JP2006024747A - Carbon material for electric double-layer capacitor electrode, and its production method - Google Patents

Carbon material for electric double-layer capacitor electrode, and its production method Download PDF

Info

Publication number
JP2006024747A
JP2006024747A JP2004201595A JP2004201595A JP2006024747A JP 2006024747 A JP2006024747 A JP 2006024747A JP 2004201595 A JP2004201595 A JP 2004201595A JP 2004201595 A JP2004201595 A JP 2004201595A JP 2006024747 A JP2006024747 A JP 2006024747A
Authority
JP
Japan
Prior art keywords
carbon material
electric double
layer capacitor
double layer
capacitor electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004201595A
Other languages
Japanese (ja)
Inventor
Hisaoki Abe
久起 阿部
Kenji Morohashi
健治 諸橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2004201595A priority Critical patent/JP2006024747A/en
Publication of JP2006024747A publication Critical patent/JP2006024747A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive carbon material for electric double-layer capacitor electrode in which capacitance sustention rate does not lower significantly, using a simple method. <P>SOLUTION: The carbon material for electric double-layer capacitor electrode is produced, by activating coke using an alkaline metal hydroxide and then heat treating it at a temperature of 900-1,100°C under an inert gas or reduced gas atmosphere. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、長期の使用において静電容量密度の低下が少ない電気二重層キャパシタ電極用炭素材料およびその製造方法に関する。   The present invention relates to a carbon material for an electric double layer capacitor electrode and a method for producing the same, in which a decrease in capacitance density is small during long-term use.

近年、省資源や環境問題の意識の高まりとともに、蓄電システムの開発が急速に進んでいる。蓄電デバイスとしては種々の二次電池が挙げられる。その中で、電気二重層キャパシタは、急速充放電が可能で、出力密度が大きく、化学反応を伴わないため充放電による劣化が少なく長寿命であるなど、優れた特徴を有しおり、車載用電源、電子情報機器のメモリーバックアップ電源、夜間電力貯蔵、ソーラーシステム電力貯蔵、非常用電源、補助電源など、今後ますます、その用途開発が期待されている。   In recent years, with the growing awareness of resource saving and environmental issues, the development of power storage systems is progressing rapidly. Examples of the electricity storage device include various secondary batteries. Among them, the electric double layer capacitor has excellent features such as rapid charging / discharging, high output density, no chemical reaction, and long life with little deterioration due to charging / discharging. Development of applications such as memory backup power supply for electronic information devices, nighttime power storage, solar system power storage, emergency power supply, auxiliary power supply is expected in the future.

電気二重層キャパシタは分極性電極と電解質界面に生じる電気二重層を利用するものであるが、そのエネルギー密度等の基本的性能を決定する一つが、分極性電極である。この分極性電極は、電気的、化学的に安定であること、更に、多くの電気二重層を生じさせて高いエネルギー密度を得るためには、電解質を保持する適当な細孔の空隙が多いことが必要とされていた。このため、一般的に、分極性電極は高比表面積を有する活性炭を主材料とすることが多い。活性炭としては、その原料としてヤシ殻、フェノール樹脂、ピッチ等が挙げられる。特に近年、ピッチ等の原料からなる黒鉛類似の層状結晶構造を有する微結晶炭素を水酸化アルカリ金属によって賦活処理を行い、得られた炭素材料を分極性電極の主材料とする方法が多く報告されており、その炭素化、賦活処理方法が開示されている(例えば、特許文献1〜8参照)。   The electric double layer capacitor uses an electric double layer generated at the interface between the polarizable electrode and the electrolyte, and one of the basic properties such as energy density is determined by the polarizable electrode. This polarizable electrode is electrically and chemically stable, and has many pores in the appropriate pores that hold the electrolyte in order to generate many electric double layers and to obtain a high energy density. Was needed. For this reason, in general, polarizable electrodes are often mainly composed of activated carbon having a high specific surface area. Examples of the activated carbon include coconut shell, phenol resin, pitch, and the like. In particular, in recent years, many methods have been reported in which microcrystalline carbon having a layered crystal structure similar to graphite made of raw materials such as pitch is activated with an alkali metal hydroxide, and the resulting carbon material is used as the main material of a polarizable electrode. The carbonization and activation treatment methods are disclosed (for example, see Patent Documents 1 to 8).

これらのピッチ等の原料から得られる黒鉛類似の層状結晶構造を有する微結晶炭素(以下、易黒鉛化炭素原料炭という)の水酸化アルカリ金属による賦活炭は、前述のヤシ殻原料、フェノール樹脂原料から得られる炭素の水蒸気活性炭よりも比表面積は小さいことが多いが、電気二重層キャパシタの分極性電極として用いた場合、より高い静電容量密度が得られることが知られている。   Activated charcoal with alkali metal hydroxide of microcrystalline carbon (hereinafter referred to as graphitizable carbon raw material carbon) having a layered crystal structure similar to graphite obtained from raw materials such as pitch is the above-mentioned coconut shell raw material, phenol resin raw material. It is known that the specific surface area is often smaller than that of the carbon steam activated carbon obtained from the above, but when used as a polarizable electrode of an electric double layer capacitor, a higher capacitance density can be obtained.

しかしながら、易黒鉛化炭素原料炭から得られる水酸化アルカリ金属賦活炭を用いた電気二重層キャパシタは、ヤシ殻原料、フェノール樹脂原料を用いた場合と比較して繰り返し使用時の静電容量密度の低下が大きいことが欠点であった。その低下の原因の一つとして、水酸化アルカリ金属賦活炭はCOOH、CHO、OH等の含ヘテロ元素官能基が多く、この官能基と電解質が化学的に反応し、この時に発生するガスや反応生成物が炭素材料の空隙を塞ぐ等の種々の問題を引き起こし、結果的に、繰り返し使用時の静電容量密度を低下させるものと推測される(静電容量保持率の低下)。   However, the electric double layer capacitor using alkali metal hydroxide activated carbon obtained from graphitizable carbon raw material coal has a capacitance density at the time of repeated use as compared with the case using palm shell raw material and phenol resin raw material. It was a drawback that the decrease was large. As one of the causes of the decrease, alkali metal hydroxide activated charcoal has many hetero-functional functional groups such as COOH, CHO, OH, etc., and these functional groups and the electrolyte react chemically, and the gas and reaction generated at this time It is presumed that the product causes various problems such as blocking the voids of the carbon material, and as a result, the capacitance density during repeated use is lowered (decrease in capacitance retention).

水酸化アルカリ金属賦活炭の含ヘテロ元素官能基は、熱処理することによりCO、HO、CO等の形で脱離して、除去することは可能であり、既にその方法は開示されている(例えば、特許文献9および10参照)。特許文献9では、賦活処理後に、遷移金属触媒存在下のもと水素ガス、アンモニアガス気流下で熱処理することにより、含ヘテロ元素官能基を脱離させる方法が記載されている。しかし、この方法では、熱処理後、触媒を分離する煩雑な工程が必要であり、静電容量保持率を向上させる簡便な電気二重層キャパシタ用炭素材料の製造方法が望まれていた。
特開平5−258996号 公報 特開平10−199767号 公報 特開平11−135380号 公報 特開平11−222732号 公報 特開2002−15958号 公報 特開2002−25867号 公報 特開2003−206121号 公報 再公表00−11688号 公報 特開2002−25867号 公報 特開2002−362912号 公報
The hetero-functional functional group of the alkali metal hydroxide activated charcoal can be removed and removed by heat treatment in the form of CO 2 , H 2 O, CO, etc., and the method has already been disclosed. (For example, see Patent Documents 9 and 10). Patent Document 9 describes a method of desorbing a heteroelement-containing functional group by heat treatment in the presence of a transition metal catalyst in the presence of a transition metal catalyst in a hydrogen gas or ammonia gas stream. However, this method requires a complicated process of separating the catalyst after the heat treatment, and a simple method for producing a carbon material for an electric double layer capacitor that improves the capacitance retention has been desired.
JP-A-5-258996 JP-A-10-1997767 Japanese Patent Laid-Open No. 11-135380 JP-A-11-222732 Japanese Patent Laid-Open No. 2002-15958 Japanese Patent Laid-Open No. 2002-25867 JP 2003-206121 A Republished No. 00-11688 Japanese Patent Laid-Open No. 2002-25867 JP 2002-362912 A

上記問題を克服し、静電容量保持率の低下が少ない電気二重層キャパシタ電極用炭素材料を簡便な方法で安価に提供する。   A carbon material for an electric double layer capacitor electrode that overcomes the above-described problems and causes little reduction in capacitance retention is provided by a simple method at a low cost.

本発明者らは鋭意検討を重ねた結果、水酸化アルカリ金属賦活炭を特定の条件下で熱処理することにより、静電容量保持率の低下が少ない電気二重層キャパシタを与える炭素材料が得られることを見出し本発明に至った。すなわち本発明は、以下のとおりである。
(1)コークスを、水酸化アルカリ金属を用いて賦活したのち不活性ガスまたは還元性ガスの雰囲気下900〜1100℃の温度で熱処理することによって得られる電気二重層キャパシタ電極用炭素材料。
(2)熱処理後の炭素材料中の酸素含有量が、0.05wt%以下である上記(1)記載の電気二重層キャパシタ電極用炭素材料。
(3)熱処理後の炭素材料中のアルカリ金属含有量が、0.05wt%以下である上記(1)または(2)記載の電気二重層キャパシタ電極用炭素材料。
(4)コークスを、水酸化アルカリ金属を用いて賦活したのち不活性ガスまたは還元性ガスの雰囲気下900〜1100℃の温度で熱処理する電気二重層キャパシタ電極用炭素材料の製造方法。
(5)不活性ガスまたは還元性ガスが、窒素ガス、水素ガスまたはアンモニアガスである上記(4)記載の電気二重層キャパシタ電極用炭素材料の製造方法。
(6)熱処理後の炭素材料中の酸素含有量が、0.05wt%以下である上記(4)または(5)記載の電気二重層キャパシタ電極用炭素材料の製造方法。
(7)熱処理後の炭素材料中のアルカリ金属含有量が、0.05wt%以下である上記(4)〜(6)のいずれかに記載の電気二重層キャパシタ電極用炭素材料の製造方法。
(8)コークスが、縮合多環炭化水素またはこれを含有する物質を弗化水素および三弗化硼素の存在下で重合させることによって合成されるピッチを熱処理して得られるものである上記(4)〜(7)のいずれかに記載の電気二重層キャパシタ電極用炭素材料の製造方法。
As a result of intensive studies, the inventors of the present invention can obtain a carbon material that provides an electric double layer capacitor with little decrease in capacitance retention by heat-treating alkali metal hydroxide activated carbon under specific conditions. And found the present invention. That is, the present invention is as follows.
(1) A carbon material for an electric double layer capacitor electrode obtained by activating coke with an alkali metal hydroxide and then heat-treating the coke at a temperature of 900 to 1100 ° C. in an inert gas or reducing gas atmosphere.
(2) The carbon material for an electric double layer capacitor electrode according to the above (1), wherein the oxygen content in the carbon material after the heat treatment is 0.05 wt% or less.
(3) The carbon material for an electric double layer capacitor electrode according to the above (1) or (2), wherein the alkali metal content in the carbon material after the heat treatment is 0.05 wt% or less.
(4) A method for producing a carbon material for an electric double layer capacitor electrode, wherein coke is activated with an alkali metal hydroxide and then heat-treated at 900 to 1100 ° C. in an atmosphere of an inert gas or a reducing gas.
(5) The method for producing a carbon material for an electric double layer capacitor electrode according to the above (4), wherein the inert gas or reducing gas is nitrogen gas, hydrogen gas or ammonia gas.
(6) The method for producing a carbon material for an electric double layer capacitor electrode according to the above (4) or (5), wherein the oxygen content in the carbon material after the heat treatment is 0.05 wt% or less.
(7) The method for producing a carbon material for an electric double layer capacitor electrode according to any one of the above (4) to (6), wherein the alkali metal content in the carbon material after the heat treatment is 0.05 wt% or less.
(8) The above (4), wherein the coke is obtained by heat-treating a pitch synthesized by polymerizing a condensed polycyclic hydrocarbon or a substance containing the same in the presence of hydrogen fluoride and boron trifluoride. )-(7) The manufacturing method of the carbon material for electric double layer capacitor electrodes in any one of.

本発明の電気二重層キャパシタ電極用炭素材料は高い静電容量保持率を与える。また、該炭素材料の製造方法は簡便であり該炭素材料を安価に製造できる。   The carbon material for an electric double layer capacitor electrode of the present invention provides a high capacitance retention. Further, the method for producing the carbon material is simple and the carbon material can be produced at low cost.

本発明に用いられるコークスとしては、石油系コークス、石炭系コークスが挙げられる。本発明に用いられるコークスは石油重質油や石炭系重質油から製造されるものであり、ニードルコークス、セミコークス、ピッチコークス、鋳物用コークス、溶鉱炉用コークス、ガス化用コークスなどが例示できる。これらをそのまま用いることもできるが、これらを550〜950℃の温度で0.5〜10時間の熱処理を行ってから用いてもよい。   Examples of the coke used in the present invention include petroleum coke and coal coke. The coke used in the present invention is produced from heavy petroleum oil or heavy coal oil, and examples include needle coke, semi-coke, pitch coke, foundry coke, blast furnace coke, and gasification coke. . These can be used as they are, but they may be used after heat treatment at a temperature of 550 to 950 ° C. for 0.5 to 10 hours.

また、本発明に用いられるコークスは、石油系ピッチ、石炭系ピッチまたは合成系ピッチを出発原料として、これらを熱処理することによってコークス化したものでもよい。この場合は、揮発成分を除去する工程と、これを更に高い温度で熱処理することにより微結晶構造を発達させる仮焼工程、および、これらの連続した工程から得られる。これらの工程は一般的には不活性ガス雰囲気下で行われる。揮発成分を除去する工程は、550℃以下で行うが、温度、時間は特に限定されない。仮焼工程は、550〜950℃で0.5〜10時間行うが、好ましくは、600〜850℃で1〜5時間行う。また、この二つの工程を連続して行うこともできる。これらの工程前の原料の形状は特に限定されない。   The coke used in the present invention may be one obtained by coking by using a petroleum-based pitch, a coal-based pitch, or a synthetic pitch as a starting material and heat-treating them. In this case, it is obtained from a step of removing volatile components, a calcining step of developing a microcrystalline structure by heat-treating it at a higher temperature, and a continuous step thereof. These steps are generally performed in an inert gas atmosphere. The step of removing volatile components is performed at 550 ° C. or lower, but the temperature and time are not particularly limited. The calcination step is performed at 550 to 950 ° C. for 0.5 to 10 hours, preferably at 600 to 850 ° C. for 1 to 5 hours. Moreover, these two processes can also be performed continuously. The shape of the raw material before these steps is not particularly limited.

上述のように本発明に用いられるコークスとしては、石油系コークス、石炭系コークス、または合成系コークスが挙げられ特に限定されないが、合成系ピッチを熱処理して得られる合成系コークスは、石油系コークスや石炭系コークスに比べて化学純度や品質安定性の点で優れているため好適に用いられる。   As described above, the coke used in the present invention includes petroleum coke, coal coke, or synthetic coke, and is not particularly limited, but synthetic coke obtained by heat treatment of synthetic pitch is petroleum coke. It is preferably used because it is superior in chemical purity and quality stability compared to coal-based coke.

また、合成系コークスの原料となる合成系ピッチとしては、弗化水素および三弗化硼素の存在下で縮合多環炭化水素またはこれを含有する物質を重合させることによって得られるピッチが好適に用いられる。このような合成系ピッチは、特許第2931593号公報、特許第2621253号公報、または特許第2526585号公報に示されるように、ナフタレン、モノメチルナフタレン、ジメチルナフタレン、アントラセン、フェナントレン、アセナフテン、ピレン等ならびにこれらの骨格を有する縮合多環炭化水素、およびこれらの混合物ないしこれらを含有する物質を重合させて得られるものである。   Further, as a synthetic pitch used as a raw material for synthetic coke, a pitch obtained by polymerizing a condensed polycyclic hydrocarbon or a substance containing the same in the presence of hydrogen fluoride and boron trifluoride is preferably used. It is done. Such synthetic pitches include naphthalene, monomethylnaphthalene, dimethylnaphthalene, anthracene, phenanthrene, acenaphthene, pyrene, and the like, as shown in Japanese Patent Nos. It is obtained by polymerizing a condensed polycyclic hydrocarbon having a skeleton of the above, a mixture thereof or a substance containing these.

上記のコークスは、水酸化アルカリ金属を用いて賦活処理される。この水酸化アルカリ金属による賦活処理は、アルカリ金属がコークス中の微結晶構造を侵食し、あるいは微結晶構造の層間に作用するものである。このようにして得られた賦活炭は、電解質を保持する適当な細孔の空隙を形成し、或いは、充放電時に電解質のインターカレーションで空隙を形成され易い形態となり、電気二重層キャパシタ電極炭素材料に好適な性能が付与される。   The above coke is activated using an alkali metal hydroxide. In this activation treatment with an alkali metal hydroxide, the alkali metal erodes the microcrystalline structure in the coke or acts between layers of the microcrystalline structure. The activated charcoal obtained in this way forms voids with appropriate pores for holding the electrolyte, or forms voids easily by intercalation of the electrolyte during charging and discharging, and the electric double layer capacitor electrode carbon Appropriate performance is imparted to the material.

水酸化アルカリ金属としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどが挙げられる。ここでは水酸化カリウムを使うが、これらの混合物であっても良い。また、賦活処理前のコークスの形状は微粉が好ましいが特に粒度の限定はされない。水酸化アルカリ金属とコークスの混合割合は水酸化カリウムの場合、コークス1重量部に対して、水酸化カリウムは1〜4重量部、好ましくは2重量部である。賦活処理は、550〜900℃の温度で0.5〜10時間行うが、好ましくは650〜750℃の温度で1〜3時間である。   Examples of the alkali metal hydroxide include lithium hydroxide, sodium hydroxide, and potassium hydroxide. Here, potassium hydroxide is used, but a mixture thereof may be used. The shape of the coke before the activation treatment is preferably fine powder, but the particle size is not particularly limited. In the case of potassium hydroxide, the mixing ratio of the alkali metal hydroxide and coke is 1 to 4 parts by weight, preferably 2 parts by weight with respect to 1 part by weight of coke. The activation treatment is performed at a temperature of 550 to 900 ° C. for 0.5 to 10 hours, and preferably at a temperature of 650 to 750 ° C. for 1 to 3 hours.

こうして得られた賦活炭は、洗浄を行って水酸化アルカリ金属成分を除去する。洗浄方法は特に限定されないが、一般的には、水洗浄、スチーム洗浄、希塩酸洗浄、或いは、これらの洗浄の組み合わせでできる。洗浄は、水酸化アルカリ金属成分や、洗浄に用いた酸分が溶出しなくなるまで、可能な限り洗浄しなければならない。これらの成分が残存すると、キャパシタの長期性能に悪影響を及ぼすとされている。得られた賦活炭は加熱乾燥するが、加熱時の酸化を抑えるため、不活性ガス中、或いは真空で乾燥することが好ましい。   The activated charcoal thus obtained is washed to remove the alkali metal hydroxide component. The cleaning method is not particularly limited, but in general, it can be performed by water cleaning, steam cleaning, dilute hydrochloric acid cleaning, or a combination of these cleanings. The cleaning must be performed as much as possible until the alkali metal hydroxide component and the acid used for the cleaning are not eluted. If these components remain, it is said that the long-term performance of the capacitor is adversely affected. The obtained activated charcoal is heat-dried, but is preferably dried in an inert gas or in vacuum in order to suppress oxidation during heating.

得られた賦活炭の比表面積は数10〜1000m/gと広い範囲にあり、原料、仮焼温度、賦活温度、それらの時間に大きく作用される。概して、仮焼温度、賦活温度が高いほど、また、それらの時間が長いほど、比表面積が小さくなる傾向を示す。該賦活炭の比表面積は、好ましくは300〜800m/gである。 The specific surface area of the activated charcoal obtained is in a wide range of several 10 to 1000 m 2 / g, and is greatly affected by the raw material, calcining temperature, activation temperature, and time thereof. In general, the higher the calcination temperature and the activation temperature, and the longer the time, the smaller the specific surface area. The specific surface area of the activated charcoal is preferably 300 to 800 m 2 / g.

賦活処理後に行なう熱処理時の雰囲気ガスが窒素ガスやアルゴンガス等の不活性ガスの場合、その処理は、850〜1100℃、0.5〜10時間であるが、好ましくは、850〜950℃、0.5〜2時間である。該ガスの濃度は0.1〜100vol%であり、好ましくは20〜100vol%である。該ガスの流量(GHSV)は100〜100000hr−1であり、好ましくは500〜5000hr−1である。 When the atmosphere gas during the heat treatment performed after the activation treatment is an inert gas such as nitrogen gas or argon gas, the treatment is performed at 850 to 1100 ° C. for 0.5 to 10 hours, preferably 850 to 950 ° C., 0.5 to 2 hours. The concentration of the gas is 0.1 to 100 vol%, preferably 20 to 100 vol%. The gas flow rate (GHSV) is 100~100000hr -1, preferably 500~5000hr -1.

該熱処理時の雰囲気ガスが水素ガス、アンモニアガス等の還元性ガスの場合は、900〜1100℃、0.5〜10時間であるが、好ましくは、900〜1000℃、0.5〜2時間である。該ガスの濃度は0.1〜100vol%であり、好ましくは20〜100vol%である。該ガスの流量(GHSV)は100〜100000hr−1であり、好ましくは500〜5000hr−1である。 When the atmospheric gas during the heat treatment is a reducing gas such as hydrogen gas or ammonia gas, the temperature is 900 to 1100 ° C. and 0.5 to 10 hours, preferably 900 to 1000 ° C. and 0.5 to 2 hours. It is. The concentration of the gas is 0.1 to 100 vol%, preferably 20 to 100 vol%. The gas flow rate (GHSV) is 100~100000hr -1, preferably 500~5000hr -1.

含ヘテロ元素官能基の除去の程度は、元素分析により、酸素濃度を測定することで確認できる。この測定の試料は、分析装置に供する直前に220℃、5時間以上、真空乾燥し、極力、吸着水分の影響を排除した測定操作を行わなければならない。また、元素分析の測定方法は酸素を直接定量する方法であれば、特に限定されない。熱処理後の炭素材料中の酸素含有量は0.05wt%以下であることが好ましい。   The degree of removal of the hetero-containing functional group can be confirmed by measuring the oxygen concentration by elemental analysis. The sample for this measurement must be vacuum-dried at 220 ° C. for 5 hours or more immediately before being subjected to the analyzer, and the measurement operation must be performed while eliminating the influence of adsorbed moisture as much as possible. The measurement method for elemental analysis is not particularly limited as long as it is a method for directly quantifying oxygen. The oxygen content in the carbon material after the heat treatment is preferably 0.05 wt% or less.

また、上記賦活処理を行って洗浄後、0.01〜5wt%のカリウムが残存する。仮焼温度、賦活温度が高いほど、カリウム残存量が高い傾向を示し、カリウム残存量が高いと、キャパシタ性能の劣化の原因になる。熱処理後の炭素材料中のカリウム含有量は、0.05wt%以下であることが好ましい。残存カリウム量の測定は、炭素をカリウムが損失しない方法で完全に分解しカリウムを直接測定する方法であれば特に限定されない。分解方法としては、乾式灰化や酸化剤による湿式分解が好ましい。測定方法としては、ICP分析、原子吸光分析が望ましい。   Moreover, after performing the said activation process and wash | cleaning, 0.01-5 wt% potassium remains. The higher the calcining temperature and the activation temperature, the higher the residual amount of potassium. When the residual amount of potassium is high, the capacitor performance is deteriorated. The potassium content in the carbon material after the heat treatment is preferably 0.05 wt% or less. The measurement of the amount of residual potassium is not particularly limited as long as it is a method in which carbon is completely decomposed by a method in which potassium does not lose and potassium is directly measured. As the decomposition method, dry ashing or wet decomposition with an oxidizing agent is preferable. As a measuring method, ICP analysis and atomic absorption analysis are desirable.

分極性電極の作製については、特に限定されないが、例えば炭素材料の粉末とカーボンブラック等の導電剤及びテフロン(登録商標)等のバインダーを配合して成形する方法、炭素材料と導電剤を樹脂やピッチ等で成形した後、焼成して高密度の分極性電極を製造する方法など公知の方法が採用できる。また、体積あたりの静電容量を大きくするため、加圧プレス等により充填密度を上げることもできる。   The production of the polarizable electrode is not particularly limited, but for example, a method of blending and molding a carbon material powder and a conductive agent such as carbon black and a binder such as Teflon (registered trademark), the carbon material and the conductive agent may be resin or A known method such as a method of producing a high-density polarizable electrode after forming with a pitch or the like can be employed. Further, in order to increase the capacitance per volume, the packing density can be increased by a pressure press or the like.

電解質は、非水溶媒に溶解して使用できる(以下、この液を電解液という)。
電解液は、特に限定されないが、電解質であるテトラアルキルアンモニウム、テトラアルキルホスホニウム、イミダゾリウム等の四級アンモニウムの硼弗化物、リン弗化物、トリフルオロメタンスルホニルイミド化物等を非水電解液であるプロピレンカーボネート、アセトニトリル、スルホラン等に溶解させて使用することができる。
The electrolyte can be used by dissolving in a non-aqueous solvent (hereinafter, this solution is referred to as an electrolytic solution).
Electrolyte is not particularly limited, but electrolytes such as tetraalkylammonium, tetraalkylphosphonium, imidazolium quaternary ammonium borofluoride, phosphorous fluoride, trifluoromethanesulfonylimide, etc., which are non-aqueous electrolytes It can be used by dissolving in carbonate, acetonitrile, sulfolane and the like.

以下、実施例にて本発明を詳細に説明する。なお、本発明は下記実施例に限定されるものではない。実施例における分極性電極の製造方法と静電容量保持率の測定方法は、以下の方法で行った。
(I)分極性電極の製造方法
得られた炭素材料の粉末100重量部、カーボンブラック10重量部,ポリテトラフルオロエチレン10重量部からなる混合物を混練した後、加圧シート化した。得られたシートを円盤状に打ち抜いて分極性電極(直径16mm、厚さ0.55mm)とし、220℃、12時間、真空乾燥して電極とした。
(II)静電容量保持率の測定方法
この電極を、ポリエチレン製セパレーターを介して互いに対向させ、ステンレス製ケース内に収納した。その後、減圧下で電解液を含浸させ封じ込め電気二重層キャパシタセルとした。電解液は1.8mol/Lのトリエチルメチルアンモニウムテトラフルオロボレートのプロピレンカーボネート溶液を用いた。
25℃での初回の充電は5mAの定電流で電圧3.2Vまで印加して100分充電し、5mAの定電流で0Vまで放電した。その後印加電圧3.0Vで同様に10サイクル充放電を行った。その後、70℃に昇温して、300分充電で280時間充放電を繰り返し、1サイクル目と280サイクル目の電極体積あたりの静電容量密度(F/cc)を求め、1サイクル目の静電容量密度を100%として、280サイクル目の静電容量保持率(%)を求めた。なお、電極体積あたりの静電容量密度は、静電容量C(F)=2×U×3600/(V1×V1)の式で求めた静電容量C(F)に電極体積(cc)を除して求めた。ここでU(Wh)は、放電開始時から放電終了時までの放電電圧(V)と放電電流(A)の積を積算して得られた値であり、また、V1は充電電圧(V)である。
Hereinafter, the present invention will be described in detail with reference to examples. In addition, this invention is not limited to the following Example. The production method of the polarizable electrode and the measurement method of the capacitance retention in the examples were performed by the following methods.
(I) Method for Producing Polarizable Electrode A mixture of 100 parts by weight of the obtained carbon material powder, 10 parts by weight of carbon black, and 10 parts by weight of polytetrafluoroethylene was kneaded and then formed into a pressure sheet. The obtained sheet was punched into a disk shape to obtain a polarizable electrode (diameter 16 mm, thickness 0.55 mm), and vacuum dried at 220 ° C. for 12 hours to obtain an electrode.
(II) Method for Measuring Capacitance Retention Rate The electrodes were opposed to each other via a polyethylene separator and housed in a stainless steel case. Then, the electrolytic solution was impregnated under reduced pressure to obtain a sealed electric double layer capacitor cell. As the electrolytic solution, a 1.8 mol / L triethylmethylammonium tetrafluoroborate propylene carbonate solution was used.
The initial charge at 25 ° C. was applied at a constant current of 5 mA to a voltage of 3.2 V, charged for 100 minutes, and discharged to 0 V at a constant current of 5 mA. Thereafter, 10 cycles of charge and discharge were similarly performed at an applied voltage of 3.0 V. Thereafter, the temperature was raised to 70 ° C., and charging and discharging were repeated for 280 hours by charging for 300 minutes, and the capacitance density (F / cc) per electrode volume in the first and 280th cycles was determined, and the static charge in the first cycle was The capacitance retention rate (%) at the 280th cycle was determined by setting the capacitance density to 100%. The capacitance density per electrode volume is the capacitance C (F) obtained by the formula of capacitance C (F) = 2 × U × 3600 / (V1 × V1). It was calculated by dividing. Here, U (Wh) is a value obtained by integrating the product of the discharge voltage (V) and the discharge current (A) from the start of discharge to the end of discharge, and V1 is the charge voltage (V). It is.

実施例1
弗化水素・三弗化硼素の共存下、ナフタレンを触媒重合させて得られた合成系メソフェーズピッチ(高架式フローテスターによる軟化点:235℃、H/C原子比:0.65、光学的異方性含有率:100%)を窒素気流下550℃で2時間保持して揮発分を除去し、室温まで冷却した後、ボールミルで平均粒度30μm以下に粉砕した。更に、これを窒素気流下750℃で4時間保持し、室温まで冷却してコークスを得た。このコークス1重量部に対して、水酸化カリウム(試薬特級)2重量部をニッケル容器内で均一に混合し、窒素気流下700℃で2時間保持して賦活処理した。100℃まで冷却後、スチームを流して、賦活物を充分に湿潤させた後、室温に冷却して取り出した。この賦活物を100重量部の水で超音波水洗(10分)と吸引ろ過を繰り返した。これを、100℃で2時間乾燥し、更に、220℃で5時間、真空乾燥して賦活炭を得た。
該賦活炭の熱処理は、窒素ガス雰囲気下(GHSV:2000hr−1)、1)700℃、2時間 2)800℃、2時間 3)850℃、2時間 4)900℃、2時間 5)950℃、2時間、6)1000℃、2時間、7)1050℃、2時間、8)1100℃、2時間の条件で行った。
Example 1
Synthetic mesophase pitch obtained by catalytic polymerization of naphthalene in the presence of hydrogen fluoride and boron trifluoride (softening point by elevated flow tester: 235 ° C., H / C atomic ratio: 0.65, optically different (Isotropic content: 100%) was held at 550 ° C. for 2 hours under a nitrogen stream to remove volatile components, cooled to room temperature, and then ground to an average particle size of 30 μm or less by a ball mill. Furthermore, this was kept at 750 ° C. for 4 hours under a nitrogen stream and cooled to room temperature to obtain coke. With respect to 1 part by weight of the coke, 2 parts by weight of potassium hydroxide (special grade reagent) was uniformly mixed in a nickel container and kept at 700 ° C. for 2 hours under a nitrogen stream for activation treatment. After cooling to 100 ° C., steam was flowed to sufficiently wet the activated material, and then cooled to room temperature and taken out. This activated product was repeatedly subjected to ultrasonic water washing (10 minutes) and suction filtration with 100 parts by weight of water. This was dried at 100 ° C. for 2 hours, and further vacuum dried at 220 ° C. for 5 hours to obtain activated charcoal.
The activated charcoal was heat-treated in a nitrogen gas atmosphere (GHSV: 2000 hr −1 ): 1) 700 ° C., 2 hours 2) 800 ° C., 2 hours 3) 850 ° C., 2 hours 4) 900 ° C., 2 hours 5) 950 2 hours, 6) 1000 ° C., 2 hours, 7) 1050 ° C., 2 hours, 8) 1100 ° C., 2 hours.

実施例2
賦活炭を熱処理する際の雰囲気ガスを水素/窒素(各50vol%)の混合ガスに変えた以外は実施例1と同様にして分極性電極用炭素材料を得た。
Example 2
A carbon material for a polarizable electrode was obtained in the same manner as in Example 1 except that the atmosphere gas when heat-treating the activated charcoal was changed to a mixed gas of hydrogen / nitrogen (50 vol% each).

実施例3
賦活炭を熱処理する際の雰囲気ガスをアンモニア/窒素(各50vol%)の混合ガスに変えた以外は実施例1と同様にして分極性電極用炭素材料を得た。
Example 3
A carbon material for a polarizable electrode was obtained in the same manner as in Example 1 except that the atmosphere gas when heat-treating the activated charcoal was changed to a mixed gas of ammonia / nitrogen (50 vol% each).

実施例4
原料を石油系ニードルコークス(興亜石油社製、H/C原子比:0.38)とし、これを窒素気流下550℃で2時間保持して室温まで冷却した後、ボールミルで平均粒度30μm以下に粉砕した。更に、これを窒素気流下750℃で4時間保持した。以降、実施例1と同様の操作を行って分極性電極用炭素材料を得た。
Example 4
The raw material was petroleum needle coke (manufactured by Koa Oil Co., Ltd., H / C atomic ratio: 0.38), which was kept at 550 ° C. for 2 hours under a nitrogen stream and cooled to room temperature. Crushed. Furthermore, this was hold | maintained at 750 degreeC under nitrogen stream for 4 hours. Thereafter, the same operation as in Example 1 was performed to obtain a carbon material for a polarizable electrode.

実施例5
賦活炭を熱処理する際の雰囲気ガスを水素/窒素(各50vol%)の混合ガスに変えた以外は実施例4と同様にして分極性電極用炭素材料を得た。
Example 5
A carbon material for a polarizable electrode was obtained in the same manner as in Example 4 except that the atmosphere gas when heat-treating the activated charcoal was changed to a mixed gas of hydrogen / nitrogen (50 vol% each).

比較例1
実施例1と同様にして得られた賦活炭を、熱処理せずに分極性電極とした。
Comparative Example 1
The activated charcoal obtained in the same manner as in Example 1 was used as a polarizable electrode without heat treatment.

比較例2
実施例4と同様にして得られた賦活炭を、熱処理せずに分極性電極とした。
Comparative Example 2
The activated charcoal obtained in the same manner as in Example 4 was used as a polarizable electrode without heat treatment.

比較例3
コークスを得る工程を1050℃で4時間の保持に変えたこと、および賦活炭の熱処理を900℃、2時間のみとしたこと以外は実施例1と同様にして分極性電極用炭素材料を得た。
Comparative Example 3
A carbon material for a polarizable electrode was obtained in the same manner as in Example 1 except that the step of obtaining coke was changed to hold at 1050 ° C. for 4 hours, and the heat treatment of the activated charcoal was only 900 ° C. and 2 hours. .

実施例および比較例で得られた分極性電極用炭素材料を(I)分極性電極の製造方法、及び(II)静電容量保持率の測定方法に従い、電気二重層キャパシタの性能評価を行った。結果を表1に示す。
実施例1において、合成系メソフェーズピッチ由来の賦活炭を用いた窒素気流下の熱処理では、比較例1の熱未処理の場合と比較して静電容量保持率は800℃以上で向上した。また、比較例1の熱未処理の場合、炭素材料中の酸素含有量が2.30%であるのに対して、実施例1では850℃以上で0.05wt%以下(検出下限値以下)であった。
実施例2において、合成系メソフェーズピッチ由来の賦活炭を用いた水素/窒素気流下の熱処理では、比較例1の熱未処理の場合と比較して静電容量保持率は700℃以上で向上した。また、比較例1の熱未処理の酸素濃度が2.30%であるのに対して、実施例2では700℃以上で0.05wt%以下(検出下限値以下)であった。
実施例3において、合成系メソフェーズピッチ由来の賦活炭を用いたアンモニア/窒素気流下の熱処理では、比較例1の熱未処理の場合と比較して静電容量保持率は900℃以上で向上した。また、比較例1の熱未処理の場合の酸素濃度が2.30%であるのに対して、実施例3では700℃以上で0.05wt%以下(検出下限値以下)であった。
実施例4において、石油系ニードルコークス由来の賦活炭を用いた窒素気流下の熱処理では、比較例2の熱未処理の場合と比較して静電容量保持率は800℃以上で向上した。また、比較例2の熱未処理の場合、炭素材料中の酸素含有量が2.71%であるのに対して、実施例4では900℃以上で0.05wt%以下(検出下限値以下)であった。
実施例5において、石油系ニードルコークス由来の賦活炭を用いた水素/窒素気流下の熱処理では、比較例2の熱未処理の場合と比較して静電容量保持率は700℃以上で向上した。また、比較例2の熱未処理の場合、炭素材料中の酸素含有量が2.71%であるのに対して、900℃以上で0.05wt%以下(検出下限値以下)であった。
比較例3において、合成系メソフェーズピッチ由来の賦活炭(コークスを得る工程において1050℃で4時間保持)を用いた窒素気流下900℃で2時間の熱処理では、炭素材料中のカリウム含有量は1.62%であった。一方、コークスを得る工程において750℃で4時間保持した以外は比較例3と同様に行った実施例1のカリウム含有量は0.03%であった。また、静電容量保持率は実施例1が86.0%であるのに対して、比較例3は71.2%に低下した。
The carbon materials for polarizable electrodes obtained in the examples and comparative examples were evaluated for the performance of electric double layer capacitors in accordance with (I) a method for producing polarizable electrodes and (II) a method for measuring capacitance retention. . The results are shown in Table 1.
In Example 1, in the heat treatment under a nitrogen stream using activated charcoal derived from the synthetic mesophase pitch, the capacitance retention was improved at 800 ° C. or higher as compared with the case of heat untreated in Comparative Example 1. In addition, in the case of heat treatment in Comparative Example 1, the oxygen content in the carbon material is 2.30%, whereas in Example 1, it is 850 ° C. or more and 0.05 wt% or less (below the detection lower limit value). Met.
In Example 2, in the heat treatment under a hydrogen / nitrogen stream using activated charcoal derived from the synthetic mesophase pitch, the capacitance retention was improved at 700 ° C. or higher as compared with the case of heat untreated in Comparative Example 1. . In contrast, the heat-untreated oxygen concentration in Comparative Example 1 was 2.30%, whereas in Example 2, it was 700 ° C. or higher and 0.05 wt% or lower (lower than the detection lower limit value).
In Example 3, in the heat treatment under an ammonia / nitrogen stream using activated charcoal derived from the synthetic mesophase pitch, the capacitance retention was improved at 900 ° C. or higher as compared with the case of heat untreated in Comparative Example 1. . In contrast, the oxygen concentration in the case of heat treatment in Comparative Example 1 was 2.30%, whereas in Example 3, it was 700 ° C. or higher and 0.05 wt% or lower (lower than the detection lower limit value).
In Example 4, in the heat treatment under a nitrogen stream using activated carbon derived from petroleum needle coke, the capacitance retention was improved at 800 ° C. or higher as compared to the case of heat untreated in Comparative Example 2. Moreover, in the case of the heat-unprocessed of Comparative Example 2, the oxygen content in the carbon material is 2.71%, whereas in Example 4, it is 900 ° C. or higher and 0.05 wt% or lower (lower than the detection lower limit). Met.
In Example 5, in heat treatment under a hydrogen / nitrogen stream using activated carbon derived from petroleum-based needle coke, the capacitance retention was improved at 700 ° C. or higher as compared with the case of heat untreated in Comparative Example 2. . Further, in the case of the heat-untreated sample of Comparative Example 2, the oxygen content in the carbon material was 2.71%, whereas it was not lower than 900 ° C. and not higher than 0.05 wt% (below the lower limit of detection).
In Comparative Example 3, heat treatment for 2 hours at 900 ° C. under a nitrogen stream using activated charcoal derived from synthetic mesophase pitch (held at 1050 ° C. for 4 hours in the process of obtaining coke) has a potassium content of 1 in the carbon material. .62%. On the other hand, the potassium content of Example 1, which was carried out in the same manner as in Comparative Example 3, except that the coke was obtained at 750 ° C. for 4 hours, was 0.03%. Further, the capacitance retention rate was 86.0% in Example 1, whereas it was reduced to 71.2% in Comparative Example 3.

Figure 2006024747
Figure 2006024747

Claims (8)

コークスを、水酸化アルカリ金属を用いて賦活処理したのち不活性ガスまたは還元性ガスの雰囲気下900〜1100℃の温度で熱処理することによって得られる電気二重層キャパシタ電極用炭素材料。   A carbon material for an electric double layer capacitor electrode obtained by subjecting coke to an activation treatment using an alkali metal hydroxide and then a heat treatment at a temperature of 900 to 1100 ° C. in an atmosphere of an inert gas or a reducing gas. 熱処理後の炭素材料中の酸素含有量が、0.05wt%以下である請求項1記載の電気二重層キャパシタ電極用炭素材料。   The carbon material for an electric double layer capacitor electrode according to claim 1, wherein the oxygen content in the carbon material after the heat treatment is 0.05 wt% or less. 熱処理後の炭素材料中のアルカリ金属含有量が、0.05wt%以下である請求項1または2記載の電気二重層キャパシタ電極用炭素材料。   The carbon material for an electric double layer capacitor electrode according to claim 1 or 2, wherein the alkali metal content in the carbon material after the heat treatment is 0.05 wt% or less. コークスを、水酸化アルカリ金属を用いて賦活処理したのち不活性ガスまたは還元性ガスの雰囲気下900〜1100℃の温度で熱処理する電気二重層キャパシタ電極用炭素材料の製造方法。   A method for producing a carbon material for an electric double layer capacitor electrode, wherein coke is activated using an alkali metal hydroxide and then heat treated at a temperature of 900 to 1100 ° C. in an atmosphere of an inert gas or a reducing gas. 不活性ガスまたは還元性ガスが、窒素ガス、アルゴンガス、水素ガスまたはアンモニアガスである請求項4記載の電気二重層キャパシタ電極用炭素材料の製造方法。   The method for producing a carbon material for an electric double layer capacitor electrode according to claim 4, wherein the inert gas or the reducing gas is nitrogen gas, argon gas, hydrogen gas or ammonia gas. 熱処理後の炭素材料中の酸素含有量が、0.05wt%以下である請求項4または5記載の電気二重層キャパシタ電極用炭素材料の製造方法。   6. The method for producing a carbon material for an electric double layer capacitor electrode according to claim 4, wherein the oxygen content in the carbon material after the heat treatment is 0.05 wt% or less. 熱処理後の炭素材料中のアルカリ金属含有量が、0.05wt%以下である請求項4〜6のいずれかに記載の電気二重層キャパシタ電極用炭素材料の製造方法。   The method for producing a carbon material for an electric double layer capacitor electrode according to any one of claims 4 to 6, wherein the alkali metal content in the carbon material after the heat treatment is 0.05 wt% or less. コークスが、縮合多環炭化水素またはこれを含有する物質を弗化水素および三弗化硼素の存在下で重合させることによって合成されるピッチを熱処理して得られるものである請求項4〜7のいずれかに記載の電気二重層キャパシタ電極用炭素材料の製造方法。   Coke is obtained by heat-treating a pitch synthesized by polymerizing a condensed polycyclic hydrocarbon or a substance containing the same in the presence of hydrogen fluoride and boron trifluoride. The manufacturing method of the carbon material for electric double layer capacitor electrodes in any one.
JP2004201595A 2004-07-08 2004-07-08 Carbon material for electric double-layer capacitor electrode, and its production method Pending JP2006024747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004201595A JP2006024747A (en) 2004-07-08 2004-07-08 Carbon material for electric double-layer capacitor electrode, and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004201595A JP2006024747A (en) 2004-07-08 2004-07-08 Carbon material for electric double-layer capacitor electrode, and its production method

Publications (1)

Publication Number Publication Date
JP2006024747A true JP2006024747A (en) 2006-01-26

Family

ID=35797806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004201595A Pending JP2006024747A (en) 2004-07-08 2004-07-08 Carbon material for electric double-layer capacitor electrode, and its production method

Country Status (1)

Country Link
JP (1) JP2006024747A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008084846A1 (en) * 2007-01-12 2008-07-17 Daikin Industries, Ltd. Electric double layer capacitor
JP2008205173A (en) * 2007-02-20 2008-09-04 Nakkusu:Kk Electrode material for electric double layer capacitor and electric double layer capacitor using the same
JP2012508155A (en) * 2008-11-04 2012-04-05 コーニング インコーポレイテッド Very porous activated carbon with controlled oxygen content
JP2013518018A (en) * 2010-01-22 2013-05-20 コーニング インコーポレイテッド Large capacity / low oxygen porous carbon for EDLC
EP2695176A1 (en) * 2011-04-07 2014-02-12 Retriev Technologies Incorporated Carbon electrodes and electrochemical capacitors
JP2015056502A (en) * 2013-09-11 2015-03-23 株式会社キャタラー Active carbon for hybrid capacitor and method for manufacturing the same
JP2017076767A (en) * 2015-10-15 2017-04-20 ジーエス エナジー コーポレーション Active carbon for electric double-layer capacitor electrode and manufacturing method of the same
WO2018074303A1 (en) 2016-10-21 2018-04-26 株式会社クラレ Carbonaceous material and method for producing same
KR20190120757A (en) 2017-02-27 2019-10-24 주식회사 쿠라레 Carbonaceous Material and Manufacturing Method Thereof
TWI751290B (en) * 2017-02-27 2022-01-01 日商可樂麗股份有限公司 Carbonaceous material and its manufacturing method, and electrode material for electric double layer capacitor, electrode for electric double layer capacitor and electric double layer capacitor containing the carbon material

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008084846A1 (en) * 2007-01-12 2010-05-06 ダイキン工業株式会社 Electric double layer capacitor
KR101053337B1 (en) * 2007-01-12 2011-08-01 다이킨 고교 가부시키가이샤 Electric double layer capacitor
US8236191B2 (en) 2007-01-12 2012-08-07 Daikin Industries, Ltd. Electrical double layer capacitor
WO2008084846A1 (en) * 2007-01-12 2008-07-17 Daikin Industries, Ltd. Electric double layer capacitor
JP2008205173A (en) * 2007-02-20 2008-09-04 Nakkusu:Kk Electrode material for electric double layer capacitor and electric double layer capacitor using the same
JP2012508155A (en) * 2008-11-04 2012-04-05 コーニング インコーポレイテッド Very porous activated carbon with controlled oxygen content
JP2013518018A (en) * 2010-01-22 2013-05-20 コーニング インコーポレイテッド Large capacity / low oxygen porous carbon for EDLC
EP2695176A4 (en) * 2011-04-07 2015-04-29 Retriev Technologies Inc Carbon electrodes and electrochemical capacitors
EP2695176A1 (en) * 2011-04-07 2014-02-12 Retriev Technologies Incorporated Carbon electrodes and electrochemical capacitors
JP2015056502A (en) * 2013-09-11 2015-03-23 株式会社キャタラー Active carbon for hybrid capacitor and method for manufacturing the same
JP2017076767A (en) * 2015-10-15 2017-04-20 ジーエス エナジー コーポレーション Active carbon for electric double-layer capacitor electrode and manufacturing method of the same
WO2018074303A1 (en) 2016-10-21 2018-04-26 株式会社クラレ Carbonaceous material and method for producing same
KR20190071704A (en) 2016-10-21 2019-06-24 주식회사 쿠라레 Carbonaceous material and manufacturing method thereof
KR20230023057A (en) 2016-10-21 2023-02-16 주식회사 쿠라레 Carbonaceous material and method for producing same
KR20190120757A (en) 2017-02-27 2019-10-24 주식회사 쿠라레 Carbonaceous Material and Manufacturing Method Thereof
TWI751290B (en) * 2017-02-27 2022-01-01 日商可樂麗股份有限公司 Carbonaceous material and its manufacturing method, and electrode material for electric double layer capacitor, electrode for electric double layer capacitor and electric double layer capacitor containing the carbon material
US11634330B2 (en) 2017-02-27 2023-04-25 Kuraray Co., Ltd. Carbonaceous material and method for producing same

Similar Documents

Publication Publication Date Title
KR100841587B1 (en) Activated carbon, process for producing the same, polarizable electrode, and electric double layer capacitor
US7691782B2 (en) Active carbon, production method thereof and polarizable electrode
US5891822A (en) Production process of active carbon used for electrode for organic solvent type electric double layer capacitor
JP4618929B2 (en) Activated carbon for electric double layer capacitors
JP5931326B2 (en) Activated carbon for electric double layer capacitors
JP4054746B2 (en) Electric double layer capacitor, activated carbon for the electrode, and manufacturing method thereof
JP4877441B2 (en) Activated carbon, manufacturing method thereof, polarizable electrode, and electric double layer capacitor
JP2005136397A (en) Activated carbon, electrode material using it, and electric double layer capacitor
JP4420381B2 (en) Activated carbon, manufacturing method thereof and polarizable electrode
JP4576374B2 (en) Activated carbon, its production method and its use
JPH11214270A (en) Carbon material for electric double layer capacitor and its manufacture
JP2006024747A (en) Carbon material for electric double-layer capacitor electrode, and its production method
KR101910461B1 (en) Manufacturing method of activated carbon and activated carbon for electric double-layer capacitor electrode manufactured thereby
JP4762424B2 (en) Activated carbon, manufacturing method thereof, and electric double layer capacitor using the activated carbon
JP4503134B2 (en) Activated carbon for electric double layer capacitors
JP4066506B2 (en) A method for producing a carbonaceous material.
JP2003183014A (en) Porous carbon material, its producing method and electric double layer capacitor
JP2000138141A (en) Manufacture of carbon porous body for electric double layer capacitor polarizable electrode
JP2006012938A (en) Carbon material for electric double-layer capacitor electrode and manufacturing method thereof
JP5030611B2 (en) Electrode material for electric double layer capacitor and electric double layer capacitor using the same
JP4096653B2 (en) Method for producing activated carbon, polarizable electrode and electric double layer capacitor
JP2006024826A (en) Carbon material for electric double-layer capacitor electrode and its production method
JP2003206121A (en) Activated carbon and method for manufacturing the same
JP2005243933A (en) Electric double-layer capacitor
JP2006278588A (en) Electric double layer capacitor and its production process