JP2001143973A - High density electrode made mainly of spherical activated carbon and electric double layer capacitor - Google Patents

High density electrode made mainly of spherical activated carbon and electric double layer capacitor

Info

Publication number
JP2001143973A
JP2001143973A JP32348799A JP32348799A JP2001143973A JP 2001143973 A JP2001143973 A JP 2001143973A JP 32348799 A JP32348799 A JP 32348799A JP 32348799 A JP32348799 A JP 32348799A JP 2001143973 A JP2001143973 A JP 2001143973A
Authority
JP
Japan
Prior art keywords
activated carbon
electrode
spherical
double layer
electric double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP32348799A
Other languages
Japanese (ja)
Inventor
Yasuo Shinozaki
泰夫 篠崎
Kazuya Hiratsuka
和也 平塚
Toru Shimoyama
徹 下山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP32348799A priority Critical patent/JP2001143973A/en
Publication of JP2001143973A publication Critical patent/JP2001143973A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high density electrode with high electrostatic capacity per volume and low resistance as an electrode in an electric double layer capacitor. SOLUTION: A high density electrode contains spherical activated carbon of 50 to 95 wt.% with average grain size of 1 to 10 μm and minute hole volume of 1.5 cm3/g or below, conductivity applying material of 30 wt.% or below, and polymer combining material of 0.5 to 20 wt.%. Then, an electric double layer capacitor with apparent density of 0.6 g/cm3 or above is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、球状活性炭を主体
とした電気二重層キャパシタの高密度電極並びにこの電
極を備えた電気二重層キャパシタに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-density electrode of an electric double layer capacitor mainly composed of spherical activated carbon and an electric double layer capacitor provided with this electrode.

【0002】本発明の電気二重層キャパシタは、体積あ
たりのエネルギー密度が高く、各種携帯機器用電源、家
電製品待機電源、光通信UPSおよび電気自動車動力電
源などの広い用途に好適に利用できる。
The electric double layer capacitor of the present invention has a high energy density per volume and can be suitably used for a wide range of applications such as a power supply for various portable devices, a standby power supply for home electric appliances, an optical communication UPS, and a power supply for electric vehicles.

【0003】[0003]

【従来の技術】電気二重層キャパシタとしては、集電体
上に形成した活性炭を主体とする一対の電極の間にセパ
レータを挟んだ素子を、電解液と共に金属ケースと金属
蓋と両者を絶縁するガスケットによって金属ケース中に
密封したコイン型、又は一対のシート状電極をセパレー
タを介して巻回してなる巻回素子を電解液と共に金属ケ
ース中に収容し、ケースの開口部から電解液が蒸発しな
いように封口した巻回型のものが知られている。
2. Description of the Related Art As an electric double layer capacitor, an element in which a separator is interposed between a pair of electrodes mainly composed of activated carbon formed on a current collector is insulated from a metal case and a metal lid together with an electrolytic solution. A coin type sealed in a metal case by a gasket, or a winding element formed by winding a pair of sheet-like electrodes via a separator is housed in a metal case together with an electrolytic solution, and the electrolytic solution does not evaporate from an opening of the case. There is known a wound type that is sealed.

【0004】また、大電流大容量向けの用途として、多
数のシート状電極を、セパレータを介して積層してなる
素子が組み込まれた積層型の電気二重層キャパシタも提
案されている(特開平4−154106号、特開平3−
203311号、特開平4−286108号)。これ
は、矩形に成形されたシート状電極を正極及び負極と
し、セパレータを介して交互に複数積層して積層素子と
し、正極と負極の端部に正極リード部材及び負極リード
部材をかしめにより接続した状態でケース中に収容し、
素子に電解液を含浸して蓋で密閉するものである。
Further, as an application for large current and large capacity, a multilayer electric double layer capacitor in which an element formed by laminating a large number of sheet-like electrodes via a separator is incorporated has been proposed (Japanese Patent Application Laid-Open No. HEI 4 (1999) -1994). -154106, JP-A-3-
No. 203311 and JP-A-4-286108). In this method, a sheet-shaped electrode formed into a rectangular shape is used as a positive electrode and a negative electrode, a plurality of layers are alternately stacked via a separator to form a laminated element, and a positive electrode lead member and a negative electrode lead member are connected to the ends of the positive electrode and the negative electrode by caulking. Housed in the case in a state,
The element is impregnated with an electrolytic solution and sealed with a lid.

【0005】従来、電気二重層キャパシタの電解液に
は、電解質を高濃度に溶解させるために水やプロピレン
カーボネートなどの高誘電率の溶媒が使用されており、
又電極としては、その表面に形成される電気二重層の電
荷が電気二重層キャパシタの容量( 静電容量 )に寄与す
ることになるため、大比表面積を有する活性炭を主体と
するものが用いられている。
Conventionally, a high-dielectric solvent such as water or propylene carbonate has been used for an electrolytic solution of an electric double layer capacitor in order to dissolve the electrolyte at a high concentration.
Also, as the electrodes, those mainly composed of activated carbon having a large specific surface area are used because the electric double layer capacitor formed on the surface thereof contributes to the capacitance (capacitance) of the electric double layer capacitor. ing.

【0006】電気二重層キャパシタに求められる要求性
能として重要なものは、一般的には a)高い静電容量、b)高いエネルギー密度、c)充放
電サイクルを繰り返した場合の高い耐久性、d)低い内
部抵抗などが挙げられる。
The important performance requirements for an electric double layer capacitor are generally: a) high capacitance, b) high energy density, c) high durability in repeated charge and discharge cycles, d. ) Low internal resistance.

【0007】特に、電気自動車の動力電源等のごとき乗
用車の搭載電源として用いられる電気二重層キャパシタ
の場合、容易に理解されるように、車内にできるだけ広
い人の乗車空間や荷物の載置空間を確保するため、ま
ず、電源自体として出来るだけ車内空間を占有せず少な
い体積で大きな静電容量が得られることが最も強く求め
られる条件である。さらに、モーターを駆動し続ける電
源として、内部抵抗が低く、かつ長期信頼性が高いもの
であることも強く要求される。
In particular, in the case of an electric double layer capacitor used as a power supply for a passenger car such as a power supply for an electric car, etc., as easily understood, a passenger's riding space and a luggage mounting space as large as possible in the vehicle are required. In order to ensure this, first, it is the most strongly required condition that a large capacitance can be obtained in a small volume without occupying as much space in the vehicle as possible as the power supply itself. Furthermore, it is strongly required that the power supply that keeps driving the motor has low internal resistance and high long-term reliability.

【0008】電気二重層キャパシタの単位体積あたりの
静電容量を大きくするには、基本的には、単位重量あた
りの静電容量が大きな活性炭を、所定の体積内に最大限
に充填すればよい。
In order to increase the capacitance per unit volume of the electric double layer capacitor, basically, it is sufficient to fill the predetermined volume of activated carbon having a large capacitance per unit weight to the maximum. .

【0009】このように、単位体積あたりの静電容量を
最大化するために、従来から下記のような種々の手法を
用いて活性炭を電極に加工することが行われている。す
なわち、
As described above, in order to maximize the capacitance per unit volume, conventionally, activated carbon is processed into an electrode using various methods as described below. That is,

【0010】a)活性炭粉末を硫酸等の電解液の溶媒を
用いて混練してスラリー状とし、加圧プレスにより成形
するもの(米国特許第3288641号)
A) Activated carbon powder is kneaded with a solvent of an electrolytic solution such as sulfuric acid to form a slurry, and is formed by pressing under pressure (US Pat. No. 3,288,641).

【0011】b)活性炭粉末と電解液の混合物に必要に
応じてポリテトラフルオロエチレン(以下、PTFEと
表記する。)をバインダーとして加えた粘稠物からなる
カーボンペーストを集電体上に塗布するもの(特公昭5
3−7025号、特公昭55−41015号)。
B) A carbon paste made of a viscous substance obtained by adding a polytetrafluoroethylene (hereinafter referred to as PTFE) as a binder to a mixture of the activated carbon powder and the electrolytic solution, if necessary, is coated on the current collector. Things (Tokugyo Sho 5
No. 3-7025, JP-B-55-41015).

【0012】c)活性炭とPTFE等のバインダーと液
状潤滑剤からなる混練物を予備成形した後、延伸または
圧延してシート状に成形するもの(特開昭63−107
011号、特開平2−235320号)。
C) A kneaded product comprising activated carbon, a binder such as PTFE, and a liquid lubricant is preformed, and then stretched or rolled to form a sheet (Japanese Patent Application Laid-Open No. 63-107).
011 and JP-A-2-235320).

【0013】d)活性炭粉末とPTFEを混合してペー
スト化し、集電体上に塗布・乾燥した後、PTFEの融
点以上に加熱し、プレス成形するもの(特開平9−36
005号)。
D) Activated carbon powder and PTFE are mixed to form a paste, coated and dried on a current collector, heated to a temperature equal to or higher than the melting point of PTFE, and press-molded (JP-A-9-36).
005).

【0014】e)活性炭粉末と粉末状または粒状のフェ
ノール樹脂を炭化せしめるとともに、フェノール樹脂の
炭化物で活性炭粉末を結合して固体状電極を得るもの
(日本特許第2778425号)。
E) An activated carbon powder and a powdery or granular phenolic resin are carbonized, and the activated carbon powder is combined with a phenolic resin carbide to obtain a solid electrode (Japanese Patent No. 2778425).

【0015】本発明者らが検討したところによれば、活
性炭粉末あるいは粒子を電極に加工するこれらの公知の
方法では、単位体積あたりの静電容量が充分に高い電極
を得ることは困難である。この理由の一つは、活性炭粉
末をシート状の電極に成形する際の活性炭粉末の充填率
が低いためと推定される。
According to studies by the present inventors, it is difficult to obtain an electrode having a sufficiently high capacitance per unit volume by these known methods of processing activated carbon powder or particles into an electrode. . One of the reasons is presumed to be that the filling rate of the activated carbon powder when the activated carbon powder is formed into a sheet-like electrode is low.

【0016】通常活性炭は、おがくず、ヤシ殻等の植物
由来の炭素源;コークス、ピッチ等石炭・石油系原料由
来の炭素源;あるいはフェノール樹脂、フルフリルアル
コール樹脂、塩化ビニル樹脂等の合成高分子系炭素源
を、炭素化、賦活した炭素材を粉砕機で機械的に粉砕し
て微粉化したものが使用されている。かかる機械的粉砕
によって得られた微粉状活性炭は、一様に不規則な角や
とがりのある所謂破砕形状をしている。
Usually, activated carbon is a carbon source derived from plants such as sawdust and coconut shell; a carbon source derived from coal and petroleum-based materials such as coke and pitch; or a synthetic polymer such as phenolic resin, furfuryl alcohol resin, and vinyl chloride resin. A carbonaceous material obtained by carbonizing and activating a carbon material is mechanically pulverized by a pulverizer into fine powder. The pulverized activated carbon obtained by such mechanical pulverization has a so-called crushed shape having uniformly irregular corners and sharp edges.

【0017】本発明者らは、このような機械的に破砕さ
れた活性炭を上記したそれぞれの成形方法により電極に
形成し、この断面を顕微鏡で詳細に観察したところ、い
ずれれも不規則な破砕形状をした活性炭粒子が、互いに
ブリッジングをおこし、電極内に過剰な空隙が多く形成
されていることが明瞭に認められた。従来の活性炭を加
工した電極は、このような過剰な空隙があるため、活性
炭粉末の高密度な充填が妨げられ、単位体積あたりの静
電容量を充分高くすることができないものと推察され
る。
The present inventors formed such mechanically crushed activated carbon into an electrode by the above-mentioned respective forming methods, and observed the cross section in detail with a microscope. It was clearly recognized that the activated carbon particles having a shape caused bridging with each other, and that many excessive voids were formed in the electrode. It is presumed that a conventional electrode formed by processing activated carbon has such an excess space, which prevents high-density filling of activated carbon powder, and makes it impossible to sufficiently increase the capacitance per unit volume.

【0018】[0018]

【発明が解決しようとする課題】本発明の目的は、上記
した従来技術の問題点を解決し、単位体積あたり活性炭
粉末が高密度に充填された電極を提供することであり、
またこの高密度電極を使用した単位体積あたりの静電容
量が高く、内部抵抗が低く、かつ長期信頼性にも優れた
電気二重層キャパシタを提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art and to provide an electrode in which activated carbon powder is densely packed per unit volume.
Another object of the present invention is to provide an electric double layer capacitor which uses this high-density electrode and has a high capacitance per unit volume, a low internal resistance, and excellent long-term reliability.

【0019】本発明者らは、かかる観点から鋭意検討し
た結果、形状が球状あるいは球状に近く、実質的に角や
とがりのない、特定の粒径の活性炭を使用することによ
り、単位体積に活性炭が高密度に充填された高密度電極
が得られることを見出した。本発明は、かかる知見によ
りなされるに到ったものである。
The inventors of the present invention have conducted intensive studies from such a viewpoint. As a result, the use of activated carbon having a specific particle size, which is spherical or nearly spherical and has substantially no corners or sharpness, enables the unit volume of activated carbon to be reduced. Was found to be able to obtain a high-density electrode filled with high density. The present invention has been made based on such findings.

【0020】[0020]

【課題を解決するための手段】本発明に従えば、平均粒
径が1〜10μmで、細孔容積が1.5cm3 /g以下
の球状活性炭50〜95質量%と、導電性付与材30質
量%以下と、及び高分子系結合材0.5〜20質量%と
を含有し、嵩密度が0.6g/cm3 以上であることを
特徴とする電気二重層キャパシタ用高密度電極(以下、
本発明の電極と云う。)、が提供される。
According to the present invention, 50 to 95% by mass of spherical activated carbon having an average particle size of 1 to 10 μm and a pore volume of 1.5 cm 3 / g or less, Mass% or less, and 0.5 to 20 mass% of a polymer binder, and a bulk density of 0.6 g / cm 3 or more. ,
It is called the electrode of the present invention. ), Are provided.

【0021】また、本発明に従えば、このような高密度
電極を備えてなることを特徴とする電気二重層キャパシ
タ(以下、本発明の電気二重層キャパシタと云う。)、
が提供される。
Further, according to the present invention, an electric double layer capacitor (hereinafter referred to as an electric double layer capacitor of the present invention) comprising such a high-density electrode is provided.
Is provided.

【0022】[0022]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明においては、平均粒径が1〜10μmで、細孔容
積が1.5cm3 /g以下の球状活性炭(以下、本発明
における球状活性炭と云う。)を使用する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
In the present invention, a spherical activated carbon having an average particle diameter of 1 to 10 μm and a pore volume of 1.5 cm 3 / g or less (hereinafter, referred to as a spherical activated carbon in the present invention) is used.

【0023】従来球状の活性炭を電気二重層キャパシタ
の電極材料として用いた例としては、コールタールやコ
ールタールピッチなどの石油系重質油等歴青物を加熱処
理してメソフェーズ小球体(メソフェーズピッチ小球
体)を生成させ、分離精製後炭化・賦活した球状活性炭
を電極材料とすることが提案されている(特開平2−2
5227号)。しかしながら、メソフェーズ小球体の場
合、炭化処理前の粒径を充分大きくすることが難しく、
炭化処理後の球体が本発明で規定する粒子径より遙に小
さいナノメートルのレベルになってしまい、電極を形成
したときに内部抵抗の増大を招来するため、本発明の目
的を達成することはできない。
As an example in which a conventional spherical activated carbon is used as an electrode material of an electric double layer capacitor, a mesophase small sphere (mesophase pitch small) is prepared by heating a bituminous substance such as petroleum heavy oil such as coal tar or coal tar pitch. It has been proposed to use spherical activated carbon, which is produced as a sphere), carbonized and activated after separation and purification, as an electrode material (Japanese Patent Laid-Open No. 2-2).
No. 5227). However, in the case of mesophase spheres, it is difficult to sufficiently increase the particle size before carbonization,
Since the sphere after the carbonization treatment has a nanometer level much smaller than the particle diameter specified in the present invention, which leads to an increase in internal resistance when an electrode is formed, it is not possible to achieve the object of the present invention. Can not.

【0024】なお、念のため述べれば、メソフェーズピ
ッチ小球体に由来する球状活性炭は、その合成過程で必
然的に形成される球状ピッチの形状がたまたま活性炭に
なるまで維持されたものであり、充填密度は高められる
ものの、その主たる目的は、通常の活性炭では得られな
い、2,000〜5,000m2 /g、好ましくは3,
000〜4,500m2 /gと云う、高比表面積を利用
しようとするものであり、本発明における球状活性炭と
は、基本的な技術思想が異なるものである。
It should be noted that, as a reminder, the spherical activated carbon derived from the mesophase pitch microspheres is the one in which the shape of the spherical pitch inevitably formed in the synthesis process happens to become activated carbon, Although its density can be increased, its main purpose is to obtain 2,000 to 5,000 m 2 / g, preferably 3, which cannot be obtained with ordinary activated carbon.
It is intended to utilize a high specific surface area of 000 to 4,500 m 2 / g, and has a different basic technical idea from the spherical activated carbon in the present invention.

【0025】本発明における球状活性炭は、図1に走査
型電子顕微鏡写真として示したように、極めて真球度が
高い球状粒子からなるものである。本発明においては、
粒子を顕微鏡で観察した場合の粒子の投影断面積を使用
して円形度を規定する。本発明に云う円形度とは、顕微
鏡画像上の粒子の投影断面積に等しい円の周長を粒子の
投影輪郭長で除した値として定義される。本発明の球状
活性炭とは、円形度の平均が0.8〜1.0、好ましく
は0.9〜1.0、より好ましくは0.95〜1.0の
ものである。
The spherical activated carbon in the present invention is composed of spherical particles having extremely high sphericity, as shown in a scanning electron micrograph in FIG. In the present invention,
Circularity is defined using the projected cross-sectional area of the particles when the particles are observed with a microscope. The circularity in the present invention is defined as a value obtained by dividing the circumference of a circle equal to the projected cross-sectional area of a particle on a microscope image by the projected contour length of the particle. The spherical activated carbon of the present invention has an average circularity of 0.8 to 1.0, preferably 0.9 to 1.0, and more preferably 0.95 to 1.0.

【0026】なお、実際には、球状活性炭は、後述する
ような製造工程において、一部の粒子が破損し、角やと
がり、表面の凹みが生じたりする場合がありうるが、下
記で規定する顕微鏡画像上での粒径が1μm以上の粒子
の平均の円形度が上記規定する範囲に入っているもので
あれば、高密度電極を得るためには、実質的に問題はな
く、これらも本発明で規定する球状活性炭として扱われ
る。また、同様にして破砕した活性炭を、本発明におけ
る球状活性炭に混合して使用することも可能である。こ
の場合は、混合品について下記規定の円形度が上記規定
の数値を満足するものであればよい。
Actually, spherical activated carbon may be partially broken in a manufacturing process as described later, and may have corners, sharpness, and dents on the surface. As long as the average circularity of particles having a particle size of 1 μm or more on a microscope image falls within the range specified above, there is substantially no problem in obtaining a high-density electrode. Treated as spherical activated carbon as defined in the invention. It is also possible to use the activated carbon crushed in the same manner as a mixture with the spherical activated carbon in the present invention. In this case, it suffices that the circularity of the mixture specified below satisfies the numerical values specified above.

【0027】本発明において粒子の粒径は、顕微鏡画像
上の粒子の投影断面積を画像解析することによって算出
され、当該粒子の面積と同一の面積を有する円の直径に
相当する値で定義される。本発明では、この定義によ
り、粒径が1μm未満とされた粒子は、平均円形度の算
出には採用しない。円形度は、測定精度上、顕微鏡画像
上で少なくとも100個以上、好ましくは200個以上
の粒子の測定を行って平均を求める。
In the present invention, the particle size of a particle is calculated by analyzing the projected cross-sectional area of the particle on a microscope image, and is defined as a value corresponding to the diameter of a circle having the same area as the area of the particle. You. In the present invention, particles having a particle size of less than 1 μm according to this definition are not used for calculating the average circularity. For the degree of circularity, at least 100 or more, preferably 200 or more particles are measured on a microscope image in terms of measurement accuracy, and the average is determined.

【0028】なお、本発明における球状活性炭は、平均
粒径が1〜10μmの範囲にあるものである。平均粒径
が1μmより小さい場合は、電極をより高密度化できる
ものの、電極内の空隙が小さくなりすぎるので、電極内
への電解液の含浸が不十分となり、電極内部抵抗の増大
を招来する。一方、平均粒径が10μmを超えると、電
極を高密度化できず、キャパシタ単位体積あたりの静電
容量が低下してしまうため好ましくない。
The spherical activated carbon according to the present invention has an average particle size in the range of 1 to 10 μm. When the average particle size is smaller than 1 μm, the density of the electrode can be further increased, but the voids in the electrode become too small, so that the impregnation of the electrolyte into the electrode becomes insufficient and the internal resistance of the electrode increases. . On the other hand, if the average particle size exceeds 10 μm, it is not preferable because the density of the electrodes cannot be increased and the capacitance per unit volume of the capacitor decreases.

【0029】本発明において、平均粒径は、エタノール
50cm3 に活性炭粉末0.1gを投入し、周波数43
KHz、出力45Wの超音波を10分以上照射して、粉
末を充分分散させた後、エタノールを分散媒としたレー
ザ散乱法(リーズアンドノースラップ社製マイクロトラ
ック2型粒度計を使用)で算出された累積体積50%粒
径(D50)で示されたものである。
In the present invention, the average particle size is determined by adding 0.1 g of activated carbon powder to 50 cm 3 of ethanol,
After irradiating an ultrasonic wave of KHz and power of 45 W for 10 minutes or more to sufficiently disperse the powder, it is calculated by a laser scattering method using ethanol and a dispersion medium (using a Microtrac type 2 granulometer manufactured by Leeds and Northrup). It is shown by the calculated cumulative volume 50% particle size (D50).

【0030】また、本発明における粒状活性炭は、細孔
容積が1.5cm3 /g以下のものである。細孔容積が
この値を超えると、活性炭自体の嵩密度が小さくなるた
め、電極単位体積あたりに存在する活性炭粒子の個数
は、充分に多くても、単位体積あたりの活性炭の重量が
少ないため、結果的に単位体積あたりの静電容量が低く
なることになり好ましくない。なお、細孔容積の下限
は、特に規定するものではないが実際上0.3cm3
g以上であることが好ましい。
The granular activated carbon of the present invention has a pore volume of 1.5 cm 3 / g or less. When the pore volume exceeds this value, the bulk density of the activated carbon itself becomes small, so the number of activated carbon particles present per unit volume of the electrode is sufficiently large, because the weight of activated carbon per unit volume is small, As a result, the capacitance per unit volume decreases, which is not preferable. Although the lower limit of the pore volume is not particularly specified, it is practically 0.3 cm 3 /
g or more.

【0031】本発明における活性炭の細孔容積は、比表
面積とともに、以下のようにしてカンタクローム( Quan
tachrome )社のオートソーブ1( Autosorb-1 )( または
それと同等の機能を有する装置でもよい )を使用して測
定された値である。
The pore volume of the activated carbon according to the present invention, together with the specific surface area, is determined as follows.
The value was measured using Autosorb-1 (Tachrome) (or a device having an equivalent function).

【0032】すなわち、予め真空中で200℃で12時
間以上乾燥させた球状活性炭試料に液体窒素温度で窒素
ガスを吸着させて得られた吸着等温線の相対圧力0.0
01〜0.05の範囲を、BET多点法で解析して、比
表面積を算出するとともに、細孔容積は、上記吸着等温
線の相対圧力0.995の点での窒素ガス吸着量から算
出する。
That is, the relative pressure of the adsorption isotherm obtained by adsorbing nitrogen gas at the liquid nitrogen temperature to a spherical activated carbon sample previously dried at 200 ° C. for 12 hours or more in vacuum is 0.0
The specific surface area is calculated by analyzing the range of 01 to 0.05 by the BET multipoint method, and the pore volume is calculated from the nitrogen gas adsorption amount at a relative pressure of 0.995 of the adsorption isotherm. I do.

【0033】なお、本発明における球状活性炭は、BE
T法で求めた比表面積が、好ましくは、100〜2,5
00m2 /g、より好ましくは、1,000〜2,30
0m 2 /g、さらに好ましくは、1,500〜2,20
0m2 /gのものである。比表面積がこの範囲より小さ
いと活性炭の単位重量あたりの静電容量が小さくなり、
この範囲より大きいと、嵩密度が低下するため、電極単
位体積あたりに充填される活性炭重量が不足し、単位体
積あたりの静電容量が不足する。
The spherical activated carbon in the present invention is BE
The specific surface area determined by the T method is preferably 100 to 2.5
00mTwo / G, more preferably 1,000 to 2,30
0m Two / G, more preferably 1,500 to 2,20
0mTwo / G. Specific surface area smaller than this range
The capacitance per unit weight of activated carbon becomes smaller,
If it is larger than this range, the bulk density will decrease, and
Insufficient activated carbon weight per unit volume
Insufficient capacitance per product.

【0034】本発明の電極においては、以上のごとき球
状活性炭を電極の全質量に対し50〜95%、好ましく
は80〜95%含有する。含有量が50%未満では、キ
ャパシタの静電容量が不足し、95%を超えると、高分
子系結合材や導電性付与材の含有量が相対的に不足し、
電極の強度不足や高電気抵抗化を招来することになり好
ましくない。
The electrode of the present invention contains the above-mentioned spherical activated carbon in an amount of 50 to 95%, preferably 80 to 95%, based on the total mass of the electrode. If the content is less than 50%, the capacitance of the capacitor is insufficient, and if it exceeds 95%, the content of the polymer binder or the conductivity-imparting material is relatively insufficient,
This leads to insufficient strength of the electrode and an increase in electric resistance, which is not preferable.

【0035】本発明の電極においては、また、高分子系
結合材を電極の全質量に対し0.5〜20%、好ましく
は1〜15%含有する。結合材の量が0.5%未満であ
ると、電極の強度が不足し、20%を超えると電気抵抗
の増大や静電容量の増大を招き好ましくない。
In the electrode of the present invention, the polymer binder is contained in an amount of 0.5 to 20%, preferably 1 to 15% based on the total mass of the electrode. If the amount of the binder is less than 0.5%, the strength of the electrode becomes insufficient, and if it exceeds 20%, the electric resistance and the capacitance are increased, which is not preferable.

【0036】高分子系結合材は、球状活性炭や導電性付
与材を電極の形状に成形する際に、これらの粒子を結着
固定するとともに、活性炭粒子や導電性付与材粒子の電
極からの脱落を防止するために加えられる。高分子結合
材としては、特に限定するものでなく公知のものが用い
られ、例えばPTFE、ポリフッ化ビニリデン、フルオ
ロオレフィン/ビニルエーテル共重合体架橋ポリマー、
カルボキシメチルセルロース、ポリビニルピロリドン、
ポリビニルアルコール、又はポリアクリル酸等が使用さ
れ、最も好ましくは、PTFEである。
When the spherical activated carbon or the conductivity-imparting material is formed into the shape of an electrode, the polymer binder binds and fixes these particles, and the activated carbon particles or the conductivity-imparting material particles fall off from the electrode. Added to prevent The polymer binder is not particularly limited and known ones may be used. For example, PTFE, polyvinylidene fluoride, fluoroolefin / vinyl ether copolymer crosslinked polymer,
Carboxymethylcellulose, polyvinylpyrrolidone,
Polyvinyl alcohol or polyacrylic acid is used, most preferably PTFE.

【0037】PTFEは、後述する電極シートの加工工
程において、複雑な繊維形状へと変化し、活性炭粒子や
導電性付与材粒子を、この繊維間に閉じ込めることによ
り、粒子の形状を維持する効果を奏する。従って、PT
FEは、活性炭の細孔を閉塞させて、静電容量の発現に
寄与している比表面積の低下を引き起こすことが少な
く、又繊維状に形態が変化することにより、少量の添加
で活性炭粒子等の結着に有効に作用するため、電極中の
活性炭の含有量を充分多くできる。
PTFE changes into a complex fiber shape in the electrode sheet processing step described later, and has the effect of maintaining the shape of the particles by confining the activated carbon particles and the conductivity-imparting material particles between the fibers. Play. Therefore, PT
FE rarely causes a decrease in the specific surface area contributing to the development of the capacitance by closing the pores of the activated carbon, and the FE changes its form into a fibrous form. Effectively acts on the binding of the activated carbon, the content of activated carbon in the electrode can be sufficiently increased.

【0038】角のとがり(エッジ部)を多く有した破砕
状活性炭を、繊維化したPTFEで結合した場合は、電
極加工工程中に破砕炭の上記エッジ部でPTFEの繊維
が切断され、電極の強度低下や活性炭粒子の脱落がおこ
りやすくなる。これに対し、本発明における球状活性炭
を用いるとこのような不具合は、はるかに少なくなる。
この点でも、球状活性炭をPTFEで結合することは、
好ましい。
When the crushed activated carbon having many sharp edges (edges) is bonded with fibrous PTFE, the PTFE fibers are cut at the edges of the crushed carbon during the electrode processing step, and the electrode is cut. The strength is reduced and the activated carbon particles are likely to fall off. In contrast, when the spherical activated carbon according to the present invention is used, such inconveniences are much reduced.
Also in this regard, binding spherical activated carbon with PTFE is
preferable.

【0039】なお、架橋ポリマーを使用する場合、架橋
材としては、アミン類、ポリアミン類、ポリイソシアネ
ート類、ビスフェノール類、又はパーオキサイド類が好
ましい。
When a crosslinked polymer is used, amines, polyamines, polyisocyanates, bisphenols, or peroxides are preferred as the crosslinking material.

【0040】導電性付与材は、基本的には、活性炭の電
気抵抗が充分に低い場合は、必ずしも電極に含有させる
必要はなく、球状活性炭と高分子系結合材により電極を
構成できるが、一般的に、活性炭の比表面積が大きくな
ると電極の電気抵抗が増大するようになるため、活性炭
の比表面積の値に応じて、電極の全質量の30%を上限
として含有させることが好ましい。より好ましくは、導
電性付与材の含有量は、20%以下、さらに好ましくは
1〜15%である。
Basically, if the electrical resistance of the activated carbon is sufficiently low, the conductivity-imparting material does not necessarily need to be contained in the electrode, and the electrode can be composed of spherical activated carbon and a polymer binder. When the specific surface area of the activated carbon increases, the electric resistance of the electrode increases. Therefore, it is preferable to include 30% of the total mass of the electrode as an upper limit according to the value of the specific surface area of the activated carbon. More preferably, the content of the conductivity-imparting material is 20% or less, further preferably 1 to 15%.

【0041】導電性付与材は、基本的に静電容量の発現
には実質的に寄与しないため、上記した含有量を超えて
電極に含有させることは、好ましくない。
Since the conductivity-imparting material basically does not substantially contribute to the development of the capacitance, it is not preferable that the conductivity-imparting material be contained in the electrode in excess of the above-mentioned content.

【0042】なお、球状活性炭、高分子系結合材、及び
導電性付与材を含有する場合は、電極中には、質量比で
球状活性炭50〜95%と、導電性付与材30%以下
と、及び高分子系結合材0.5〜20%とを含有するよ
うにすることが好ましい。
When the spherical active carbon, the polymer binder, and the conductivity-imparting material are contained, the electrode contains 50 to 95% by mass of the spherical activated carbon and 30% or less of the conductivity-imparting material in a mass ratio. And 0.5 to 20% of a polymer binder.

【0043】導電性付与材としては、特に限定するもの
でなく、公知のものが使用され、例えばカーボンブラッ
ク、天然黒鉛、人造黒鉛、酸化チタン、酸化ルテニウム
等の粉末が用いられる。このうち、少量で導電性を向上
させる効果が大きいことから、カーボンブラックの一種
であるケッチェンブラック又はアセチレンブラックを使
用することが好ましい。
The conductivity-imparting material is not particularly limited, and known materials may be used, for example, powders of carbon black, natural graphite, artificial graphite, titanium oxide, ruthenium oxide and the like. Among them, it is preferable to use Ketjen black or acetylene black, which is a kind of carbon black, because the effect of improving conductivity with a small amount is large.

【0044】本発明の電極は、球状活性炭を主体とし、
これに高分子系結合材と、所望により導電性付与材を含
有する、電極体としての嵩密度が0.6g/cm3
上、好ましくは0.65g/cm3 以上、さらに好まし
くは0.70g/cm3 以上の高密度な電極である。な
お、電極の嵩密度の上限は、特に規定するものではない
が実際上は、1.0g/cm3 以下である。
The electrode of the present invention is mainly composed of spherical activated carbon,
It contains a polymer binder and, if desired, a conductivity-imparting material, and has a bulk density of 0.6 g / cm 3 or more, preferably 0.65 g / cm 3 or more, more preferably 0.70 g, as an electrode body. / Cm 3 or higher density electrode. The upper limit of the bulk density of the electrode is not particularly specified, but is actually 1.0 g / cm 3 or less.

【0045】嵩密度がこの下限値より低いと、電気二重
層キャパシタを構成した際の単位体積あたりの静電容量
が充分大きな値とならない。なお、ここで嵩密度とは、
電極を所定の形状のシート状に成形し真空中で200℃
で10時間乾燥した後、乾燥窒素中でそのシート状電極
の重量と外径寸法を測定して算出された値である。
If the bulk density is lower than the lower limit, the capacitance per unit volume when the electric double layer capacitor is formed does not become a sufficiently large value. Here, the bulk density means
The electrode is formed into a sheet of a predetermined shape, and 200 ° C. in vacuum
After drying for 10 hours in dry nitrogen and measuring the weight and outer diameter of the sheet electrode in dry nitrogen.

【0046】本発明における球状活性炭は、球状の易黒
鉛化炭素又は難黒鉛化炭素を賦活したもので、これらは
単独あるいは混合して使用される。
The spherical activated carbon in the present invention is obtained by activating spherical graphitizable carbon or non-graphitizable carbon, and these are used alone or in combination.

【0047】易黒鉛化炭素(graphitizing carbon , sof
t carbon )とは、黒鉛化処理により黒鉛化する炭素であ
る。加熱によりこのような易黒鉛化炭素を形成する易黒
鉛化炭素材料としては、一般的な熱可塑性樹脂、例えば
塩化ビニル系樹脂、ポリアクリロニトリル、ブチラール
樹脂、ポリアセタール樹脂、ポリエチレン樹脂、ポリカ
ーボネート樹脂、ポリピニルアセテート等が使用可能で
ある。また、石油系ピッチ、石炭系ピッチ等のピッチ系
材料、これらのピッチを熱処理して得られたコークス類
が挙げられ、球状の上記樹脂等を炭化することにより球
状の易黒鉛化炭素が得られる。
Graphitizing carbon (sof)
t carbon) is carbon that is graphitized by the graphitization process. Examples of the graphitizable carbon material that forms such graphitizable carbon by heating include general thermoplastic resins, for example, vinyl chloride resin, polyacrylonitrile, butyral resin, polyacetal resin, polyethylene resin, polycarbonate resin, and polypropylene resin. Nyl acetate and the like can be used. Further, pitch-based materials such as petroleum-based pitch and coal-based pitch, and cokes obtained by heat-treating these pitches can be mentioned, and spherical easily graphitized carbon can be obtained by carbonizing the spherical resin and the like. .

【0048】また難黒鉛化炭素(non-graphitizing carb
on , hard carbon )とは、黒鉛化処理により容易には黒
鉛に到らない炭素である。加熱によりこのような難黒鉛
化炭素を形成する難黒鉛化炭素材料としては、一般的な
熱硬化樹脂、例えばフェノール樹脂、メラミン樹脂、尿
素樹脂、フラン樹脂、エポキシ樹脂、アルキド樹脂、不
飽和ポリエステル樹脂、ジアリルフタレート樹脂、フル
フラール樹脂、シリコーン樹脂、キシレン樹脂、ウレタ
ン樹脂等があげられ、球状の上記樹脂を炭化することに
より球状の難黒鉛化炭素が得られる。
Also, non-graphitizing carb
On, hard carbon) is carbon that does not readily reach graphite due to graphitization. Examples of the non-graphitizable carbon material that forms such non-graphitizable carbon by heating include general thermosetting resins such as phenol resin, melamine resin, urea resin, furan resin, epoxy resin, alkyd resin, and unsaturated polyester resin. And a diallyl phthalate resin, a furfural resin, a silicone resin, a xylene resin, a urethane resin, and the like. By carbonizing the spherical resin, a spherical non-graphitizable carbon can be obtained.

【0049】炭化処理は、窒素、アルゴン、ヘリウム、
キセノン、ネオンなどの不活性ガスおよびこれらの混合
ガスの非酸化性雰囲気下に300〜2,000℃、好ま
しくは500〜1,300℃程度の温度範囲において、
10分〜30時間、球状の易黒鉛化炭素材料や難黒鉛化
炭素材料を加熱して炭化することにより行われる。
The carbonization is performed by nitrogen, argon, helium,
In a non-oxidizing atmosphere of an inert gas such as xenon or neon and a mixed gas thereof in a temperature range of 300 to 2,000 ° C, preferably about 500 to 1,300 ° C,
It is performed by heating and carbonizing a spherical graphitizable carbon material or a non-graphitizable carbon material for 10 minutes to 30 hours.

【0050】炭化を行う装置は、特に限定するものでは
ないが、固定床加熱炉、流動床加熱炉、移動床加熱炉、
内熱式または外熱式のロータリーキルン、電気炉等の何
れもが好適に採用される。
The apparatus for performing carbonization is not particularly limited, but includes a fixed bed heating furnace, a fluidized bed heating furnace, a moving bed heating furnace,
Any of an internal heating type or an external heating type rotary kiln, an electric furnace, and the like are preferably employed.

【0051】本発明においては、特に、球状の難黒鉛化
炭素を賦活したものが好ましい。これは、難黒鉛化炭素
は、ガス賦活あるいは薬品賦活のいずれによっても容易
に賦活でき、高比表面積の活性炭が得られること、及び
難黒鉛化炭素は、ハードカーボンと称されるごとく、こ
れを賦活した活性炭は、粒子の強度が強いため、活性炭
の製造工程や電極形成工程において、球状粒子の破損が
少ないためである。
In the present invention, those obtained by activating spherical non-graphitizable carbon are particularly preferable. This is because the non-graphitizable carbon can be easily activated by either gas activation or chemical activation, and an activated carbon having a high specific surface area can be obtained. This is because activated activated carbon has a high particle strength, and spherical particles are less likely to be damaged in the activated carbon production process and the electrode formation process.

【0052】本発明においては、炭化時の残炭率(炭化
収率)が高く、原料コストが安いうえ、容易に球状樹脂
を形成し得ることから、特に好ましいのは、難黒鉛化炭
素材料のうち、球状のフェノール樹脂であって、これを
炭化した難黒鉛化炭素を賦活して得られた球状活性炭が
最も望ましいものとして挙げられる。
In the present invention, the carbonization ratio (carbonization yield) during carbonization is high, the raw material cost is low, and the spherical resin can be easily formed. Among them, a spherical phenol resin, which is obtained by activating hard-graphitizable carbon obtained by carbonizing the phenol resin, is most preferable.

【0053】球状フェノール樹脂としては、市販されて
いる所望の粒径のものが容易に入手可能であり、また、
球状フェノール樹脂の製造方法については、種々の方法
が提案されているので(例えば、特開平4−15932
0号、特開平10−236807号、特開平11−13
14号、特開平11−116217号、特開平11−1
16648号等)、これらに従って製造することが可能
である。
As the spherical phenol resin, a commercially available product having a desired particle size can be easily obtained.
Various methods have been proposed for producing spherical phenolic resins (for example, see JP-A-4-15932).
0, JP-A-10-236807, JP-A-11-13
No. 14, JP-A-11-116217 and JP-A-11-1
No. 16648) and the like.

【0054】例えば、水、有機溶媒中、あるいは水と有
機溶媒の混合溶媒中で、フェノール類とアルデヒド類
を、アルカリ金属触媒、又はアルカリ金属触媒とアミン
触媒の併用触媒を使用して、懸濁安定剤の存在下、撹拌
しながら加熱・硬化させることにより球状フェノールが
得られる。この方法による粒子は、真球に近く、粒径分
布も比較的シャープであるため好ましい。
For example, phenols and aldehydes are suspended in water, an organic solvent, or a mixed solvent of water and an organic solvent using an alkali metal catalyst or a combined catalyst of an alkali metal catalyst and an amine catalyst. By heating and curing with stirring in the presence of a stabilizer, spherical phenol is obtained. Particles obtained by this method are preferable because they are close to true spheres and the particle size distribution is relatively sharp.

【0055】ここで懸濁安定剤としては、ポリビニルア
ルコール、ヒドロキシメチルセルロース、ヒドロキシエ
チルセルロース、可溶性デンプン、アラビアゴム、メチ
ルセルロース、メチルセルロース等が使用され、懸濁安
定剤がフェノール樹脂の周りを覆ってミセルを形成し球
状粒子が形成されると考えられる。
As the suspension stabilizer, polyvinyl alcohol, hydroxymethylcellulose, hydroxyethylcellulose, soluble starch, gum arabic, methylcellulose, methylcellulose and the like are used, and the suspension stabilizer covers the phenol resin to form micelles. It is considered that spherical particles are formed.

【0056】粒子径の制御は、撹拌条件や懸濁安定剤の
濃度等の合成条件の変更により行うことができる。例え
ば、撹拌速度を増加させたり懸濁安定剤の濃度が高くな
ると粒径が小さくなり、撹拌速度を低下させたり懸濁安
定剤の濃度が低くなると粒径が大きくなるので、0.5
〜2,000μmの範囲で粒径を変更することができ、
本発明で規定する平均粒径1〜10μmに対応する粒径
の球状フェノール樹脂を容易に得ることができる。
The control of the particle size can be performed by changing the synthesis conditions such as the stirring conditions and the concentration of the suspension stabilizer. For example, increasing the stirring speed or increasing the concentration of the suspension stabilizer decreases the particle size, and decreasing the stirring speed or decreasing the concentration of the suspension stabilizer increases the particle size.
The particle size can be changed in the range of ~ 2,000 μm,
A spherical phenol resin having a particle diameter corresponding to the average particle diameter of 1 to 10 μm specified in the present invention can be easily obtained.

【0057】このような球状のフェノール樹脂等を炭化
して得られる球状炭化体を賦活させることにより球状活
性炭とする。
A spherical activated carbon is obtained by activating a spherical carbide obtained by carbonizing such a spherical phenol resin or the like.

【0058】賦活とは、炭化工程で生成した固体炭化体
の細孔構造を、より微細構造に成長・発達させる工程で
ある。賦活は、特に限定されるものでなく、基本的に
は、ガス賦活あるいは薬剤賦活のどちらでも行うことが
出来るが、本発明の活性炭の特徴を十分に発揮させるに
は、薬品賦活、特にアルカリ金属化合物と炭素を混合し
て加熱・焼成するアルカリ賦活が好ましい。
Activation is a step of growing and developing the fine pore structure of the solid carbide produced in the carbonization step. The activation is not particularly limited. Basically, the activation can be carried out by either gas activation or chemical activation. However, in order to sufficiently exhibit the characteristics of the activated carbon of the present invention, chemical activation, particularly alkali metal activation, is required. Alkali activation in which a compound and carbon are mixed and heated and fired is preferred.

【0059】アルカリ金属化合物としては、炭酸カリウ
ム、炭酸ナトリウム等のアルカリ炭酸塩も使用できる
が、水酸化カリウム、水酸化ナトリウム、水酸化リチウ
ム、水酸化ルビジウム、水酸化セシウム等のアルカリ金
属水酸化物の一種以上を使用することが好ましく、特に
水酸化カリウムが最も好ましい。
As the alkali metal compound, alkali carbonates such as potassium carbonate and sodium carbonate can be used, but alkali metal hydroxides such as potassium hydroxide, sodium hydroxide, lithium hydroxide, rubidium hydroxide and cesium hydroxide can be used. It is preferred to use at least one of the above, and potassium hydroxide is most preferred.

【0060】このようなアルカリ金属化合物を、炭化体
に対し、質量比で0.2〜5.0倍量添加・混合し、ア
ルカリ金属水酸化物の融点以上、好ましくは300〜
1,000℃、より好ましくは400〜900℃の温度
範囲において、30分から5時間、非酸化性性雰囲気下
で加熱する。アルカリ金属化合物は、この温度におい
て、炭化体を化学的に強力に浸食し、一酸化炭素及び二
酸化炭素を放出し、炭化体中に複雑に発達した多孔質構
造が形成される。
[0060] Such an alkali metal compound is added and mixed in a mass ratio of 0.2 to 5.0 times the mass of the carbide, and the melting point of the alkali metal hydroxide or higher, preferably 300 to
In a temperature range of 1,000 ° C., more preferably 400 to 900 ° C., heating is performed in a non-oxidizing atmosphere for 30 minutes to 5 hours. At this temperature, the alkali metal compound chemically strongly erodes the carbide, releases carbon monoxide and carbon dioxide, and forms a complexly developed porous structure in the carbide.

【0061】アルカリ賦活終了後の炭化体は、水洗して
アルカリ成分を洗浄し、塩酸等で中和して、再度水洗し
て塩酸を洗浄する洗浄工程を設けることが好ましい。洗
浄工程を行った炭化体は、充分に乾燥され、本発明にお
ける球状活性炭となる。
It is preferable to provide a washing step in which the carbonized material after the alkali activation is washed with water to wash the alkali components, neutralized with hydrochloric acid or the like, and washed again with water to wash hydrochloric acid. The carbonized material subjected to the washing step is sufficiently dried, and becomes the spherical activated carbon in the present invention.

【0062】なお、賦活工程においては、ガス賦活を行
うこともできるが、その場合には、炭化体を、水蒸気、
二酸化炭素(燃焼ガス)、酸素、塩化水素、塩素等の何
れか一種以上を含む弱酸化性の賦活ガス雰囲気下に、好
ましくは500〜1,000℃、より好ましくは700
〜1,000℃の温度範囲において、5分〜10時間程
度加熱する。炭化体中の未組織化部分等がこれらのガス
と接触反応して、選択的に分解消費され、微細な多孔質
構造が形成される。
In the activation step, gas activation can be performed. In this case, the carbonized material is converted to steam,
Under a weakly oxidizing activation gas atmosphere containing any one or more of carbon dioxide (combustion gas), oxygen, hydrogen chloride, chlorine and the like, preferably at 500 to 1,000 ° C, more preferably 700
Heat in a temperature range of ℃ 1,000 ° C. for about 5 minutes to 10 hours. Unorganized parts and the like in the carbide react with these gases in contact with each other and are selectively decomposed and consumed to form a fine porous structure.

【0063】なお、賦活工程は、上記したアルカリ賦活
とガス賦活とを組み合わせて行うことも可能である。賦
活を行う装置は、特に限定するものではなく、炭化で使
用したものと同様の装置を使用することができ、固定床
加熱炉、流動床加熱炉、移動床加熱炉、内熱式または外
熱式のロータリーキルン、電気炉等の何れもが好適に採
用される。
The activation step can be performed by combining the above-described alkali activation and gas activation. The apparatus for performing the activation is not particularly limited, and the same apparatus as that used for the carbonization can be used. The fixed-bed heating furnace, the fluidized-bed heating furnace, the moving-bed heating furnace, the internal heating type or the external heating type Any of a rotary kiln, an electric furnace and the like can be suitably used.

【0064】本発明における球状活性炭は、平均粒径が
1〜10μmの微粉末の範疇に属するものであり、この
製造のためには、出発炭素材料の時点からこの程度の粒
径の球状炭素材料を使用し、この球形形状を保持したま
ま、炭化、賦活して上記粒径の粒状活性炭とすることが
好ましく、工程の途中においては、すでに述べた角やと
がり発生の問題がある機械的粉砕は、行わないことが基
本的には望ましい。
The spherical activated carbon in the present invention belongs to the category of fine powder having an average particle size of 1 to 10 μm. For the production, a spherical carbon material having such a particle size from the time of the starting carbon material is used. While maintaining this spherical shape, it is preferable to carbonize and activate to obtain granular activated carbon having the above particle size.In the middle of the process, mechanical pulverization having the problem of occurrence of corners and sharpness described above is not preferable. It is basically desirable not to do it.

【0065】しかしながら、工程の始めから、かかる微
粉末を取り扱う場合は、炭化工程や賦活工程での微粉末
の飛散・粉舞、濾過や洗浄時の取扱いの困難性等の、微
粉末のハンドリングに伴う問題が無視し得ない場合もあ
る。
However, when handling such fine powders from the beginning of the process, handling of the fine powders such as scattering and powdering of the fine powders in the carbonizing step and the activation step, and difficulties in handling during filtration and washing, etc. In some cases, the accompanying problems cannot be ignored.

【0066】このような場合は、微粉末(以下、一次粒
子又は一次粒子粉末と称する。)を適当な時点で、飛散
・粉舞等の問題が無い程度の大きさに造粒し、当該造粒
品について炭化工程や賦活工程を行い、最後に解砕操作
により、この造粒品を一次粒子にまで解砕するような方
法を採用することができる。
In such a case, the fine powder (hereinafter referred to as “primary particles” or “primary particle powder”) is granulated at an appropriate point in time to such a size that there is no problem such as scattering or powdering. A method in which the granulated product is subjected to a carbonization step or an activation step and finally crushed to crush the granulated product into primary particles by a crushing operation can be adopted.

【0067】具体的には、球状のフェノール樹脂等を得
た段階、あるいはこれを炭化して球状炭化体を得た段階
でこの一次粒子を造粒する。
Specifically, the primary particles are granulated at the stage of obtaining a spherical phenol resin or the like, or at the stage of carbonizing it to obtain a spherical carbide.

【0068】造粒は、圧縮応力の造粒メカニズムによる
圧縮造粒や押出造粒によってもよいが、好ましくは、最
後に再度一次粒子に解砕しうる容易性の点から、比較的
弱い付着・凝集力の造粒メカニズムによる転動造粒によ
ることが望ましい。
The granulation may be performed by compression granulation or extrusion granulation by a compression stress granulation mechanism. However, it is preferable that the granulation be relatively weak due to the ease with which it can be finally crushed again into primary particles. Rolling granulation by a granulation mechanism of cohesive force is desirable.

【0069】転動造粒による場合は、撹拌槽又は傾けて
配置された回転ドラム(転動ドラム)型造粒機や回転パ
ン型造粒機の上部から、フェノール樹脂やその炭化体か
らなる一次粒子粉末を供給して転動・撹拌せしめ、液状
フェノール樹脂、液状ピッチ、ポリビニルアルコール、
カルボキシメチルセルロース、ゼラチン等の水溶液をバ
インダとして当該転動・撹拌する一次粒子粉末上に噴霧
することにより0.5〜5mm程度に粗大粒子化させ
る。
In the case of tumbling granulation, a phenol resin or its primary material made of a carbide thereof is supplied from the upper part of a stirring tank or an inclined rotating drum (rolling drum) granulator or a rotating pan granulator. Supply the particle powder and tumbling and stirring, liquid phenolic resin, liquid pitch, polyvinyl alcohol,
By spraying an aqueous solution of carboxymethylcellulose, gelatin or the like as a binder on the primary particle powder to be tumbled and stirred, the particles are coarsened to about 0.5 to 5 mm.

【0070】これら造粒した粗大粒子について、その一
次粒子に応じて、すでに述べた条件により炭化工程、賦
活工程が行われる。かくして得られた、平均粒径1〜1
0μmである球状活性炭の集合体である粗大粒子を、適
当な解砕機により、その一次粒子の形状を破砕すること
なく、解砕して、本発明のおける平均粒径1〜10μm
の球状活性炭とするのである。
The granulated coarse particles are subjected to the carbonization step and the activation step according to the primary particles according to the primary particles. The thus-obtained average particle size is 1 to 1.
Coarse particles, which are aggregates of spherical activated carbon of 0 μm, are crushed by a suitable crusher without crushing the shape of the primary particles, and the average particle size of the present invention is 1 to 10 μm.
Of spherical activated carbon.

【0071】本発明の電気二重層キャパシタの電解液と
しては、基本的には、水系電解液と有機系電解液のそれ
ぞれが使用可能であるが、特に有機系電解液を用いた場
合に単位体積あたりに蓄えられるエネルギー量が増大し
好適である。有機系電解液の場合、分解電位が水系電解
液の2倍以上高いため、電圧の二乗と静電容量の積の2
分の1に比例するエネルギー密度については、水系電解
液より有利となるからである。
As the electrolytic solution of the electric double layer capacitor of the present invention, basically, an aqueous electrolytic solution and an organic electrolytic solution can be used. This is preferable because the amount of energy stored per unit increases. In the case of an organic electrolytic solution, the decomposition potential is at least twice as high as that of an aqueous electrolytic solution.
This is because the energy density proportional to 1 / min is more advantageous than the aqueous electrolyte.

【0072】本発明の電気二重層キャパシタの電極材料
は、より詳しくは、上記した球状活性炭粒子と高分子系
結合材、さらに好ましくは導電性付与材を加えて構成さ
れる。この電極は、例えば、炭素質材料の粉末とPTF
E等の結合材と好ましくは導電性付与材とをアルコール
等の溶媒の存在下で混練し、好ましくはロール圧延やプ
レスして電極シートに成形し、乾燥した後、導電性接着
剤等を介して集電体と接合一体化させることによって得
られる。圧延等した電極シートをさらに延伸してもよ
い。
More specifically, the electrode material of the electric double layer capacitor of the present invention is constituted by adding the above-mentioned spherical activated carbon particles and a polymer binder, more preferably a conductivity-imparting material. This electrode is made of, for example, powder of carbonaceous material and PTF.
A binder such as E and preferably a conductivity-imparting material are kneaded in the presence of a solvent such as alcohol, preferably roll-rolled or pressed to form an electrode sheet, dried, and then via a conductive adhesive or the like. To be integrated with the current collector. The rolled electrode sheet may be further stretched.

【0073】また、球状活性炭粒子と結合材及び好まし
くは導電性付与材を溶媒と混合して活性炭スラリーと
し、このスラリーを集電体上に塗工し、乾燥して集電体
と接合一体化した電極とすることもでき、これをさらに
圧延してもよい。
Further, the activated carbon particles are mixed with a binder and, preferably, a conductivity-imparting material together with a solvent to form an activated carbon slurry. The slurry is coated on a current collector, dried, and joined to the current collector to be integrated with the current collector. The electrode may be a rolled electrode, which may be further rolled.

【0074】PTFEは、すでに述べたように、この圧
延やプレスの加工工程において、繊維形状に変化し、球
状活性炭等をこの繊維間に閉じ込める。
As described above, PTFE changes into a fiber shape in the rolling or pressing process, and confine spherical activated carbon or the like between the fibers.

【0075】活性炭スラリーを形成する溶媒としては、
上記結合材を溶解できるものが好ましく、N−メチルピ
ロリドン、ジメチルホルムアミド、トルエン、キシレ
ン、イソホロン、メチルエチルケトン、酢酸エチル、酢
酸メチル、エチルアセテート、ジメチルフタレート、メ
タノール、エタノール、イソプロパノール、ブタノー
ル、水等が適宜選択される。
As the solvent for forming the activated carbon slurry,
Those capable of dissolving the binder are preferable, and N-methylpyrrolidone, dimethylformamide, toluene, xylene, isophorone, methyl ethyl ketone, ethyl acetate, methyl acetate, ethyl acetate, dimethyl phthalate, methanol, ethanol, isopropanol, butanol, water and the like are appropriate. Selected.

【0076】電極の集電体としては、電気化学的、化学
的に耐食性のある導電体であればよく、例えば、ステン
レス鋼、アルミニウム、チタン、タンタル、ニッケル等
の金属が用いられる。なかでも、ステンレス鋼とアルミ
ニウムが性能と価格の両面で好ましい集電体であり、特
にアルミニウムは、電気抵抗が小さいことから最も好ま
しい。
The current collector of the electrode may be any conductor that is electrochemically and chemically resistant to corrosion. For example, metals such as stainless steel, aluminum, titanium, tantalum and nickel are used. Among them, stainless steel and aluminum are preferred current collectors in terms of both performance and cost, and aluminum is particularly preferred because of its low electric resistance.

【0077】集電体の形状は箔でもよいし、三次元構造
を有するニッケルやアルミニウムの発泡金属やステンレ
ス鋼のネットやウールでもよい。
The shape of the current collector may be a foil, a nickel or aluminum foam metal having a three-dimensional structure, or a stainless steel net or wool.

【0078】本発明の電気二重層キャパシタの電解液と
しては、それ自身公知あるいは周知の水系あるいは有機
系電解液を使用できるが、有機系電解液を使用した場合
に最も好ましい結果が得られる。
As the electrolytic solution of the electric double layer capacitor of the present invention, a known or well-known aqueous or organic electrolytic solution can be used. The most preferable result is obtained when an organic electrolytic solution is used.

【0079】有機系溶媒としては、電気化学的に安定な
エチレンカーボネート、プロピレンカーボネート、ブチ
レンカーボネート、γ−ブチロラクトン、スルホラン、
スルホラン誘導体、3−メチルスルホラン、1,2−ジ
メトキシエタン、アセトニトリル、グルタロニトリル、
バレロニトリル、ジメチルホルムアミド、ジメチルスル
ホキシド、テトラヒドロフラン、ジメトキシエタン、メ
チルフォルメイト、ジメチルカーボネート、ジエチルカ
ーボネート又はエチルメチルカーボネートから選ばれる
1種以上からなる溶媒が好ましい。これらは混合して使
用することも可能である。
Examples of the organic solvent include electrochemically stable ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone, sulfolane,
Sulfolane derivative, 3-methylsulfolane, 1,2-dimethoxyethane, acetonitrile, glutaronitrile,
Solvents comprising at least one selected from valeronitrile, dimethylformamide, dimethylsulfoxide, tetrahydrofuran, dimethoxyethane, methylformate, dimethylcarbonate, diethylcarbonate or ethylmethylcarbonate are preferred. These can be used as a mixture.

【0080】有機系電解液の電解質としては、R12
34+ 若しくはR1234+ (R1 、R2
、R3 、R4 は、それぞれ独立に炭素数1〜6のアル
キル基を示す。)で表される第4級オニウムカチオン
と、BF4 - 、PF4 - 、ClO4 - 、CF3 SO3 -
又は(SO25 )(SO26 )N- (R5 、R6
は、それぞれ独立に炭素数1〜4のアルキル基又はアル
キレン基を示し、R5 とR 6 が環を形成していてもよ
い。)から選ばれるアニオンとからなる塩が好ましい。
As the electrolyte of the organic electrolytic solution, R1 RTwo 
RThree RFour N+Or R1 RTwo RThreeRFour P+(R1 , RTwo
 , RThree , RFour Are each independently an alkyl having 1 to 6 carbon atoms
Represents a kill group. The quaternary onium cation represented by)
And BFFour -, PFFour -, ClOFour -, CFThree SOThree -
Or (SOTwo RFive ) (SOTwo R6 ) N-(RFive , R6 
Are each independently an alkyl group having 1 to 4 carbon atoms or
Represents a kylene group;Five And R 6 May form a ring
No. A salt consisting of an anion selected from the above) is preferred.

【0081】具体的には、例えば、(C254 NB
4 、(C253 (CH3 )NBF4 、(C2
54 PBF4 及び(C253 (CH3 )PBF4
等が好ましいものとして挙げられる。電解液中のこれら
の塩の濃度は、0.1 〜2.5 mol/l、さらには0.5 〜
2mol/l程度とするのが好ましい。
Specifically, for example, (C 2 H 5 ) 4 NB
F 4 , (C 2 H 5 ) 3 (CH 3 ) NBF 4 , (C 2 H
5 ) 4 PBF 4 and (C 2 H 5 ) 3 (CH 3 ) PBF 4
And the like are preferred. The concentration of these salts in the electrolyte is from 0.1 to 2.5 mol / l, more preferably from 0.5 to
It is preferably about 2 mol / l.

【0082】本発明において、正極と負極の間に挿入さ
れるセパレータとしては、例えばポリプロピレン繊維不
織布、ガラス繊維不織布、合成セルロース紙等が好適に
使用できる。
In the present invention, as the separator inserted between the positive electrode and the negative electrode, for example, a nonwoven fabric of polypropylene fiber, a nonwoven fabric of glass fiber, synthetic cellulose paper, etc. can be suitably used.

【0083】本発明の電気二重層キャパシタは、一対の
シート状電極の間にセパレータを介さしめて電解液とと
もに金属ケースに収容したコイン型、一対の正極と負極
をセパレータを介して巻回してなる巻回型、セパレータ
を介して多数のシート状電極を積み重ねた積層型等いず
れの構成もとることができる。
The electric double layer capacitor according to the present invention is a coin type in which a separator is interposed between a pair of sheet electrodes and is accommodated in a metal case together with an electrolytic solution, and a pair of positive and negative electrodes are wound through the separator. Any structure such as a round shape and a stacked type in which a large number of sheet electrodes are stacked via a separator can be adopted.

【0084】[0084]

〔実施例1〕[Example 1]

【0085】(1) アルカリ性の重合触媒及び懸濁安定
剤を含有した水溶液中で撹拌下にフェノールとホルムア
ルデヒドを乳化重合して得られた球状フエノール樹脂を
窒素中で700℃で2時間炭化して球状の炭化体を得
た。
(1) A spherical phenol resin obtained by emulsion-polymerizing phenol and formaldehyde in an aqueous solution containing an alkaline polymerization catalyst and a suspension stabilizer is carbonized at 700 ° C. for 2 hours in nitrogen. A spherical carbide was obtained.

【0086】次に、当該球状炭化体と水酸化カリウム
(以下、KOHと略する。)とを質量比で1:3となる
ように混合し、銀製のるつぼに入れた後、窒素気流下、
250℃/h の昇温速度で850℃まで昇温し、850
℃で2時間保持して賦活を行った。賦活品は、イオン交
換水で十分に洗浄後、0.1Nの塩酸で中和処理した
後、さらにイオン交換水で十分に洗浄した。洗浄した賦
活品を250℃の真空中で5時間乾燥して平均粒径5μ
mの球状活性炭を得た。この活性炭の比表面積は、2,
000m2 /g 、細孔容積は、0.9cm3 /g であっ
た。また本球状活性炭を走査型電子顕微鏡で観察し、粒
径1μm以上の粒子100個以上についてコンピュータ
による画像解析を行ったところ、各粒子の円形度の平均
値は0.97であった。
Next, the spherical carbide and potassium hydroxide (hereinafter abbreviated as KOH) were mixed at a mass ratio of 1: 3, and the mixture was placed in a silver crucible.
The temperature was raised to 850 ° C at a heating rate of 250 ° C / h,
Activation was performed by holding at 2 ° C. for 2 hours. The activated product was sufficiently washed with ion-exchanged water, neutralized with 0.1 N hydrochloric acid, and further sufficiently washed with ion-exchanged water. The washed activated product is dried in a vacuum at 250 ° C. for 5 hours, and the average particle size is 5 μm.
m of spherical activated carbon was obtained. The specific surface area of this activated carbon is 2,
000 m 2 / g, and the pore volume was 0.9 cm 3 / g. The spherical activated carbon was observed with a scanning electron microscope, and image analysis by a computer was performed on at least 100 particles having a particle diameter of 1 μm or more. As a result, the average circularity of each particle was 0.97.

【0087】(2) 次に得られた活性炭、導電性付与材
としてフアーネスブラック(ケッチェンブラックインタ
ーナショナル社製ケッチェンブラックEC)、及び結合
材としてPTFEを、質量比で8:1:1とした混合物
にエタノールを添加しつつ混練し、ロール圧延により厚
さ0.20mmの電極シートを得た。これを200℃で
10時間真空乾燥した。次にドライエアー中で、このシー
トから直径20mmの2枚の電極を打ち抜き、重量を潮
定し、外形寸法と重量の関係から電極の嵩密度を算出し
たところ0.68g/cm3 であった。
(2) Next, the obtained activated carbon, furnace black (Ketjen Black EC manufactured by Ketjen Black International) as a conductivity-imparting material, and PTFE as a binder were used at a mass ratio of 8: 1: 1. The resulting mixture was kneaded while adding ethanol, and roll-rolled to obtain an electrode sheet having a thickness of 0.20 mm. At 200 ° C
Vacuum dried for 10 hours. Next, two electrodes having a diameter of 20 mm were punched out of this sheet in dry air, the weight was determined, and the bulk density of the electrodes was calculated from the relationship between the outer dimensions and the weight. The result was 0.68 g / cm 3 . .

【0088】次に、これらの電極を正極及び負極とし、
黒鉛系の導電性接着剤でそれぞれ集電体であるアルミニ
ウムシートに接着した。
Next, these electrodes are used as a positive electrode and a negative electrode,
Each was adhered to an aluminum sheet as a current collector with a graphite-based conductive adhesive.

【0089】(3) アルミニウムシートに接着した正極
と負極を250℃で4時間真空乾操した後、乾操アルゴ
ン雰囲気中で1mol/1 の濃度の(C253 (C
3 )NBF4 を含有するプロピレンカーボネート溶液
を電極に含浸させた。次いで、ポリプロピレン製不織布
セパレータを介して正極と負極を対向させ、2枚の硝子
板に挟んで一定圧力で締めつけ固定し素子を形成した。
(3) The positive electrode and the negative electrode adhered to the aluminum sheet were vacuum-dried at 250 ° C. for 4 hours, and then dried at a concentration of 1 mol / 1 (C 2 H 5 ) 3 (C
The electrode was impregnated with a propylene carbonate solution containing H 3 ) NBF 4 . Next, the positive electrode and the negative electrode were opposed to each other via a nonwoven fabric separator made of polypropylene, and sandwiched between two glass plates and fixed at a constant pressure to form an element.

【0090】次に上記素子を1mol/1 の濃度の(C
253 (CH3 )NBF4 を含有するプロピレンカ
ーボネート溶液に完全に浸積した状態としモデル型キヤ
パシタセルを構成した。
Next, the above-mentioned device was treated with (C) at a concentration of 1 mol / 1.
2 H 5) 3 (CH 3 ) NBF 4 completely in propylene carbonate solution containing an immersion state to constitute a model type Kiyapashitaseru.

【0091】(4) モデル型キヤパシタセルに2.5V
の電圧を印加し、静電容量(正負極の合成容量)と内部
抵抗を測定した。その結果、静電容量と内部抵抗は、そ
れぞれ、3.0Fと2.0Ωであった。結果を表1にま
とめて示した。
(4) 2.5 V for model-type capacitor cell
, And the capacitance (combined capacitance of the positive and negative electrodes) and the internal resistance were measured. As a result, the capacitance and the internal resistance were 3.0 F and 2.0 Ω, respectively. The results are summarized in Table 1.

【0092】また、このキャパシタについて40℃の恒
温槽中で0〜2.5Vの間で1Aの定電流による充放電
を3,000サイクル繰り返し、3,000サイクル後
の静電容量及び内部抵抗を測定し、サイクル試験前後の
性能変化率により長期信頼性を評価した。結果を表1に
示した。
The capacitor was repeatedly charged and discharged at a constant current of 1 A between 0 and 2.5 V in a constant temperature bath at 40 ° C. for 3,000 cycles, and the capacitance and internal resistance after 3,000 cycles were measured. It was measured and the long-term reliability was evaluated based on the performance change rate before and after the cycle test. The results are shown in Table 1.

【0093】〔実施例2〕 (1) フェノール樹脂の乳化重合時の混合液の撹拌速度
を実施例1の2倍とした以外は、実施例1と同様にして
平均粒径3μmの球状活性炭を得た。この活性炭の比表
面積は、2,050m2 /g、細孔容積は0.91cm
3 /gであった。また本球状活性炭を走査型電子顕微鏡
で観察し、粒径1μm以上の粒子100個以上について
コンピュータによる画像解析を行ったところ、各粒子の
円形度の平均値は、0.96であった。
Example 2 (1) Spherical activated carbon having an average particle diameter of 3 μm was prepared in the same manner as in Example 1 except that the stirring speed of the mixture during emulsion polymerization of the phenolic resin was twice that of Example 1. Obtained. The specific surface area of this activated carbon is 2,050 m 2 / g, and the pore volume is 0.91 cm.
3 / g. The spherical activated carbon was observed with a scanning electron microscope, and image analysis by a computer was performed on at least 100 particles having a particle size of 1 μm or more. The average value of the circularity of each particle was 0.96.

【0094】(2) 得られた球状活性炭を用いて実施例
1と全く同様に電極を成形し、密度を測定したところ、
0.7g/cm3 であった。
(2) Using the obtained spherical activated carbon, an electrode was formed in exactly the same manner as in Example 1, and the density was measured.
0.7 g / cm 3 .

【0095】この電極を用いて実施例1と同様にしてモ
デル型キヤパシタセルを作製して2.5Vの電圧を印加
し、静電容量(正負極の合成容量)と内部抵抗を測定し
た。その結果、静電容量と内部抵抗は、それぞれ、3.
4Fと2.1Ωであった。結果を表1にまとめて示し
た。
Using this electrode, a model-type capacitor cell was fabricated in the same manner as in Example 1, and a voltage of 2.5 V was applied to measure the electrostatic capacity (combined capacity of the positive and negative electrodes) and the internal resistance. As a result, the capacitance and the internal resistance respectively become 3.
4F and 2.1Ω. The results are summarized in Table 1.

【0096】また、このキャパシタについて実施例1と
同様にして3,000サイクルの充放電試験を行い、長
期信頼性を評価した。結果を表1に示した
Further, the capacitor was subjected to a 3,000 cycle charge / discharge test in the same manner as in Example 1 to evaluate long-term reliability. The results are shown in Table 1.

【0097】〔実施例3〕 (1) フェノール樹脂の乳化重合時の混合液の懸濁安定
剤の濃度を実施例1の0.8倍に変更した以外は、実施
例1と同様の方法で球状炭化体を得た。
Example 3 (1) A method similar to that of Example 1 was used, except that the concentration of the suspension stabilizer in the mixture during the emulsion polymerization of the phenol resin was changed to 0.8 times that of Example 1. A spherical carbide was obtained.

【0098】得られた球状炭化体を小型の撹拌羽根式ミ
キサーを用いて撹拌しながら、固形分10%に希釈した
水溶性レゾール樹脂をバインダーとして少量づつ滴下し
ながら撹拌を続け、平均粒径3mmの顆粒状に造粒し
た。さらにこの造粒物を500℃の窒素雰囲気中で加熱
してレゾール樹脂を炭化した。この炭化体を小型のロー
タリーキルン中で、水蒸気雰囲気下850℃で4時間加
熱して賦活処理をした。賦活が完了した造粒物をカッタ
ーミルを用いて一次粒子まで解砕し、平均粒径10μm
の粒状活性炭を得た。この粒状活性炭の比表面積は、
1,800m2 /g、細孔容積は、0.88cm3 /g
であった。また本球状活性炭を走査型電子顕微鏡で観察
し、粒径1μm以上の粒子100個以上についてコンピ
ュータによる画像解析を行ったところ、各粒子の円形度
の平均値は0.85であった。
While stirring the obtained spherical carbide using a small stirring blade type mixer, the water-soluble resole resin diluted to a solid content of 10% was gradually added dropwise as a binder while stirring, and stirring was continued. Was granulated. Further, the granules were heated in a nitrogen atmosphere at 500 ° C. to carbonize the resol resin. This carbide was heated in a small rotary kiln at 850 ° C. for 4 hours in a steam atmosphere to perform an activation treatment. The activated granules are crushed into primary particles using a cutter mill, and the average particle size is 10 μm.
Of granular activated carbon was obtained. The specific surface area of this granular activated carbon is
1,800 m 2 / g, pore volume 0.88 cm 3 / g
Met. The spherical activated carbon was observed with a scanning electron microscope, and image analysis was performed by a computer on 100 or more particles having a particle size of 1 μm or more. As a result, the average circularity of each particle was 0.85.

【0099】(2) 得られた球状活性炭を用いて実施例
1と同様に電極を成形し、密度を測定したところ、0.
62g/cm3 であった。
(2) An electrode was formed using the obtained spherical activated carbon in the same manner as in Example 1, and the density was measured.
It was 62 g / cm 3 .

【0100】この電極を用いて実施例1と同様にしてモ
デル型キヤパシタセルを作製し、2.5Vの電圧を印加
し、静電容量(正負極の合成容量)と内部抵抗を測定し
た。その結果、静電容量と内部抵抗は、それぞれ、2.
7Fと1.9Ωであった。結果を表1にまとめて示し
た。
Using this electrode, a model-type capacitor cell was manufactured in the same manner as in Example 1, and a voltage of 2.5 V was applied to measure the electrostatic capacity (combined capacity of the positive and negative electrodes) and the internal resistance. As a result, the capacitance and the internal resistance become 2.
7F and 1.9Ω. The results are summarized in Table 1.

【0101】また、このキャパシタについて実施例1と
同様にして3,000サイクルの充放電試験を行い、長
期信頼性を評価した。結果を表1に示した
Further, the capacitor was subjected to a 3,000 cycle charge / discharge test in the same manner as in Example 1 to evaluate long-term reliability. The results are shown in Table 1.

【0102】〔比較例1〕 (1) 球状フェノール樹脂合成時の混合液の懸濁安定剤
の濃度を実施例1の0.3倍に変更した以外は、実施例
1と同様の方法で球状炭化体を得た。
[Comparative Example 1] (1) Except that the concentration of the suspension stabilizer in the mixed solution at the time of synthesizing the spherical phenol resin was changed to 0.3 times that of Example 1, spherical particles were prepared in the same manner as in Example 1. A char was obtained.

【0103】得られた球状炭化物を実施例1と同様にし
てKOHを用いてアルカリ賦活し、洗浄、乾操して平均
粒径25μmの球状活性炭を得た。この活性炭の比表面
積は、1,950m2 /g 、細孔容積は、0.92cm
3 /g であった。また本球状活性炭を走査型電子顕微鏡
で観察し、粒径1μm以上の粒子100個以上について
コンピュータによる画像解析を行ったところ、各粒子の
円形度の平均値は0.98であった。
The obtained spherical carbide was alkali-activated with KOH in the same manner as in Example 1, washed and dried to obtain a spherical activated carbon having an average particle size of 25 μm. The specific surface area of this activated carbon is 1,950 m 2 / g, and the pore volume is 0.92 cm.
3 / g. The spherical activated carbon was observed with a scanning electron microscope, and image analysis by a computer was performed on at least 100 particles having a particle size of 1 μm or more. As a result, the average circularity of each particle was 0.98.

【0104】(2) 得られた球状活性炭を用いて実施例
1と同様に電極を成形し、密度を測定したところ、0.
48g/cm3 であった。
(2) An electrode was formed using the obtained spherical activated carbon in the same manner as in Example 1, and the density was measured.
It was 48 g / cm 3 .

【0105】この電極を用いて実施例1と同様にしてモ
デル型キヤパシタセルを作製して2.5Vの電圧を印加
し、静電容量(正負極の合成容量)と内部抵抗を測定し
た。その結果、静電容量と内部抵抗は、それぞれ、2.
0Fと1.9Ωであった。結果を表1にまとめて示し
た。
Using this electrode, a model-type capacitor cell was fabricated in the same manner as in Example 1, a voltage of 2.5 V was applied, and the electrostatic capacity (combined capacity of the positive and negative electrodes) and the internal resistance were measured. As a result, the capacitance and the internal resistance become 2.
0F and 1.9Ω. The results are summarized in Table 1.

【0106】また、このキャパシタについて実施例1と
同様にして3,000サイクルの充放電試験を行い、長
期信頼性を評価した。結果を表1に示した
Further, the capacitor was subjected to a 3,000 cycle charge / discharge test in the same manner as in Example 1 to evaluate long-term reliability. The results are shown in Table 1.

【0107】〔比較例2〕 (1) 難黒鉛化炭素材料であるノボラック型フエノール
樹脂に硬化剤として10質量%のテトラメチレンヘキサ
ミンを添加し、十分に混合した。次にこの混合粉末を大
気雰囲気中で昇温速度200℃/hで200℃まで昇温
し、200℃で2時間保持して硬化品を得た。得られた
硬化品を実施例1と全く同様にして炭化し、塊状の炭化
体を得た。この炭化体をハンマーミルで破砕し、平均粒
径3mmの炭素粒とした。次にこの炭素粒を実施例1と
同様にして賦活、洗浄後、ボールミルを用いて粉砕し、
平均粒径5μmの活性炭を得た。この活性炭の比表面積
は、2,300m2 /g、細孔容積は、1.2cm3
g であった。この活性炭を走査型電子顕微鏡で観察する
と、球状粒子は、全く含まれず、すべての粒子が不規則
なとがりをもった破砕粉であった。
Comparative Example 2 (1) 10% by mass of tetramethylenehexamine as a curing agent was added to a novolak-type phenol resin, which is a non-graphitizable carbon material, and mixed well. Next, the temperature of the mixed powder was raised to 200 ° C. at a rate of 200 ° C./h in the air atmosphere, and the mixture was held at 200 ° C. for 2 hours to obtain a cured product. The obtained cured product was carbonized in exactly the same manner as in Example 1 to obtain a massive carbide. This carbide was crushed by a hammer mill to obtain carbon particles having an average particle size of 3 mm. Next, the carbon particles were activated and washed in the same manner as in Example 1, and then pulverized using a ball mill.
Activated carbon having an average particle size of 5 μm was obtained. The specific surface area of this activated carbon is 2,300 m 2 / g, and the pore volume is 1.2 cm 3 / g.
g. When this activated carbon was observed with a scanning electron microscope, no spherical particles were contained, and all particles were crushed powder having an irregular sharpness.

【0108】また本活性炭を走査型電子顕微鏡で観察
し、粒径1μm以上の粒子100個以上についてコンピ
ュータによる画像解析を行ったところ、各粒子の円形度
の平均値は0.72であった。
The activated carbon was observed with a scanning electron microscope, and image analysis by a computer was performed on at least 100 particles having a particle size of 1 μm or more. The average circularity of each particle was 0.72.

【0109】(2) 得られた球状活性炭を用いて実施例
1と同様に電極を成形し、密度を測定したところ、0.
52g/cm3 であった。
(2) An electrode was formed using the obtained spherical activated carbon in the same manner as in Example 1, and the density was measured.
It was 52 g / cm 3 .

【0110】この電極を用いて実施例1と同様にしてモ
デル型キヤパシタセルを作製して2.5Vの電圧を印加
し、静電容量(正負極の合成容量)と内部抵抗を測定し
た。その結果、静電容量と内部抵抗は、それぞれ、2.
2Fと2.0Ωであった。結果を表1にまとめて示し
た。
Using this electrode, a model-type capacitor cell was manufactured in the same manner as in Example 1, and a voltage of 2.5 V was applied to measure the electrostatic capacity (combined capacity of the positive and negative electrodes) and the internal resistance. As a result, the capacitance and the internal resistance become 2.
2F and 2.0Ω. The results are summarized in Table 1.

【0111】また、このキャパシタについて実施例1と
同様にして3,000サイクルの充放電試験を行い、長
期信頼性を評価した。結果を表1に示した
Further, the capacitor was subjected to a 3,000 cycle charge / discharge test in the same manner as in Example 1 to evaluate long-term reliability. The results are shown in Table 1.

【0112】〔比較例3〕 (1) 球状フェノール樹脂合成時の混合液の懸濁安定剤
の濃度を実施例1の8.0倍に変更した以外は実施例1
と同様の方法で球状炭化体を得た。
Comparative Example 3 (1) Example 1 was repeated except that the concentration of the suspension stabilizer in the mixture during the synthesis of the spherical phenol resin was changed to 8.0 times that of Example 1.
A spherical carbide was obtained in the same manner as described above.

【0113】得られた球状炭化体を実施例1と同様にし
てKOHを用いてアルカリ賦活し、洗浄、乾燥して平均
粒径0.5μmの球状活性炭を得た。この活性炭の比表
面積は、2,200m2 /g 、細孔容積は、1.13c
3 /g であった。また本球状活性炭を走査型電子顕微
鏡で観察し、粒径1μm以上の粒子100個以上につい
てコンピュータによる画像解析を行ったところ、各粒子
の円形度の平均値は0.97であった。
The obtained spherical carbide was alkali-activated with KOH in the same manner as in Example 1, washed and dried to obtain a spherical activated carbon having an average particle size of 0.5 μm. This activated carbon has a specific surface area of 2,200 m 2 / g and a pore volume of 1.13 c.
m 3 / g. The spherical activated carbon was observed with a scanning electron microscope, and image analysis by a computer was performed on at least 100 particles having a particle diameter of 1 μm or more. As a result, the average circularity of each particle was 0.97.

【0114】(2) 得られた球状活性炭を用いて実施例
1と同様に電極を成形し、密度を測定したところ、0.
80g/cm3 であった。
(2) An electrode was formed using the obtained spherical activated carbon in the same manner as in Example 1, and the density was measured.
It was 80 g / cm 3 .

【0115】この電極を用いて実施例1と同様にしてモ
デル型キヤパシタセルを作製して2.5Vの電圧を印加
し、静電容量(正負極の合成容量)と内部抵抗を測定し
た。その結果、静電容量と内部抵抗は、それぞれ、2.
5Fと3.6Ωであった。結果を表1にまとめて示し
た。
Using this electrode, a model-type capacitor cell was prepared in the same manner as in Example 1, and a voltage of 2.5 V was applied to measure the electrostatic capacity (combined capacity of the positive and negative electrodes) and the internal resistance. As a result, the capacitance and the internal resistance become 2.
5F and 3.6Ω. The results are summarized in Table 1.

【0116】また、このキャパシタについて実施例1と
同様にして3,000サイクルの充放電試験を行い、長
期信頼性を評価した。結果を表1に示した
Further, the capacitor was subjected to a 3,000 cycle charge / discharge test in the same manner as in Example 1 to evaluate long-term reliability. The results are shown in Table 1.

【0117】〔比較例4〕 (1) 賦活温度を950℃とした以外は、実施例2と同
一の条件で平均粒径3μmの球状活性炭を得た。得られ
た活性炭の比表面積は、2,800m2 /g であり、細
孔容積は、1.6cm3 /g であった。また本球状活性
炭を走査型電子顕微鏡で観察し、粒径1μm以上の粒子
100個以上についてコンピュータによる画像解析を行
ったところ、各粒子の円形度の平均値は0.98であっ
た。
Comparative Example 4 (1) A spherical activated carbon having an average particle size of 3 μm was obtained under the same conditions as in Example 2 except that the activation temperature was 950 ° C. The specific surface area of the obtained activated carbon was 2,800 m 2 / g, and the pore volume was 1.6 cm 3 / g. The spherical activated carbon was observed with a scanning electron microscope, and image analysis by a computer was performed on at least 100 particles having a particle size of 1 μm or more. As a result, the average circularity of each particle was 0.98.

【0118】(2) 得られた球状活性炭を用いて実施例
1と同様に電極を成形し、密度を測定したところ、0.
42g /cm3 であった。
(2) An electrode was formed using the obtained spherical activated carbon in the same manner as in Example 1, and the density was measured.
It was 42 g / cm 3 .

【0119】この電極を用いて実施例1と同様にしてコ
イン型電気二重層キヤパシタを作製して2.5Vの電圧
を印加し、静電容量(正負極の合成容量)と内部抵抗を
測定した。その結果、静電容量と内部抵抗は、それぞ
れ、1.9Fと1.7Ωであった。結果を表1にまとめ
て示した。
Using this electrode, a coin-type electric double layer capacitor was prepared in the same manner as in Example 1, a voltage of 2.5 V was applied, and the electrostatic capacity (combined capacity of the positive and negative electrodes) and the internal resistance were measured. . As a result, the capacitance and the internal resistance were 1.9 F and 1.7 Ω, respectively. The results are summarized in Table 1.

【0120】また、このキャパシタについて実施例1と
同様にして3,000サイクルの充放電試験を行い、長
期信頼性を評価した。結果を表1に示した
Further, a charge / discharge test of 3,000 cycles was performed on this capacitor in the same manner as in Example 1, and the long-term reliability was evaluated. The results are shown in Table 1.

【0121】[0121]

【表1】 [Table 1]

【0122】[0122]

【発明の効果】本発明の電極は、特定の粒径の球状活性
炭を電極材料として使用した高密度電極であり、この高
密度電極を用いた電気二重層キャパシタは、体積あたり
の静電容量が高く、内部抵抗が低いという優れた特性を
示す。
The electrode of the present invention is a high-density electrode using spherical activated carbon having a specific particle size as an electrode material. An electric double layer capacitor using this high-density electrode has a capacitance per volume. It shows excellent characteristics of high and low internal resistance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】球状活性炭の走査型電子顕微鏡写真であるFIG. 1 is a scanning electron micrograph of a spherical activated carbon.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 下山 徹 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社内 Fターム(参考) 4G046 HA03 HB00 HB02 HB05 HB06 4G075 AA27 AA62 AA63 BA05 BD14 BD16 CA57 CA63  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Toru Shimoyama 1150 Hazawa-cho, Kanagawa-ku, Yokohama-shi, Kanagawa F-term in Asahi Glass Co., Ltd. (reference) 4G046 HA03 HB00 HB02 HB05 HB06 4G075 AA27 AA62 AA63 BA05 BD14 BD16 CA57 CA63

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径が1〜10μmで、細孔容積が
1.5cm3 /g以下の球状活性炭50〜95質量%
と、導電性付与材30質量%以下と、及び高分子系結合
材0.5〜20質量%とを含有し、嵩密度が0.6g/
cm3 以上であることを特徴とする電気二重層キャパシ
タ用高密度電極。
1. A spherical activated carbon having an average particle diameter of 1 to 10 μm and a pore volume of 1.5 cm 3 / g or less 50 to 95% by mass.
And 30% by mass or less of a conductivity-imparting material, and 0.5 to 20% by mass of a polymer binder, and a bulk density of 0.6 g /
A high-density electrode for an electric double layer capacitor, having a size of at least 3 cm 3 .
【請求項2】 前記球状活性炭が難黒鉛化炭素を賦活し
たものである請求項1に記載の高密度電極。
2. The high-density electrode according to claim 1, wherein the spherical activated carbon is obtained by activating non-graphitizable carbon.
【請求項3】 前記難黒鉛化炭素がフェノール樹脂を炭
化したものである請求項2に記載の高密度電極。
3. The high-density electrode according to claim 2, wherein the non-graphitizable carbon is obtained by carbonizing a phenol resin.
【請求項4】 前記球状活性炭は、粒子の顕微鏡画像上
の投影断面積における平均円形度が0.8〜1.0であ
る請求項1〜3のいずれかに記載の高密度電極。
4. The high-density electrode according to claim 1, wherein the spherical activated carbon has an average circularity of 0.8 to 1.0 in a projected sectional area on a microscope image of particles.
【請求項5】 請求項1〜4のいずれかに記載の高密度
電極を備えてなることを特徴とする電気二重層キャパシ
タ。
5. An electric double layer capacitor comprising the high-density electrode according to claim 1.
【請求項6】 有機溶媒に電解質を溶解した有機系電解
液を有する請求項5に記載の電気二重層キャパシタ。
6. The electric double layer capacitor according to claim 5, comprising an organic electrolytic solution in which an electrolyte is dissolved in an organic solvent.
【請求項7】 有機系電解液における有機溶媒がエチレ
ンカーボネート、プロピレンカーボネート、ブチレンカ
ーボネート、ジメチルカーボネート、エチルメチルカー
ボネート、ジエチルカーボネート、アセトニトリル、グ
ルタロニトリル、バレロニトリル、スルホラン及びスル
ホラン誘導体からなる群から選ばれる1種以上であり、
これに電解質として、R1234+ 若しくはR
1234+ (ここでR1 、R2 、R3 、R4
は、それぞれ独立に炭素数1〜6のアルキル基を示
す。)で表される第4級オニウムカチオンと、BF
4 - 、PF 4 - 、ClO4 - 、CF3 SO3 - 又は(S
25 )(SO26 )N+ (ここでR5 、R6 は、
それぞれ独立に炭素数1〜4のアルキル基を示す。)か
ら選ばれるアニオンとからなる塩を溶解させた有機系電
解液を有する請求項6に記載の電気二重層キャパシタ。
7. The method according to claim 1, wherein the organic solvent in the organic electrolytic solution is ethyl.
Carbonate, propylene carbonate, butylene carbonate
-Carbonate, dimethyl carbonate, ethyl methyl carbonate
Carbonate, diethyl carbonate, acetonitrile,
Lutalonitrile, valeronitrile, sulfolane and sulf
At least one selected from the group consisting of holane derivatives,
As an electrolyte, R1 RTwo RThree RFour N+Or R
1 RTwoRThree RFour P+(Where R1 , RTwo , RThree , RFour 
Represents an alkyl group having 1 to 6 carbon atoms each independently.
You. A quaternary onium cation represented by
Four -, PF Four -, ClOFour -, CFThree SOThree -Or (S
OTwo RFive ) (SOTwo R6 ) N+(Where RFive , R6 Is
Each independently represents an alkyl group having 1 to 4 carbon atoms. ) Or
Organic electrolyte in which a salt consisting of an anion selected from
The electric double layer capacitor according to claim 6, further comprising a solution.
JP32348799A 1999-11-15 1999-11-15 High density electrode made mainly of spherical activated carbon and electric double layer capacitor Withdrawn JP2001143973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32348799A JP2001143973A (en) 1999-11-15 1999-11-15 High density electrode made mainly of spherical activated carbon and electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32348799A JP2001143973A (en) 1999-11-15 1999-11-15 High density electrode made mainly of spherical activated carbon and electric double layer capacitor

Publications (1)

Publication Number Publication Date
JP2001143973A true JP2001143973A (en) 2001-05-25

Family

ID=18155249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32348799A Withdrawn JP2001143973A (en) 1999-11-15 1999-11-15 High density electrode made mainly of spherical activated carbon and electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP2001143973A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100453922B1 (en) * 2001-04-17 2004-10-20 주식회사 엘지화학 Spherical active carbon and methods for preparing the same, and electric double layer capacitor using the same
KR100515593B1 (en) * 2001-04-17 2005-09-16 주식회사 엘지화학 Spherical carbons and method for preparing the same
WO2006028257A1 (en) * 2004-09-09 2006-03-16 Optnics Precision Co., Ltd. Spherical ultrafine particles and process for producing the same
JP2006319321A (en) * 2005-04-12 2006-11-24 Sumitomo Chemical Co Ltd Active carbon and manufacturing method therefor
JP2007035811A (en) * 2005-07-26 2007-02-08 Hitachi Zosen Corp Electrode using carbon nanotube and its manufacturing method
JP2007131461A (en) * 2005-11-08 2007-05-31 Jfe Chemical Corp Method of manufacture activated carbon
US7236349B2 (en) * 2003-11-20 2007-06-26 Tdk Corporation Electrode for electrochemical capacitor and method for manufacturing the same, electrochemical capacitor and method for manufacturing the same
JP2007180434A (en) * 2005-12-28 2007-07-12 Fuji Heavy Ind Ltd Lithium ion capacitor
JP2007214553A (en) * 2006-01-11 2007-08-23 Hitachi Chem Co Ltd Electrode material for electric double layer capacitor, method of manufacturing the same, and electric double layer capacitor
JP2008007387A (en) * 2006-06-30 2008-01-17 Kansai Coke & Chem Co Ltd Method and apparatus for highly purifying activated carbon
JP2008066259A (en) * 2006-09-08 2008-03-21 Nagasaki Institute Of Applied Science Battery constituent material
JP2008153694A (en) * 2006-01-11 2008-07-03 Hitachi Chem Co Ltd Electrode material for electric double layer capacitor, method of manufacturing the same, and electric double layer capacitor
JP2009049236A (en) * 2007-08-21 2009-03-05 Air Water Inc Carbon electrode material, carbon electrode material mixture, method of manufacturing carbon electrode material, electric double-layered capacitor, lithium-ion battery, and lithium-ion capacitor
JP2009131849A (en) * 2009-03-09 2009-06-18 Optnics Precision Co Ltd Method for manufacturing spherical hyperfine particle
US7722686B2 (en) 2004-02-19 2010-05-25 Maxwell Technologies, Inc. Composite electrode and method for fabricating same
US7791860B2 (en) 2003-07-09 2010-09-07 Maxwell Technologies, Inc. Particle based electrodes and methods of making same
US7791861B2 (en) 2003-07-09 2010-09-07 Maxwell Technologies, Inc. Dry particle based energy storage device product
JP2010219323A (en) * 2009-03-17 2010-09-30 National Univ Corp Shizuoka Univ Electrode for electric double layer capacitor
JP2011079705A (en) * 2009-10-07 2011-04-21 Osaka Gas Chem Kk Method and apparatus for producing activated carbon
WO2012017748A1 (en) * 2010-08-02 2012-02-09 旭有機材工業株式会社 Adsorbent for oral administration, method for producing same, and drug using same
US8158095B2 (en) 2006-10-20 2012-04-17 Air Water Inc. Non-thermofusible phenol resin powder, method for producing the same, thermosetting resin composition, sealing material for semiconductor, and adhesive for semiconductor
US8279580B2 (en) 2006-10-17 2012-10-02 Maxwell Technologies, Inc. Electrode for energy storage device with microporous and mesoporous activated carbon particles
CN102712743A (en) * 2010-02-01 2012-10-03 旭有机材工业株式会社 Process for production of spherical furfuryl alcohol resin particles, spherical furfuryl alcohol resin particles produced thereby, and spherical carbon particles and spherical active carbon particles obtained using same
US8362187B2 (en) 2006-10-20 2013-01-29 Air Water Inc. Phenol resin powder, method for producing the same, and phenol resin powder dispersion liquid
JP2020013867A (en) * 2018-07-18 2020-01-23 旭化成株式会社 Cathode precursor
CN113912059A (en) * 2020-07-09 2022-01-11 中国科学院大连化学物理研究所 Asphalt-based spherical activated carbon and preparation method and application thereof

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100453922B1 (en) * 2001-04-17 2004-10-20 주식회사 엘지화학 Spherical active carbon and methods for preparing the same, and electric double layer capacitor using the same
KR100515593B1 (en) * 2001-04-17 2005-09-16 주식회사 엘지화학 Spherical carbons and method for preparing the same
US8072734B2 (en) 2003-07-09 2011-12-06 Maxwell Technologies, Inc. Dry particle based energy storage device product
US7791861B2 (en) 2003-07-09 2010-09-07 Maxwell Technologies, Inc. Dry particle based energy storage device product
US7791860B2 (en) 2003-07-09 2010-09-07 Maxwell Technologies, Inc. Particle based electrodes and methods of making same
US7236349B2 (en) * 2003-11-20 2007-06-26 Tdk Corporation Electrode for electrochemical capacitor and method for manufacturing the same, electrochemical capacitor and method for manufacturing the same
US7722686B2 (en) 2004-02-19 2010-05-25 Maxwell Technologies, Inc. Composite electrode and method for fabricating same
WO2006028257A1 (en) * 2004-09-09 2006-03-16 Optnics Precision Co., Ltd. Spherical ultrafine particles and process for producing the same
US7771788B2 (en) * 2004-09-09 2010-08-10 Optnics Precision Co., Ltd. Spherical ultrafine particles and process for producing the same
JP2006319321A (en) * 2005-04-12 2006-11-24 Sumitomo Chemical Co Ltd Active carbon and manufacturing method therefor
JP2007035811A (en) * 2005-07-26 2007-02-08 Hitachi Zosen Corp Electrode using carbon nanotube and its manufacturing method
JP4696751B2 (en) * 2005-07-26 2011-06-08 日立造船株式会社 Method for producing electrode using carbon nanotube
JP2007131461A (en) * 2005-11-08 2007-05-31 Jfe Chemical Corp Method of manufacture activated carbon
JP2007180434A (en) * 2005-12-28 2007-07-12 Fuji Heavy Ind Ltd Lithium ion capacitor
JP2008153694A (en) * 2006-01-11 2008-07-03 Hitachi Chem Co Ltd Electrode material for electric double layer capacitor, method of manufacturing the same, and electric double layer capacitor
JP2007214553A (en) * 2006-01-11 2007-08-23 Hitachi Chem Co Ltd Electrode material for electric double layer capacitor, method of manufacturing the same, and electric double layer capacitor
JP2008007387A (en) * 2006-06-30 2008-01-17 Kansai Coke & Chem Co Ltd Method and apparatus for highly purifying activated carbon
JP2008066259A (en) * 2006-09-08 2008-03-21 Nagasaki Institute Of Applied Science Battery constituent material
US8591601B2 (en) 2006-10-17 2013-11-26 Maxwell Technologies, Inc. Electrode for energy storage device with microporous and mesoporous activated carbon particles
US8279580B2 (en) 2006-10-17 2012-10-02 Maxwell Technologies, Inc. Electrode for energy storage device with microporous and mesoporous activated carbon particles
US8293860B2 (en) 2006-10-20 2012-10-23 Air Water Inc. Non-thermofusible phenol resin powder, method for producing the same, thermosetting resin composition, sealing material for semiconductor, and adhesive for semiconductor
US8362187B2 (en) 2006-10-20 2013-01-29 Air Water Inc. Phenol resin powder, method for producing the same, and phenol resin powder dispersion liquid
US8658120B2 (en) 2006-10-20 2014-02-25 Air Water Inc. Non-thermofusible phenol resin powder, method for producing the same, thermosetting resin composition, sealing material for semiconductor, and adhesive for semiconductor
US8158095B2 (en) 2006-10-20 2012-04-17 Air Water Inc. Non-thermofusible phenol resin powder, method for producing the same, thermosetting resin composition, sealing material for semiconductor, and adhesive for semiconductor
US8409756B2 (en) 2006-10-20 2013-04-02 Air Water Inc. Non-thermofusible phenol resin powder, method for producing the same, thermosetting resin composition, sealing material for semiconductor, and adhesive for semiconductor
US8411415B2 (en) 2006-10-20 2013-04-02 Air Water Inc. Non-thermofusible phenol resin powder, method for producing the same, thermosetting resin composition, sealing material for semiconductor, and adhesive for semiconductor
JP2009049236A (en) * 2007-08-21 2009-03-05 Air Water Inc Carbon electrode material, carbon electrode material mixture, method of manufacturing carbon electrode material, electric double-layered capacitor, lithium-ion battery, and lithium-ion capacitor
JP2009131849A (en) * 2009-03-09 2009-06-18 Optnics Precision Co Ltd Method for manufacturing spherical hyperfine particle
JP2010219323A (en) * 2009-03-17 2010-09-30 National Univ Corp Shizuoka Univ Electrode for electric double layer capacitor
JP2011079705A (en) * 2009-10-07 2011-04-21 Osaka Gas Chem Kk Method and apparatus for producing activated carbon
CN102712743A (en) * 2010-02-01 2012-10-03 旭有机材工业株式会社 Process for production of spherical furfuryl alcohol resin particles, spherical furfuryl alcohol resin particles produced thereby, and spherical carbon particles and spherical active carbon particles obtained using same
JP2012051870A (en) * 2010-08-02 2012-03-15 Asahi Organic Chemicals Industry Co Ltd Adsorbent for oral administration, method for manufacturing the same, and drug using the same
WO2012017748A1 (en) * 2010-08-02 2012-02-09 旭有機材工業株式会社 Adsorbent for oral administration, method for producing same, and drug using same
US8865617B2 (en) 2010-08-02 2014-10-21 Asahi Organic Chemicals Industry Co., Ltd. Orally administered adsorbent, method of producing the same, and drug produced by using the same
TWI471130B (en) * 2010-08-02 2015-02-01 Asahi Organic Chem Ind An adsorbent for oral administration, a method for producing the same, and a pharmaceutical agent using the same
JP2020013867A (en) * 2018-07-18 2020-01-23 旭化成株式会社 Cathode precursor
JP7184555B2 (en) 2018-07-18 2022-12-06 旭化成株式会社 positive electrode precursor
CN113912059A (en) * 2020-07-09 2022-01-11 中国科学院大连化学物理研究所 Asphalt-based spherical activated carbon and preparation method and application thereof
CN113912059B (en) * 2020-07-09 2023-06-06 中国科学院大连化学物理研究所 Asphalt-based spherical activated carbon and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP2001143973A (en) High density electrode made mainly of spherical activated carbon and electric double layer capacitor
US6585915B2 (en) Process for producing a carbon material for an electric double layer capacitor electrode, and processes for producing an electric double layer capacitor electrode and an electric double layer capacitor employing it
EP1168389B1 (en) Activated carbon material, process for producing the same and electric double layer capacitor employing the same
KR101543486B1 (en) Metal encapsulated dendritic carbon nanostructure, carbon nanostructure, process for producing metal encapsulated dendritic carbon nanostructure, process for producing carbon nanostructure, and capacitor
KR20110063472A (en) Carbon material for electric double layer capacitor and process for producing the carbon material
KR102159201B1 (en) Activated carbon for electric double layer capacitor electrode and production method for same
MX2008010572A (en) Mesoporous activated carbons.
KR20110137388A (en) Carbon material for electric double layer capacitor electrode and method for producing same
KR20150119849A (en) Electrode, electric double-layer capacitor using same, and electrode manufacturing method
JP3969223B2 (en) Activated carbon and electrode for electric double layer capacitor using activated carbon
JP2005136397A (en) Activated carbon, electrode material using it, and electric double layer capacitor
JP2002083748A (en) Activated carbon, manufacturing method therefor and electric double-layer capacitor
KR20120126118A (en) Activated charcoal for electric double-layer capacitor electrode and method for producing the same
JP5087466B2 (en) Electric double layer capacitor
WO2001013390A1 (en) Method for producing activated carbon for electrode of electric double-layer capacitor
JPH11214270A (en) Carbon material for electric double layer capacitor and its manufacture
JP2007269518A (en) Porous carbon material, method for producing the same, polarizable electrode for electrical double layer capacitor, and electrical double layer capacitor
JP2006024747A (en) Carbon material for electric double-layer capacitor electrode, and its production method
JP4179581B2 (en) Activated carbon, its production method and its use
JP2003183014A (en) Porous carbon material, its producing method and electric double layer capacitor
JP3191941B2 (en) Method for producing carbon material for electric double layer capacitor, carbon electrode and electric double layer capacitor
JP2006278364A (en) Polarizable electrode for electric double layer capacitor and electric double layer capacitor
JP2006131464A (en) Porous carbon material, manufacturing method thereof and electric double layer capacitor
JP2005093778A (en) Electric double layer capacitor
JP4718320B2 (en) Porous material and electric double layer capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090619

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090716