JP2001089119A - Carbonaceous material, method for producing and electric double layer capacitor using the carbonaceous material - Google Patents

Carbonaceous material, method for producing and electric double layer capacitor using the carbonaceous material

Info

Publication number
JP2001089119A
JP2001089119A JP2000100379A JP2000100379A JP2001089119A JP 2001089119 A JP2001089119 A JP 2001089119A JP 2000100379 A JP2000100379 A JP 2000100379A JP 2000100379 A JP2000100379 A JP 2000100379A JP 2001089119 A JP2001089119 A JP 2001089119A
Authority
JP
Japan
Prior art keywords
pore volume
carbonaceous material
mass
total pore
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000100379A
Other languages
Japanese (ja)
Inventor
Kazuyuki Murakami
一幸 村上
Yasuhiro Mogi
康弘 茂木
Kazuaki Tabayashi
一晃 田林
Toru Shimoyama
徹 下山
Kazuhiko Yamada
和彦 山田
Yasuo Shinozaki
泰夫 篠崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adchemco Corp
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Adchemco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Adchemco Corp filed Critical Asahi Glass Co Ltd
Priority to JP2000100379A priority Critical patent/JP2001089119A/en
Publication of JP2001089119A publication Critical patent/JP2001089119A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a carbonaceous material having a high specific surface area capable of providing an electrostatic capacity when used as an electrode material of electric double layer capacitor. SOLUTION: This carbonaceous material comprises 10-60% based on the whole pore volume of micro pore volume, 20-70% based on the whole pore volume of meso pore volume and <=20% based on the whole pore volume of macro pore volume and has 0.3 cm3/g to 2.0 cm3/g whole pore volume and 1,000-2,500 m2/g total specific surface area.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気二重層キャパ
シタ等の電極として好適に使用できる多孔性の炭素質材
料およびその製造方法、並びに本炭素質材料を用いた電
気二重層キャパシタに関する。本発明の電気二重層キャ
パシタは、各種携帯機器用電源、家電製品待機電源、光
通信UPSおよび電気自動車動力電源などの広い用途に
好適に利用できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a porous carbonaceous material which can be suitably used as an electrode of an electric double layer capacitor or the like, a method for producing the same, and an electric double layer capacitor using the carbonaceous material. INDUSTRIAL APPLICABILITY The electric double layer capacitor of the present invention can be suitably used for a wide range of applications such as a power supply for various portable devices, a standby power supply for home electric appliances, an optical communication UPS, and an electric vehicle power supply.

【0002】[0002]

【従来の技術】従来の電気二重層キャパシタとしては、
集電体上に形成した活性炭を主体とする一対の電極の間
にセパレータを挟んだ素子を、電解液と共に金属ケース
と金属蓋と両者を絶縁するガスケットによって金属ケー
ス中に密封したコイン型、又は一対のシート状電極をセ
パレータを介して巻回してなる巻回素子を電解液と共に
金属ケース中に収容し、ケースの開口部から電解液が蒸
発しないように封口した巻回型のものが知られている。
2. Description of the Related Art Conventional electric double layer capacitors include:
An element in which a separator is interposed between a pair of electrodes mainly composed of activated carbon formed on a current collector, a coin type sealed in a metal case with a gasket that insulates both a metal case and a metal lid with an electrolytic solution, or A winding type in which a winding element formed by winding a pair of sheet-like electrodes through a separator is housed in a metal case together with an electrolytic solution and sealed so that the electrolytic solution does not evaporate from an opening of the case is known. ing.

【0003】また、大電流大容量向けの用途として、多
数のシート状電極を、セパレータを介して積層してなる
素子が組み込まれた積層型の電気二重層キャパシタも提
案されている(特開平4−154106号、特開平3−
203311号、特開平4−286108号)。すなわ
ち、矩形に成形されたシート状電極を正極及び負極と
し、セパレータを介して交互に複数積層して積層素子と
し、正極と負極の端部に正極リード部材及び負極リード
部材をかしめにより接続した状態でケース中に収容し、
素子に電解液を含浸して蓋で密閉している。
Further, as an application for a large current and a large capacity, a multilayer electric double-layer capacitor in which an element formed by laminating a large number of sheet electrodes via a separator is incorporated has been proposed (Japanese Patent Laid-Open No. Hei 4 (1994)). -154106, JP-A-3-
No. 203311 and JP-A-4-286108). That is, a state in which a rectangular sheet-shaped electrode is used as a positive electrode and a negative electrode, a plurality of layers are alternately laminated via a separator to form a laminated element, and a positive electrode lead member and a negative electrode lead member are connected to the ends of the positive electrode and the negative electrode by caulking. Housed in the case with
The element was impregnated with an electrolytic solution and sealed with a lid.

【0004】従来、電気二重層キャパシタを構成する電
極は、大比表面積を有する活性炭を主体とするものであ
り、電解液には電解質を高濃度に溶解させるために水や
プロピレンカーボネートなどの高誘電率の溶媒が使用さ
れてきた。
Conventionally, electrodes constituting an electric double layer capacitor are mainly composed of activated carbon having a large specific surface area, and a high dielectric material such as water or propylene carbonate is used in an electrolytic solution in order to dissolve the electrolyte at a high concentration. % Of the solvent has been used.

【0005】このような活性炭を主成分とする電極にお
いては、活性炭自体の表面に形成される電気二重層の電
荷が電気二重層キャパシタの容量( 静電容量 )に寄与す
ることになるため、比表面積が大きい活性炭が用いられ
ているのである。しかしながら、活性炭の比表面積とし
ては、現在3,000 m2/g 程度が最大であり、これを用い
た電気二重層キャパシタの単位体積あたりの容量もほぼ
限界に達している現状である。
[0005] In such an electrode containing activated carbon as a main component, the electric charge of the electric double layer formed on the surface of the activated carbon itself contributes to the capacitance (capacitance) of the electric double layer capacitor. Activated carbon with a large surface area is used. However, the specific surface area of activated carbon is currently about 3,000 m 2 / g at the maximum, and the capacity per unit volume of electric double layer capacitors using the same has almost reached the limit.

【0006】一方、キャパシタの充電・放電過程におい
ては、活性炭の細孔内における電解質イオンの通過移動
速度によりその充電特性・放電特性が支配される。比表
面積が大きくなると、活性炭中のより微細な細孔の占め
る部分が増加し、この微細な細孔内においては、後記す
るように、イオンのスムースな移動が行われ難く、導電
パスが少なくなるため、現象として活性炭自体の抵抗が
大きくなるという問題があった。
On the other hand, in the charging / discharging process of a capacitor, its charging and discharging characteristics are governed by the passing speed of electrolyte ions in the pores of activated carbon. When the specific surface area increases, the portion occupied by the finer pores in the activated carbon increases, and within the fine pores, as described later, it is difficult for smooth movement of ions to be performed, and the number of conductive paths is reduced. Therefore, there was a problem that the resistance of the activated carbon itself increased as a phenomenon.

【0007】一般的に、電極の電極単位面積当たりの静
電容量は、水/水銀界面では20〜30μF/cm2 と言われて
いるが、活性炭を用いた電極では約5μF/cm2 の小さな
値しか得られていない。
[0007] Generally, the capacitance of the electrode per unit area of the electrode, although the water / mercury interfaces are said to 20~30μF / cm 2, it small about 5μF / cm 2 in the electrode using activated carbon Only values are obtained.

【0008】キャパシタの電極単位面積当たりの静電容
量は、その構成および作動原理からして、固体( 電極 )
と液体( 電解液 )両方の物性に大きく影響を受けると考
えられる。電解液に関しては、様々な溶媒、電解質等が
検討されており、ほぼ最適化されていると云ってよい。
これに対し、固体側では、主に活性炭を主体とした多孔
質電極が用いられており、従来様々な検討がなされてい
るが、依然として前述のように非常に小さな容量しか得
られていない。
[0008] The capacitance per unit area of the electrode of the capacitor is determined by the solid state (electrode) based on its configuration and operation principle.
And the physical properties of both liquids (electrolyte). Regarding the electrolyte, various solvents, electrolytes, and the like have been studied, and it can be said that the electrolyte is almost optimized.
On the other hand, on the solid side, a porous electrode mainly comprising activated carbon is mainly used, and various studies have been made in the past, but only a very small capacity has been obtained as described above.

【0009】この理由については、さまざまな説明がな
されているが、一つは電解質イオンの細孔内の移動速度
と比表面積との関係が最適化されていないことに原因が
あるとする。
Although various explanations have been made for this reason, one is attributed to the fact that the relationship between the moving speed of electrolyte ions in the pores and the specific surface area is not optimized.

【0010】例えば、活性炭の細孔直径が小さすぎるた
め、電解質イオンが細孔の内部まで十分に入ることが出
来ないことが原因のひとつとして考えられている。すな
わち、キャパシタの高静電容量化を追求するばかりに高
比表面積の活性炭を製造しても、細孔の直径が電解質イ
オンの直径より小さい場合には、静電容量の増大に寄与
しない所謂「利用されない表面」が増えるのみであり、
電極全体としての静電容量は増大しないばかりか、かえ
って低下する場合もありうるのである。
[0010] For example, it is considered that one of the causes is that electrolyte ions cannot sufficiently enter the inside of the pores because the pore diameter of the activated carbon is too small. That is, even if activated carbon having a high specific surface area is produced as well as pursuing high capacitance of a capacitor, if the diameter of the pores is smaller than the diameter of the electrolyte ion, the so-called "does not contribute to the increase in capacitance". Only the “unused surface” increases,
Not only does the capacitance of the electrode as a whole not increase, but rather the capacitance may decrease.

【0011】一般に、電解質は、溶媒中で溶媒分子と会
合している(溶媒和)ため、キャパシタの高静電容量化
をなすためには、活性炭の細孔直径は、溶媒和を考慮し
た電解質イオンの最大径よりも十分大きい範囲で最適化
される必要があると考えられる。すなわち、電極となる
活性炭の細孔径の分布を電解質のイオンサイズとの相対
的な関係において、最適なものとする必要がある。
In general, since the electrolyte is associated with the solvent molecules in the solvent (solvation), in order to increase the capacitance of the capacitor, the pore diameter of the activated carbon must be adjusted in consideration of the solvation. It is considered that the optimization needs to be performed in a range sufficiently larger than the maximum diameter of the ions. That is, it is necessary to optimize the distribution of the pore diameter of the activated carbon serving as the electrode in relation to the ion size of the electrolyte.

【0012】しかしながら、活性炭の細孔径を大きくす
ると、活性炭全体の細孔容積も大きくなるため、活性炭
の嵩密度が低下することになる。このため、細孔径を大
きくした活性炭では、キャパシタセルを構成した際に、
セルの単位体積あたりに充填できる活性炭の質量が減少
し、単位体積に蓄えられるエネルギーが低下する傾向に
あった。このように、実用的な観点から電気二重層キャ
パシタ用の電極材料では、単位体積あたりに蓄えられる
エネルギーを最大化することが求められる。
However, when the pore diameter of the activated carbon is increased, the pore volume of the activated carbon as a whole is also increased, so that the bulk density of the activated carbon is reduced. For this reason, activated carbon with a large pore diameter requires
The mass of the activated carbon that can be filled per unit volume of the cell was reduced, and the energy stored in the unit volume tended to be reduced. As described above, from the practical viewpoint, in the electrode material for the electric double layer capacitor, it is required to maximize the energy stored per unit volume.

【0013】従来、このような観点から、電気二重層キ
ャパシタ用の電極として使用する活性炭等の炭素質材料
のミクロ細孔( ミクロポア )、メソ細孔( メソポア )お
よびマクロ細孔( マクロポア )等の相互関係等を規定す
る試みは幾つか提案されているが(例えば、特開平5−
811号、特開平6−56416号、特開平8−119
614号、特開平8−153653号、特開平10−2
08985号、特開平10−297912号)、いずれ
も部分的な最適化にとどまり、この三つの細孔領域全体
の関係を最適化しようとしたものはない。
Conventionally, from such a viewpoint, micropores (micropores), mesopores (mesopores), macropores (macropores) and the like of carbonaceous materials such as activated carbon used as electrodes for electric double layer capacitors have been used. Some attempts have been made to define the mutual relationship (see, for example,
Nos. 811, 6-56416, 8-119
614, JP-A-8-153653, JP-A-10-2
08895, JP-A-10-297912), all of which are limited to partial optimization, and there is no attempt to optimize the relationship among all three pore regions.

【0014】なお、通常活性炭は、おがくず、ヤシ殻等
の植物由来の炭素源あるいはコークス、ピッチ等の石炭
・石油系原料由来の炭素源を、またあるいはフェノール
樹脂、フルフリルアルコール樹脂、塩化ビニル樹脂等の
合成高分子系炭素源を、炭素化、賦活して製造される。
The activated carbon is usually a plant-derived carbon source such as sawdust and coconut shells, or a carbon source derived from coal or petroleum-based raw materials such as coke and pitch, or a phenol resin, a furfuryl alcohol resin, a vinyl chloride resin. And the like, and is produced by carbonizing and activating a synthetic polymer-based carbon source.

【0015】また、炭素化は、一般に300 ℃から2,000
℃程度の温度域の非酸化性の雰囲気で炭素源を加熱する
ことにより行われる。賦活は、このようにして得られた
炭化物を二酸化炭素や水蒸気を含んだ弱酸化性のガス中
で、500 ℃から1,100 ℃に加熱して、炭化物を酸化消耗
させることにより細孔を形成し表面積を増大させるもの
である( ガス賦活 )。あるいは、炭化物をその質量の数
倍のアルカリ金属水酸化物( 例えばKOH )と混合した
後、当該金属水酸化物の融点以上、1,000 ℃以下の温度
で不活性ガス雰囲気下、数10分〜10時間、好ましくは数
10分〜5時間程度加熱して表面積を増大させる( アルカ
リ金属水酸化物賦活 )。賦活終了後、アルカリ金属酸化
物は、十分に洗浄して除去する。
[0015] Carbonization is generally carried out at 300 ° C to 2,000 ° C.
This is performed by heating the carbon source in a non-oxidizing atmosphere in a temperature range of about ° C. Activation is performed by heating the carbide thus obtained in a weakly oxidizing gas containing carbon dioxide and water vapor from 500 ° C to 1,100 ° C to oxidize and deplete the carbide to form pores, (Gas activation). Alternatively, after mixing the carbide with an alkali metal hydroxide (for example, KOH) several times its mass, the mixture is heated at a temperature not lower than the melting point of the metal hydroxide and not higher than 1,000 ° C. in an inert gas atmosphere for several tens of minutes to 10 Time, preferably number
Heat for about 10 minutes to 5 hours to increase the surface area (alkali metal hydroxide activation). After completion of the activation, the alkali metal oxide is sufficiently washed and removed.

【0016】以上のごとくして得られた活性炭の細孔構
造は、基本的には、炭素源となる原料の性質で大部分が
決定されてしまうので、その製造条件を多少変更しても
電気二重層キャパシタとして好適な細孔構造を得るのは
困難であった。
The pore structure of the activated carbon obtained as described above is basically largely determined by the properties of the raw material serving as the carbon source. It has been difficult to obtain a pore structure suitable for a double-layer capacitor.

【0017】[0017]

【発明が解決しようとする課題】本発明の目的は、上記
した従来技術の問題点を解決し、高い静電容量が得られ
る高比表面積の炭素質材料およびその製造方法を提供
し、さらに、この炭素質材料を電極材料として用いた高
容量、かつ高信頼性の電気二重層キャパシタを提供する
ことにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a carbonaceous material having a high specific surface area capable of solving the above-mentioned problems of the prior art and having a high capacitance, and a method for producing the same. An object of the present invention is to provide a high-capacity and high-reliability electric double layer capacitor using this carbonaceous material as an electrode material.

【0018】[0018]

【課題を解決するための手段】本発明に従えば、次のよ
うな、炭素質材料、炭素質材料の製造方法、その製造方
法によって得られた炭素質材料、これらの炭素質材料を
電極材料として使用した電気二重層キャパシタが提供さ
れる。
According to the present invention, a carbonaceous material, a method for producing a carbonaceous material, a carbonaceous material obtained by the production method, and a carbonaceous material obtained by the production method are described below. Is provided.

【0019】(i) 細孔直径10〜20Åの範囲のミクロ細
孔容積が全細孔容積の10〜60%を、細孔直径20〜200 Å
の範囲のメソ細孔容積が全細孔容積の20〜70%を、およ
び細孔直径200 Åを超えるマクロ細孔容積が全細孔容積
の20%以下を占めるとともに、単位質量あたりの全細孔
容積が0.3 〜2.0 cm3/g であり、かつ、比表面積が1,00
0 〜2,500m2/g であることを特徴とする炭素質材料。
(I) A micropore volume having a pore diameter of 10 to 20 mm accounts for 10 to 60% of the total pore volume, and a pore diameter of 20 to 200 mm.
The mesopore volume in the range of 20 to 70% of the total pore volume, the macropore volume exceeding 200 mm in pore diameter accounts for 20% or less of the total pore volume, and the total fine volume per unit mass The pore volume is 0.3-2.0 cm 3 / g and the specific surface area is 1,00
A carbonaceous material characterized by being from 0 to 2,500 m 2 / g.

【0020】(ii) 多孔性の炭素質材料を製造する方法
において、(1) 沸点が120 〜400 ℃の揮発成分を含
み、かつ25℃における粘度が0.1〜100 Pa ・s であ
る液状の熱硬化性樹脂を硬化して硬化体を得る硬化工
程、(2) 前記硬化体を粉砕する粉砕工程、(3) 粉砕し
た前記硬化体を非酸化性雰囲気下で炭素化させ、炭素化
時における400 ℃までの質量減少が炭素化前の2〜50質
量%である炭素化体を得る炭素化工程、および(4) 前
記炭素化体を賦活させる賦活工程からなることを特徴と
する炭素質材料の製造方法。
(Ii) A method for producing a porous carbonaceous material, comprising: (1) a liquid containing a volatile component having a boiling point of 120 to 400 ° C. and a viscosity of 0.1 to 100 Pa · s at 25 ° C. (2) a pulverizing step of pulverizing the cured product, and (3) carbonizing the pulverized cured product in a non-oxidizing atmosphere to obtain a cured product. A carbonization step of obtaining a carbonized material whose mass reduction to 400 ° C. is 2 to 50% by mass before carbonization, and (4) an activation step of activating the carbonized material. Material manufacturing method.

【0021】(iii)上記(ii)に記載の方法で得られた炭
素質材料であって、細孔直径10〜20Åの範囲のミクロ細
孔容積が全細孔容積の10〜60%であり、細孔直径20〜20
0 Åの範囲のメソ細孔容積が全細孔容積の20〜70%であ
り、細孔直径200 Åを超えるマクロ細孔容積が全細孔容
積の20%以下であり、単位質量あたりの全細孔容積が0.
3 〜2.0 cm3/g であり、かつ、比表面積が1,000 〜2,50
0m2/g であることを特徴とする炭素質材料。
(Iii) The carbonaceous material obtained by the method described in (ii) above, wherein the micropore volume in the range of pore diameter of 10 to 20 ° is 10 to 60% of the total pore volume. , Pore diameter 20 ~ 20
The mesopore volume in the range of 0 mm is 20 to 70% of the total pore volume, the macropore volume exceeding the pore diameter of 200 mm is 20% or less of the total pore volume, and the total The pore volume is 0.
3 to 2.0 cm 3 / g and specific surface area of 1,000 to 2,50
A carbonaceous material characterized by being 0 m 2 / g.

【0022】(iv) (i) に記載の炭素質材料を含む電
極を有することを特徴とする電気二重層キャパシタ。
(Iv) An electric double layer capacitor comprising an electrode containing the carbonaceous material as described in (i).

【0023】[0023]

【発明の実施の形態】以下、本発明を詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.

【0024】本発明の炭素質材料は、多孔性の炭素質材
料であって、 細孔直径10〜20Åの範囲のミクロ細孔容積が全細孔容
積の10〜60%を、細孔直径20〜200 Åの範囲のメソ細
孔容積が全細孔容積の20〜70%を、および細孔直径20
0 Åを超えるマクロ細孔容積が全細孔容積の20%以下を
占めるとともに、全細孔容積が0.3cm3/g〜2.0 cm3/g で
あり、かつ、比表面積が1,000 〜2,500m2/g であること
を特徴とする(なお、本発明において、「細孔直径10〜
20Å」とは細孔直径10Å以上20Å未満の範囲を意味す
る。また、「細孔直径20〜200 Å」とは細孔直径20Å以
上200 Å以下を意味する。)。
The carbonaceous material of the present invention is a porous carbonaceous material, wherein a micropore volume having a pore diameter of 10 to 20% accounts for 10 to 60% of the total pore volume and a pore diameter of 20 to 20%. A mesopore volume in the range of ~ 200 mm accounts for 20-70% of the total pore volume, and a pore diameter of 20
Macropore volume of greater than 0 Å along with account for more than 20% of the total pore volume, the total pore volume is 0.3cm 3 /g~2.0 cm 3 / g, and a specific surface area of 1,000 ~2,500m 2 / g 2 (in the present invention, “pore diameter 10 to
"20 mm" means a range of pore diameter of 10 mm or more and less than 20 mm. The term "pore diameter of 20 to 200 mm" means a pore diameter of 20 mm to 200 mm. ).

【0025】本発明の炭素質材料において基本的に、細
孔直径10〜20Å範囲のミクロ細孔は、静電容量の発現に
有効に寄与する部分であり、一方、細孔直径20〜200 Å
の範囲のメソ細孔は、炭素質材料粒子の外表面から内部
のミクロ細孔まで電解液を連通し、このミクロ細孔に電
解質イオンを供給する役割を主に奏する部分である。ま
た、細孔直径200 Åを超えるマクロ細孔は静電容量の発
現等には殆ど寄与せず、炭素質材料の嵩密度の低下を招
く部分である。
Basically, in the carbonaceous material of the present invention, micropores having a pore diameter in the range of 10 to 20 mm are portions that effectively contribute to the development of capacitance, while micropores having a pore diameter of 20 to 200 mm.
The mesopores in the range described above mainly serve to supply the electrolyte solution from the outer surface of the carbonaceous material particles to the inner micropores and supply electrolyte ions to the micropores. Further, macropores having a pore diameter of more than 200 mm hardly contribute to the development of the capacitance and the like, which is a portion which causes a decrease in the bulk density of the carbonaceous material.

【0026】本発明に従えば、ミクロ細孔容積、メソ細
孔容積、マクロ細孔容積が以下のように最適化されてい
る。すなわち、
According to the present invention, the micropore volume, the mesopore volume, and the macropore volume are optimized as follows. That is,

【0027】本発明の炭素質材料は、電解質イオンが出
入り可能な直径10〜20Åのミクロ細孔容積が全細孔容積
の10〜60%、好ましくは10〜45%、さらに好ましくは10
〜25%を占める。かくしてこの範囲の細孔内において、
発現される静電容量の大部分を受け持つようにしてい
る。細孔直径10〜20Åの細孔容積が全細孔容積に占める
割合がこの範囲より小さいと、十分な静電容量が得られ
ず、またこの範囲より大きいと炭素質材料の嵩密度があ
がり、電極体において、単位体積に必要量の炭素質材料
を充填することが困難となる。
In the carbonaceous material of the present invention, the micropore volume having a diameter of 10 to 20 ° through which electrolyte ions can enter and exit is 10 to 60% of the total pore volume, preferably 10 to 45%, more preferably 10 to 45%.
Accounts for ~ 25%. Thus, within this range of pores,
Most of the developed capacitance is taken care of. If the ratio of the pore volume of the pore diameter of 10 to 20 mm to the total pore volume is smaller than this range, sufficient capacitance cannot be obtained, and if larger than this range, the bulk density of the carbonaceous material increases, In the electrode body, it is difficult to fill a required amount of the carbonaceous material in a unit volume.

【0028】また、細孔直径20〜200 Åの範囲のメソ細
孔容積が全細孔容積の20〜70%、好ましくは35〜65%、
さらに好ましくは40〜60%を占める。直径20〜200 Åの
範囲の細孔容積が全細孔容積に占める割合がこの範囲よ
り小さいと、ミクロ細孔に十分な量の電解質イオンを供
給することが出来ず、炭素質粒子内部での電解質イオン
保持量が不足して、十分な静電容量が得られない。また
この範囲より大きいと、炭素質材料の嵩密度が下がり過
ぎ、電極体を形成する際に、単位体積に必要量の炭素材
料を充填することが困難となる。
The mesopore volume having a pore diameter of 20 to 200 mm is 20 to 70%, preferably 35 to 65% of the total pore volume,
More preferably, it accounts for 40 to 60%. If the ratio of the pore volume in the range of 20 to 200 mm in diameter to the total pore volume is smaller than this range, a sufficient amount of electrolyte ions cannot be supplied to the micropores, and Insufficient electrolyte ion holding capacity makes it impossible to obtain sufficient capacitance. On the other hand, if it is larger than this range, the bulk density of the carbonaceous material is too low, and it is difficult to fill a required amount of the carbon material per unit volume when forming the electrode body.

【0029】上記したように、この範囲の細孔は、その
表面積は小さいので、静電容量の増大に直接寄与するよ
り、むしろ主として、静電容量の発現を受け持つ細孔直
径10〜20Åのミクロ細孔に十分な量の電解質イオンを供
給する役割をはたしているものと推察される。
As described above, since the pores in this range have a small surface area, rather than directly contributing to an increase in capacitance, the pores having a pore diameter of 10 to 20 mm mainly responsible for the development of capacitance are mainly used. It is presumed that it plays a role of supplying a sufficient amount of electrolyte ions to the pores.

【0030】さらに、本発明の炭素質材料は、細孔直径
200 Åを超えるマクロ細孔容積が全細孔容積の20%以
下、好ましくは15%以下、さらに好ましくは10%以下を
占め、実質的には含まれていなくてもかまわない。細孔
直径200 Åを超える大きな細孔は、比表面積が小さく静
電容量の増大に寄与しないばかりか、炭素質材料の嵩密
度を低下させるので、このような細孔の存在量の上限値
が本発明の範囲に規定されることによって単位体積当た
りのエネルギー密度の高い電極が提供される。
Further, the carbonaceous material of the present invention has a pore diameter
The macropore volume of more than 200% occupies 20% or less, preferably 15% or less, more preferably 10% or less of the total pore volume, and may not be substantially contained. Large pores having a pore diameter of more than 200 mm have a small specific surface area and do not contribute to an increase in capacitance, and also reduce the bulk density of the carbonaceous material. An electrode having a high energy density per unit volume is provided by being defined in the scope of the present invention.

【0031】本発明の炭素質材料は、ミクロ細孔容積、
メソ細孔容積及びマクロ細孔容積が最適化されるととも
に、全細孔容積及び全比表面積が以下のように規定され
るものである。
The carbonaceous material of the present invention has a micropore volume,
The mesopore volume and the macropore volume are optimized, and the total pore volume and the total specific surface area are defined as follows.

【0032】全細孔容積は、少なくとも0.3 〜2.0 cm3/
g 、好ましくは0.5 〜1.5cm3/g、さらに好ましくは0.5
〜1.0cm3/gである。全細孔容積がこの範囲より小さい
と、十分な静電容量が得られず、またこの範囲より大き
いと、炭素質材料の電気抵抗が増大するとともに、嵩密
度が低下して好ましくないためである。
The total pore volume is at least 0.3 to 2.0 cm 3 /
g, preferably 0.5-1.5 cm 3 / g, more preferably 0.5
~ 1.0 cm 3 / g. If the total pore volume is smaller than this range, a sufficient capacitance cannot be obtained, and if the total pore volume is larger than this range, the electrical resistance of the carbonaceous material increases and the bulk density decreases, which is not preferable. .

【0033】また、比表面積は、1,000 〜2,500m2/g 、
好ましくは1,000 〜2,200m2/g 、さらに好ましくは1,00
0 〜1,500m2/g である。比表面積がこの範囲より小さい
と、十分な静電容量が得られず、またこの範囲より大き
いと、炭素質材料の嵩密度が低下して好ましくないため
である。
The specific surface area is 1,000 to 2,500 m 2 / g,
Preferably 1,000 to 2,200 m 2 / g, more preferably 1,00
0 to 1,500 m 2 / g. If the specific surface area is smaller than this range, sufficient capacitance cannot be obtained, and if it is larger than this range, the bulk density of the carbonaceous material decreases, which is not preferable.

【0034】上記した特性を有する本発明の炭素質材料
は、本発明で規定する以下の工程からなる製造方法によ
り得ることができる。
The carbonaceous material of the present invention having the above-mentioned properties can be obtained by a production method comprising the following steps specified in the present invention.

【0035】(1) まず、沸点が120 〜400 ℃、好まし
くは150 〜380 ℃、さらに好ましくは180 〜350 ℃であ
る揮発成分を含む、25℃における粘度が0.1 〜100 Pa
・s 、好ましくは0.2 〜80Pa ・s 、さらに好ましくは
0.5 〜50Pa ・s である液状の熱硬化性樹脂を準備し、
これを硬化して硬化体を得る硬化工程を行う。
(1) First, the composition contains volatile components having a boiling point of 120 to 400 ° C., preferably 150 to 380 ° C., and more preferably 180 to 350 ° C., and has a viscosity of 0.1 to 100 Pa at 25 ° C.
.S, preferably 0.2 to 80 Pa.s, more preferably
Prepare a liquid thermosetting resin of 0.5 to 50 Pa · s,
This is cured to obtain a cured product.

【0036】上記揮発成分は、熱硬化性樹脂に含まれ
る、樹脂を構成する重合単位からなる2〜3量体であっ
てもよいし、上記範囲の沸点を有する溶剤を樹脂に添加
して含ませ、当該溶剤を揮発成分としてもよい。なお、
本発明においては、熱硬化性樹脂に溶剤を添加した場
合、上記25℃における粘度とは、溶剤が添加された状態
の樹脂の粘度( すなわち硬化する寸前の樹脂の粘度 )を
示すものとする。
The volatile component may be a dimer or a trimer composed of polymerized units constituting the resin contained in the thermosetting resin, or may be contained by adding a solvent having a boiling point in the above range to the resin. Alternatively, the solvent may be used as a volatile component. In addition,
In the present invention, when a solvent is added to the thermosetting resin, the viscosity at 25 ° C. indicates the viscosity of the resin in a state where the solvent is added (that is, the viscosity of the resin just before curing).

【0037】また、上記の粘度の熱硬化性樹脂を用いる
ことにより、空気中、若しくは非酸化性雰囲気下で硬化
させると、200 ℃までの質量減少が硬化前の2〜50質量
%である硬化体を得ることができる。
When a thermosetting resin having the above-mentioned viscosity is used, the composition can be cured in air or in a non-oxidizing atmosphere, and the mass reduction up to 200 ° C. is 2 to 50% by mass before curing. You can get the body.

【0038】熱硬化性樹脂の粘度が上記に記載の範囲よ
り高くなると、遊離成分が熱硬化性樹脂中に均一に分散
されず好ましくない。一方、粘度が上記記載の範囲より
低くなると、樹脂を炭素化した時点の固定炭素分が著し
く低下して得られる炭素化体の密度、ひいては賦活後の
炭素質材料の密度が大きく低下するため、本炭素質材料
を電気二重層キャパシタの電極材料とした際のキャパシ
タの単位体積あたりのエネルギー密度が低下して好まし
くない。
If the viscosity of the thermosetting resin is higher than the above range, the free components are not uniformly dispersed in the thermosetting resin, which is not preferable. On the other hand, if the viscosity is lower than the range described above, the fixed carbon content at the time of carbonizing the resin is significantly reduced, so that the density of the obtained carbonized product, and hence the density of the activated carbonaceous material is significantly reduced, When the carbonaceous material is used as an electrode material for an electric double layer capacitor, the energy density per unit volume of the capacitor is undesirably reduced.

【0039】なお、樹脂の粘度は、主として含有する揮
発成分の量により制御されうるが、また樹脂自体の分子
量や揮発成分種によっても好適な粘度範囲となる揮発成
分の量は異なる。そのため、本発明の製造方法において
は、樹脂の粘度が上記規定の範囲であれば揮発成分の量
は特に限定されない。
The viscosity of the resin can be controlled mainly by the amount of the volatile component contained therein, but the amount of the volatile component within the suitable viscosity range varies depending on the molecular weight of the resin itself and the type of the volatile component. Therefore, in the production method of the present invention, the amount of the volatile component is not particularly limited as long as the viscosity of the resin is within the above specified range.

【0040】また、熱硬化性樹脂に含有される揮発成分
の沸点範囲が上記規定の範囲より低い場合には、樹脂の
硬化時に溶剤等の揮発成分が樹脂内に内包されることな
く系外に離脱するため、炭素化工程での細孔形成につな
がらない。一方含有される揮発成分が本発明で規定する
沸点範囲より高い場合には、揮発前に樹脂分の炭素化が
進行するため、揮発成分の離脱の際に炭素化体に亀裂等
が生じ、過度に大きな細孔が生ずる結果、得られた炭素
化体の密度が極端に低下して好ましくない。
When the boiling point range of the volatile component contained in the thermosetting resin is lower than the above-specified range, the volatile component such as a solvent is not included in the resin at the time of curing the resin, and the volatile component is discharged outside the system. Due to separation, it does not lead to the formation of pores in the carbonization step. On the other hand, if the contained volatile component is higher than the boiling point range specified in the present invention, the carbonization of the resin proceeds before volatilization, so that cracks and the like are generated in the carbonized product upon the release of the volatile component, and As a result, the density of the obtained carbonized product is extremely lowered, which is not preferable.

【0041】本発明においては、揮発成分の沸点範囲及
び炭素質材料の原料樹脂の粘度が上記の範囲に規定され
ているため、樹脂が硬化する際に適当な流動性を保持し
ており、溶剤や各種遊離成分を内包しながら硬化する。
炭素化時にこれらの内包された成分や樹脂の分解成分が
適度に揮発分離してガスの抜け孔としての気孔を形成す
るので、炭素化後にすでに直径20〜200 Å程度の比較的
大きなメソ細孔が形成される。
In the present invention, since the boiling point range of the volatile component and the viscosity of the raw material resin of the carbonaceous material are defined in the above ranges, the resin maintains appropriate fluidity when it is cured, And harden while containing various free ingredients.
During carbonization, these encapsulated components and decomposition components of the resin are appropriately volatilized and separated to form pores as gas holes, so that relatively large mesopores with a diameter of about 20 to 200 mm have already been formed after carbonization. Is formed.

【0042】このような比較的大きなメソ細孔が存在す
ることにより、次の賦活工程時の反応性ガス( 賦活ガス
)、例えば水蒸気や二酸化炭素の炭素化体内部への拡散
が均一になされ、10〜20Åのミクロ細孔の形成が助長さ
れると考えられる。
The presence of such relatively large mesopores makes it possible to use a reactive gas (activating gas) in the next activation step.
It is considered that, for example, the diffusion of water vapor or carbon dioxide into the carbonized material is uniform, and the formation of micropores of 10 to 20 ° is promoted.

【0043】さらに、揮発成分の粘性や沸点範囲が上記
規定した適当な範囲に限定されている結果、200 Åを超
えるマクロ細孔の生成が、ある範囲以下に制限されて、
最終的に本発明で規定するミクロ細孔、メソ細孔及びマ
クロ細孔の細孔構造が最適化された炭素質材料が得られ
るものと推察される。
Furthermore, as a result of the viscosity and boiling point range of the volatile component being limited to the appropriate ranges specified above, the formation of macropores exceeding 200 ° is limited to a certain range or less.
It is presumed that finally, a carbonaceous material having an optimized pore structure of micropores, mesopores and macropores defined in the present invention can be obtained.

【0044】本発明で使用する熱硬化性樹脂としては、
フェノール樹脂、メラミン樹脂、尿素樹脂、フラン樹
脂、エポキシ樹脂、アルキド樹脂、不飽和ポリエステル
樹脂、ジアリルフタレート樹脂等が使用可能であるが、
製造時の取扱いが容易で炭化収率が高く細孔制御が容易
である等の点で、フェノール樹脂が最も好ましい。
The thermosetting resin used in the present invention includes:
Phenol resin, melamine resin, urea resin, furan resin, epoxy resin, alkyd resin, unsaturated polyester resin, diallyl phthalate resin, etc. can be used,
Phenol resins are most preferred because they are easy to handle during production, have a high carbonization yield, and are easy to control pores.

【0045】揮発成分としては、未反応フェノール、フ
ェノール樹脂を構成する重合単位の2〜3量体等の熱硬
化性樹脂に含まれる成分の他、エチレングリコール、テ
トラメチレングリコール、プロピレングリコール、トリ
メチレングリコール、グリセリン等のグリコール類やポ
リオール類、オクタノール、ブタノール等のアルコール
類、シクロヘキサノン、アセトフェノン、メチルブチル
ケトン等のケトン類、エタノールアミン、ジエチルアミ
ン等のアミン類、アニソール等のエーテル類等の沸点範
囲120 〜400 ℃の溶剤を樹脂に添加して好適に用いるこ
とができる。
The volatile components include unreacted phenol, components contained in the thermosetting resin such as dimer and trimer of polymerized units constituting the phenol resin, and ethylene glycol, tetramethylene glycol, propylene glycol, and trimethylene. Glycols, glycols such as glycerin and polyols, alcohols such as octanol and butanol, ketones such as cyclohexanone, acetophenone and methylbutylketone, amines such as ethanolamine and diethylamine, and boiling points such as ethers such as anisole 120 A solvent at -400 ° C can be suitably used by adding it to the resin.

【0046】この場合、硬化剤を樹脂に対して1質量%
以上、好ましくは5〜20質量%混練し、硬化促進剤を5
質量%以下、好ましくは0.25〜1.0 質量%を混練する混
練工程を行って混練体を得、この混練体を硬化する硬化
工程を行うこともできる。
In this case, the curing agent was added in an amount of 1% by mass based on the resin.
As described above, preferably 5 to 20% by mass is kneaded, and
A kneading step of kneading the kneaded material of not more than 0.2% by mass, preferably 0.25 to 1.0% by mass, to obtain a kneaded body, and a curing step of curing the kneaded body can also be performed.

【0047】かかる混練を行うための混練機の種類とし
ては、特に限定するものではないが、液状樹脂と溶剤、
もしくは粉体状の硬化剤、もしくは硬化促進剤が均一に
混ざるように混練できるものが好ましい。このような混
練機としては、容器自身が回転する容器回転型混練機又
は固定した容器内に回転する翼を取り付ける容器固定型
混練機の何れの形式のものでもよい。前者には、例えば
水平円筒型、傾斜円筒型、V型、二重円錐型、正立方型
等があり、後者には、例えばリボン型、単軸ローター
型、パグミル型、遊星運動型、高速流動型、回転運動型
等があるが何れも好適に使用することが可能である。
The type of the kneader for performing the kneading is not particularly limited, but includes a liquid resin and a solvent.
Alternatively, a powdery curing agent or a curing agent that can be kneaded so that the curing accelerator is uniformly mixed is preferable. Such a kneader may be any type of a container rotary kneader in which a container itself rotates or a container fixed type kneader in which a rotating blade is mounted in a fixed container. The former includes, for example, a horizontal cylindrical type, an inclined cylindrical type, a V type, a double cone type, a cubic type, and the like, and the latter includes, for example, a ribbon type, a single-axis rotor type, a pug mill type, a planetary motion type, and a high-speed flow type. There are a mold and a rotary movement type, and any of them can be suitably used.

【0048】上記樹脂(又は樹脂混練体)を通常熱硬化
性樹脂の硬化に用いられる温度領域、例えば150 〜350
℃、好ましくは180 〜250 ℃の温度で硬化させる。この
時に樹脂に含まれる溶剤や樹脂を構成する重合単位であ
る2〜3量体等の遊離成分が適度に系を撹拌しながら離
脱し、また一部は、系内に残存し、メソ細孔の発達した
適度な空隙を内包した賦活されやすい硬化物が得られ
る。
The above resin (or resin kneaded product) is heated in a temperature range usually used for curing a thermosetting resin, for example, 150 to 350.
Curing at a temperature of preferably from 180 to 250 ° C. At this time, a solvent contained in the resin and free components such as dimer and trimer, which are polymerization units constituting the resin, are released while appropriately stirring the system, and a part remains in the system, and the mesopores remain. A cured product which is easy to be activated and contains moderate voids having developed therein can be obtained.

【0049】熱硬化性樹脂としてフェノール樹脂を使用
する場合は、レゾール型樹脂、ノボラック型樹脂のいず
れを使用してもよく、レゾール樹脂の場合はそのまま、
またノボラック樹脂の場合には、ホルムアルデヒドやヘ
キサメチレンテトラミン等の硬化剤を加えて、さらに好
ましくは、シュウ酸やサリチル酸などの酸を硬化促進剤
として添加し、150 〜350 ℃、好ましくは、180 〜250
℃に加熱して10〜360分、好ましくは、10〜120 分程度
加熱させればよい。
When a phenol resin is used as the thermosetting resin, any of a resole type resin and a novolak type resin may be used.
In the case of a novolak resin, a curing agent such as formaldehyde or hexamethylenetetramine is added, more preferably, an acid such as oxalic acid or salicylic acid is added as a curing accelerator, and the curing agent is added at 150 to 350 ° C., preferably 180 to 350 ° C. 250
The temperature may be raised to 10 ° C. for 10 to 360 minutes, preferably about 10 to 120 minutes.

【0050】なお硬化剤の量としては、1 質量%以上が
好ましく、これ未満であると架橋密度が上がらず、固定
炭素が低下し、嵩密度が低下するため望ましくない。ま
た硬化促進剤の量としては、5質量%以下が好ましく、
添加量に応じメソポア比率を増大させうるが、これを超
える量を添加してもメソポア比率の更なる向上は認めら
れなくなる。なお、硬化を行う装置は、特に限定するも
のではなく、固定床加熱炉、電気炉等の何れもが好適に
使用される。
The amount of the curing agent is preferably 1% by mass or more. If it is less than 1% by mass, the crosslinking density does not increase, the fixed carbon decreases, and the bulk density decreases. The amount of the curing accelerator is preferably 5% by mass or less,
The mesopore ratio can be increased in accordance with the amount added, but no further improvement in the mesopore ratio is observed even if an amount exceeding this is added. The apparatus for curing is not particularly limited, and any of a fixed-bed heating furnace, an electric furnace, and the like is suitably used.

【0051】(2) 次に、以上のごとくして得られた硬
化体を粉砕する。粉砕機の種類としては、特に限定する
ものではないが、硬化体を少なくとも数十mm以下、好
ましくは数mm以下、さらには1mm以下に粉砕できる
ものが望ましい。このような粉砕機としては、例えばド
ッジクラッシャー、ダブルロールクラッシャー、エッジ
ランナー、ジョークラッシャー、コーンクラッシャー、
ハンマーミル、ロータリークラッシャー、デスククラッ
シャー、ロッドミル、ボールミル、チューブミル、ロー
ラーミル、アトリションミル、ジェットミル、ミクロン
ミル、マイクロマイザー等を好適に使用することが可能
である。
(2) Next, the cured product obtained as described above is pulverized. The type of the pulverizer is not particularly limited, but a pulverizer capable of pulverizing the cured product to at least several tens mm or less, preferably several mm or less, and more preferably 1 mm or less is desirable. Such crushers include, for example, dodge crushers, double roll crushers, edge runners, jaw crushers, cone crushers,
Hammer mills, rotary crushers, desk crushers, rod mills, ball mills, tube mills, roller mills, attrition mills, jet mills, micron mills, micromizers, and the like can be suitably used.

【0052】(3) 引続き、粉砕した硬化体を非酸化性
雰囲気下で炭素化させる。炭素化は、フェノール樹脂の
ような熱硬化性樹脂からなる炭素前駆体から炭素網目を
有する固体炭素体への変換である。炭素化は、窒素、ア
ルゴン、ヘリウム、キセノン、ネオン、二酸化炭素、燃
焼排ガスなどの不活性ガスおよびこれらの混合ガスの非
酸化性雰囲気下に300 〜2,000 ℃、好ましくは500 〜1,
000 ℃程度の温度範囲において、10分〜80時間、好まし
くは10分〜30時間加熱することにより行われる。
(3) Subsequently, the pulverized cured product is carbonized in a non-oxidizing atmosphere. Carbonization is the conversion of a carbon precursor made of a thermosetting resin such as a phenolic resin into a solid carbon body having a carbon network. Carbonization is carried out at 300 to 2,000 ° C., preferably 500 to 1, under a non-oxidizing atmosphere of an inert gas such as nitrogen, argon, helium, xenon, neon, carbon dioxide, flue gas or a mixture thereof.
It is carried out by heating in a temperature range of about 000 ° C. for 10 minutes to 80 hours, preferably for 10 minutes to 30 hours.

【0053】炭素化を行う装置は特に限定するものでは
ないが、固定床加熱炉、流動床加熱炉、移動床加熱炉、
内熱式または外熱式のロータリーキルン、電気炉等の何
れもが好適に採用される。
The apparatus for performing carbonization is not particularly limited, but includes a fixed bed heating furnace, a fluidized bed heating furnace, a moving bed heating furnace,
Any of an internal heating type or an external heating type rotary kiln, an electric furnace, and the like are preferably employed.

【0054】この炭素化工程において、硬化樹脂中に残
存する揮発成分が気体として離脱することにより、直径
20〜200 Åのメソ細孔が形成される。
In this carbonization step, the volatile components remaining in the cured resin are released as a gas, and the
20-200 mm of mesopores are formed.

【0055】これを定量的に表現すると、例えば熱質量
分析計などを用いて測定される炭素化時における室温か
ら400 ℃までの質量減少が、少なくとも炭素化前の2〜
50質量%、好ましくは5〜40質量%、さらに好ましくは
5〜30質量%のものであることが望ましい。質量減少が
これより少ない場合には、揮発成分の離脱により形成さ
れる細孔容積の量が十分でなく、また、多すぎる場合に
は、次の賦活工程において得られる炭素質材料の密度が
過度に低下して好ましくない。
When this is quantitatively expressed, for example, the mass loss from room temperature to 400 ° C. during carbonization measured by using a thermal mass spectrometer or the like is at least 2 to 2 before carbonization.
It is desirably 50% by mass, preferably 5 to 40% by mass, and more preferably 5 to 30% by mass. If the mass loss is less than this, the amount of pore volume formed by the release of volatile components is not sufficient, and if it is too large, the density of the carbonaceous material obtained in the next activation step is excessive. Is not preferred.

【0056】(4) 最後に、この炭素化体を賦活させる
ことにより多孔性炭素質材料とする。賦活は、炭素化処
理で生成した固体炭素体の細孔構造を、より微細構造に
成長・発達させる工程である。賦活は、ガス賦活を行う
場合には、水蒸気、二酸化炭素、酸素、塩化水素、塩素
等の何れか一種以上を含む弱酸化性の賦活ガス雰囲気
下、好ましくは500 〜1,100 ℃、より好ましくは700 〜
1,000 ℃の温度範囲において、5分〜10時間程度加熱す
ることにより行われる。また、アルカリ金属水酸化物で
賦活する場合は、水酸化カリウム、水酸化ナトリウム、
水酸化リチウム、水酸化ルビジウム及び水酸化セシウム
から選ばれる1種または2種以上、好ましくは水酸化カ
リウムを、炭素化物との質量比で0.2 〜5.0 倍量炭素化
物と混合し、アルカリ金属水酸化物の融点以上、好まし
くは300 〜1,000 ℃、より好ましくは400 〜900 ℃の温
度範囲において、30分〜10時間、好ましくは80分〜5時
間、不活性ガス若しくは非酸化性ガス雰囲気下で加熱す
ることにより行われる。賦活は、上記のガス賦活とアル
カリ金属水酸化物賦活を組み合わせて数度に渡って行う
ことも可能である。この場合は、賦活処理された炭素質
材料の細孔構造が所期の数値範囲に入るように、適宜処
理条件を変更すればよい。
(4) Finally, the carbonized material is activated to obtain a porous carbonaceous material. Activation is a process of growing and developing the fine pore structure of the solid carbon body generated by the carbonization treatment. In the case of performing gas activation, activation is performed in a weakly oxidizing activation gas atmosphere containing any one or more of steam, carbon dioxide, oxygen, hydrogen chloride, chlorine, and the like, preferably at 500 to 1,100 ° C., and more preferably at 700 ° C. ~
It is carried out by heating in a temperature range of 1,000 ° C. for about 5 minutes to 10 hours. When activated with an alkali metal hydroxide, potassium hydroxide, sodium hydroxide,
One or more kinds selected from lithium hydroxide, rubidium hydroxide and cesium hydroxide, preferably potassium hydroxide, are mixed with the carbonized material in a mass ratio of 0.2 to 5.0 times the amount of the carbonized material to form an alkali metal hydroxide. Heating at a temperature above the melting point of the product, preferably 300 to 1,000 ° C., more preferably 400 to 900 ° C., for 30 minutes to 10 hours, preferably 80 minutes to 5 hours, in an inert gas or non-oxidizing gas atmosphere. It is done by doing. Activation can be performed several times by combining the above-described gas activation and alkali metal hydroxide activation. In this case, the treatment conditions may be appropriately changed so that the pore structure of the activated carbonaceous material falls within a desired numerical range.

【0057】賦活を行う装置は、特に限定するものでは
なく、炭素化に使用したものと同様の装置を使用するこ
とができ、固定床加熱炉、流動床加熱炉、移動床加熱
炉、内熱式または外熱式のロータリーキルン、電気炉等
の何れもが好適に採用される。
The apparatus for activating is not particularly limited, and the same apparatus as that used for carbonization can be used. The fixed-bed heating furnace, the fluidized-bed heating furnace, the moving-bed heating furnace, and the internal heat Any of a rotary kiln, an electric furnace and the like of an external or external heating type is suitably employed.

【0058】以上の賦活処理により、直径10〜20Å程度
のミクロ細孔が多く形成される。この際、賦活時におけ
る炭素材の質量減少率が、ガス賦活の場合は、30〜90質
量%、より好ましくは50〜80質量%となるように賦活条
件を選定し、アルカリ金属水酸化物賦活の場合には、5
〜50質量%、より好ましくは10〜40質量%となるように
条件を選定すると、細孔容積と比表面積がより最適な範
囲となり好ましい。
By the above activation treatment, many micropores having a diameter of about 10 to 20 ° are formed. At this time, the activation conditions are selected so that the mass reduction rate of the carbon material during activation is 30 to 90% by mass, more preferably 50 to 80% by mass in the case of gas activation, and the alkali metal hydroxide activation is performed. In the case of 5
When the conditions are selected so as to be 50 to 50% by mass, more preferably 10 to 40% by mass, the pore volume and the specific surface area become more optimal ranges, which is preferable.

【0059】本発明における細孔直径、細孔容積および
比表面積等の細孔特性は、以下のようにして、カンタク
ローム( Quantachrome )社のオートソーブ1( Autosorb
-1 )( またはそれと同等の機能を有する装置でもよい )
を使用して測定された値である。
The pore characteristics such as the pore diameter, the pore volume and the specific surface area in the present invention were determined as follows, using Autosorb 1 (Autosorb 1) manufactured by Quantachrome.
-1) (or a device with equivalent functions)
Is the value measured using

【0060】細孔直径および細孔容積は、予め真空中で
200 ℃で12時間以上乾燥させた試料に液体窒素温度で窒
素ガスを吸着させて得られた吸着等温線を所謂BJH 法で
解析して、細孔直径と細孔容積の関係を算出することに
より求める。ここでBJH 法とは、Barrett-Joyner-Halen
daの標準モデルに従って円筒状の細孔径に対する細孔容
積の分布を決定する方法である( J.A.C.S.,73(1951)373
-377 )。また比表面積は、同窒素吸着等温線の相対圧力
0.001 〜0.05の範囲をBET 多点法で解析して算出した。
ここで、BET 法とは、Brunauer-Emmett-Teller式による
表面積測定方法である(J.A.C.S.,60(1938)309)。
The pore diameter and pore volume are determined in advance in a vacuum.
By analyzing the adsorption isotherm obtained by adsorbing nitrogen gas at liquid nitrogen temperature on a sample dried at 200 ° C for 12 hours or more by the so-called BJH method, the relationship between the pore diameter and the pore volume is calculated. Ask. Here, the BJH method means Barrett-Joyner-Halen
This is a method of determining the distribution of the pore volume with respect to the cylindrical pore diameter according to the standard model of da (JACS, 73 (1951) 373).
-377). The specific surface area is the relative pressure of the nitrogen adsorption isotherm.
The range of 0.001 to 0.05 was calculated by analyzing with the BET multipoint method.
Here, the BET method is a method of measuring the surface area by the Brunauer-Emmett-Teller method (JACS, 60 (1938) 309).

【0061】本発明に従えば、また、電極材料として上
記した細孔特性を有する炭素質材料を主成分として含む
電極を有する、電気二重層キャパシタが提供され、さら
に好ましくは、電解液として有機溶媒に電解質を溶解し
た有機系電解液を用いたキャパシタが提供される。
According to the present invention, there is provided an electric double layer capacitor having an electrode containing, as an electrode material, a carbonaceous material having the above-mentioned pore characteristics as a main component, and more preferably, an organic solvent as an electrolytic solution. The present invention provides a capacitor using an organic electrolytic solution in which an electrolyte is dissolved.

【0062】本発明のキャパシタの電解液としては、基
本的には、水系電解液と有機系電解液のそれぞれが使用
可能であるが、特に有機系電解液を用いた場合に単位体
積あたりに蓄えられるエネルギー量が増大し好適であ
る。有機系電解液の場合、電解液の分解電位が水系電解
液の2倍以上あることから、電圧の二乗と静電容量の積
の2分の1に比例するエネルギー密度の点で、水系の電
解液より有利となるからである。
As the electrolytic solution of the capacitor of the present invention, basically, an aqueous electrolytic solution and an organic electrolytic solution can be used. Particularly, when an organic electrolytic solution is used, the electrolytic solution is stored per unit volume. The amount of energy to be obtained is increased, which is preferable. In the case of an organic electrolytic solution, since the decomposition potential of the electrolytic solution is more than twice that of the aqueous electrolytic solution, the aqueous electrolytic solution has an energy density proportional to one half of the product of the square of the voltage and the capacitance. This is because it is more advantageous than a liquid.

【0063】本発明における炭素質材料は、かくして、
一般に得られる細孔直径10Å未満の細孔を主体とした活
性炭よりも大きい細孔直径10〜20Åの範囲の細孔を多く
有しているため、イオン半径のより大きい電解質を有機
溶媒に溶解した有機系電解液を用いた場合でも、細孔内
に電解質イオンが自由に出入りでき、高い静電容量を発
現することができる。なお、すでに述べたように、全細
孔容積が最適な範囲になるように特定されているため、
炭素質材料が嵩高とならず、単位体積当たりのエネルギ
ー密度が高いキャパシタセルを形成することができる。
The carbonaceous material in the present invention is thus:
Because it has a large number of pores in the range of 10 to 20 mm in diameter, which is larger than activated carbon mainly containing pores with a diameter of less than 10 mm, an electrolyte with a larger ionic radius was dissolved in an organic solvent. Even when an organic electrolyte is used, electrolyte ions can freely enter and exit the pores, and a high capacitance can be exhibited. As already mentioned, since the total pore volume is specified to be in the optimal range,
A capacitor cell having a high energy density per unit volume without forming a bulky carbonaceous material can be formed.

【0064】本発明による電気二重層キャパシタの電極
材料は、より詳しくは、上記炭素質材料と結合材、さら
に好ましくは導電材を加えて構成される。この電極は、
例えば、炭素質材料の粉末とポリテトラフルオロエチレ
ン等の結合材と好ましくは導電材とをアルコール等の溶
媒の存在下で混練してシート状に成形し、乾燥した後、
導電性接着剤等を介して集電体と接合させることによっ
て得られる。また、炭素質材料の粉末と結合材および好
ましくは導電材を溶媒と混合してスラリーとし、集電体
金属箔の上にコートし、乾燥して集電体と一体化された
電極を得ることもできる。
More specifically, the electrode material of the electric double layer capacitor according to the present invention comprises the above-mentioned carbonaceous material and a binder, more preferably a conductive material. This electrode is
For example, a carbonaceous material powder and a binder such as polytetrafluoroethylene and preferably a conductive material are kneaded in the presence of a solvent such as alcohol to form a sheet, and after drying,
It is obtained by bonding to a current collector via a conductive adhesive or the like. Further, a powder of a carbonaceous material and a binder and preferably a conductive material are mixed with a solvent to form a slurry, coated on a current collector metal foil, and dried to obtain an electrode integrated with the current collector. Can also.

【0065】結合材としては、例えばポリテトラフルオ
ロエチレン、ポリフッ化ビニリデン、フルオロオレフィ
ン/ビニルエーテル共重合体架橋ポリマー、カルボキシ
メチルセルロース、ポリビニルピロリドン、ポリビニル
アルコール、又はポリアクリル酸等が使用できる。電極
中の結合材の含有量は、炭素質材料と結合材の合量中
0. 5〜20質量%程度とするのが好ましい。結合材の
量が0. 5質量%未満であると電極の強度が不足し、2
0質量%を超えると電気抵抗の増大や容量の低下が起き
好ましくない。電極の強度と容量バランスから、結合材
の配合量は、0.5〜10質量%とするのがより好まし
い。なお、架橋ポリマーの架橋剤としては、アミン類、
ポリアミン類、ポリイソシアネート類、ビスフェノール
類又はパーオキサイド類が好ましい。
As the binder, for example, polytetrafluoroethylene, polyvinylidene fluoride, a crosslinked polymer of a fluoroolefin / vinyl ether copolymer, carboxymethylcellulose, polyvinylpyrrolidone, polyvinyl alcohol, polyacrylic acid and the like can be used. The content of the binder in the electrode is preferably about 0.5 to 20% by mass based on the total amount of the carbonaceous material and the binder. If the amount of the binder is less than 0.5% by mass, the strength of the electrode becomes insufficient,
If it exceeds 0% by mass, electric resistance increases and capacity decreases, which is not preferable. From the viewpoint of electrode strength and capacity balance, the amount of the binder is more preferably 0.5 to 10% by mass. As the crosslinking agent for the crosslinked polymer, amines,
Preferred are polyamines, polyisocyanates, bisphenols or peroxides.

【0066】導電材としては、カーボンブラック、天然
黒鉛、人造黒鉛、酸化チタン、酸化ルテニウム等の粉末
が用いられる。これらのうち、少量でも導電性を向上さ
せる効果が大きいことから、カーボンブラックの1種で
あるケッチェンブラック又はアセチレンブラックを使用
するのが好ましい。
As the conductive material, powders of carbon black, natural graphite, artificial graphite, titanium oxide, ruthenium oxide and the like are used. Among them, it is preferable to use Ketjen black or acetylene black, which is a kind of carbon black, since the effect of improving conductivity is large even in a small amount.

【0067】電極中のカーボンブラック等の導電材の配
合量は、導電性を向上させられるように、炭素質材料粉
末との合量中5質量%以上、特には10質量%以上配合
するのが好ましい。導電材の配合量が多すぎると、炭素
質材料の配合割合が減って電極の静電容量が減るため電
極中の導電材の配合量は40質量%以下、特には30質
量%以下とするのが好ましい。
The compounding amount of the conductive material such as carbon black in the electrode should be 5% by mass or more, especially 10% by mass or more based on the total amount with the carbonaceous material powder so as to improve the conductivity. preferable. If the compounding amount of the conductive material is too large, the compounding ratio of the carbonaceous material decreases and the capacitance of the electrode decreases, so that the compounding amount of the conductive material in the electrode is 40% by mass or less, particularly 30% by mass or less. Is preferred.

【0068】スラリーを形成する溶媒としては、上記結
合材を溶解できるものが好ましく、N−メチルピロリド
ン、ジメチルホルムアミド、トルエン、キシレン、イソ
ホロン、メチルエチルケトン、酢酸エチル、酢酸メチ
ル、エチルアセテート、ジメチルフタレート、メタノー
ル、エタノール、イソプロパノール、ブタノール、水等
が適宜選択される。
As the solvent for forming the slurry, those capable of dissolving the above binder are preferable, and N-methylpyrrolidone, dimethylformamide, toluene, xylene, isophorone, methyl ethyl ketone, ethyl acetate, methyl acetate, ethyl acetate, dimethyl phthalate, methanol , Ethanol, isopropanol, butanol, water and the like are appropriately selected.

【0069】電極の集電体としては、電気化学的、化学
的に耐食性のある導電体であればよい。炭素質材料を主
成分とする電極の集電体としては、ステンレス鋼、アル
ミニウム、チタン、タンタル、ニッケル等が用いられ
る。なかでも、ステンレス鋼とアルミニウムが性能と価
格の両面で好ましい集電体である。
The current collector of the electrode may be any conductor that is electrochemically and chemically resistant to corrosion. Stainless steel, aluminum, titanium, tantalum, nickel, or the like is used as a current collector for an electrode mainly composed of a carbonaceous material. Among them, stainless steel and aluminum are preferred current collectors in terms of both performance and cost.

【0070】集電体の形状は、箔でもよいし、三次元構
造を有するニッケルやアルミニウムの発泡金属やステン
レス鋼のネットやウールでもよい。
The shape of the current collector may be a foil, a nickel or aluminum foam metal having a three-dimensional structure, or a stainless steel net or wool.

【0071】本発明の電気二重層キャパシタの電解液と
しては、それ自身公知あるいは周知の水系あるいは有機
系電解液を使用できるが、有機系電解液を使用した場合
に最も好ましい結果が得られる。
As the electrolytic solution of the electric double layer capacitor of the present invention, a known or well-known aqueous or organic electrolytic solution can be used. The most preferable result is obtained when an organic electrolytic solution is used.

【0072】有機系溶媒としては、電気化学的に安定な
エチレンカーボネート、プロピレンカーボネート、ブチ
レンカーボネート、γ−ブチロラクトン、スルホラン、
スルホラン誘導体、3−メチルスルホラン、1,2−ジ
メトキシエタン、アセトニトリル、グルタロニトリル、
バレロニトリル、ジメチルホルムアミド、ジメチルスル
ホキシド、テトラヒドロフラン、ジメトキシエタン、メ
チルフォルメイト、ジメチルカーボネート、ジエチルカ
ーボネート及びエチルメチルカーボネートからなる群か
ら選ばれる1種以上からなる溶媒が好ましい。これらは
混合して使用することも可能である。
Examples of the organic solvent include electrochemically stable ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone, sulfolane,
Sulfolane derivative, 3-methylsulfolane, 1,2-dimethoxyethane, acetonitrile, glutaronitrile,
A solvent comprising at least one selected from the group consisting of valeronitrile, dimethylformamide, dimethylsulfoxide, tetrahydrofuran, dimethoxyethane, methylformate, dimethylcarbonate, diethylcarbonate and ethylmethylcarbonate is preferred. These can be used as a mixture.

【0073】正極負極ともに本発明の高比表面積の炭素
質材料を主成分として使用する場合、有機系電解液の電
解質としては、R1234+ 若しくはR12
34+ (R1 、R2 、R3 、R4 はそれぞれ独立
に炭素数1〜6のアルキル基を示す。)で表される第4
級オニウムカチオンと、BF4 - 、PF4 - 、ClO 4
- 、CF3 SO3 - 及び(SO25 )(SO26
- (R5 、R6 はそれぞれ独立に炭素数1〜4のアル
キル基又はアルキレン基を示し、R5 とR6 が環を形成
していてもよい。)からなる群から選ばれるアニオンと
からなる塩が好ましい。
Both the positive electrode and the negative electrode have the high specific surface area carbon of the present invention.
When an organic material is used as the main component, the
The resolution is R1 RTwo RThree RFour N+Or R1 RTwo 
RThreeRFour P+(R1 , RTwo , RThree , RFour Are independent
Represents an alkyl group having 1 to 6 carbon atoms. The fourth represented by
Grade onium cation and BFFour -, PFFour -, ClO Four 
-, CFThree SOThree -And (SOTwo RFive ) (SOTwo R6 )
N-(RFive , R6 Are each independently an alkyl having 1 to 4 carbon atoms
A kill group or an alkylene group;Five And R6 Form a ring
It may be. Anion selected from the group consisting of
Are preferred.

【0074】具体的には、例えば、(C254 NB
4 、(C253 (CH3 )NBF4 、(C2
54 PBF4 及び(C253 (CH3 )PBF4
等が好ましいものとして挙げられる。電解液中のこれら
の塩の濃度は、0.1 〜2.5 mol/l、さらには0.5 〜
2mol/l程度とするのが好ましい。
Specifically, for example, (C 2 H 5 ) 4 NB
F 4 , (C 2 H 5 ) 3 (CH 3 ) NBF 4 , (C 2 H
5 ) 4 PBF 4 and (C 2 H 5 ) 3 (CH 3 ) PBF 4
And the like are preferred. The concentration of these salts in the electrolyte is from 0.1 to 2.5 mol / l, more preferably from 0.5 to
It is preferably about 2 mol / l.

【0075】本発明において正極と負極の間に挿入され
るセパレータとしては、例えばポリプロピレン繊維不織
布、ガラス繊維不織布、合成セルロース紙等が好適に使
用できる。
In the present invention, as the separator inserted between the positive electrode and the negative electrode, for example, a polypropylene fiber nonwoven fabric, a glass fiber nonwoven fabric, a synthetic cellulose paper, etc. can be suitably used.

【0076】本発明の電気二重層キャパシタは、一対の
シート状電極の間にセパレータを介さしめて電解液とと
もに金属ケースに収容したコイン型、一対の正極と負極
をセパレータを介して巻回してなる巻回型、セパレータ
を介して多数のシート状電極を積み重ねた積層型等いず
れの構成もとることができる。
The electric double layer capacitor according to the present invention is a coin-type capacitor in which a separator is interposed between a pair of sheet electrodes and accommodated in a metal case together with an electrolytic solution, and a pair of positive and negative electrodes are wound with a separator interposed therebetween. Any structure such as a round shape and a stacked type in which a large number of sheet electrodes are stacked via a separator can be adopted.

【0077】[0077]

【実施例】以下、本発明を実施例及び比較例によって具
体的に説明する。実施例、比較例において、細孔直径、
細孔容積および比表面積は、カンタクローム社のオート
ソーブ1を使用し以下のようにして測定した。
The present invention will be described below in detail with reference to examples and comparative examples. In Examples and Comparative Examples, the pore diameter,
The pore volume and specific surface area were measured as follows using Autosorb 1 manufactured by Kantachrome.

【0078】細孔直径および細孔容積は、予め真空中で
200 ℃で12時間以上乾燥させた試料に液体窒素温度で窒
素ガスを吸着させて得られた吸着等温線をBJH 法で解析
して、細孔直径と細孔容積の関係を算出することにより
求めた。また比表面積は、同窒素ガス吸着等温線の相対
圧力0.001 〜0.05の範囲をBET 多点法で解析して算出し
た。
The pore diameter and the pore volume are determined in advance in a vacuum.
It is obtained by analyzing the adsorption isotherm obtained by adsorbing nitrogen gas at the liquid nitrogen temperature to a sample dried at 200 ° C for 12 hours or more by the BJH method and calculating the relationship between the pore diameter and the pore volume. Was. The specific surface area was calculated by analyzing the relative pressure range of 0.001 to 0.05 of the nitrogen gas adsorption isotherm by the BET multipoint method.

【0079】〔実施例1〕 (1) 沸点が180 〜350 ℃の範囲にあるフェノール樹脂
を構成する重合単位の2量体及び3量体を揮発成分を含
み、かつ25℃における粘度が5Pa ・s のフェノール樹
脂Aに対してヘキサメチレンテトラミンを硬化剤として
10質量部加えて混練機で混練し、空気中で室温から250
℃まで昇温しながら硬化させた。
Example 1 (1) Dimer and trimer of polymerized units constituting a phenol resin having a boiling point in the range of 180 to 350 ° C. contain volatile components, and have a viscosity of 5 Pa · s at 25 ° C. Hexamethylenetetramine as curing agent for phenolic resin A
Add 10 parts by mass and knead with a kneader.
The composition was cured while the temperature was raised to ℃.

【0080】次にハンマーミルにて数mm以下の粒径に
粉砕し、これをロータリーキルンで600 ℃まで窒素気流
下に昇温し、2時間保持して窒素雰囲気下で炭素化させ
た。この時の室温〜400 ℃までの質量減少は、15質量%
であった。さらに40℃における飽和水蒸気を含む窒素ガ
ス気流下、800 ℃で4時間賦活させた。賦活時の質量減
少は、45質量%であった。賦活終了後ボールミルを用い
て平均粒径5μmまで粉砕し、炭素質材料Aを得た。
Next, the powder was pulverized to a particle size of several mm or less by a hammer mill, heated to 600 ° C. in a nitrogen stream with a rotary kiln, and kept for 2 hours to be carbonized in a nitrogen atmosphere. At this time, the mass loss from room temperature to 400 ° C is 15% by mass.
Met. Further, the mixture was activated at 800 ° C. for 4 hours under a nitrogen gas stream containing saturated steam at 40 ° C. The mass loss during activation was 45% by mass. After the activation was completed, the powder was pulverized to an average particle size of 5 μm using a ball mill to obtain a carbonaceous material A.

【0081】この炭素質材料Aの比表面積は、1,500m2/
g 、全細孔容積は、0.95cm3/g であり、直径10〜20Åの
細孔容積の全細孔容積に占める割合は、20%、直径20〜
200Åの細孔容積の全細孔容積に占める割合は、48%、
直径200 Åを超える細孔容積の全細孔容積に占める割合
は、7%であった。
The specific surface area of the carbonaceous material A is 1,500 m 2 /
g, the total pore volume is 0.95 cm 3 / g, and the ratio of the pore volume of 10-20 mm in diameter to the total pore volume is 20%,
The ratio of the 200Å pore volume to the total pore volume is 48%,
The ratio of the pore volume exceeding 200 mm in diameter to the total pore volume was 7%.

【0082】(2) 炭素質材料A80質量%、導電材とし
てファーネスブラック(ケッチェンブラックインターナ
ショナル社製ケッチェンブラックEC)10質量%、及び
結合材としてポリテトラフルオロエチレン10質量%から
なる混合物にエタノールを添加しつつ混練し、ロール圧
延により厚さ0.65mmの電極シートを得て、200 ℃で2
時間乾燥した。このシートから直径12mmの2枚の電極
を打ち抜き、正極及び負極とし黒鉛系の導電性接着剤で
それぞれステンレス316製ケース及び上蓋に接着し
た。
(2) A mixture of 80% by mass of carbonaceous material A, 10% by mass of furnace black (Ketjen Black EC manufactured by Ketjen Black International) as a conductive material, and 10% by mass of polytetrafluoroethylene as a binder was mixed with ethanol. Is added, and the mixture is roll-rolled to obtain an electrode sheet having a thickness of 0.65 mm.
Dried for hours. Two electrodes having a diameter of 12 mm were punched out of this sheet, and the positive electrode and the negative electrode were bonded to a stainless steel 316 case and an upper lid with a graphite-based conductive adhesive, respectively.

【0083】この上蓋とケースを250 ℃で4時間真空乾
燥した後、乾燥アルゴン雰囲気中で1 mol/lの濃度
の(C253 (CH3 )NBF4 を含有するプロピ
レンカーボネート溶液を電極に含浸させた。次いで、ポ
リプロピレン製不織布セパレータを介して両極を対向さ
せ、ポリプロピレン製絶縁ガスケットを用いてかしめ封
口した。このコイン型電気二重層キャパシタは、直径1
8.3mm、厚さ2.0 mmであった。
After vacuum-drying the upper lid and the case at 250 ° C. for 4 hours, a propylene carbonate solution containing (C 2 H 5 ) 3 (CH 3 ) NBF 4 at a concentration of 1 mol / l was dried in a dry argon atmosphere. The electrodes were impregnated. Next, the two electrodes were opposed to each other with a polypropylene nonwoven fabric separator interposed therebetween, and sealed with a polypropylene insulating gasket. This coin-type electric double layer capacitor has a diameter of 1
The thickness was 8.3 mm and the thickness was 2.0 mm.

【0084】完成したコイン型電気二重層キャパシタに
2.5 Vの電圧を印加し、静電容量(正負極の合成容量)
と内部抵抗を測定した。その結果、静電容量と内部抵抗
は、それぞれ、4.32Fと8.2 Ωであった。
The completed coin type electric double layer capacitor
Apply a voltage of 2.5 V and set the capacitance (combined capacitance of positive and negative electrodes)
And the internal resistance was measured. As a result, the capacitance and the internal resistance were 4.32 F and 8.2 Ω, respectively.

【0085】〔実施例2〕 (1) 実施例1のフェノール樹脂に、溶媒としてエチレ
ングリコールを3質量%混合し、25℃における粘度が2
Pa ・s の液状樹脂Bを得た。この樹脂Bから賦活温度
を850 ℃とした以外は実施例1と同様の条件により炭素
質材料Bを得た。なお、炭素化時の400 ℃までの質量減
少は、18質量%であり、賦活時の質量減少は、65質量%
であった。この炭素質材料の比表面積は、1,900m2/g 、
全細孔容積は、1.44cm3/g であり、直径10〜20Åの細孔
容積の全細孔容積に占める割合は、35%、直径20〜200
Åの細孔容積の全細孔容積に占める割合は、40%、直径
200Åを超える細孔容積の全細孔容積に占める割合は、
5%であった。
Example 2 (1) The phenol resin of Example 1 was mixed with 3% by mass of ethylene glycol as a solvent, and the viscosity at 25 ° C. was 2%.
A liquid resin B of Pa · s was obtained. A carbonaceous material B was obtained from this resin B under the same conditions as in Example 1 except that the activation temperature was 850 ° C. The mass loss up to 400 ° C during carbonization was 18% by mass, and the mass loss during activation was 65% by mass.
Met. The specific surface area of this carbonaceous material is 1,900 m 2 / g,
The total pore volume is 1.44 cm 3 / g, and the ratio of the pore volume of 10 to 20 mm in diameter to the total pore volume is 35% and the diameter of 20 to 200 mm.
The ratio of the pore volume of Å to the total pore volume is 40%, diameter
The ratio of the pore volume exceeding 200 mm to the total pore volume is
5%.

【0086】(2) この炭素質材料Bを使用して(C2
53 (CH3 )NBF4 のかわりに(C254
NBF4 を用いた他は実施例1と同様にしてコイン型電
気二重層キャパシタを作製して特性を評価した。
(2) Using this carbonaceous material B (C 2
H 5) 3 (CH 3) instead of the NBF 4 (C 2 H 5) 4
A coin-type electric double-layer capacitor was produced in the same manner as in Example 1 except that NBF 4 was used, and the characteristics were evaluated.

【0087】完成したコイン型電気二重層キャパシタに
2.5 Vの電圧を印加し、静電容量(正負極の合成容量)
と内部抵抗を測定した。その結果、静電容量と内部抵抗
は、それぞれ、4.10Fと7.8 Ωであった。
The completed coin-type electric double layer capacitor
Apply a voltage of 2.5 V and set the capacitance (combined capacitance of positive and negative electrodes)
And the internal resistance was measured. As a result, the capacitance and the internal resistance were 4.10 F and 7.8 Ω, respectively.

【0088】〔実施例3〕 (1) 実施例2のフェノール樹脂に、硬化時に200 ℃で3
0分の中間保持を加えた以外は実施例1と同様の条件に
より炭素質材料Cを得た。なお、炭素化時の400℃まで
の質量減少は、10質量%であり、賦活時の質量減少は、
50質量%であった。この炭素質材料Cの比表面積は、1,
800m2/g 、全細孔容積は、0.85cm3/g であり、直径10〜
20Åの細孔容積の全細孔容積に占める割合は、32%、直
径20〜200Åの細孔容積の全細孔容積に占める割合は、3
0%、直径200 Åを超える細孔容積の全細孔容積に占め
る割合は、4%であった。
Example 3 (1) The phenolic resin of Example 2 was cured at 200 ° C.
A carbonaceous material C was obtained under the same conditions as in Example 1 except that an intermediate hold of 0 minutes was added. Incidentally, the mass loss up to 400 ° C. during carbonization is 10% by mass, and the mass loss during activation is
It was 50% by mass. The specific surface area of the carbonaceous material C is 1,
800 m 2 / g, total pore volume is 0.85 cm 3 / g, diameter 10 ~
The ratio of the pore volume of 20 mm to the total pore volume is 32%, and the ratio of the pore volume of 20 to 200 mm in diameter to the total pore volume is 3%.
The ratio of the pore volume exceeding 0% and the pore volume exceeding 200 mm in the total pore volume was 4%.

【0089】(2) この炭素質材料Cを使用して実施例
1と同様にコイン型電気二重層キャパシタを作製して特
性を評価した。
(2) Using this carbonaceous material C, a coin-type electric double layer capacitor was produced in the same manner as in Example 1, and the characteristics were evaluated.

【0090】完成したコイン型電気二重層キャパシタに
2.5Vの電圧を印加し、静電容量(正負極の合成容量)と
内部抵抗を測定した。その結果静電容量と内部抵抗は、
それぞれ3.75F と8.7 Ωであった。
The completed coin type electric double layer capacitor
A voltage of 2.5 V was applied, and the electrostatic capacity (combined capacity of the positive and negative electrodes) and the internal resistance were measured. As a result, the capacitance and internal resistance are
They were 3.75F and 8.7Ω, respectively.

【0091】〔実施例4〕 (1) 実施例2のフェノール樹脂Bから、賦活時間を6
時間とした以外は実施例1と同様の条件により炭素質材
料Dを得た。なお、炭素化時の400 ℃までの質量減少
は、18質量%であり、賦活時の質量減少は、69質量%で
あった。この炭素質材料の比表面積は、2,060m2/g 、全
細孔容積は、1.36cm3/g であり、直径10〜20Åの細孔容
積の全細孔容積に占める割合は、51%、直径20〜200 Å
の細孔容積の全細孔容積に占める割合は、28%、直径20
0 Åを超える細孔容積の全細孔容積に占める割合は、2
%であった。
Example 4 (1) From the phenolic resin B of Example 2, the activation time was 6
A carbonaceous material D was obtained under the same conditions as in Example 1 except that the time was changed. The mass loss up to 400 ° C. during carbonization was 18% by mass, and the mass loss during activation was 69% by mass. The specific surface area of this carbonaceous material is 2,060 m 2 / g, the total pore volume is 1.36 cm 3 / g, and the ratio of the pore volume of 10 to 20 mm in diameter to the total pore volume is 51%, 20-200 直径 in diameter
Of the total pore volume is 28%, diameter 20
The ratio of the pore volume exceeding 0% to the total pore volume is 2
%Met.

【0092】(2) この炭素質材料Dを使用して(C2
53 (CH3 )NBF4 のかわりに(C254
NBF4 を用いた他は実施例1と同様にしてコイン型電
気二重層キャパシタを作製して特性を評価した。
(2) Using this carbonaceous material D (C 2
H 5) 3 (CH 3) instead of the NBF 4 (C 2 H 5) 4
A coin-type electric double-layer capacitor was produced in the same manner as in Example 1 except that NBF 4 was used, and the characteristics were evaluated.

【0093】完成したコイン型電気二重層キャパシタに
2.5Vの電圧を印加し、静電容量(正負極の合成容量)と
内部抵抗を測定した。その結果、静電容量と内部抵抗
は、それぞれ、3.94Fと12.0Ωであった。
The completed coin-type electric double layer capacitor
A voltage of 2.5 V was applied, and the electrostatic capacity (combined capacity of the positive and negative electrodes) and the internal resistance were measured. As a result, the capacitance and the internal resistance were 3.94 F and 12.0 Ω, respectively.

【0094】〔実施例5〕 (1) 実施例2のフェノール樹脂にレゾール樹脂を10質
量部混合し、25℃における粘度が12Pa ・s の液状樹脂
Eを得た。この樹脂Eから、硬化時間を半分とし、賦活
温度を850 ℃とした以外は実施例1と同様の条件により
炭素質材料Eを得た。なお、炭素化時の400 ℃までの質
量減少は22質量%であり、賦活時の質量減少は、66質量
%であった。この炭素質材料の比表面積は、2,100m2/g
、全細孔容積は、1.81cm3/g 、直径10〜20Åの細孔容
積の全細孔容積に占める割合は、38%、直径20〜200 Å
の細孔容積の全細孔容積に占める割合は、45%、直径20
0 Åを超える細孔容積の全細孔容積に占める割合は、6
%であった。
Example 5 (1) 10 parts by mass of a resole resin was mixed with the phenol resin of Example 2 to obtain a liquid resin E having a viscosity of 12 Pa · s at 25 ° C. From this resin E, a carbonaceous material E was obtained under the same conditions as in Example 1 except that the curing time was halved and the activation temperature was 850 ° C. Incidentally, the mass loss up to 400 ° C. during carbonization was 22% by mass, and the mass loss during activation was 66% by mass. The specific surface area of this carbonaceous material is 2,100 m 2 / g
The total pore volume is 1.81 cm 3 / g, the ratio of the pore volume of 10 to 20 mm in diameter to the total pore volume is 38%, and the diameter of 20 to 200 mm.
The ratio of the pore volume to the total pore volume is 45%, diameter 20
The ratio of the pore volume exceeding 0% to the total pore volume is 6%.
%Met.

【0095】(2) この炭素質材料Eを使用して実施例
1と同様にしてコイン型キャパシタを作製して特性を評
価した。
(2) Using this carbonaceous material E, a coin-type capacitor was produced in the same manner as in Example 1, and the characteristics were evaluated.

【0096】完成したコイン型電気二重層キャパシタに
2.5Vの電圧を印加し、静電容量(正負極の合成容量)と
内部抵抗を測定した。その結果、静電容量と内部抵抗
は、それぞれ3.94F と12.0Ωであった。
The completed coin-type electric double layer capacitor
A voltage of 2.5 V was applied, and the electrostatic capacity (combined capacity of the positive and negative electrodes) and the internal resistance were measured. As a result, the capacitance and the internal resistance were 3.94F and 12.0Ω, respectively.

【0097】〔実施例6〕 (1)実施例1のフェノール樹脂Aに対してヘキサメチ
レンテトラミンを硬化剤として10質量%加え、さらに硬
化促進剤としてサリチル酸を0.25質量%混合し、25℃に
おける粘度が11Pa ・s の液状樹脂Fを得た。この樹脂
Fから、実施例1と同様の条件により炭素質材料Fを得
た。なお、炭素化時の400 ℃までの質量減少は、18質量
%であった。この活性炭の比表面積は、1,600 m2/g、
全細孔容積0.97cm3/gであり、直径10〜20Åの細孔容積
の全細孔容積に占める割合は、22%、直径20〜200 Åの
細孔容積の全細孔容積に占める割合は、53%、直径200
Åを超える細孔容積の全細孔容積に占める割合は、5%
であった。
Example 6 (1) 10% by mass of hexamethylenetetramine as a curing agent was added to phenol resin A of Example 1, and 0.25% by mass of salicylic acid was further mixed as a curing accelerator. To obtain a liquid resin F of 11 Pa · s. From this resin F, a carbonaceous material F was obtained under the same conditions as in Example 1. Incidentally, the mass decrease to 400 ° C. during carbonization was 18% by mass. The specific surface area of this activated carbon is 1,600 m 2 / g,
The total pore volume is 0.97 cm 3 / g, and the ratio of the pore volume of 10 to 20 mm in diameter to the total pore volume is 22%, and the ratio of the pore volume of 20 to 200 mm in diameter to the total pore volume. Is 53%, diameter 200
The ratio of the pore volume exceeding Å to the total pore volume is 5%
Met.

【0098】(2)この炭素質材料Fを使用して実施例
1と同様にしてコイン型電気二重層キャパシタを作製し
て特性を評価した。
(2) Using this carbonaceous material F, a coin-type electric double layer capacitor was produced in the same manner as in Example 1, and the characteristics were evaluated.

【0099】完成したコイン型電気二重層キャパシタに
2.5 Vの電圧を印加し、静電容量(正負極の合成容量)
と内部抵抗を測定した。その結果、静電容量と内部抵抗
は、それぞれ、3.94Fと9.5 Ωであった。
The completed coin-type electric double layer capacitor
Apply a voltage of 2.5 V and set the capacitance (combined capacitance of positive and negative electrodes)
And the internal resistance was measured. As a result, the capacitance and the internal resistance were 3.94 F and 9.5 Ω, respectively.

【0100】〔実施例7〕 (1)実施例1のフェノール樹脂Aに対してヘキサメチ
レンテトラミンを硬化剤として10質量%加え、さらに硬
化促進剤としてシュウ酸を0.25質量%混合し、25℃にお
ける粘度が11.5Pa ・s の液状樹脂Gを得た。この樹脂
Gから、実施例1と同様の条件により炭素質材料Gを得
た。なお、炭素化時の400 ℃までの質量減少は、19質量
%であった。この活性炭の比表面積は、1,620 m2/g、
全細孔容積0.93cm3/gであり、直径10〜20Åの細孔容積
の全細孔容積に占める割合は、25%、直径20〜200 Åの
細孔容積の全細孔容積に占める割合は、51%、直径200
Åを超える細孔容積の全細孔容積に占める割合は、6%
であった。
Example 7 (1) 10% by mass of hexamethylenetetramine as a curing agent was added to the phenol resin A of Example 1, and 0.25% by mass of oxalic acid was further mixed as a curing accelerator. A liquid resin G having a viscosity of 11.5 Pa · s was obtained. From this resin G, a carbonaceous material G was obtained under the same conditions as in Example 1. Incidentally, the mass decrease to 400 ° C. during carbonization was 19% by mass. The specific surface area of this activated carbon is 1,620 m 2 / g,
The total pore volume is 0.93 cm 3 / g, and the ratio of the pore volume of 10 to 20 mm in diameter to the total pore volume is 25%, and the ratio of the pore volume of 20 to 200 mm in diameter to the total pore volume. Is 51%, diameter 200
The ratio of the pore volume exceeding Å to the total pore volume is 6%
Met.

【0101】(2)この炭素質材料Gを使用して実施例
1と同様にしてコイン型電気二重層キャパシタを作製し
て特性を評価した。
(2) Using this carbonaceous material G, a coin-type electric double layer capacitor was produced in the same manner as in Example 1, and the characteristics were evaluated.

【0102】完成したコイン型電気二重層キャパシタに
2.5 Vの電圧を印加し、静電容量(正負極の合成容量)
と内部抵抗を測定した。その結果、静電容量と内部抵抗
は、それぞれ、3.88Fと9.1 Ωであった。
The completed coin-type electric double layer capacitor
Apply a voltage of 2.5 V and set the capacitance (combined capacitance of positive and negative electrodes)
And the internal resistance was measured. As a result, the capacitance and the internal resistance were 3.88 F and 9.1 Ω, respectively.

【0103】〔実施例8〕 (1)実施例1のフェノール樹脂Aに対してヘキサメチ
レンテトラミンを硬化剤として10質量%加え、溶剤のプ
ロピレングリコールを5質量%混合し、25℃における粘
度が3.5 Pa ・s の液状樹脂Hを得た。この樹脂Hか
ら、実施例1と同様の条件により炭素質材料Hを得た。
なお、炭素化時の400 ℃までの質量減少は、33質量%で
あった。この活性炭の比表面積は、1,800 m2/g、全細
孔容積1.25cm 3/gであり、直径10〜20Åの細孔容積の全
細孔容積に占める割合は、18%、直径20〜200 Åの細孔
容積の全細孔容積に占める割合は、61%、直径200 Åを
超える細孔容積の全細孔容積に占める割合は、3%であ
った。
Example 8 (1) The phenol resin A of Example 1 was treated with hexamethyl
Add lentetramine as a curing agent by 10% by mass,
Mix 5% by mass of propylene glycol,
A liquid resin H having a degree of 3.5 Pa · s was obtained. Is this resin H
Thus, a carbonaceous material H was obtained under the same conditions as in Example 1.
The mass loss to 400 ° C during carbonization was 33% by mass.
there were. The specific surface area of this activated carbon is 1,800 mTwo/ g, all fine
Hole volume 1.25cm Three/ g, the total pore volume of 10-20 mm in diameter
The percentage of the pore volume is 18% and the pore diameter is 20 ~ 200mm
The ratio of the volume to the total pore volume is 61% and the diameter is 200 mm.
The ratio of the excess pore volume to the total pore volume is 3%.
Was.

【0104】(2)この炭素質材料Hを使用して実施例
1と同様にしてコイン型電気二重層キャパシタを作製し
て特性を評価した。
(2) Using this carbonaceous material H, a coin-type electric double layer capacitor was produced in the same manner as in Example 1, and the characteristics were evaluated.

【0105】完成したコイン型電気二重層キャパシタに
2.5 Vの電圧を印加し、静電容量(正負極の合成容量)
と内部抵抗を測定した。その結果、静電容量と内部抵抗
は、それぞれ、3.51Fと8.8 Ωであった。
The completed coin-type electric double layer capacitor
Apply a voltage of 2.5 V and set the capacitance (combined capacitance of positive and negative electrodes)
And the internal resistance was measured. As a result, the capacitance and the internal resistance were 3.51 F and 8.8 Ω, respectively.

【0106】〔比較例1〕 (1) 実施例1の樹脂Aからリサイクル分取型GPC によ
りフェノール樹脂を構成する重合単位の2〜3量体を除
き、さらに溶媒としてエチレングリコールを15質量%添
加し、25℃における粘度が0.08Pa ・s の液状樹脂Iを
得た。この樹脂Iから実施例1と同様の条件により炭素
質材料Iを得た。なお、炭素化時の400 ℃までの質量減
少は、6質量%であり、賦活時の質量減少は、50質量%
であった。この炭素質材料Iの比表面積は、1,500m2/g
、全細孔容積は、0.73cm3/g であり、直径10〜20Åの
細孔容積の全細孔容積に占める割合は、24%、直径20〜
200 Åの細孔容積の全細孔容積に占める割合は、10%、
直径200 Åを超える細孔容積の全細孔容積に占める割合
は、1%であった。
[Comparative Example 1] (1) A dimer of polymerized units constituting a phenol resin was removed from resin A of Example 1 by a recycle preparative GPC, and 15% by mass of ethylene glycol was further added as a solvent. Thus, a liquid resin I having a viscosity of 0.08 Pa · s at 25 ° C. was obtained. From the resin I, a carbonaceous material I was obtained under the same conditions as in Example 1. The mass loss up to 400 ° C during carbonization was 6% by mass, and the mass loss during activation was 50% by mass.
Met. The specific surface area of this carbonaceous material I is 1,500 m 2 / g
The total pore volume is 0.73 cm 3 / g, and the ratio of the pore volume of 10 to 20 mm in diameter to the total pore volume is 24% and the diameter of 20 to
The proportion of the 200 細孔 pore volume to the total pore volume is 10%,
The ratio of the pore volume exceeding 200 mm in diameter to the total pore volume was 1%.

【0107】(2) この炭素質材料Iを使用して、実施
例1と同様にしてコイン型電気二重層キャパシタを作製
して特性を評価した。
(2) Using this carbonaceous material I, a coin-type electric double layer capacitor was produced in the same manner as in Example 1, and the characteristics were evaluated.

【0108】完成したコイン型電気二重層キャパシタに
2.5 Vの電圧を印加し、静電容量(正負極の合成容量)
と内部抵抗を測定した。その結果、静電容量と内部抵抗
は、それぞれ、2.65Fと12.2Ωであった。
In the completed coin type electric double layer capacitor
Apply a voltage of 2.5 V and set the capacitance (combined capacitance of positive and negative electrodes)
And the internal resistance was measured. As a result, the capacitance and the internal resistance were 2.65 F and 12.2 Ω, respectively.

【0109】〔比較例2〕 (1) 実施例1の樹脂Aからリサイクル分取型GPC によ
りエチレングリコールを除き、25℃における粘度が120
Pa ・s の液状樹脂Jを得た。この樹脂Jから実施例1
と同様の条件により炭素質材料Jを得た。なお、炭素化
時の400 ℃までの質量減少は、5質量%であり、賦活時
の質量減少は、25質量%であった。この炭素質材料Jの
比表面積は、900m2/g 、全細孔容積は、0.41cm3/g であ
り、直径10〜20Åの細孔容積の全細孔容積に占める割合
は、20%、直径20〜200 Åの細孔容積の全細孔容積に占
める割合は、8%、直径200 Åを超える細孔容積の全細
孔容積に占める割合は、2%であった。
Comparative Example 2 (1) Ethylene glycol was removed from resin A of Example 1 by a recycle preparative GPC, and the viscosity at 25 ° C. was 120.
A liquid resin J of Pa · s was obtained. Example 1 from this resin J
Under the same conditions as above, a carbonaceous material J was obtained. The mass loss up to 400 ° C. during carbonization was 5% by mass, and the mass loss during activation was 25% by mass. The specific surface area of the carbonaceous material J is 900 m 2 / g, the total pore volume is 0.41 cm 3 / g, and the ratio of the pore volume of 10 to 20 mm in diameter to the total pore volume is 20%. The ratio of the pore volume having a diameter of 20 to 200 mm to the total pore volume was 8%, and the ratio of the pore volume exceeding 200 mm to the total pore volume was 2%.

【0110】(2) この炭素質材料Jを使用して、実施
例1と同様にしてコイン型電気二重層キャパシタを作製
して特性を評価した。
(2) Using this carbonaceous material J, a coin-type electric double layer capacitor was produced in the same manner as in Example 1, and the characteristics were evaluated.

【0111】完成したコイン型電気二重層キャパシタに
2.5Vの電圧を印加し、静電容量(正負極の合成容量)と
内部抵抗を測定した。その結果、静電容量と内部抵抗
は、それぞれ、1.13F と20.1Ωであった。
A completed coin-type electric double layer capacitor
A voltage of 2.5 V was applied, and the electrostatic capacity (combined capacity of the positive and negative electrodes) and the internal resistance were measured. As a result, the capacitance and the internal resistance were 1.13F and 20.1Ω, respectively.

【0112】〔比較例3〕 (1) 比較例1の樹脂Iからリサイクル分取型GPC によ
りエチレングリコールを10質量%除き、さらに揮発成分
として沸点100 ℃の蒸留水を5質量%添加し、25℃にお
ける粘度が0.5 Pa ・s の液状樹脂Kを得た。この樹脂
Kから実施例1と同様の条件により炭素質材料Kを得
た。なお、炭素化時の400 ℃までの質量減少は、5質量
%であり、賦活時の質量減少は、52質量%であった。
Comparative Example 3 (1) Ethylene glycol was removed from Resin I of Comparative Example 1 by 10% by mass using a recycle preparative GPC, and 5% by mass of distilled water having a boiling point of 100 ° C. was added as a volatile component. A liquid resin K having a viscosity at 0.5 ° C. of 0.5 Pa · s was obtained. A carbonaceous material K was obtained from this resin K under the same conditions as in Example 1. The mass loss up to 400 ° C. during carbonization was 5% by mass, and the mass loss during activation was 52% by mass.

【0113】この炭素質材料Kの比表面積は、1,600m2/
g 、全細孔容積は、0.70cm3/g であり、直径10〜20Åの
細孔容積の全細孔容積に占める割合は、20%、直径20〜
200Åの細孔容積の全細孔容積に占める割合は、4%、
直径200 Åを超える細孔容積の全細孔容積に占める割合
は、1%であった。
The specific surface area of the carbonaceous material K is 1,600 m 2 /
g, the total pore volume is 0.70 cm 3 / g, and the ratio of the pore volume of 10 to 20 mm in diameter to the total pore volume is 20%,
The ratio of the 200Å pore volume to the total pore volume is 4%,
The ratio of the pore volume exceeding 200 mm in diameter to the total pore volume was 1%.

【0114】(2) この炭素質材料Kを使用して、実施
例1と同様にしてコイン型電気二重層キャパシタを作製
して特性を評価した。
(2) Using this carbonaceous material K, a coin-type electric double layer capacitor was produced in the same manner as in Example 1, and the characteristics were evaluated.

【0115】完成したコイン型電気二重層キャパシタに
2.5 Vの電圧を印加し、静電容量(正負極の合成容量)
と内部抵抗を測定した。その結果、静電容量と内部抵抗
は、それぞれ、2.80Fと13.5Ωであった。
In the completed coin type electric double layer capacitor
Apply a voltage of 2.5 V and set the capacitance (combined capacitance of positive and negative electrodes)
And the internal resistance was measured. As a result, the capacitance and the internal resistance were 2.80 F and 13.5Ω, respectively.

【0116】〔比較例4〕 (1) 比較例2の樹脂Jにエチレングリコールを5質量
%添加し、さらに揮発成分として沸点範囲390 〜460 ℃
の4環多環芳香族を3質量%添加することにより、25℃
における粘度が80Pa ・s の液状樹脂Lを得た。この樹
脂Lから実施例1と同様の条件により炭素質材料Lを得
た。なお、炭素化時の400 ℃までの質量減少は、8質量
%であり、賦活時の質量減少は、67質量%であった。
Comparative Example 4 (1) Ethylene glycol was added to the resin J of Comparative Example 2 in an amount of 5% by mass and the boiling point range was 390 to 460 ° C. as a volatile component.
25% by adding 3% by mass of a 4-ring polycyclic aromatic
, A liquid resin L having a viscosity of 80 Pa · s was obtained. From this resin L, a carbonaceous material L was obtained under the same conditions as in Example 1. The mass loss up to 400 ° C. during carbonization was 8% by mass, and the mass loss during activation was 67% by mass.

【0117】この炭素質材料Lの比表面積は2,050m2/g
、全細孔容積は0.89cm3/g であり、直径10〜20Åの細
孔容積の全細孔容積に占める割合は、25%、直径20〜20
0 Åの細孔容積の全細孔容積に占める割合は、5 %、直
径200 Åを超える細孔容積の全細孔容積に占める割合
は、1%であった。
The specific surface area of this carbonaceous material L is 2,050 m 2 / g
, The total pore volume is 0.89 cm 3 / g, and the ratio of the pore volume of 10 to 20 mm in diameter to the total pore volume is 25%, the diameter of 20 to 20 mm.
The ratio of the pore volume of 0% to the total pore volume was 5%, and the ratio of the pore volume exceeding 200 mm in diameter to the total pore volume was 1%.

【0118】(2) この炭素質材料Lを使用して、実施
例1と同様にしてコイン型電気二重層キャパシタを作製
して特性を評価した。
(2) Using this carbonaceous material L, a coin-type electric double layer capacitor was produced in the same manner as in Example 1, and the characteristics were evaluated.

【0119】完成したコイン型電気二重層キャパシタに
2.5 Vの電圧を印加し、静電容量(正負極の合成容量)
と内部抵抗を測定した。その結果、静電容量と内部抵抗
は、それぞれ、2.85Fと11.5Ωであった。
In the completed coin type electric double layer capacitor
Apply a voltage of 2.5 V and set the capacitance (combined capacitance of positive and negative electrodes)
And the internal resistance was measured. As a result, the capacitance and the internal resistance were 2.85 F and 11.5 Ω, respectively.

【0120】〔比較例5〕 (1) 実施例1の樹脂Aを用い、硬化時間を3倍とした
以外は実施例1と同様の条件により炭素質材料Mを得
た。なお、炭素化時の400 ℃までの質量減少は、1質量
%であり、賦活時の質量減少は、40質量%であった。
Comparative Example 5 (1) A carbonaceous material M was obtained under the same conditions as in Example 1 except that the resin A of Example 1 was used and the curing time was tripled. The mass loss up to 400 ° C. during carbonization was 1% by mass, and the mass loss during activation was 40% by mass.

【0121】この炭素質材料Mの比表面積は、1,300m2/
g 、全細孔容積は0.64cm3/g であり、直径10〜20Åの細
孔容積の全細孔容積に占める割合は、15%、直径20〜20
0 Åの細孔容積の全細孔容積に占める割合は、2 %、直
径200 Åを超える細孔容積の全細孔容積に占める割合
は、0.5 %であった。
The specific surface area of the carbonaceous material M is 1,300 m 2 /
g, the total pore volume is 0.64 cm 3 / g, and the ratio of the pore volume of 10 to 20 mm in diameter to the total pore volume is 15%, the diameter of 20 to 20 mm.
The ratio of the pore volume of 0 mm to the total pore volume was 2%, and the ratio of the pore volume exceeding 200 mm in diameter to the total pore volume was 0.5%.

【0122】(2) この炭素質材料Mを使用して、実施
例1と同様にしてコイン型電気二重層キャパシタを作製
して特性を評価した。
(2) Using this carbonaceous material M, a coin-type electric double layer capacitor was produced in the same manner as in Example 1, and the characteristics were evaluated.

【0123】完成したコイン型電気二重層キャパシタに
2.5 Vの電圧を印加し、静電容量(正負極の合成容量)
と内部抵抗を測定した。その結果、静電容量と内部抵抗
は、それぞれ、1.95Fと15.5Ωであった。
The completed coin type electric double layer capacitor
Apply a voltage of 2.5 V and set the capacitance (combined capacitance of positive and negative electrodes)
And the internal resistance was measured. As a result, the capacitance and the internal resistance were 1.95F and 15.5Ω, respectively.

【0124】〔比較例6〕 (1) 25℃における粘度が5Pa ・s かつ180 〜350 ℃
の沸点範囲を持つ揮発成分を含むフェノール樹脂Nを用
い、実施例1と同様の条件により炭素質材料Nを得た。
なお、炭素化時の400 ℃までの質量減少は、51質量%で
あり、賦活時の質量減少は、77質量%であった。
Comparative Example 6 (1) The viscosity at 25 ° C. is 5 Pa · s and 180 to 350 ° C.
The carbonaceous material N was obtained under the same conditions as in Example 1 using a phenol resin N containing a volatile component having a boiling point range of
The mass loss up to 400 ° C. during carbonization was 51% by mass, and the mass loss during activation was 77% by mass.

【0125】この炭素質材料Nの比表面積は、1,200m2/
g 、全細孔容積は、2.55cm3/g であり、直径10〜20Åの
細孔容積の全細孔容積に占める割合は、9%、直径20〜
200Åの細孔容積の全細孔容積に占める割合は、65%、
直径200 Å以上の細孔容積の全細孔容積に占める割合
は、22%であった。
The specific surface area of the carbonaceous material N is 1,200 m 2 /
g, the total pore volume is 2.55 cm 3 / g, and the ratio of the pore volume of 10 to 20 mm in diameter to the total pore volume is 9%,
The ratio of the 200Å pore volume to the total pore volume is 65%,
The ratio of the pore volume having a diameter of 200 mm or more to the total pore volume was 22%.

【0126】(2) この炭素質材料Nを使用して、実施
例1と同様にしてコイン型電気二重層キャパシタを作製
して特性を評価した。
(2) Using this carbonaceous material N, a coin-type electric double layer capacitor was produced in the same manner as in Example 1, and the characteristics were evaluated.

【0127】完成したコイン型電気二重層キャパシタに
2.5 Vの電圧を印加し、静電容量(正負極の合成容量)
と内部抵抗を測定した。その結果、静電容量と内部抵抗
は、それぞれ、1.54Fと27.5Ωであった。
In the completed coin type electric double layer capacitor
Apply a voltage of 2.5 V and set the capacitance (combined capacitance of positive and negative electrodes)
And the internal resistance was measured. As a result, the capacitance and the internal resistance were 1.54 F and 27.5Ω, respectively.

【0128】〔比較例7〕 (1) 比較例2の樹脂Jにエチレングリコールを5質量
%添加することにより、25℃における粘度が35Pa ・s
の液状樹脂Oを得た。この樹脂から実施例1と同様の条
件により炭素質材料Oを得た。なお、炭素化時の400 ℃
までの質量減少は、1質量%であり、賦活時の質量減少
は、64質量%であった。
Comparative Example 7 (1) By adding 5% by mass of ethylene glycol to Resin J of Comparative Example 2, the viscosity at 25 ° C. was 35 Pa · s.
Liquid resin O was obtained. A carbonaceous material O was obtained from this resin under the same conditions as in Example 1. 400 ° C during carbonization
The mass loss up to 1% was 1% by mass, and the mass loss during activation was 64% by mass.

【0129】この炭素質材料Oの比表面積は1,800m2/g
、全細孔容積は0.85cm3/g であり、直径10〜20Åの細
孔容積の全細孔容積に占める割合は、21%、直径20〜20
0 Åの細孔容積の全細孔容積に占める割合は、8%、直
径200 Åを超える細孔容積の全細孔容積に占める割合
は、2%であった。
The specific surface area of this carbonaceous material O is 1,800 m 2 / g
, The total pore volume is 0.85 cm 3 / g, and the ratio of the pore volume of 10 to 20 mm in diameter to the total pore volume is 21% and the diameter of 20 to 20 mm.
The ratio of the pore volume of 0 mm to the total pore volume was 8%, and the ratio of the pore volume exceeding 200 mm in diameter to the total pore volume was 2%.

【0130】(2) この炭素質材料Oを使用して、実施
例1と同様にしてコイン型電気二重層キャパシタを作製
して特性を評価した。
(2) Using this carbonaceous material O, a coin-type electric double layer capacitor was produced in the same manner as in Example 1, and the characteristics were evaluated.

【0131】完成したコイン型電気二重層キャパシタに
2.5 Vの電圧を印加し、静電容量(正負極の合成容量)
と内部抵抗を測定した。その結果、静電容量と内部抵抗
は、それぞれ、2.26Fと9.5 Ωであった。
The completed coin type electric double layer capacitor
Apply a voltage of 2.5 V and set the capacitance (combined capacitance of positive and negative electrodes)
And the internal resistance was measured. As a result, the capacitance and the internal resistance were 2.26 F and 9.5 Ω, respectively.

【0132】〔比較例8〕 (1) 実施例1の樹脂Aに対しレゾール樹脂を20質量部
添加し、25℃における粘度が0.7 Pa ・s の液状樹脂P
を得た。この樹脂Pに対して硬化剤を加えない以外は実
施例1と同様の条件により炭素質材料Pを得た。なお、
炭素化時の400 ℃までの質量減少は、59質量%であり、
賦活時の質量減少は、25質量%であった。
Comparative Example 8 (1) 20 parts by mass of a resole resin was added to resin A of Example 1, and a liquid resin P having a viscosity of 0.7 Pa · s at 25 ° C.
I got A carbonaceous material P was obtained under the same conditions as in Example 1 except that no curing agent was added to the resin P. In addition,
The mass loss to 400 ° C during carbonization is 59% by mass,
The mass loss during activation was 25% by mass.

【0133】この炭素質材料Pの比表面積は、1,750m2/
g 、全細孔容積は、2.51cm3/g であり、直径10〜20Åの
細孔容積の全細孔容積に占める割合は、8%、直径20〜
200Åの細孔容積の全細孔容積に占める割合は、65%、
直径200 Åを超える細孔容積の全細孔容積に占める割合
は、17%であった。
The specific surface area of this carbonaceous material P is 1,750 m 2 /
g, the total pore volume is 2.51 cm 3 / g, and the ratio of the pore volume of 10 to 20 mm in diameter to the total pore volume is 8%,
The ratio of the 200Å pore volume to the total pore volume is 65%,
The ratio of the pore volume exceeding 200 mm in diameter to the total pore volume was 17%.

【0134】(2) この炭素質材料Pを使用して、実施
例1と同様にしてコイン型電気二重層キャパシタを作製
して特性を評価した。
(2) Using this carbonaceous material P, a coin-type electric double layer capacitor was produced in the same manner as in Example 1, and the characteristics were evaluated.

【0135】完成したコイン型電気二重層キャパシタに
2.5 Vの電圧を印加し、静電容量(正負極の合成容量)
と内部抵抗を測定した。その結果、静電容量と内部抵抗
は、それぞれ、1.39Fと24.3Ωであった。
The completed coin type electric double layer capacitor
Apply a voltage of 2.5 V and set the capacitance (combined capacitance of positive and negative electrodes)
And the internal resistance was measured. As a result, the capacitance and the internal resistance were 1.39F and 24.3Ω, respectively.

【0136】〔比較例9〕 (1) 比較例1の樹脂Iからリサイクル分取型GPC によ
りエチレングリコールを2質量%除き、25℃における粘
度が1Pa ・s の液状樹脂Qを得た。この樹脂Qに対し
て硬化剤を加えない以外は実施例1と同様の条件により
炭素質材料Qを得た。なお、炭素化時の400 ℃までの質
量減少は、52質量%であり、賦活時の質量減少は、44質
量%であった。
Comparative Example 9 (1) Ethylene glycol was removed from the resin I of Comparative Example 1 by 2% by mass using a recycle preparative GPC to obtain a liquid resin Q having a viscosity of 1 Pa · s at 25 ° C. A carbonaceous material Q was obtained under the same conditions as in Example 1 except that no curing agent was added to the resin Q. The mass loss up to 400 ° C. during carbonization was 52% by mass, and the mass loss during activation was 44% by mass.

【0137】この炭素質材料Qの比表面積は、1,500m2/
g 、全細孔容積は、1.61cm3/g であり、直径10〜20Åの
細孔容積の全細孔容積に占める割合は、18%、直径20〜
200Åの細孔容積の全細孔容積に占める割合は、60%、
直径200 Åを超える細孔容積の全細孔容積に占める割合
は、20%であった。
The specific surface area of the carbonaceous material Q is 1,500 m 2 /
g, the total pore volume is 1.61 cm 3 / g, and the ratio of the pore volume of 10-20 mm in diameter to the total pore volume is 18%,
The ratio of the 200Å pore volume to the total pore volume is 60%,
The ratio of the pore volume exceeding 200 mm in diameter to the total pore volume was 20%.

【0138】(2) この炭素質材料Qを使用して、実施
例1と同様にしてコイン型電気二重層キャパシタを作製
して特性を評価した。
(2) Using this carbonaceous material Q, a coin-type electric double layer capacitor was produced in the same manner as in Example 1, and the characteristics were evaluated.

【0139】完成したコイン型電気二重層キャパシタに
2.5 Vの電圧を印加し、静電容量(正負極の合成容量)
と内部抵抗を測定した。その結果、静電容量と内部抵抗
は、それぞれ、2.10Fと19.5Ωであった。
A completed coin-type electric double layer capacitor
Apply a voltage of 2.5 V and set the capacitance (combined capacitance of positive and negative electrodes)
And the internal resistance was measured. As a result, the capacitance and the internal resistance were 2.10 F and 19.5 Ω, respectively.

【0140】〔比較例10〕 (1)実施例1のフェノール樹脂Aに対してヘキサメチ
レンテトラミンを硬化剤として0.5 質量%加え、25℃に
おける粘度が4.5 Pa ・s の液状樹脂Rを得た。この樹
脂Rから、実施例1と同様の条件により炭素質材料Rを
得た。なお、炭素化時の400 ℃までの質量減少は、27質
量%であった。この活性炭の比表面積は、1,050 m2/
g、全細孔容積0.75cm3/gであり、直径10〜20Åの細孔
容積の全細孔容積に占める割合は、18%、直径20〜200
Åの細孔容積の全細孔容積に占める割合は、61%、直径
200 Åを超える細孔容積の全細孔容積に占める割合は、
3%であった。
Comparative Example 10 (1) To phenol resin A of Example 1 was added 0.5% by mass of hexamethylenetetramine as a curing agent to obtain a liquid resin R having a viscosity of 4.5 Pa · s at 25 ° C. From this resin R, a carbonaceous material R was obtained under the same conditions as in Example 1. Incidentally, the mass decrease to 400 ° C. during carbonization was 27% by mass. The specific surface area of this activated carbon is 1,050 m 2 /
g, the total pore volume is 0.75 cm 3 / g, and the ratio of the pore volume having a diameter of 10 to 20 ° to the total pore volume is 18%, and the diameter is 20 to 200 mm.
The ratio of the pore volume of Å to the total pore volume is 61%, the diameter is
The ratio of the pore volume exceeding 200 mm to the total pore volume is
3%.

【0141】(2)この炭素質材料Rを使用して実施例
1と同様にしてコイン型電気二重層キャパシタを作製し
て特性を評価した。
(2) Using this carbonaceous material R, a coin-type electric double layer capacitor was produced in the same manner as in Example 1, and the characteristics were evaluated.

【0142】完成したコイン型電気二重層キャパシタに
2.5 Vの電圧を印加し、静電容量(正負極の合成容量)
と内部抵抗を測定した。その結果、静電容量と内部抵抗
は、それぞれ、1.32Fと22.5Ωであった。以上、実施
例、比較例の結果を表1にまとめて示した。
The completed coin-type electric double layer capacitor
Apply a voltage of 2.5 V and set the capacitance (combined capacitance of positive and negative electrodes)
And the internal resistance was measured. As a result, the capacitance and the internal resistance were 1.32 F and 22.5 Ω, respectively. The results of the examples and comparative examples are summarized in Table 1 above.

【0143】[0143]

【表1】 [Table 1]

【0144】[0144]

【発明の効果】本発明の炭素質材料は、主に静電容量の
発現に寄与するミクロ細孔域と、主に電解質イオンの供
給源として寄与するメソ細孔域の細孔容積がそれぞれ最
適化されている結果、この炭素質材料を主として用いた
電気二重層キャパシタ用の電極が嵩高とならず、単位体
積当たりの静電容量が高く、また内部抵抗が低い電気二
重層キャパシタを提供することができる。
According to the carbonaceous material of the present invention, the pore volume of the micropore region mainly contributing to the development of the capacitance and the pore volume of the mesopore region mainly contributing as the supply source of the electrolyte ions are optimized. As a result, an electrode for an electric double layer capacitor mainly using this carbonaceous material does not become bulky, and provides an electric double layer capacitor having a high capacitance per unit volume and a low internal resistance. Can be.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 茂木 康弘 東京都千代田区九段北四丁目1−3飛栄九 段北ビル アドケムコ株式会社内 (72)発明者 田林 一晃 東京都千代田区九段北四丁目1−3飛栄九 段北ビル アドケムコ株式会社内 (72)発明者 下山 徹 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社内 (72)発明者 山田 和彦 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社内 (72)発明者 篠崎 泰夫 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社内 Fターム(参考) 4G046 CB08 HA03 HB05 HC03 HC08 HC09 HC10 HC11  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yasuhiro Mogi 1-3-1, Kudankita 4-chome, Chiyoda-ku, Tokyo Inside the Danei Building Ad Chemco Co., Ltd. (72) Inventor Kazuaki Tabayashi 4-chome, Kudankita, Chiyoda-ku, Tokyo 1-3 Toei Eikyu Dankoku Building Ad Chemco Co., Ltd. (72) Inventor Toru Shimoyama 1150 Hazawacho, Kanagawa-ku, Yokohama-shi, Kanagawa Prefecture Asahi Glass Co., Ltd. (72) Inventor Kazuhiko Yamada 1150 Hazawacho, Kanagawa-ku, Yokohama-shi, Kanagawa Prefecture Address Asahi Glass Co., Ltd. (72) Inventor Yasuo Shinozaki 1150 Hazawacho, Kanagawa-ku, Yokohama-shi, Kanagawa Prefecture F-term in Asahi Glass Co., Ltd. 4G046 CB08 HA03 HB05 HC03 HC08 HC09 HC10 HC11

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 細孔直径10〜20Åの範囲のミクロ細孔容
積が全細孔容積の10〜60%を、細孔直径20〜200 Åの範
囲のメソ細孔容積が全細孔容積の20〜70%を、および細
孔直径200 Åを超えるマクロ細孔容積が全細孔容積の20
%以下を占めるとともに、単位質量あたりの全細孔容積
が0.3 〜2.0 cm3/g であり、かつ、比表面積が1,000 〜
2,500m2/g であることを特徴とする炭素質材料。
A micropore volume having a pore diameter in the range of 10 to 20 mm accounts for 10 to 60% of the total pore volume, and a mesopore volume having a pore diameter in the range of 20 to 200 mm corresponds to the total pore volume. Macropore volume greater than 20-70% and pore diameter greater than 200 mm
%, The total pore volume per unit mass is 0.3 to 2.0 cm 3 / g, and the specific surface area is 1,000 to
A carbonaceous material characterized by being 2,500 m 2 / g.
【請求項2】 多孔性の炭素質材料を製造する方法にお
いて、(1) 沸点が120 〜400 ℃の揮発成分を含み、か
つ25℃における粘度が0.1〜100 Pa ・s である液状
の熱硬化性樹脂を硬化して硬化体を得る硬化工程、(2)
前記硬化体を粉砕する粉砕工程、(3) 粉砕した前記硬
化体を非酸化性雰囲気下で炭素化させ、炭素化時におけ
る400 ℃までの質量減少が炭素化前の2〜50質量%であ
る炭素化体を得る炭素化工程、および(4) 前記炭素化
体を賦活させる賦活工程からなることを特徴とする炭素
質材料の製造方法。
2. A method for producing a porous carbonaceous material, comprising: (1) a liquid containing a volatile component having a boiling point of 120 to 400 ° C. and a viscosity at 25 ° C. of 0.1 to 100 Pa · s. A curing step of curing a thermosetting resin to obtain a cured body, (2)
A pulverizing step of pulverizing the cured product, (3) the pulverized cured product is carbonized in a non-oxidizing atmosphere, and the mass reduction to 400 ° C. during carbonization is 2 to 50% by mass before carbonization A method for producing a carbonaceous material, comprising: a carbonization step of obtaining a carbonized body; and (4) an activation step of activating the carbonized body.
【請求項3】 前記工程 (1) において、前記熱硬化性
樹脂に硬化剤を前記熱硬化性樹脂に対して1質量%以上
加えて混練し、さらに硬化促進剤を前記熱硬化性樹脂に
対して5質量%以下加えて混練して混練体を得た後、当
該混練体を硬化して硬化体を得る請求項2に記載の炭素
質材料の製造方法。
3. In the step (1), a curing agent is added to the thermosetting resin in an amount of 1% by mass or more based on the thermosetting resin and kneaded, and a curing accelerator is added to the thermosetting resin. The method for producing a carbonaceous material according to claim 2, wherein the kneaded body is obtained by kneading a kneaded body by adding and kneading 5% by mass or less.
【請求項4】 前記熱硬化性樹脂がフェノール樹脂であ
る請求項2又は3に記載の炭素質材料の製造方法。
4. The method according to claim 2, wherein the thermosetting resin is a phenol resin.
【請求項5】 請求項2〜4のいずれかに記載の炭素質
材料の製造方法により得られた炭素質材料であって、細
孔直径10〜20Åの範囲のミクロ細孔容積が全細孔容積の
10〜60%であり、細孔直径20〜200 Åの範囲のメソ細孔
容積が全細孔容積の20〜70%であり、細孔直径200 Åを
超えるマクロ細孔容積が全細孔容積の20%以下であり、
単位質量あたりの全細孔容積が0.3 〜2.0 cm3/g であ
り、かつ、比表面積が1,000 〜2,500m2/g であることを
特徴とする炭素質材料。
5. A carbonaceous material obtained by the method for producing a carbonaceous material according to any one of claims 2 to 4, wherein a micropore volume having a pore diameter of 10 to 20 ° is a total pore volume. Volumetric
10 to 60%, the mesopore volume in the range of pore diameter 20 to 200 mm is 20 to 70% of the total pore volume, and the macropore volume exceeding the pore diameter 200 mm is the total pore volume. Less than 20% of
A carbonaceous material having a total pore volume per unit mass of 0.3 to 2.0 cm 3 / g and a specific surface area of 1,000 to 2,500 m 2 / g.
【請求項6】 請求項1に記載の炭素質材料を含む電極
を有することを特徴とする電気二重層キャパシタ。
6. An electric double layer capacitor comprising an electrode containing the carbonaceous material according to claim 1.
【請求項7】 有機溶媒に電解質を溶解した有機系電解
液を有する請求項6に記載の電気二重層キャパシタ。
7. The electric double layer capacitor according to claim 6, comprising an organic electrolytic solution obtained by dissolving an electrolyte in an organic solvent.
【請求項8】 有機溶媒が、エチレンカーボネート、プ
ロピレンカーボネート、ブチレンカーボネート、ジメチ
ルカーボネート、エチルメチルカーボネート、ジエチル
カーボネート、アセトニトリル、グルタロニトリル、バ
レロニトリル、スルホラン及びスルホラン誘導体からな
る群から選ばれる1種以上であり、又電解質として、R
1234+ 若しくはR1234+ (R
1 、R 2 、R3 、R4 はそれぞれ独立に炭素数1〜6の
アルキル基を示す。)で表される第4級オニウムカチオ
ンと、BF4 - 、PF4 - 、ClO4 - 、CF3 SO3
- 及び(SO25 )(SO26 )N- (R5 、R6
はそれぞれ独立に炭素数1〜4のアルキル基を示す。)
からなる群から選ばれるアニオンとからなる塩を含む有
機系電解液を有する請求項7に記載の電気二重層キャパ
シタ。
8. The method according to claim 1, wherein the organic solvent is ethylene carbonate,
Lopylene carbonate, butylene carbonate, dimethyl
Leucarbonate, ethyl methyl carbonate, diethyl
Carbonate, acetonitrile, glutaronitrile,
From relonitrile, sulfolane and sulfolane derivatives.
At least one member selected from the group consisting of
1 RTwo RThree RFour N+Or R1 RTwo RThree RFour P+(R
1 , R Two , RThree , RFour Each independently has 1 to 6 carbon atoms
Shows an alkyl group. ) Quaternary onium kathio represented by
And BFFour -, PFFour -, ClOFour -, CFThree SOThree
-And (SOTwo RFive ) (SOTwo R6 ) N-(RFive , R6 
Each independently represents an alkyl group having 1 to 4 carbon atoms. )
A salt comprising an anion selected from the group consisting of
The electric double layer capacity according to claim 7, which has a mechanical system electrolyte.
Sita.
JP2000100379A 1999-04-30 2000-04-03 Carbonaceous material, method for producing and electric double layer capacitor using the carbonaceous material Pending JP2001089119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000100379A JP2001089119A (en) 1999-04-30 2000-04-03 Carbonaceous material, method for producing and electric double layer capacitor using the carbonaceous material

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP12337899 1999-04-30
JP20297299 1999-07-16
JP11-123378 1999-07-16
JP11-202972 1999-07-16
JP2000100379A JP2001089119A (en) 1999-04-30 2000-04-03 Carbonaceous material, method for producing and electric double layer capacitor using the carbonaceous material

Publications (1)

Publication Number Publication Date
JP2001089119A true JP2001089119A (en) 2001-04-03

Family

ID=27314705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000100379A Pending JP2001089119A (en) 1999-04-30 2000-04-03 Carbonaceous material, method for producing and electric double layer capacitor using the carbonaceous material

Country Status (1)

Country Link
JP (1) JP2001089119A (en)

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002128514A (en) * 2000-10-16 2002-05-09 Nisshinbo Ind Inc Carbonaceous material, polarizable electrode for electric double layer capacitor and electric double layer capacitor
JP2003082533A (en) * 2001-09-10 2003-03-19 Showa Denko Kk Carbon fiber of vapor phase and use thereof
JP2006086010A (en) * 2004-09-16 2006-03-30 Nec Corp Carbon material for non-aqueous electrolyte secondary battery negative electrode material, and secondary battery negative electrode material using this, and non-aqueous electrolyte secondary battery
JP2006324604A (en) * 2005-05-20 2006-11-30 Frontier Carbon Corp Electric double layer capacitor electrode
JP2007266158A (en) * 2006-03-28 2007-10-11 Sumitomo Bakelite Co Ltd Carbon material for electric double-layer capacitor, method of manufacturing same, and electric double-layer capacitor including the material
WO2007125896A1 (en) * 2006-04-25 2007-11-08 Showa Denko K. K. Electric double-layered capacitor
JP2008060282A (en) * 2006-08-31 2008-03-13 Seiko Instruments Inc Electric double layer capacitor
JP2008535754A (en) * 2005-03-29 2008-09-04 ブリティッシュ アメリカン タバコ (インヴェストメンツ) リミテッド Porous carbon material and smoking article and smoke filter containing the material
KR20100065112A (en) * 2008-12-05 2010-06-15 후지 쥬코교 가부시키가이샤 Positive electrode active material for lithium ion storage device, and lithium ion storage device making use of the same
JP2010135648A (en) * 2008-12-05 2010-06-17 Fuji Heavy Ind Ltd Pre-doped power storage device and negative electrode material used therefor
JP2010520806A (en) * 2007-03-14 2010-06-17 ブリュッヒャー ゲーエムベーハー Adsorbents based on activated carbon with meso and macroporosity
JP2010205827A (en) * 2009-03-02 2010-09-16 Asahi Kasei Corp Nonaqueous lithium type electricity storage element
JP2010205846A (en) * 2009-03-02 2010-09-16 Asahi Kasei Corp Nonaqueous lithium type electricity storage element
JP2010219323A (en) * 2009-03-17 2010-09-30 National Univ Corp Shizuoka Univ Electrode for electric double layer capacitor
JP2010267875A (en) * 2009-05-15 2010-11-25 Asahi Kasei Corp Negative electrode for nonaqueous lithium type electric storage element, and nonaqueous lithium type electric storage element using the same
JP2010267878A (en) * 2009-05-15 2010-11-25 Asahi Kasei Corp Nonaqueous lithium type electric storage element
JP2011020907A (en) * 2009-07-17 2011-02-03 Kansai Coke & Chem Co Ltd Activated carbon and electric double layer capacitor using the same
JP2011204903A (en) * 2010-03-25 2011-10-13 Asahi Kasei Corp Negative electrode material for nonaqueous lithium-type electricity storage element, and the nonaqueous lithium-type electricity storage element using the same
JP2012074467A (en) * 2010-09-28 2012-04-12 Asahi Kasei Corp Anode material, method of manufacturing the same, and electricity-storage device
WO2012050104A1 (en) * 2010-10-15 2012-04-19 横浜ゴム株式会社 Conductive polymer/porous carbon material composite and electrode material using same
JP2012089569A (en) * 2010-10-15 2012-05-10 Yokohama Rubber Co Ltd:The Electroconductive polymer/porous carbon material complex
JP2012160456A (en) * 2007-04-04 2012-08-23 Sony Corp Electrode material for secondary battery and method for producing the same, and material for electric double layer capacitor and method for producing the same
JP2012193100A (en) * 2011-03-16 2012-10-11 Ind Technol Res Inst Porous carbon material, and manufacturing method thereof
CN102741959A (en) * 2010-01-22 2012-10-17 康宁股份有限公司 Microporous activated carbon for EDLCS
JP2013526038A (en) * 2010-04-21 2013-06-20 コーニング インコーポレイテッド Electrochemical capacitor with lithium-containing electrolyte
JP2013201170A (en) * 2012-03-23 2013-10-03 Aion Kk Active carbon for power storage device electrode and process of manufacturing the same
JP2013539245A (en) * 2010-10-04 2013-10-17 コーニング インコーポレイテッド Electrolyte system and electrolytic cell
JP2013240345A (en) * 2009-09-10 2013-12-05 British American Tobacco (Investments) Ltd Smoke filtration
JP2014001093A (en) * 2012-06-15 2014-01-09 Toyo Tanso Kk Porous carbon material, manufacturing method thereof and electric double layer capacitor using porous carbon material
JP5463144B2 (en) * 2007-11-16 2014-04-09 大阪瓦斯株式会社 Cathode material for non-aqueous lithium storage element
JP2014511322A (en) * 2010-12-28 2014-05-15 エナジー2 テクノロジーズ,インコーポレイテッド Carbon materials with improved electrochemical properties
JP2014105119A (en) * 2012-11-26 2014-06-09 Gunma Univ Sulfur-doped active carbon for storage device and method for producing the same
JP2014165435A (en) * 2013-02-27 2014-09-08 Akita Univ Electrochemical capacitor
JP2015526373A (en) * 2012-07-27 2015-09-10 ハンワ ケミカル コーポレイション Porous carbon and method for producing the same
US9425000B2 (en) 2012-10-30 2016-08-23 Industrial Technology Research Institute Porous carbon material and manufacturing method thereof and supercapacitor
US9580321B2 (en) 2009-07-01 2017-02-28 Basf Se Ultrapure synthetic carbon materials
JP2017171538A (en) * 2016-03-24 2017-09-28 関西熱化学株式会社 Active carbon and method for producing the same, and electric double layer capacitor comprising the active carbon
US9985289B2 (en) 2010-09-30 2018-05-29 Basf Se Enhanced packing of energy storage particles
US10141122B2 (en) 2006-11-15 2018-11-27 Energ2, Inc. Electric double layer capacitance device
US10147950B2 (en) 2015-08-28 2018-12-04 Group 14 Technologies, Inc. Materials with extremely durable intercalation of lithium and manufacturing methods thereof
JP2019517145A (en) * 2016-05-20 2019-06-20 エイブイエックス コーポレイション Multi-cell ultra capacitor
US10454103B2 (en) 2013-03-14 2019-10-22 Group14 Technologies, Inc. Composite carbon materials comprising lithium alloying electrochemical modifiers
US10490358B2 (en) 2011-04-15 2019-11-26 Basf Se Flow ultracapacitor
US10522836B2 (en) 2011-06-03 2019-12-31 Basf Se Carbon-lead blends for use in hybrid energy storage devices
JP2020500813A (en) * 2016-11-30 2020-01-16 ソルヴェイ(ソシエテ アノニム) Advanced porous carbonaceous materials and methods for their preparation
US10590277B2 (en) 2014-03-14 2020-03-17 Group14 Technologies, Inc. Methods for sol-gel polymerization in absence of solvent and creation of tunable carbon structure from same
US10629387B2 (en) 2016-06-06 2020-04-21 Sumitomo Electric Industries, Ltd. Porous carbon material for electric double-layer capacitor electrode, method of producing the same, and electric double-layer capacitor electrode
JP2020077834A (en) * 2018-11-07 2020-05-21 出光興産株式会社 Electrode material, electrode, and method of manufacturing electrode
US10714750B2 (en) 2007-04-04 2020-07-14 Sony Corporation Porous carbon materials and production process thereof, and adsorbents, masks, adsorbing sheets and carriers
US10763501B2 (en) 2015-08-14 2020-09-01 Group14 Technologies, Inc. Nano-featured porous silicon materials
US10814304B2 (en) 2013-11-05 2020-10-27 Group14 Technologies, Inc. Carbon-based compositions with highly efficient volumetric gas sorption
US11174167B1 (en) 2020-08-18 2021-11-16 Group14 Technologies, Inc. Silicon carbon composites comprising ultra low Z
US11335903B2 (en) 2020-08-18 2022-05-17 Group14 Technologies, Inc. Highly efficient manufacturing of silicon-carbon composites materials comprising ultra low z
US11401363B2 (en) 2012-02-09 2022-08-02 Basf Se Preparation of polymeric resins and carbon materials
US11611071B2 (en) 2017-03-09 2023-03-21 Group14 Technologies, Inc. Decomposition of silicon-containing precursors on porous scaffold materials
US11639292B2 (en) 2020-08-18 2023-05-02 Group14 Technologies, Inc. Particulate composite materials
JP7444940B2 (en) 2016-05-20 2024-03-06 キョーセラ・エイブイエックス・コンポーネンツ・コーポレーション Ultracapacitors used at high temperatures

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04154106A (en) * 1990-10-18 1992-05-27 Asahi Glass Co Ltd Electric double layer capacitor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04154106A (en) * 1990-10-18 1992-05-27 Asahi Glass Co Ltd Electric double layer capacitor

Cited By (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002128514A (en) * 2000-10-16 2002-05-09 Nisshinbo Ind Inc Carbonaceous material, polarizable electrode for electric double layer capacitor and electric double layer capacitor
JP2003082533A (en) * 2001-09-10 2003-03-19 Showa Denko Kk Carbon fiber of vapor phase and use thereof
JP2006086010A (en) * 2004-09-16 2006-03-30 Nec Corp Carbon material for non-aqueous electrolyte secondary battery negative electrode material, and secondary battery negative electrode material using this, and non-aqueous electrolyte secondary battery
JP2008535754A (en) * 2005-03-29 2008-09-04 ブリティッシュ アメリカン タバコ (インヴェストメンツ) リミテッド Porous carbon material and smoking article and smoke filter containing the material
JP2006324604A (en) * 2005-05-20 2006-11-30 Frontier Carbon Corp Electric double layer capacitor electrode
JP2007266158A (en) * 2006-03-28 2007-10-11 Sumitomo Bakelite Co Ltd Carbon material for electric double-layer capacitor, method of manufacturing same, and electric double-layer capacitor including the material
WO2007125896A1 (en) * 2006-04-25 2007-11-08 Showa Denko K. K. Electric double-layered capacitor
JPWO2007125896A1 (en) * 2006-04-25 2009-09-10 昭和電工株式会社 Electric double layer capacitor
US7974074B2 (en) 2006-04-25 2011-07-05 Showa Denko K.K. Electric double-layered capacitor
JP2008060282A (en) * 2006-08-31 2008-03-13 Seiko Instruments Inc Electric double layer capacitor
US10141122B2 (en) 2006-11-15 2018-11-27 Energ2, Inc. Electric double layer capacitance device
US10600581B2 (en) 2006-11-15 2020-03-24 Basf Se Electric double layer capacitance device
US10532071B2 (en) 2007-03-14 2020-01-14 BLüCHER GMBH High-performance adsorbents based on activated carbon having high meso- and macroporosity
JP2010520806A (en) * 2007-03-14 2010-06-17 ブリュッヒャー ゲーエムベーハー Adsorbents based on activated carbon with meso and macroporosity
KR101096545B1 (en) * 2007-03-14 2011-12-20 블뤼허 게엠베하 High-performance adsorbents based on activated carbon having high meso- and macroporosity
US10714750B2 (en) 2007-04-04 2020-07-14 Sony Corporation Porous carbon materials and production process thereof, and adsorbents, masks, adsorbing sheets and carriers
US10756346B2 (en) 2007-04-04 2020-08-25 Sony Corporation Porous Carbon Material
US11545665B2 (en) 2007-04-04 2023-01-03 Sony Corporation Carbon-polymer complex
JP2012160456A (en) * 2007-04-04 2012-08-23 Sony Corp Electrode material for secondary battery and method for producing the same, and material for electric double layer capacitor and method for producing the same
JP2016006011A (en) * 2007-04-04 2016-01-14 ソニー株式会社 Electrode material, capacitor material and porous carbon material, and electronic device and capacitor
US11955638B2 (en) 2007-04-04 2024-04-09 Sony Corporation Sheet-shaped member
JP5463144B2 (en) * 2007-11-16 2014-04-09 大阪瓦斯株式会社 Cathode material for non-aqueous lithium storage element
JP2010135648A (en) * 2008-12-05 2010-06-17 Fuji Heavy Ind Ltd Pre-doped power storage device and negative electrode material used therefor
KR101596511B1 (en) 2008-12-05 2016-02-22 후지 주코교 카부시키카이샤 Positive electrode active material for lithium ion storage device and lithium ion storage device making use of the same
KR20100065112A (en) * 2008-12-05 2010-06-15 후지 쥬코교 가부시키가이샤 Positive electrode active material for lithium ion storage device, and lithium ion storage device making use of the same
JP2010135649A (en) * 2008-12-05 2010-06-17 Fuji Heavy Ind Ltd Positive electrode active material for lithium ion power storage device, and the lithium ion power storage device using the same
JP2010205827A (en) * 2009-03-02 2010-09-16 Asahi Kasei Corp Nonaqueous lithium type electricity storage element
JP2010205846A (en) * 2009-03-02 2010-09-16 Asahi Kasei Corp Nonaqueous lithium type electricity storage element
JP2010219323A (en) * 2009-03-17 2010-09-30 National Univ Corp Shizuoka Univ Electrode for electric double layer capacitor
JP2010267878A (en) * 2009-05-15 2010-11-25 Asahi Kasei Corp Nonaqueous lithium type electric storage element
JP2010267875A (en) * 2009-05-15 2010-11-25 Asahi Kasei Corp Negative electrode for nonaqueous lithium type electric storage element, and nonaqueous lithium type electric storage element using the same
US9580321B2 (en) 2009-07-01 2017-02-28 Basf Se Ultrapure synthetic carbon materials
US10287170B2 (en) 2009-07-01 2019-05-14 Basf Se Ultrapure synthetic carbon materials
JP2011020907A (en) * 2009-07-17 2011-02-03 Kansai Coke & Chem Co Ltd Activated carbon and electric double layer capacitor using the same
JP2013240345A (en) * 2009-09-10 2013-12-05 British American Tobacco (Investments) Ltd Smoke filtration
CN102741959A (en) * 2010-01-22 2012-10-17 康宁股份有限公司 Microporous activated carbon for EDLCS
JP2013518413A (en) * 2010-01-22 2013-05-20 コーニング インコーポレイテッド Microporous activated carbon for EDLC
JP2011204903A (en) * 2010-03-25 2011-10-13 Asahi Kasei Corp Negative electrode material for nonaqueous lithium-type electricity storage element, and the nonaqueous lithium-type electricity storage element using the same
JP2013526038A (en) * 2010-04-21 2013-06-20 コーニング インコーポレイテッド Electrochemical capacitor with lithium-containing electrolyte
JP2012074467A (en) * 2010-09-28 2012-04-12 Asahi Kasei Corp Anode material, method of manufacturing the same, and electricity-storage device
US9985289B2 (en) 2010-09-30 2018-05-29 Basf Se Enhanced packing of energy storage particles
JP2013539245A (en) * 2010-10-04 2013-10-17 コーニング インコーポレイテッド Electrolyte system and electrolytic cell
WO2012050104A1 (en) * 2010-10-15 2012-04-19 横浜ゴム株式会社 Conductive polymer/porous carbon material composite and electrode material using same
JP2012089569A (en) * 2010-10-15 2012-05-10 Yokohama Rubber Co Ltd:The Electroconductive polymer/porous carbon material complex
JP7114260B2 (en) 2010-12-28 2022-08-08 ビーエーエスエフ ソシエタス・ヨーロピア Carbon materials with improved electrochemical properties
JP2018115106A (en) * 2010-12-28 2018-07-26 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Carbon material in which electrochemical characteristics are improved
CN108538625A (en) * 2010-12-28 2018-09-14 巴斯福股份公司 Include the carbon material of the electrochemical properties of enhancing
JP2014511322A (en) * 2010-12-28 2014-05-15 エナジー2 テクノロジーズ,インコーポレイテッド Carbon materials with improved electrochemical properties
JP2012193100A (en) * 2011-03-16 2012-10-11 Ind Technol Res Inst Porous carbon material, and manufacturing method thereof
US10490358B2 (en) 2011-04-15 2019-11-26 Basf Se Flow ultracapacitor
US10522836B2 (en) 2011-06-03 2019-12-31 Basf Se Carbon-lead blends for use in hybrid energy storage devices
US11999828B2 (en) 2012-02-09 2024-06-04 Group14 Technologies, Inc. Preparation of polymeric resins and carbon materials
US11732079B2 (en) 2012-02-09 2023-08-22 Group14 Technologies, Inc. Preparation of polymeric resins and carbon materials
US11401363B2 (en) 2012-02-09 2022-08-02 Basf Se Preparation of polymeric resins and carbon materials
US11718701B2 (en) 2012-02-09 2023-08-08 Group14 Technologies, Inc. Preparation of polymeric resins and carbon materials
US11725074B2 (en) 2012-02-09 2023-08-15 Group 14 Technologies, Inc. Preparation of polymeric resins and carbon materials
US12006400B2 (en) 2012-02-09 2024-06-11 Group14 Technologies, Inc. Preparation of polymeric resins and carbon materials
JP2013201170A (en) * 2012-03-23 2013-10-03 Aion Kk Active carbon for power storage device electrode and process of manufacturing the same
JP2014001093A (en) * 2012-06-15 2014-01-09 Toyo Tanso Kk Porous carbon material, manufacturing method thereof and electric double layer capacitor using porous carbon material
JP2015526373A (en) * 2012-07-27 2015-09-10 ハンワ ケミカル コーポレイション Porous carbon and method for producing the same
US9425000B2 (en) 2012-10-30 2016-08-23 Industrial Technology Research Institute Porous carbon material and manufacturing method thereof and supercapacitor
JP2014105119A (en) * 2012-11-26 2014-06-09 Gunma Univ Sulfur-doped active carbon for storage device and method for producing the same
JP2014165435A (en) * 2013-02-27 2014-09-08 Akita Univ Electrochemical capacitor
US11495793B2 (en) 2013-03-14 2022-11-08 Group14 Technologies, Inc. Composite carbon materials comprising lithium alloying electrochemical modifiers
US10714744B2 (en) 2013-03-14 2020-07-14 Group14 Technologies, Inc. Composite carbon materials comprising lithium alloying electrochemical modifiers
US10454103B2 (en) 2013-03-14 2019-10-22 Group14 Technologies, Inc. Composite carbon materials comprising lithium alloying electrochemical modifiers
US11707728B2 (en) 2013-11-05 2023-07-25 Group14 Technologies, Inc. Carbon-based compositions with highly efficient volumetric gas sorption
US10814304B2 (en) 2013-11-05 2020-10-27 Group14 Technologies, Inc. Carbon-based compositions with highly efficient volumetric gas sorption
US11661517B2 (en) 2014-03-14 2023-05-30 Group14 Technologies, Inc. Methods for sol-gel polymerization in absence of solvent and creation of tunable carbon structure from same
US10711140B2 (en) 2014-03-14 2020-07-14 Group14 Technologies, Inc. Methods for sol-gel polymerization in absence of solvent and creation of tunable carbon structure from same
US10590277B2 (en) 2014-03-14 2020-03-17 Group14 Technologies, Inc. Methods for sol-gel polymerization in absence of solvent and creation of tunable carbon structure from same
US11611073B2 (en) 2015-08-14 2023-03-21 Group14 Technologies, Inc. Composites of porous nano-featured silicon materials and carbon materials
US11942630B2 (en) 2015-08-14 2024-03-26 Group14 Technologies, Inc. Nano-featured porous silicon materials
US10763501B2 (en) 2015-08-14 2020-09-01 Group14 Technologies, Inc. Nano-featured porous silicon materials
US10784512B2 (en) 2015-08-28 2020-09-22 Group14 Technologies, Inc. Materials with extremely durable intercalation of lithium and manufacturing methods thereof
US11437621B2 (en) 2015-08-28 2022-09-06 Group14 Technologies, Inc. Materials with extremely durable intercalation of lithium and manufacturing methods thereof
US10923722B2 (en) 2015-08-28 2021-02-16 Group14 Technologies, Inc. Materials with extremely durable intercalation of lithium and manufacturing methods thereof
US11495798B1 (en) 2015-08-28 2022-11-08 Group14 Technologies, Inc. Materials with extremely durable intercalation of lithium and manufacturing methods thereof
US10608254B2 (en) 2015-08-28 2020-03-31 Group14 Technologies, Inc. Materials with extremely durable intercalation of lithium and manufacturing methods thereof
US11646419B2 (en) 2015-08-28 2023-05-09 Group 14 Technologies, Inc. Materials with extremely durable intercalation of lithium and manufacturing methods thereof
US10756347B2 (en) 2015-08-28 2020-08-25 Group14 Technologies, Inc. Materials with extremely durable intercalation of lithium and manufacturing methods thereof
US10147950B2 (en) 2015-08-28 2018-12-04 Group 14 Technologies, Inc. Materials with extremely durable intercalation of lithium and manufacturing methods thereof
JP2017171538A (en) * 2016-03-24 2017-09-28 関西熱化学株式会社 Active carbon and method for producing the same, and electric double layer capacitor comprising the active carbon
JP2019517145A (en) * 2016-05-20 2019-06-20 エイブイエックス コーポレイション Multi-cell ultra capacitor
JP7444940B2 (en) 2016-05-20 2024-03-06 キョーセラ・エイブイエックス・コンポーネンツ・コーポレーション Ultracapacitors used at high temperatures
US10629387B2 (en) 2016-06-06 2020-04-21 Sumitomo Electric Industries, Ltd. Porous carbon material for electric double-layer capacitor electrode, method of producing the same, and electric double-layer capacitor electrode
JP7175889B2 (en) 2016-11-30 2022-11-21 ソルヴェイ(ソシエテ アノニム) Advanced porous carbonaceous materials and methods for their preparation
JP2020500813A (en) * 2016-11-30 2020-01-16 ソルヴェイ(ソシエテ アノニム) Advanced porous carbonaceous materials and methods for their preparation
US11611071B2 (en) 2017-03-09 2023-03-21 Group14 Technologies, Inc. Decomposition of silicon-containing precursors on porous scaffold materials
JP2020077834A (en) * 2018-11-07 2020-05-21 出光興産株式会社 Electrode material, electrode, and method of manufacturing electrode
JP7165077B2 (en) 2018-11-07 2022-11-02 出光興産株式会社 Electrode material, electrode, and electrode manufacturing method
US11639292B2 (en) 2020-08-18 2023-05-02 Group14 Technologies, Inc. Particulate composite materials
US11611070B2 (en) 2020-08-18 2023-03-21 Group14 Technologies, Inc. Highly efficient manufacturing of silicon-carbon composites materials comprising ultra low Z
US11335903B2 (en) 2020-08-18 2022-05-17 Group14 Technologies, Inc. Highly efficient manufacturing of silicon-carbon composites materials comprising ultra low z
US11804591B2 (en) 2020-08-18 2023-10-31 Group14 Technologies, Inc. Highly efficient manufacturing of silicon-carbon composite materials comprising ultra low Z
US11498838B2 (en) 2020-08-18 2022-11-15 Group14 Technologies, Inc. Silicon carbon composites comprising ultra low z
US11492262B2 (en) 2020-08-18 2022-11-08 Group14Technologies, Inc. Silicon carbon composites comprising ultra low Z
US11174167B1 (en) 2020-08-18 2021-11-16 Group14 Technologies, Inc. Silicon carbon composites comprising ultra low Z

Similar Documents

Publication Publication Date Title
JP2001089119A (en) Carbonaceous material, method for producing and electric double layer capacitor using the carbonaceous material
EP1049116B1 (en) Carbonaceous material, its production process and electric double layer capacitor employing it
Li et al. Integrated synthesis of nitrogen-doped mesoporous carbon from melamine resins with superior performance in supercapacitors
Tang et al. Activated porous carbon spheres with customized mesopores through assembly of diblock copolymers for electrochemical capacitor
EP1168389B1 (en) Activated carbon material, process for producing the same and electric double layer capacitor employing the same
Fan et al. High electroactivity of polyaniline in supercapacitors by using a hierarchically porous carbon monolith as a support
Kim et al. Synthesis and high electrochemical capacitance of N-doped microporous carbon/carbon nanotubes for supercapacitor
JP5344972B2 (en) Carbon material for electric double layer capacitor electrode and manufacturing method thereof
JP5202460B2 (en) Activated carbon and electric double layer capacitor using the activated carbon
Zeiger et al. Quinone‐Decorated Onion‐Like Carbon/Carbon Fiber Hybrid Electrodes for High‐Rate Supercapacitor Applications
JP2001284188A (en) Manufacturing method of carbon material for electric double-layer capacitor electrode, and manufacturing method of electric double-layer capacitor using the carbon material
KR101553716B1 (en) Active carbon for an electric double layer capacitor electrode and process for manufacturing the same
KR20090057408A (en) Carbon nanotube nanocomposites, methods of making carbon nanotube nanocomposites, and devices comprising the nanocomposites
CN105247640B (en) The manufacturing method of electrode, the double layer capacitor for having used the electrode and electrode
JP2001143973A (en) High density electrode made mainly of spherical activated carbon and electric double layer capacitor
Zou et al. Highly porous carbon spheres prepared by boron-templating and reactive H3PO4 activation as electrode of supercapacitors
Liu et al. Heterogeneous contraction-mediated asymmetric carbon colloids
Wang et al. Nanoscale/microscale porous graphene-like sheets derived from different tissues and components of cane stalk for high-performance supercapacitors
JP2009013012A (en) Method of producing active carbon for electric double-layer capacitor electrode
Pan et al. “Porous and Yet Dense” Electrodes for High‐Volumetric‐Performance Electrochemical Capacitors: Principles, Advances, and Challenges
Li et al. Interpenetrating framework with three-dimensionally ordered macroporous carbon substrates and well-dispersed Co3O4 nanocrystals for supercapacitor
JP2006063403A (en) Metal fine grain coated with carbon and redox type capacitor using the fine grain as electrode material
Wu et al. Hybrid film from nickel oxide and oxygenated carbon nanotube as flexible electrodes for pseudocapacitors
Díez et al. Macroporous carbon monoliths derived from phloroglucinol–sucrose resins as binder-free thick electrodes for supercapacitors
JP2019016644A (en) Porous sintered compact, method for manufacturing the same and capacitor electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100521

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101008