ratio of 1: 4 was used as an electrolytic solution.
The assembled power storage element was charged to 4.0 V with a current of 0.5 mA, and then constant current and constant voltage charging in which a constant voltage of 4.0 V was applied was performed for 2 hours. Subsequently, the battery was discharged to 2.5 V with a constant current of 0.5 mA. This was defined as one cycle, and charging / discharging was repeated up to 13 cycles. When the discharge capacity at the thirteenth cycle was defined as the capacity of the power storage element, the capacity of the power storage element was 44 mAh / g.
Moreover, the produced electrical storage element was charged to 4.0V with the electric current of 1 mA, and the constant current constant voltage charge which applies a constant voltage of 4.0V was performed for 2 hours after that. Next, the battery was discharged to 2.5 V with a constant current of 1 mA. The discharge capacity was 0.333 mAh. Next, when the same charge was performed and the battery was discharged at 250 mA to 2.5 V, a capacity of 0.150 mAh was obtained. That is, the ratio of the discharge capacity at 250 mA to the discharge capacity at 1 mA (hereinafter also referred to as “output characteristics”) was 0.450.
Furthermore, the durability test of the assembled electrical storage element was performed under the conditions of 60 ° C. and 3.8 V application. The resistance magnification was measured at the start of the test (0 h) and after 1000 h had elapsed. The resistance magnification here is a numerical value represented by (resistance value at 0.1 Hz after elapse of 1000 h) / (resistance value at 0.1 Hz at 0 h). The resistance magnification after 1000 hours was 1.05.

<実施例2>
[正極電極体の作製]
実施例1と同様のものを用いた。
[負極電極体の作製]
上述した方法で作製した黒鉛化物2の物性評価を実施例1と同様な手法で行った。強度比I1360/I1580は0.15、BET比表面積は3.1m/g、平均粒径は15μm、d002は0.336であった。
以下、実施例1と同様にて電極体を作製した。
[蓄電素子の組立と性能]
以下、実施例1と同様に非水系リチウム型蓄電素子を組立てて評価を行った。本蓄電素子の容量は、45mAh/gであった。また。出力特性は、0.453であった。さらに、組立てた蓄電素子の耐久性試験を60℃、3.8V印加の条件で行った。1000h経過後、抵抗倍率は1.10であった。
<Example 2>
[Preparation of positive electrode body]
The same one as in Example 1 was used.
[Preparation of negative electrode body]
The physical properties of the graphitized product 2 produced by the method described above were evaluated by the same method as in Example 1. The intensity ratio I 1360 / I 1580 was 0.15, the BET specific surface area was 3.1 m 2 / g, the average particle size was 15 μm, and d 002 was 0.336.
Thereafter, an electrode body was produced in the same manner as in Example 1.
[Assembly and performance of storage element]
Hereinafter, in the same manner as in Example 1, a non-aqueous lithium storage element was assembled and evaluated. The capacity of this power storage element was 45 mAh / g. Also. The output characteristic was 0.453. Furthermore, the durability test of the assembled electrical storage element was performed under the conditions of 60 ° C. and 3.8 V application. After 1000 hours, the resistance magnification was 1.10.

<実施例3>
[正極電極体の作製]
実施例1と同様のものを用いた。
[負極電極体の作製]
上述した方法で作製した黒鉛化物3の物性評価を実施例1と同様な手法で行った。強度比I1360/I1580は1.1、BET比表面積は13m/g、平均粒径は5.0μm、d002は0.339であった。
以下、実施例1と同様にて電極体を作製した。
[蓄電素子の組立と性能]
以下、実施例1と同様に非水系リチウム型蓄電素子を組立てて評価を行った。本蓄電素子の容量は、43mAh/gであった。また。出力特性は、0.460であった。さらに、組立てた蓄電素子の耐久性試験を60℃、3.8V印加の条件で行った。1000h経過後、抵抗倍率は1.55であった。
<Example 3>
[Preparation of positive electrode body]
The same one as in Example 1 was used.
[Preparation of negative electrode body]
The physical properties of the graphitized product 3 produced by the method described above were evaluated by the same method as in Example 1. The intensity ratio I 1360 / I 1580 was 1.1, the BET specific surface area was 13 m 2 / g, the average particle size was 5.0 μm, and d 002 was 0.339.
Thereafter, an electrode body was produced in the same manner as in Example 1.
[Assembly and performance of storage element]
Hereinafter, in the same manner as in Example 1, a non-aqueous lithium storage element was assembled and evaluated. The capacity of this power storage element was 43 mAh / g. Also. The output characteristic was 0.460. Furthermore, the durability test of the assembled electrical storage element was performed under the conditions of 60 ° C. and 3.8 V application. After 1000 hours, the resistance magnification was 1.55.

<実施例4>
[正極電極体の作製]
実施例1と同様のものを用いた。
[負極電極体の作製]
上述した方法で作製した黒鉛化物4の物性評価を実施例1と同様な手法で行った。強度比I1360/I1580は0.03、BET比表面積は0.55m/g、平均粒径は25μm、d002は0.335であった。
以下、実施例1と同様にて電極体を作製した。
[蓄電素子の組立と性能]
以下、実施例1と同様に非水系リチウム型蓄電素子を組立てて評価を行った。本蓄電素子の容量は、40mAh/gであった。また。出力特性は、0.385であった。さらに、組立てた蓄電素子の耐久性試験を60℃、3.8V印加の条件で行った。1000h経過後、抵抗倍率は1.08であった。
<Example 4>
[Preparation of positive electrode body]
The same one as in Example 1 was used.
[Preparation of negative electrode body]
The physical properties of the graphitized product 4 produced by the method described above were evaluated by the same method as in Example 1. The intensity ratio I 1360 / I 1580 was 0.03, the BET specific surface area was 0.55 m 2 / g, the average particle size was 25 μm, and d 002 was 0.335.
Thereafter, an electrode body was produced in the same manner as in Example 1.
[Assembly and performance of storage element]
Hereinafter, in the same manner as in Example 1, a non-aqueous lithium storage element was assembled and evaluated. The capacity of this power storage element was 40 mAh / g. Also. The output characteristic was 0.385. Furthermore, the durability test of the assembled electrical storage element was performed under the conditions of 60 ° C. and 3.8 V application. After 1000 hours, the resistance magnification was 1.08.

<比較例1>
[正極電極体の作製]
活物質として、市販の活性炭2を用い、この活性炭2の物性評価を実施例1と同様な方法にて行った。その結果、BET比表面積は1,620m/g、メソ孔量(V1)は0.18cc/g、マイクロ孔量(V2)は0.67cc/gであった。
以下、実施例1と同様にて電極体を作製した。
[負極電極体の作製]
実施例1と同様のものを用いた。
[蓄電素子の組立と性能]
以下、実施例1と同様に非水系リチウム型蓄電素子を組立てて評価を行った。本蓄電素子の容量は、38mAh/gであった。また。出力特性は、0.302であった。さらに、組立てた蓄電素子の耐久性試験を60℃、3.8V印加の条件で行った。1000h経過後、抵抗倍率は1.80であった。
<Comparative Example 1>
[Preparation of positive electrode body]
Commercially available activated carbon 2 was used as the active material, and physical properties of this activated carbon 2 were evaluated in the same manner as in Example 1. As a result, the BET specific surface area was 1,620 m 2 / g, the mesopore volume (V1) was 0.18 cc / g, and the micropore volume (V2) was 0.67 cc / g.
Thereafter, an electrode body was produced in the same manner as in Example 1.
[Preparation of negative electrode body]
The same one as in Example 1 was used.
[Assembly and performance of storage element]
Hereinafter, in the same manner as in Example 1, a non-aqueous lithium storage element was assembled and evaluated. The capacity of this power storage element was 38 mAh / g. Also. The output characteristic was 0.302. Furthermore, the durability test of the assembled electrical storage element was performed under the conditions of 60 ° C. and 3.8 V application. After 1000 hours, the resistance magnification was 1.80.

<比較例2>
[正極電極体の作製]
実施例1と同様のものを用いた。
[負極電極体の作製]
市販の活性炭3(BET法による比表面積が1,955m/g)150gをステンレススチールメッシュ製の籠に入れ、石炭系ピッチ300gを入れたステンレス製バットの上に置き、電気炉 (炉内有効寸法300mm×300mm×300mm)内に設置して、熱反応を行った。熱処理は窒素雰囲気下で、670℃まで4時間で昇温し、同温度で4時間保持し、続いて自然冷却により60℃まで冷却した後、炉から取り出し、複合多孔性材料1が得られた。
得られた複合多孔性材料1の物性を、実施例1と同様な手法で行った。強度比I1360/I1580は1.0、BET比表面積は255m/g、平均粒径は2.9μm、d002は0.369であった。
次いで、上記で得た複合多孔性材料 83.4重量部、アセチレンブラック8.30重量部およびポリフッ化ビニリデン(PVdF)8.30重量部とN−メチルピロリドン(NMP)を混合してスラリーを得た。次いで、得られたスラリーを厚さ15μmの銅箔の片面に塗布し、乾燥し、プレスして、活物質層の厚さが60μmの負極電極体を得た。この電極体に、複合多孔性材料1重量あたり760mAh/gに相当するリチウムイオンを、リチウム金属箔を用いて電気化学的にドーピングした。
[蓄電素子の組立と性能]
以下、実施例1と同様に非水系リチウム型蓄電素子を組立てて評価を行った。本蓄電素子の容量は、42mAh/gであった。また。出力特性は、0.491であった。さらに、組立てた蓄電素子の耐久性試験を60℃、3.8V印加の条件で行った。1000h経過後、抵抗倍率は1.70であった。
<Comparative example 2>
[Preparation of positive electrode body]
The same one as in Example 1 was used.
[Preparation of negative electrode body]
150 g of commercially available activated carbon 3 (specific surface area by BET method is 1,955 m 2 / g) is placed in a stainless steel mesh jar and placed on a stainless steel bat containing 300 g of coal-based pitch. It installed in the dimension 300mmx300mmx300mm), and the thermal reaction was performed. In the heat treatment, the temperature was raised to 670 ° C. in 4 hours in a nitrogen atmosphere, held at the same temperature for 4 hours, then cooled to 60 ° C. by natural cooling, and then taken out from the furnace to obtain composite porous material 1 .
The physical properties of the obtained composite porous material 1 were measured in the same manner as in Example 1. The intensity ratio I 1360 / I 1580 was 1.0, the BET specific surface area was 255 m 2 / g, the average particle size was 2.9 μm, and d 002 was 0.369.
Next, 83.4 parts by weight of the composite porous material obtained above, 8.30 parts by weight of acetylene black, 8.30 parts by weight of polyvinylidene fluoride (PVdF), and N-methylpyrrolidone (NMP) were mixed to obtain a slurry. It was. Next, the obtained slurry was applied to one side of a copper foil having a thickness of 15 μm, dried and pressed to obtain a negative electrode body having an active material layer thickness of 60 μm. This electrode body was electrochemically doped with lithium ions corresponding to 760 mAh / g of composite porous material using a lithium metal foil.
[Assembly and performance of storage element]
Hereinafter, in the same manner as in Example 1, a non-aqueous lithium storage element was assembled and evaluated. The capacity of this power storage element was 42 mAh / g. Also. The output characteristic was 0.491. Furthermore, the durability test of the assembled electrical storage element was performed under the conditions of 60 ° C. and 3.8 V application. After 1000 hours, the resistance magnification was 1.70.

<比較例3>
[正極電極体の作製]
比較例1と同様のものを用いた。
[負極電極体の作製]
比較例2と同様のものを用いた。
[蓄電素子の組立と性能]
以下、実施例1と同様に非水系リチウム型蓄電素子を組立てて評価を行った。本蓄電素子の容量は、41mAh/gであった。また。出力特性は、0.354であった。さらに、組立てた蓄電素子の耐久性試験を60℃、3.8V印加の条件で行った。1000h経過後、抵抗倍率は2.02であった。
<Comparative Example 3>
[Preparation of positive electrode body]
The thing similar to the comparative example 1 was used.
[Preparation of negative electrode body]
The thing similar to the comparative example 2 was used.
[Assembly and performance of storage element]
Hereinafter, in the same manner as in Example 1, a non-aqueous lithium storage element was assembled and evaluated. The capacity of this power storage element was 41 mAh / g. Also. The output characteristic was 0.354. Furthermore, the durability test of the assembled electrical storage element was performed under the conditions of 60 ° C. and 3.8 V application. After 1000 hours, the resistance magnification was 2.02.

Figure 2010205846
Figure 2010205846

<実施例5>
[正極電極体の作製]
実施例1と同様のものを用いた。
[負極電極体の作製]
実施例1と同様のものを用いた。
[蓄電素子の組立と性能]
得られた負極電極体、及び正極電極体の間に、ポリエチレン系セパレータ(厚み30μm)を積層して非水系リチウム型蓄電素子を組立てた。エチレンカーボネートとメチルエチルカーボネートを1:4重量比で混合した溶媒に1mol/lの濃度でLiPFを溶解した溶液を、電解液として使用した。
以下、実施例1と同様に蓄電素子の組立と性能評価を行った。本蓄電素子の容量は、40mAh/gであった。また。出力特性は、0.443であった。さらに、組立てた蓄電素子の耐久性試験を60℃、3.8V印加の条件で行った。1000h経過後、抵抗倍率は1.03であった。
<Example 5>
[Preparation of positive electrode body]
The same one as in Example 1 was used.
[Preparation of negative electrode body]
The same one as in Example 1 was used.
[Assembly and performance of storage element]
A polyethylene separator (thickness 30 μm) was laminated between the obtained negative electrode body and positive electrode body to assemble a non-aqueous lithium storage element. A solution obtained by dissolving LiPF 6 at a concentration of 1 mol / l in a solvent in which ethylene carbonate and methyl ethyl carbonate were mixed at a weight ratio of 1: 4 was used as an electrolytic solution.
Hereinafter, as in Example 1, the assembly and performance evaluation of the electricity storage element were performed. The capacity of this power storage element was 40 mAh / g. Also. The output characteristic was 0.443. Furthermore, the durability test of the assembled electrical storage element was performed under the conditions of 60 ° C. and 3.8 V application. After 1000 hours, the resistance magnification was 1.03.

<実施例6>
[正極電極体の作製]
実施例2と同様のものを用いた。
[負極電極体の作製]
実施例2と同様のものを用いた。
[蓄電素子の組立と性能]
実施例5と同様に非水系リチウム型蓄電素子を組立てて評価を行った。本蓄電素子の容量は、42mAh/gであった。また。出力特性は、0.432であった。さらに、組立てた蓄電素子の耐久性試験を60℃、3.8V印加の条件で行った。1000h経過後、抵抗倍率は1.08であった。
<Example 6>
[Preparation of positive electrode body]
The same one as in Example 2 was used.
[Preparation of negative electrode body]
The same one as in Example 2 was used.
[Assembly and performance of storage element]
As in Example 5, a nonaqueous lithium storage element was assembled and evaluated. The capacity of this power storage element was 42 mAh / g. Also. The output characteristic was 0.432. Furthermore, the durability test of the assembled electrical storage element was performed under the conditions of 60 ° C. and 3.8 V application. After 1000 hours, the resistance magnification was 1.08.

<実施例7>
[正極電極体の作製]
実施例3と同様のものを用いた。
[負極電極体の作製]
実施例3と同様のものを用いた。
[蓄電素子の組立と性能]
実施例5と同様に非水系リチウム型蓄電素子を組立てて評価を行った。本蓄電素子の容量は、40mAh/gであった。また。出力特性は、0.458であった。さらに、組立てた蓄電素子の耐久性試験を60℃、3.8V印加の条件で行った。1000h経過後、抵抗倍率は1.51であった。
<Example 7>
[Preparation of positive electrode body]
The same one as in Example 3 was used.
[Preparation of negative electrode body]
The same one as in Example 3 was used.
[Assembly and performance of storage element]
As in Example 5, a nonaqueous lithium storage element was assembled and evaluated. The capacity of this power storage element was 40 mAh / g. Also. The output characteristic was 0.458. Furthermore, the durability test of the assembled electrical storage element was performed under the conditions of 60 ° C. and 3.8 V application. After 1000 hours, the resistance magnification was 1.51.

<実施例8>
[正極電極体の作製]
実施例4と同様のものを用いた。
[負極電極体の作製]
実施例4と同様のものを用いた。
[蓄電素子の組立と性能]
実施例5と同様に非水系リチウム型蓄電素子を組立てて評価を行った。本蓄電素子の容量は、38mAh/gであった。また。出力特性は、0.388であった。さらに、組立てた蓄電素子の耐久性試験を60℃、3.8V印加の条件で行った。1000h経過後、抵抗倍率は1.12であった。
<Example 8>
[Preparation of positive electrode body]
The same one as in Example 4 was used.
[Preparation of negative electrode body]
The same one as in Example 4 was used.
[Assembly and performance of storage element]
As in Example 5, a nonaqueous lithium storage element was assembled and evaluated. The capacity of this power storage element was 38 mAh / g. Also. The output characteristic was 0.388. Furthermore, the durability test of the assembled electrical storage element was performed under the conditions of 60 ° C. and 3.8 V application. After 1000 hours, the resistance magnification was 1.12.

<比較例4>
[正極電極体の作製]
比較例1と同様のものを用いた。
[負極電極体の作製]
比較例1と同様のものを用いた。
[蓄電素子の組立と性能]
実施例5と同様に非水系リチウム型蓄電素子を組立てて評価を行った。本蓄電素子の容量は、35mAh/gであった。また。出力特性は、0.303であった。さらに、組立てた蓄電素子の耐久性試験を60℃、3.8V印加の条件で行った。1000h経過後、抵抗倍率は2.52であった。
<Comparative example 4>
[Preparation of positive electrode body]
The thing similar to the comparative example 1 was used.
[Preparation of negative electrode body]
The thing similar to the comparative example 1 was used.
[Assembly and performance of storage element]
As in Example 5, a nonaqueous lithium storage element was assembled and evaluated. The capacity of this power storage element was 35 mAh / g. Also. The output characteristic was 0.303. Furthermore, the durability test of the assembled electrical storage element was performed under the conditions of 60 ° C. and 3.8 V application. After 1000 hours, the resistance magnification was 2.52.

<比較例5>
[正極電極体の作製]
比較例2と同様のものを用いた。
[負極電極体の作製]
比較例2と同様のものを用いた。
[蓄電素子の組立と性能]
実施例5と同様に非水系リチウム型蓄電素子を組立てて評価を行った。本蓄電素子の容量は、45mAh/gであった。また。出力特性は、0.636であった。さらに、組立てた蓄電素子の耐久性試験を60℃、3.8V印加の条件で行った。1000h経過後、抵抗倍率は2.33であった。
<Comparative Example 5>
[Preparation of positive electrode body]
The thing similar to the comparative example 2 was used.
[Preparation of negative electrode body]
The thing similar to the comparative example 2 was used.
[Assembly and performance of storage element]
As in Example 5, a nonaqueous lithium storage element was assembled and evaluated. The capacity of this power storage element was 45 mAh / g. Also. The output characteristic was 0.636. Furthermore, the durability test of the assembled electrical storage element was performed under the conditions of 60 ° C. and 3.8 V application. After 1000 hours, the resistance magnification was 2.33.

<比較例6>
[正極電極体の作製]
比較例3と同様のものを用いた。
[負極電極体の作製]
比較例3と同様のものを用いた。
[蓄電素子の組立と性能]
実施例5と同様に非水系リチウム型蓄電素子を組立てて評価を行った。本蓄電素子の容量は、42mAh/gであった。また。出力特性は、0.401であった。さらに、組立てた蓄電素子の耐久性試験を60℃、3.8V印加の条件で行った。1000h経過後、抵抗倍率は3.02であった。
<Comparative Example 6>
[Preparation of positive electrode body]
The same one as in Comparative Example 3 was used.
[Preparation of negative electrode body]
The same one as in Comparative Example 3 was used.
[Assembly and performance of storage element]
As in Example 5, a nonaqueous lithium storage element was assembled and evaluated. The capacity of this power storage element was 42 mAh / g. Also. The output characteristic was 0.401. Furthermore, the durability test of the assembled electrical storage element was performed under the conditions of 60 ° C. and 3.8 V application. After 1000 hours, the resistance magnification was 3.02.

Figure 2010205846
Figure 2010205846

以上より、本願発明に係る蓄電素子は、高エネルギー密度及び高出力密度に加え、高耐久性を兼ね揃えた特性であることが分かる。   As mentioned above, it turns out that the electrical storage element which concerns on this invention is the characteristic which combined high durability in addition to high energy density and high output density.

本発明の蓄電素子は、自動車において、内燃機関または燃料電池、モーター、及び蓄電素子を組み合わせたハイブリット駆動システムの分野、さらには瞬間電力ピークのアシスト用途などで好適に利用できる。   The power storage device of the present invention can be suitably used in automobiles, in the field of a hybrid drive system that combines an internal combustion engine or a fuel cell, a motor, and a power storage device, and for assisting instantaneous power peaks.

Claims (6)

負極集電体に負極活物質層を設けた負極電極体、正極集電体に正極活物質層を設けた正極電極体、及びセパレータを積層してなる電極積層体、並びにリチウムイオンを含有した電解質を含む非水系電解液を外装体に収納してなる非水系リチウム型蓄電素子であって、該正極活物質は活性炭を主成分として含み、ここで、該活性炭は、BJH法により算出した直径20Å以上500Å以下の細孔に由来するメソ孔量をV1(cc/g)、MP法により算出した直径20Å未満の細孔に由来するマイクロ孔量をV2(cc/g)とする時、0.3<V1≦0.8、かつ、0.5≦V2≦1.0を満足し、かつ、BET法により測定される比表面積が1,500m/g以上3,000m/g以下であり、そして該負極活物質は黒鉛化物を主成分として含むことを特徴とする前記非水系リチウム型蓄電素子。 A negative electrode body in which a negative electrode active material layer is provided on a negative electrode current collector, a positive electrode body in which a positive electrode current collector is provided with a positive electrode active material layer, an electrode laminate formed by laminating a separator, and an electrolyte containing lithium ions A non-aqueous lithium-type electricity storage element in which a non-aqueous electrolyte solution containing a non-aqueous electrolyte solution is housed in an exterior body, wherein the positive electrode active material contains activated carbon as a main component, where the activated carbon has a diameter of 20 mm calculated by the BJH method. When the amount of mesopores derived from pores having a diameter of 500 mm or less is V1 (cc / g) and the amount of micropores derived from pores having a diameter of less than 20 mm calculated by the MP method is V2 (cc / g). 3 <V1 ≦ 0.8 and 0.5 ≦ V2 ≦ 1.0 are satisfied, and the specific surface area measured by the BET method is 1,500 m 2 / g or more and 3,000 m 2 / g or less. And the negative electrode active material is mainly composed of graphitized material. The non-aqueous lithium-type electricity storage element, which is included as a fraction. 波長532nmのレーザーを用いたラマンスペクトルにおいて測定される前記黒鉛化物の1360cm−1のピーク強度(I1360)と1580cm−1のピーク強度(I1580)の比(I1360/I1580)が0.05以上0.90未満である、請求項1に記載の非水系リチウム型蓄電素子。 The ratio of the peak intensity of the peak intensity (I 1360) and 1580 cm -1 of the graphite product of 1360 cm -1 as measured in the Raman spectrum using laser with a wavelength of 532nm (I 1580) (I 1360 / I 1580) is 0. The non-aqueous lithium-type energy storage device according to claim 1, which is 05 or more and less than 0.90. X線広角回折法で得られる前記黒鉛化物の(002)面の面間隔が0.335nm以上0.340nm未満である、請求項1又は2に記載の非水系リチウム型蓄電素子。   3. The non-aqueous lithium storage element according to claim 1, wherein an interval between (002) planes of the graphitized material obtained by an X-ray wide angle diffraction method is 0.335 nm or more and less than 0.340 nm. BET法により測定される前記黒鉛化物の比表面積が1m/g以上20m/g未満である、請求項1〜3のいずれか1項に記載の非水系リチウム型蓄電素子。 The non-aqueous lithium storage element according to any one of claims 1 to 3, wherein a specific surface area of the graphitized material measured by a BET method is 1 m 2 / g or more and less than 20 m 2 / g. 前記黒鉛化物の平均粒径が5〜30μmである、請求項1〜4のいずれか1項に記載の非水系リチウム型蓄電素子。   The non-aqueous lithium storage element according to claim 1, wherein the graphitized material has an average particle diameter of 5 to 30 μm. 前記黒鉛化物が、メソカーボン小球体黒鉛化物である、請求項1〜5のいずれか1項に記載の非水系リチウム型蓄電素子。   The non-aqueous lithium storage element according to claim 1, wherein the graphitized material is a mesocarbon microsphere graphitized material.
JP2009048302A 2009-03-02 2009-03-02 Nonaqueous lithium type electricity storage element Pending JP2010205846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009048302A JP2010205846A (en) 2009-03-02 2009-03-02 Nonaqueous lithium type electricity storage element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009048302A JP2010205846A (en) 2009-03-02 2009-03-02 Nonaqueous lithium type electricity storage element

Publications (1)

Publication Number Publication Date
JP2010205846A true JP2010205846A (en) 2010-09-16

Family

ID=42967080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009048302A Pending JP2010205846A (en) 2009-03-02 2009-03-02 Nonaqueous lithium type electricity storage element

Country Status (1)

Country Link
JP (1) JP2010205846A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012050104A1 (en) * 2010-10-15 2012-04-19 横浜ゴム株式会社 Conductive polymer/porous carbon material composite and electrode material using same
JP2012138458A (en) * 2010-12-27 2012-07-19 Yokohama Rubber Co Ltd:The Electrode material for lithium ion capacitor, and lithium ion capacitor
CN102610820A (en) * 2011-01-19 2012-07-25 株式会社杰士汤浅国际 Negative electrode, electrode assembly and electric storage device
JPWO2012127991A1 (en) * 2011-03-18 2014-07-24 Jmエナジー株式会社 Power storage device
JP2014520395A (en) * 2011-06-09 2014-08-21 ブルー ソリューション Method for assembling a composite electrochemical system
JP2015230915A (en) * 2014-06-03 2015-12-21 旭化成株式会社 Negative electrode for nonaqueous lithium type power-storage device, and nonaqueous lithium type power-storage device arranged by using thereof
KR20210068497A (en) * 2018-10-10 2021-06-09 후난 진예 하이-테크 컴퍼니 리미티드 Lithium ion battery negative active material, lithium ion battery negative electrode, lithium ion battery, battery pack and battery power vehicle

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001089119A (en) * 1999-04-30 2001-04-03 Adchemco Corp Carbonaceous material, method for producing and electric double layer capacitor using the carbonaceous material
JP2001236960A (en) * 2000-02-22 2001-08-31 Asahi Glass Co Ltd Method of manufacturing secondary power supply
JP2006228505A (en) * 2005-02-16 2006-08-31 Hitachi Chem Co Ltd Graphite particles for anode of lithium-ion secondary battery, its manufacturing method, as well as anode for lithium-ion secondary battery and lithium-ion secondary battery using the same
JP2007290936A (en) * 2006-04-27 2007-11-08 Hitachi Powdered Metals Co Ltd Modified graphite, graphite interlayer compound and catalyst using the modified graphite and method for producing them
JP2008103596A (en) * 2006-10-20 2008-05-01 Fuji Heavy Ind Ltd Lithium-ion capacitor
JP2008130890A (en) * 2006-11-22 2008-06-05 Hitachi Chem Co Ltd Carbon material for hybrid capacitor, electrode for hybrid capacitor using carbon material, and hybrid capacitor
JP2008166309A (en) * 2006-12-26 2008-07-17 Fuji Heavy Ind Ltd Lithium ion capacitor
JP2008311363A (en) * 2007-06-13 2008-12-25 Advanced Capacitor Technologies Inc Method for predoping lithium ion and method for manufacturing lithium ion capacitor storage element

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001089119A (en) * 1999-04-30 2001-04-03 Adchemco Corp Carbonaceous material, method for producing and electric double layer capacitor using the carbonaceous material
JP2001236960A (en) * 2000-02-22 2001-08-31 Asahi Glass Co Ltd Method of manufacturing secondary power supply
JP2006228505A (en) * 2005-02-16 2006-08-31 Hitachi Chem Co Ltd Graphite particles for anode of lithium-ion secondary battery, its manufacturing method, as well as anode for lithium-ion secondary battery and lithium-ion secondary battery using the same
JP2007290936A (en) * 2006-04-27 2007-11-08 Hitachi Powdered Metals Co Ltd Modified graphite, graphite interlayer compound and catalyst using the modified graphite and method for producing them
JP2008103596A (en) * 2006-10-20 2008-05-01 Fuji Heavy Ind Ltd Lithium-ion capacitor
JP2008130890A (en) * 2006-11-22 2008-06-05 Hitachi Chem Co Ltd Carbon material for hybrid capacitor, electrode for hybrid capacitor using carbon material, and hybrid capacitor
JP2008166309A (en) * 2006-12-26 2008-07-17 Fuji Heavy Ind Ltd Lithium ion capacitor
JP2008311363A (en) * 2007-06-13 2008-12-25 Advanced Capacitor Technologies Inc Method for predoping lithium ion and method for manufacturing lithium ion capacitor storage element

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012050104A1 (en) * 2010-10-15 2012-04-19 横浜ゴム株式会社 Conductive polymer/porous carbon material composite and electrode material using same
JP2012138458A (en) * 2010-12-27 2012-07-19 Yokohama Rubber Co Ltd:The Electrode material for lithium ion capacitor, and lithium ion capacitor
CN102610820A (en) * 2011-01-19 2012-07-25 株式会社杰士汤浅国际 Negative electrode, electrode assembly and electric storage device
JPWO2012127991A1 (en) * 2011-03-18 2014-07-24 Jmエナジー株式会社 Power storage device
JP2014520395A (en) * 2011-06-09 2014-08-21 ブルー ソリューション Method for assembling a composite electrochemical system
JP2015230915A (en) * 2014-06-03 2015-12-21 旭化成株式会社 Negative electrode for nonaqueous lithium type power-storage device, and nonaqueous lithium type power-storage device arranged by using thereof
KR20210068497A (en) * 2018-10-10 2021-06-09 후난 진예 하이-테크 컴퍼니 리미티드 Lithium ion battery negative active material, lithium ion battery negative electrode, lithium ion battery, battery pack and battery power vehicle
JP2022502827A (en) * 2018-10-10 2022-01-11 フーナン ジンイェ ハイ−テック カンパニー リミテッドHunan Jinye High−Tech Co., Ltd. Lithium Ion Battery Negative Active Material, Lithium Ion Battery Negative, Lithium Ion Battery, Battery Pack, and Battery Powered Vehicle
JP7128961B2 (en) 2018-10-10 2022-08-31 フーナン ジンイェ ハイ-テック カンパニー リミテッド Lithium-ion battery negative electrode active material, lithium-ion battery negative electrode, lithium-ion battery, battery pack, and battery-powered vehicle
KR102620780B1 (en) * 2018-10-10 2024-01-05 후난 진예 하이-테크 컴퍼니 리미티드 Lithium-ion battery cathode active material, lithium-ion battery cathode, lithium-ion battery, battery pack and battery power vehicle

Similar Documents

Publication Publication Date Title
JP5554932B2 (en) Non-aqueous lithium storage element
JP5654820B2 (en) Positive electrode material, method for producing the same, and power storage device
JP5255569B2 (en) Non-aqueous lithium storage element
JP5463144B2 (en) Cathode material for non-aqueous lithium storage element
KR101674842B1 (en) Electrode for electrical storage element, and nonaqueous lithium electrical storage element
JP5479969B2 (en) Anode material for non-aqueous lithium storage element and non-aqueous lithium storage element using the same
JP6262432B2 (en) Method for manufacturing lithium ion capacitor
JP5654742B2 (en) Non-aqueous lithium storage element
KR101811970B1 (en) Lithium ion capacitor
JP2010267875A (en) Negative electrode for nonaqueous lithium type electric storage element, and nonaqueous lithium type electric storage element using the same
JP6675146B2 (en) Non-aqueous lithium storage element
JP2010267878A (en) Nonaqueous lithium type electric storage element
JP2010205846A (en) Nonaqueous lithium type electricity storage element
JP2013219152A (en) Positive electrode material, manufacturing method thereof, and power storage element
JP2015225876A (en) Positive electrode active material for nonaqueous lithium type power-storage device, and nonaqueous lithium type power-storage device arranged by use thereof
JP2016042502A (en) Negative electrode for nonaqueous lithium type power storage device
JP5785014B2 (en) Non-aqueous lithium storage element
JP5706017B2 (en) Non-aqueous lithium storage element
JP2013080780A (en) Negative electrode material for nonaqueous lithium type power storage element, and nonaqueous lithium type power storage element using the same
JP5759677B2 (en) Anode material for non-aqueous lithium storage element and non-aqueous lithium storage element using the same
JP2016042504A (en) Nonaqueous lithium type power storage device
JP2014017286A (en) Nonaqueous lithium type storage element
JP2015099849A (en) Nonaqueous lithium type power-storage device
JP2020036050A (en) Nonaqueous lithium-type power storage element
JP5894725B2 (en) Anode material for non-aqueous lithium storage element and non-aqueous lithium storage element using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130823

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130917

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140107