JP2007035811A - Electrode using carbon nanotube and its manufacturing method - Google Patents

Electrode using carbon nanotube and its manufacturing method Download PDF

Info

Publication number
JP2007035811A
JP2007035811A JP2005215280A JP2005215280A JP2007035811A JP 2007035811 A JP2007035811 A JP 2007035811A JP 2005215280 A JP2005215280 A JP 2005215280A JP 2005215280 A JP2005215280 A JP 2005215280A JP 2007035811 A JP2007035811 A JP 2007035811A
Authority
JP
Japan
Prior art keywords
carbon nanotubes
electrode
carbon
gap
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005215280A
Other languages
Japanese (ja)
Other versions
JP4696751B2 (en
Inventor
Daisuke Fujita
大祐 藤田
Akiharu Kitamura
暁晴 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2005215280A priority Critical patent/JP4696751B2/en
Publication of JP2007035811A publication Critical patent/JP2007035811A/en
Application granted granted Critical
Publication of JP4696751B2 publication Critical patent/JP4696751B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode using a carbon nano tube whose storage capacity is increased while an advantage of the electrode using the carbon nanotube which is actually vertically oriented is made use of, and to provide a manufacturing method of the electrode. <P>SOLUTION: The electrodes 1 and 2 using the carbon nanotubes are formed of a collector and a plurality of carbon nanotubes 3 and 4 which are substantially vertically oriented on a surface of the collector. Carbide is formed in a clearance between the carbon nanotubes, and clearance is filled. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、カーボンナノチューブを用いた電極に関するものである。本発明による電極は、例えば、大容量の電気を蓄えることが可能な電気二重層キャパシタの素子として用いることができる。本発明はまたカーボンナノチューブを用いた電極の製造方法にも関する。   The present invention relates to an electrode using carbon nanotubes. The electrode according to the present invention can be used, for example, as an element of an electric double layer capacitor capable of storing a large amount of electricity. The present invention also relates to a method for producing an electrode using carbon nanotubes.

一般に、電気化学反応を利用した素子として、電池や電気二重層キャバシタといった素子が知られており、さまざまなタイプの電池やキャパシタが電子機器・電気自動車等、さまざまな用途に利用されている。最近は、ノートパソコン等の携帯端末や携帯電話等の機器の小型化が進み、これらに用いる電池やキャパシタも小型で大容量のものが望まれている。このため、リチウム二次電池や電気二重層キャパシタ等の電極のシート構造化や積層化等、さまざまな研究開発がされている。   In general, elements such as batteries and electric double layer capacitors are known as elements utilizing electrochemical reactions, and various types of batteries and capacitors are used in various applications such as electronic devices and electric vehicles. Recently, downsizing of devices such as notebook personal computers and mobile terminals and mobile phones has progressed, and batteries and capacitors used for these devices are desired to be small and have a large capacity. For this reason, various research and developments such as sheet structure and lamination of electrodes such as lithium secondary batteries and electric double layer capacitors have been conducted.

電池やキャパシタの大容量化については、電池やキャパシタの電極材料として、従来は、比表面積の高い活性炭が主として用いられてきたが、近年、活性炭より単位面積あたりの蓄電容量の高い電極材料としてカーボンナノチューブが注目され、鋭意研究開発がなされている。   For increasing the capacity of batteries and capacitors, activated carbon having a high specific surface area has been mainly used as an electrode material for batteries and capacitors, but in recent years, carbon has been used as an electrode material having a higher storage capacity per unit area than activated carbon. Nanotubes have been attracting attention and earnest research and development.

カーボンナノチューブを用いた電極の製造方法は、具体的には、カーボンナノチューブと樹脂の粉末を混合し、この混合物を所定圧力でペレット化する方法や、カーボンナノチューブと活性炭に樹脂を所定量混合し、この混合物をペースト化する方法がある。一般に、こうして得られた電極からなるキャパシタは、カーボンナノチューブへの活性炭等の添加により、大きい蓄電容量を有するようになる。   Specifically, the method of manufacturing an electrode using carbon nanotubes is a method of mixing carbon nanotubes and resin powder, pelletizing the mixture at a predetermined pressure, or mixing a predetermined amount of resin with carbon nanotubes and activated carbon, There is a method of pasting this mixture. In general, a capacitor composed of the electrode thus obtained has a large storage capacity by adding activated carbon or the like to the carbon nanotube.

また、上記のようなペレット化やペースト化をせず、垂直に配向させたカーボンナノチューブを用いた電極を製造する方法もある。この方法は、ペレット化やペースト化の工程を省くことができるとともに、キャパシタの充放電の際にイオンの出入りにより電極が膨張収縮して劣化するのを防ぎ、樹脂含有により内部抵抗が増加するのを防ぐことができるという利点がある。
特開2001−307951号公報
In addition, there is a method of manufacturing an electrode using carbon nanotubes that are vertically aligned without being pelletized or pasted as described above. This method eliminates the steps of pelletizing and pasting, prevents the electrode from expanding and contracting due to the entry and exit of ions during charge and discharge of the capacitor, and increases the internal resistance due to the resin content. There is an advantage that can be prevented.
JP 2001-307951 A

カーボンナノチューブを用いた電極は上述のような利点を有するが、垂直に配向させた多数のカーボンナノチューブ間に隙間があるため、その分、蓄電容量が低下するという問題があった。このため、カーボンナノチューブ間の隙間に活性炭粉末等を充填することが考えられるが、カーボンナノチューブ間の隙間は、数十nm程度しかなく、それに対して、活性炭粉末の粒径は、最低でも40nmあるため、カーボンナノチューブ間の隙間を
活性炭粉末で埋めることは困難であった。
Although an electrode using carbon nanotubes has the above-described advantages, there is a problem in that the storage capacity is reduced correspondingly because there are gaps between a number of vertically aligned carbon nanotubes. For this reason, it is conceivable to fill the gap between the carbon nanotubes with activated carbon powder or the like, but the gap between the carbon nanotubes is only about several tens of nm, whereas the particle diameter of the activated carbon powder is at least 40 nm. Therefore, it was difficult to fill the gaps between the carbon nanotubes with activated carbon powder.

本発明は、上記の問題から、実質上垂直に配向させたカーボンナノチューブを用いる電極の利点を生かしつつ、さらに蓄電容量を増大させたカーボンナノチューブを用いた電極およびその製造方法を提供するものである。   In view of the above problems, the present invention provides an electrode using carbon nanotubes having a further increased storage capacity while taking advantage of electrodes using carbon nanotubes oriented substantially vertically, and a method for manufacturing the same. .

本発明によるカーボンナノチューブを用いた電極は、集電体と該集電体表面に実質上垂直に配向された複数本のカーボンナノチューブとからなる電極において、該カーボンナノチューブ間の隙間に炭化物が形成されて隙間を埋めていること特徴とするものである。   An electrode using carbon nanotubes according to the present invention is an electrode comprising a current collector and a plurality of carbon nanotubes oriented substantially perpendicular to the surface of the current collector, and carbides are formed in the gaps between the carbon nanotubes. It is characterized by filling the gap.

カーボンナノチューブ間の隙間を埋める炭化物は、例えば、該隙間に含浸した樹脂を炭化させたもの、または、該カーボンナノチューブ間の隙間に含浸したモノマーを重合させ生じた重合物を炭化させたものである。炭化すべき樹脂の代表例としてはポリフッ化ビニリデン、フェノール樹脂、ポリテトラフルオロエチレン(PTFE)、ポリ塩化ビニリデン(PVDC)、ポリフッ化ビニリデン(PVDF)、ポリビニルアルコール(PVA)が挙げられる。カーボンナノチューブ間の隙間に含浸されるモノマーの代表例としては、フェノール、メタクリル酸メチルなどが挙げられる。   The carbide filling the gaps between the carbon nanotubes is, for example, carbonized resin impregnated in the gaps, or carbonized polymer obtained by polymerizing the monomer impregnated in the gaps between the carbon nanotubes. . Typical examples of the resin to be carbonized include polyvinylidene fluoride, phenol resin, polytetrafluoroethylene (PTFE), polyvinylidene chloride (PVDC), polyvinylidene fluoride (PVDF), and polyvinyl alcohol (PVA). Typical examples of the monomer impregnated in the gaps between the carbon nanotubes include phenol and methyl methacrylate.

本発明による、カーボンナノチューブを用いた電極の製造方法は、集電体と該集電体表面に実質上垂直に配向された複数本のカーボンナノチューブを形成する工程と、樹脂もしくはこれを含む液、または、モノマーもしくはこれを含む液をカーボンナノチューブ間の隙間に含浸させる工程と、該カーボンナノチューブを非酸化雰囲気下で加熱し、該樹脂を炭化し、または、モノマーを重合させ、得られた重合物を炭化し、カーボンナノチューブ間の隙間に炭化物を形成して隙間を埋める工程とからなることを特徴とする方法である。   According to the present invention, a method for producing an electrode using carbon nanotubes includes a step of forming a current collector and a plurality of carbon nanotubes oriented substantially perpendicular to the surface of the current collector, a resin or a liquid containing the same, Alternatively, a step of impregnating a gap between carbon nanotubes with a monomer or a liquid containing the same and heating the carbon nanotubes in a non-oxidizing atmosphere to carbonize the resin or polymerize the monomers to obtain a polymer And carbonizing the carbon nanotubes to form carbides in the gaps between the carbon nanotubes to fill the gaps.

実質上垂直に配向されたブラシ毛状カーボンナノチューブは、公知の方法で作製できる。例えば、集電体となるシリコン基板の少なくとも片面上に、ニッケル、コバルト、鉄などの金属の錯体を含む溶液をスプレーや刷毛で塗布した後、加熱して形成した皮膜上に、あるいは、クラスター銃で打ち付けて形成した皮膜上に、アセチレン(C)のような炭化水素ガスを用いて一般的な熱化学気相蒸着法を施すことにより、直径12〜38nmのカーボンナノチューブが多層構造で基板上に垂直に起毛される。具体的には、まず、基板上に触媒微粒子を形成し、触媒微粒子を核として高温雰囲気で原料ガスからカーボンナノチューブを成長させる。基板は触媒微粒子を支持するものであればよく、触媒微粒子が濡れにくいものが好ましく、シリコン基板であってよい。触媒微粒子はニッケル、コバルト、鉄などの金属微粒子であってよい。これらの金属またはその錯体等の化合物の溶液をスプレーや刷毛で基板に塗布し、またはクラスター銃で基板に打ち付け、乾燥させ、必要であれば加熱し、皮膜を形成する。皮膜の形成は電子ビーム蒸着法によって行ってもよい。皮膜の厚みは、厚過ぎると加熱による微粒子化が困難になるので、好ましくは1〜100nmである。次いでこの皮膜を好ましくは減圧下または非酸化雰囲気中で好ま
しくは650〜800℃に加熱すると、直径1〜50nm程度の触媒微粒子が形成される。カーボンナノチューブの原料ガスとしては、アセチレン、メタン、エチレン等の脂肪族炭化水素が使用でき、とりわけアセチレンガスが好ましい。アセチレンの場合、多層構造で太さ12〜38nmのカーボンナノチューブが触媒微粒子を核として基板上にブラシ状に形成される。カーボンナノチューブの形成温度は、好ましくは650〜800℃である。
Brush hair-like carbon nanotubes oriented substantially vertically can be produced by a known method. For example, a solution containing a metal complex such as nickel, cobalt, or iron is applied to at least one surface of a silicon substrate serving as a current collector by spraying or brushing, and then heated on a coating film or a cluster gun By applying a general thermal chemical vapor deposition method using a hydrocarbon gas such as acetylene (C 2 H 2 ), a carbon nanotube having a diameter of 12 to 38 nm has a multilayer structure. Brushed vertically on the substrate. Specifically, first, catalyst fine particles are formed on a substrate, and carbon nanotubes are grown from a raw material gas in a high temperature atmosphere using the catalyst fine particles as nuclei. The substrate is not particularly limited as long as it supports the catalyst fine particles, and is preferably one in which the catalyst fine particles are difficult to wet, and may be a silicon substrate. The catalyst fine particles may be metal fine particles such as nickel, cobalt, and iron. A solution of a compound such as a metal or a complex thereof is applied to the substrate with a spray or a brush, or is applied to the substrate with a cluster gun, dried, and heated if necessary to form a film. The film may be formed by electron beam evaporation. If the thickness of the film is too thick, it becomes difficult to make fine particles by heating, and therefore it is preferably 1 to 100 nm. Subsequently, when this film is heated preferably under reduced pressure or in a non-oxidizing atmosphere, preferably at 650 to 800 ° C., catalyst fine particles having a diameter of about 1 to 50 nm are formed. As a raw material gas for carbon nanotubes, aliphatic hydrocarbons such as acetylene, methane, and ethylene can be used, and acetylene gas is particularly preferable. In the case of acetylene, carbon nanotubes having a multilayer structure and a thickness of 12 to 38 nm are formed in a brush shape on a substrate with catalyst fine particles as nuclei. The formation temperature of the carbon nanotube is preferably 650 to 800 ° C.

樹脂またはモノマーの含浸工程において、樹脂およびモノマーの例は上述したものであってよい。樹脂またはモノマーを含む液は樹脂またはモノマーの溶解液、懸濁液、分散液、乳化液等であってよい。これらの液の媒体としてはテトラヒドロフラン、水、N−メチル−2−ピロリドンなどが例示される。   In the resin or monomer impregnation step, examples of the resin and the monomer may be those described above. The liquid containing the resin or monomer may be a resin or monomer solution, suspension, dispersion, emulsion or the like. Examples of the medium of these liquids include tetrahydrofuran, water, N-methyl-2-pyrrolidone and the like.

カーボンナノチューブを加熱する工程は、樹脂、モノマーまたは重合物の燃焼を防ぐために非酸化雰囲気下で行う。非酸化雰囲気の代表例は窒素ガス雰囲気のような不活性ガス雰囲気である。樹脂または重合物の炭化に必要な加熱温度は好ましくは400〜1000℃である。モノマーの重合と、得られた重合物の炭化とは段階的に行ってもよいし、一挙に行ってもよい。   The step of heating the carbon nanotube is performed in a non-oxidizing atmosphere in order to prevent combustion of the resin, monomer or polymer. A typical example of the non-oxidizing atmosphere is an inert gas atmosphere such as a nitrogen gas atmosphere. The heating temperature required for carbonization of the resin or polymer is preferably 400 to 1000 ° C. The polymerization of the monomer and the carbonization of the obtained polymer may be performed stepwise or at once.

本発明によれば、集電体と該集電体表面に実質上垂直に配向された複数本のカーボンナノチューブとからなる電極において、該カーボンナノチューブ間の隙間に炭化物が形成されて隙間を埋めているので、上記隙間がなくなり、その分、蓄電容量を増大することができる。   According to the present invention, in an electrode composed of a current collector and a plurality of carbon nanotubes oriented substantially perpendicular to the current collector surface, carbides are formed in the gaps between the carbon nanotubes to fill the gaps. Therefore, the gap is eliminated, and the storage capacity can be increased accordingly.

また、本発明方法によれば、樹脂もしくはこれを含む液、または、モノマーもしくはこれを含む液をカーボンナノチューブ間の隙間に含浸させるので、カーボンナノチューブ間の隙間に支障なく、樹脂もしくはこれを含む液、または、モノマーもしくはこれを含む液を浸透させることができ、次いで該カーボンナノチューブを非酸化雰囲気下で加熱し、これにより該樹脂を炭化し、または、モノマーを重合させ、得られた重合物を炭化するので、カーボンナノチューブ間の隙間にむらなく炭化物を形成して隙間を埋めることができる。   Further, according to the method of the present invention, since the gap between the carbon nanotubes is impregnated with the resin or the liquid containing the resin, or the liquid containing the monomer or the liquid, the resin or the liquid containing the resin is obtained without any trouble in the gap between the carbon nanotubes. Alternatively, the monomer or a liquid containing the monomer can be infiltrated, and then the carbon nanotube is heated in a non-oxidizing atmosphere, thereby carbonizing the resin, or polymerizing the monomer, Since carbonization is performed, carbides can be uniformly formed in the gaps between the carbon nanotubes to fill the gaps.

こうして、本発明によれば、実質上垂直に配向させたカーボンナノチューブを用いる電極の利点を生かしつつ、さらに蓄電容量を増大させたカーボンナノチューブを用いた電極を提供することができる。   Thus, according to the present invention, it is possible to provide an electrode using carbon nanotubes having an increased storage capacity while taking advantage of the electrodes using carbon nanotubes oriented substantially vertically.

つぎに、本発明を具体的に説明するために、本発明の実施例およびこれとの比較を示すための比較例をいくつか挙げる。   Next, in order to specifically explain the present invention, some examples of the present invention and comparative examples for showing comparison with the examples will be given.

実施例1
〔工程1〕
50mm×50mmのシリコン基板上に電子ビーム蒸着法により厚さ5nmの鉄薄膜を生成させた。
Example 1
[Step 1]
An iron thin film having a thickness of 5 nm was formed on a 50 mm × 50 mm silicon substrate by electron beam evaporation.

〔工程2〕
内径50mmの石英反応管の内部に、工程1により鉄薄膜を被覆したシリコン基板を設置した。
[Step 2]
A silicon substrate coated with an iron thin film in Step 1 was placed inside a quartz reaction tube having an inner diameter of 50 mm.

〔工程3〕
石英反応管に、ヘリウムガスを200ml/分で流し、内部温度を700℃まで昇温した。
[Step 3]
Helium gas was passed through the quartz reaction tube at 200 ml / min, and the internal temperature was raised to 700 ° C.

〔工程4〕
温度が700℃になった後、工程3のヘリウムガス中にアセチレンガスを80ml/分導入し、この混合ガスを反応管に10分流した。
[Step 4]
After the temperature reached 700 ° C., acetylene gas was introduced into the helium gas in Step 3 at 80 ml / min, and this mixed gas was allowed to flow through the reaction tube for 10 minutes.

〔工程5〕
アセチレンガスの導入を止めて、その後常温まで反応管内を冷却した。以上の操作により、シリコン基板上に垂直配向したカーボンナノチューブ(高さ約47μm)が生成した。
[Step 5]
The introduction of acetylene gas was stopped, and then the reaction tube was cooled to room temperature. By the above operation, vertically aligned carbon nanotubes (about 47 μm in height) were generated on the silicon substrate.

〔工程6〕
ポリ塩化ビニリデンをテトラヒドロフランに溶解させた。
[Step 6]
Polyvinylidene chloride was dissolved in tetrahydrofuran.

〔工程7〕
工程5において得た、シリコン基板上に垂直配向したカーボンナノチューブに、工程6において得たポリ塩化ビニリデンのテトラヒドロフラン溶液を所定量滴下し、約80℃でカーボンナノチューブを乾燥させた。
[Step 7]
A predetermined amount of the polyvinylidene chloride tetrahydrofuran solution obtained in Step 6 was dropped on the carbon nanotubes obtained in Step 5 and vertically aligned on the silicon substrate, and the carbon nanotubes were dried at about 80 ° C.

〔工程8〕
工程7において、ポリ塩化ビニリデンのテトラヒドロフラン溶液を含ませたカーボンナノチューブを窒素雰囲気下、800〜900℃で焼成した。これによりカーボンナノテューブとポリ塩化ビニリデン由来の炭化物の複合体を得た(カーボンナノチューブ:ポリ塩化ビニリデン由来の炭化物=1:l.3、重量比)。
[Step 8]
In step 7, the carbon nanotubes containing a tetrahydrofuran solution of polyvinylidene chloride were fired at 800 to 900 ° C. in a nitrogen atmosphere. As a result, a composite of carbon nanotubes and carbides derived from polyvinylidene chloride was obtained (carbon nanotubes: carbides derived from polyvinylidene chloride = 1: 1.3, weight ratio).

〔工程9〕
工程8において得た、固定化した複合体を片面に有する一対のシリコン基板を電極として、図1、図2に示すように、容器(6) 内で、露点下(温度−60℃、水分なし)の窒素雰囲気で、セパレータ(5) を介して、互いに対向するように配置し、サンドイッチ体(17)を作製した。その後、これを150〜200℃で24時間乾燥させた。
[Step 9]
As shown in FIGS. 1 and 2, using the pair of silicon substrates having the immobilized composite on one side obtained in step 8 as electrodes, in the container (6), below the dew point (temperature −60 ° C., no moisture) ) In a nitrogen atmosphere through the separator (5) so as to face each other to produce a sandwich body (17). Then, this was dried at 150-200 degreeC for 24 hours.

〔工程10〕
乾燥窒素雰囲気下にグローブボックス内で電解液(テトラエチルアンモニウムテトラフルオロボレートのプロピレンカーボネート溶液(濃度=1mol/l))を容器(6) 内に注入し、カーボンナノチューブ(3) (4) に含浸させた。電解液の量は1cm当たり1〜3ccとした。
[Step 10]
In a glove box under a dry nitrogen atmosphere, an electrolytic solution (tetraethylammonium tetrafluoroborate propylene carbonate solution (concentration = 1 mol / l)) is injected into the container (6) and impregnated into the carbon nanotubes (3) (4). It was. The amount of the electrolyte was 1 to 3 cc per 1 cm 2 .

その後、ポリプロピレン製ガスケットを用いて容器(6) の口部をステンレス鋼製の蓋材(7) でかしめ封口した。こうして、上側電極(1) が陽極で下側電極(2) が陰極である電気二重層キャパシタ(A)を作製した。   Thereafter, the mouth of the container (6) was caulked with a stainless steel lid (7) using a polypropylene gasket. Thus, an electric double layer capacitor (A) in which the upper electrode (1) was an anode and the lower electrode (2) was a cathode was produced.

実施例2
実施例1の〔工程1〕から〔工程5〕までを繰り返し、シリコン基板上に垂直配向したカーボンナノチューブ(高さ約47μm)を生成させた。
Example 2
By repeating [Step 1] to [Step 5] of Example 1, carbon nanotubes (height of about 47 μm) vertically aligned on the silicon substrate were generated.

〔工程6〕
フェノール5ccにホルマリン5ccを加え、モノマーを得た。
[Step 6]
Formalin 5 cc was added to phenol 5 cc to obtain a monomer.

〔工程7〕
工程5において得た、シリコン基板上に垂直配向したカーボンナノチューブに、工程6において得たモノマーを所定量滴下し、約300℃でカーボンナノチューブを乾燥させた。
[Step 7]
A predetermined amount of the monomer obtained in Step 6 was dropped on the carbon nanotubes vertically aligned on the silicon substrate obtained in Step 5, and the carbon nanotubes were dried at about 300 ° C.

〔工程8〕
工程7において、モノマーを含ませたカーボンナノチューブを窒素雰囲気下、800〜900℃で焼成した。これによりカーボンナノテューブと上記モノマー由来の炭化物の複合体を得た(カーボンナノチューブ:モノマー由来の炭化物=1:2.4、重量比)。
[Step 8]
In step 7, the carbon nanotubes containing the monomer were fired at 800 to 900 ° C. in a nitrogen atmosphere. As a result, a composite of carbon nanotubes and the above-mentioned monomer-derived carbide was obtained (carbon nanotube: monomer-derived carbide = 1: 2.4, weight ratio).

〔工程9〕
実施例1の〔工程9〕から〔工程10〕までを繰り返し、電気二重層キャバシタ(B)を作製した。
[Step 9]
By repeating [Step 9] to [Step 10] of Example 1, an electric double layer capacitor (B) was produced.

比較例1
実施例1の〔工程1〕から〔工程5〕までを繰り返し、シリコン基板上に垂直配向したカーボンナノチューブ(高さ約47μm)を生成させた。
Comparative Example 1
By repeating [Step 1] to [Step 5] of Example 1, carbon nanotubes (height of about 47 μm) vertically aligned on the silicon substrate were generated.

〔工程6〕
工程5において得た、シリコン基板上に垂直配向したカーボンナノチューブに対し、実施例1の〔工程9〕から〔工程10〕までを繰り返し、電気二重層キャバシタ(C)を作製した。
[Step 6]
With respect to the carbon nanotubes vertically aligned on the silicon substrate obtained in Step 5, the [Step 9] to [Step 10] of Example 1 were repeated to produce an electric double layer capacitor (C).

性能試験
実施例および比較例で作製した試料について、それぞれ静電容量を測定した。その結果を表1に示す。

Figure 2007035811
Performance Test Capacitance was measured for the samples prepared in the examples and comparative examples. The results are shown in Table 1.
Figure 2007035811

表1から明らかなように、複合体によって得られた実施例のキャパシタの静電容量はカーボンナノチューブのみで作製した比較例のキャパシタの静電容量の1.8〜2.3倍である。   As is clear from Table 1, the capacitance of the capacitor of the example obtained by the composite is 1.8 to 2.3 times the capacitance of the capacitor of the comparative example made of only carbon nanotubes.

以上、本発明の実施の形態について説明したが、本発明はこのような実施の形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得る。さらに、本発明を基板上に成長したカーボンナノファイバーなど他のナノ材料にも適用できる。   The embodiment of the present invention has been described above, but the present invention is not limited to such an embodiment, and can be implemented in various forms without departing from the gist of the present invention. Furthermore, the present invention can be applied to other nanomaterials such as carbon nanofibers grown on a substrate.

サンドイッチ体の側面図である。It is a side view of a sandwich body. 電気二重層キャパシタの垂直縦断面図である。It is a vertical longitudinal cross-sectional view of an electric double layer capacitor.

符号の説明Explanation of symbols

(1) (2) :電極
(3) (4) :カーボンナノチューブ
(5) :セパレータ
(6) :容器
(7) :蓋材
(8) :電気二重層キャパシタ
(17):サンドイッチ体
(1) (2): Electrode
(3) (4): Carbon nanotube
(5): Separator
(6): Container
(7): Cover material
(8): Electric double layer capacitor
(17): Sandwich body

Claims (3)

集電体と該集電体表面に実質上垂直に配向された複数本のカーボンナノチューブとからなる電極において、該カーボンナノチューブ間の隙間に炭化物が形成されて隙間を埋めていること特徴とするカーボンナノチューブを用いた電極。   An electrode comprising a current collector and a plurality of carbon nanotubes oriented substantially perpendicular to the surface of the current collector, wherein carbon is formed in a gap between the carbon nanotubes to fill the gap An electrode using nanotubes. 該炭化物が、該カーボンナノチューブ間の隙間に含浸した樹脂を炭化させたもの、または、該カーボンナノチューブ間の隙間に含浸したモノマーを重合させ生じた重合物を炭化させたものであることを特徴とする請求項1記載のカーボンナノチューブを用いた電極。   The carbide is obtained by carbonizing a resin impregnated in the gap between the carbon nanotubes, or carbonized a polymer obtained by polymerizing a monomer impregnated in the gap between the carbon nanotubes. An electrode using the carbon nanotube according to claim 1. 集電体と該集電体表面に実質上垂直に配向された複数本のカーボンナノチューブを形成する工程と、樹脂もしくはこれを含む液、または、モノマーもしくはこれを含む液をカーボンナノチューブ間の隙間に含浸させる工程と、該カーボンナノチューブを非酸化雰囲気下で加熱し、該樹脂を炭化し、または、モノマーを重合させ、得られた重合物を炭化し、カーボンナノチューブ間の隙間に炭化物を形成して隙間を埋める工程とからなることを特徴とするカーボンナノチューブを用いた電極の製造方法。



Forming a current collector and a plurality of carbon nanotubes oriented substantially vertically on the current collector surface, and a resin or a liquid containing the same, or a monomer or a liquid containing the same in the gap between the carbon nanotubes A step of impregnating, heating the carbon nanotubes in a non-oxidizing atmosphere, carbonizing the resin, or polymerizing a monomer, carbonizing the obtained polymer, and forming a carbide in a gap between the carbon nanotubes. A method for producing an electrode using carbon nanotubes, characterized by comprising a step of filling a gap.



JP2005215280A 2005-07-26 2005-07-26 Method for producing electrode using carbon nanotube Expired - Fee Related JP4696751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005215280A JP4696751B2 (en) 2005-07-26 2005-07-26 Method for producing electrode using carbon nanotube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005215280A JP4696751B2 (en) 2005-07-26 2005-07-26 Method for producing electrode using carbon nanotube

Publications (2)

Publication Number Publication Date
JP2007035811A true JP2007035811A (en) 2007-02-08
JP4696751B2 JP4696751B2 (en) 2011-06-08

Family

ID=37794716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005215280A Expired - Fee Related JP4696751B2 (en) 2005-07-26 2005-07-26 Method for producing electrode using carbon nanotube

Country Status (1)

Country Link
JP (1) JP4696751B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009075264A1 (en) * 2007-12-12 2009-06-18 Nippon Steel Chemical Co., Ltd. Metal encapsulated dendritic carbon nanostructure, carbon nanostructure, process for producing metal encapsulated dendritic carbon nanostructure, process for producing carbon nanostructure, and capacitor
US20110149465A1 (en) * 2008-12-08 2011-06-23 Yasuhiro Hashimoto Electric double layer capacitor and method for manufacturing the same
KR20130102653A (en) 2011-02-07 2013-09-17 다이요 닛산 가부시키가이샤 Composite resinous particles, method of producing composite resinous particles, composite resin molded body, and method of producing same
WO2014196459A1 (en) * 2013-06-05 2014-12-11 日立造船株式会社 Carbon nanotube sheet and production method for carbon nanotube sheet
US10435519B2 (en) 2009-01-20 2019-10-08 Taiyo Nippon Sanso Corporation Composite resinous material particles and process for producing same
JP2020009660A (en) * 2018-07-10 2020-01-16 アイシン精機株式会社 Carbon nanotube electrode, power storage device using the same, and manufacturing method of carbon nanotube composite
CN117542956A (en) * 2024-01-10 2024-02-09 北京郅航科技有限公司 Electrode plate, preparation method thereof and secondary battery

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103276486B (en) 2004-11-09 2017-12-15 得克萨斯大学体系董事会 The manufacture and application of nano-fibre yams, band and plate
WO2014022667A2 (en) 2012-08-01 2014-02-06 The Board Of Regents, The University Of Texas System Coiled and non-coiled twisted nanofiber yarn and polymer fiber torsional and tensile actuators

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63314821A (en) * 1987-06-17 1988-12-22 Matsushita Electric Ind Co Ltd Manufacture of activated carbon structure for polarizable electrode
JPH04359862A (en) * 1991-06-06 1992-12-14 Nippon Steel Corp Negative electrode of lithium secondary battery using carbon fiber and its manufacture
JP2001110689A (en) * 1999-10-04 2001-04-20 Asahi Kasei Corp Active carbon raw material for electric double-layer capacitor electrode, and activated carbon
JP2001143973A (en) * 1999-11-15 2001-05-25 Asahi Glass Co Ltd High density electrode made mainly of spherical activated carbon and electric double layer capacitor
JP2001307951A (en) * 2000-04-12 2001-11-02 Young Hee Lee Supercapacitor and its manufacturing method
JP2004087213A (en) * 2002-08-26 2004-03-18 Hitachi Ltd Electrode, manufacturing method of the same, electricity storage device, and light emitting device
JP2004152787A (en) * 2002-10-28 2004-05-27 Sharp Corp Semiconductor element and its manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63314821A (en) * 1987-06-17 1988-12-22 Matsushita Electric Ind Co Ltd Manufacture of activated carbon structure for polarizable electrode
JPH04359862A (en) * 1991-06-06 1992-12-14 Nippon Steel Corp Negative electrode of lithium secondary battery using carbon fiber and its manufacture
JP2001110689A (en) * 1999-10-04 2001-04-20 Asahi Kasei Corp Active carbon raw material for electric double-layer capacitor electrode, and activated carbon
JP2001143973A (en) * 1999-11-15 2001-05-25 Asahi Glass Co Ltd High density electrode made mainly of spherical activated carbon and electric double layer capacitor
JP2001307951A (en) * 2000-04-12 2001-11-02 Young Hee Lee Supercapacitor and its manufacturing method
JP2004087213A (en) * 2002-08-26 2004-03-18 Hitachi Ltd Electrode, manufacturing method of the same, electricity storage device, and light emitting device
JP2004152787A (en) * 2002-10-28 2004-05-27 Sharp Corp Semiconductor element and its manufacturing method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009075264A1 (en) * 2007-12-12 2009-06-18 Nippon Steel Chemical Co., Ltd. Metal encapsulated dendritic carbon nanostructure, carbon nanostructure, process for producing metal encapsulated dendritic carbon nanostructure, process for producing carbon nanostructure, and capacitor
US20110058308A1 (en) * 2007-12-12 2011-03-10 Nobuyuki Nishi Metal Encapsulated Dendritic Carbon Nanostructure, Carbon Nanostructure, Process for Producing Metal Encapsulated Dendritic Carbon Nanostructure, Process for Producing Carbon Nanostructure, and Capacitor
JP5481748B2 (en) * 2007-12-12 2014-04-23 新日鉄住金化学株式会社 Carbon nanostructure, method for producing metal-encapsulated dendritic carbon nanostructure, and method for producing carbon nanostructure
US9656870B2 (en) 2007-12-12 2017-05-23 Nippon Steel & Sumikin Chemical Co., Ltd Metal encapsulated dendritic carbon nanostructure, carbon nanostructure, process for producing metal encapsulated dendritic carbon nanostructure, process for producing carbon nanostructure, and capacitor
US20110149465A1 (en) * 2008-12-08 2011-06-23 Yasuhiro Hashimoto Electric double layer capacitor and method for manufacturing the same
US8531818B2 (en) * 2008-12-08 2013-09-10 Panasonic Corporation Electric double layer capacitor and method for manufacturing the same
US10435519B2 (en) 2009-01-20 2019-10-08 Taiyo Nippon Sanso Corporation Composite resinous material particles and process for producing same
KR20150085110A (en) 2011-02-07 2015-07-22 다이요 닛산 가부시키가이샤 Composite resinous particles, method of producing composite resinous particles, composite resin molded body, and method of producing same
US9183966B2 (en) 2011-02-07 2015-11-10 Taiyo Nippon Sanso Corporation Composite resinous particles, method of producing composite resinous particles, composite resin molded body, and method of producing same
KR20130102653A (en) 2011-02-07 2013-09-17 다이요 닛산 가부시키가이샤 Composite resinous particles, method of producing composite resinous particles, composite resin molded body, and method of producing same
JP2014234339A (en) * 2013-06-05 2014-12-15 日立造船株式会社 Carbon nanotube sheet and method for producing carbon nanotube sheet
CN105164049A (en) * 2013-06-05 2015-12-16 日立造船株式会社 Carbon nanotube sheet and production method for carbon nanotube sheet
WO2014196459A1 (en) * 2013-06-05 2014-12-11 日立造船株式会社 Carbon nanotube sheet and production method for carbon nanotube sheet
US9902618B2 (en) 2013-06-05 2018-02-27 Hitachi Zosen Corporation Carbon nanotube sheet and production method for carbon nanotube sheet
JP2020009660A (en) * 2018-07-10 2020-01-16 アイシン精機株式会社 Carbon nanotube electrode, power storage device using the same, and manufacturing method of carbon nanotube composite
JP7163645B2 (en) 2018-07-10 2022-11-01 株式会社アイシン Carbon nanotube electrode, electricity storage device using the same, and method for producing carbon nanotube composite
CN117542956A (en) * 2024-01-10 2024-02-09 北京郅航科技有限公司 Electrode plate, preparation method thereof and secondary battery
CN117542956B (en) * 2024-01-10 2024-03-29 北京郅航科技有限公司 Electrode plate, preparation method thereof and secondary battery

Also Published As

Publication number Publication date
JP4696751B2 (en) 2011-06-08

Similar Documents

Publication Publication Date Title
JP4696751B2 (en) Method for producing electrode using carbon nanotube
Li et al. Microstructure‐dependent K+ storage in porous hard carbon
Wang et al. An aqueous rechargeable Zn//Co3O4 battery with high energy density and good cycling behavior
Chen et al. Densification by compaction as an effective low‐cost method to attain a high areal lithium storage capacity in a CNT@ Co3O4 sponge
Fan et al. Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density
To et al. Ultrahigh surface area three-dimensional porous graphitic carbon from conjugated polymeric molecular framework
JP5191483B2 (en) Porous conductive carbon materials and their use
JP6305348B2 (en) Use of mesoporous graphite particles for electrochemical applications
US20110026189A1 (en) Single-wall Carbon Nanotube Supercapacitor
Chen et al. Oxygen Evolution Assisted Fabrication of Highly Loaded Carbon Nanotube/MnO2 Hybrid Films for High‐Performance Flexible Pseudosupercapacitors
US20030108785A1 (en) Meso-porous carbon and hybrid electrodes and method for producing the same
US20170237075A1 (en) Hierarchical composite structures based on graphene foam or graphene-like foam
US8753525B2 (en) Microporous carbons with aligned pores for supercapacitors
CN110574132B (en) Deposited carbon film on etched silicon for on-chip supercapacitors
Wang et al. Constructing Conductive Bridge Arrays between Ti3C2T x MXene Nanosheets for High-Performance Lithium-Ion Batteries and Highly Efficient Hydrogen Evolution
JP2014530502A (en) High voltage electrochemical double layer capacitor
US9653736B2 (en) Method of producing porous metal-carbon materials
Kim et al. Amphicharge‐storable pyropolymers containing multitiered nanopores
US20140126112A1 (en) Carbon nanotubes attached to metal foil
Zhao et al. Achieving high capacitance of paper‐like graphene films by adsorbing molecules from hydrolyzed polyimide
Qin et al. Toward understanding the enhanced pseudocapacitive storage in 3D SnS/MXene architectures enabled by engineered surface reactions
Li et al. Enhancing the supercapacitor performance of flexible MXene/carbon cloth electrodes by oxygen plasma and chemistry modification
Fang et al. Tailoring stress and ion-transport kinetics via a molecular layer deposition-induced artificial solid electrolyte interphase for durable silicon composite anodes
Yu et al. In Situ Growth of Hierarchical Ni‐Mn‐O Solid Solution on a Flexible and Porous Ni Electrode for High‐Performance All‐Solid‐State Asymmetric Supercapacitors
Kwon et al. Poly (ether amide)-derived, nitrogen self-doped, and interfused carbon nanofibers as free-standing supercapacitor electrode materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080229

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110214

R150 Certificate of patent or registration of utility model

Ref document number: 4696751

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees