JP2001110689A - Active carbon raw material for electric double-layer capacitor electrode, and activated carbon - Google Patents

Active carbon raw material for electric double-layer capacitor electrode, and activated carbon

Info

Publication number
JP2001110689A
JP2001110689A JP28296499A JP28296499A JP2001110689A JP 2001110689 A JP2001110689 A JP 2001110689A JP 28296499 A JP28296499 A JP 28296499A JP 28296499 A JP28296499 A JP 28296499A JP 2001110689 A JP2001110689 A JP 2001110689A
Authority
JP
Japan
Prior art keywords
activated carbon
pvdc
resin
raw material
edlc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP28296499A
Other languages
Japanese (ja)
Inventor
Norikazu Miyashita
憲和 宮下
Tadanori Nomura
忠範 野村
Morinobu Endo
守信 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP28296499A priority Critical patent/JP2001110689A/en
Publication of JP2001110689A publication Critical patent/JP2001110689A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an active carbon raw material for electric double-layer capacitor, which is suitable for obtaining a high capacitance and activated carbon using the raw material. SOLUTION: Activated carbon raw material for an electric double-layer capacitor electrode is vinylidene chloride copolymer, whose fine crystalline size S is not less than 150 Å and which contains polyvinylidene chloride or vinylidene chloride having a content of not less than 85 mol%. Active carbon for the electrode of an electric double-layer capacitor having high capacitance is obtained, by subjecting the activated carbon material to a carbonization treatment and/or an activation treatment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高静電容量を有す
る電気二重層キャパシタ電極用の活性炭原料及びそれを
用いた活性炭に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an activated carbon raw material for an electric double layer capacitor electrode having a high capacitance and an activated carbon using the same.

【0002】[0002]

【従来の技術】近年、電子機器の小型化が積極的に進め
られる中、バックアップ電源に用いられる小型で信頼性
の高い高静電容量のキャパシタが採用される様になって
いる。特に、最近では電気自動車の実用化に向けて、電
源用二次電池の補助電源、あるいは二次電池の負荷を平
滑化する目的として、更に高静電容量の新型キャパシタ
として、電気二重層キャパシタ(EDLC)が着目され
て来ている。
2. Description of the Related Art In recent years, as electronic devices have been actively reduced in size, a small, highly reliable, high-capacitance capacitor used for a backup power supply has been adopted. In particular, recently, for the practical use of electric vehicles, an electric double-layer capacitor (ADP) has been developed as a new capacitor having a higher capacitance for the purpose of smoothing the load of an auxiliary power supply or a secondary battery for a power supply. (EDLC) is attracting attention.

【0003】EDLCとは固体と液体の界面に生じる電
気二重層を利用したコンデンサである。その構造は、セ
パレ−タを挟んだ1組の分極性電極とこれらを収納する
ケ−スと電解液と集電体からなる。分極性電極材料とし
ては、大比表面積を有する活性炭(粉末を固めたもの、
不織布状、シート状)が用いられる。通常、活性炭原料
には、ヤシ殻やセルロース等の植物質や石炭質や石油ピ
ッチ等の石油質やフェノール樹脂、ポリアクリロニトリ
ル(PAN)等の樹脂質が使われている。
An EDLC is a capacitor using an electric double layer generated at an interface between a solid and a liquid. The structure comprises a pair of polarizable electrodes sandwiching a separator, a case for accommodating them, an electrolytic solution and a current collector. Activated carbon having a large specific surface area (solidified powder,
Nonwoven fabric, sheet). Normally, as the activated carbon raw material, plant materials such as coconut shells and cellulose, petroleum materials such as coal and petroleum pitch, phenol resins, and resin materials such as polyacrylonitrile (PAN) are used.

【0004】一方、電解液としては、水系ならば例えば
硫酸水溶液、水酸化カリウム水溶液を、また、有機溶媒
系ならば第4級オニウム塩を溶解したプロピレンカーボ
ネイト(PC)等の電解液が使われることが多い。水系
電解液を用いた水系EDLCは、電解液の導電率が高い
ために低等価直列抵抗(ESR)化に向いており、湿度
に影響されず環境特性に優れる。また、有機系電解液を
用いた有機系EDLCは、耐電圧が高いため、高エネル
ギー密度を持ち、小型化出来るという特長を持ってい
る。
On the other hand, as an electrolyte, an aqueous solution such as a sulfuric acid aqueous solution and a potassium hydroxide aqueous solution is used, and an organic solvent such as propylene carbonate (PC) in which a quaternary onium salt is dissolved is used. Often. An aqueous EDLC using an aqueous electrolyte is suitable for low equivalent series resistance (ESR) because of high conductivity of the electrolyte, and is excellent in environmental characteristics without being affected by humidity. Further, an organic EDLC using an organic electrolytic solution has a high withstand voltage, a high energy density, and a feature that it can be miniaturized.

【0005】最近、EDLCが大静電容量を蓄えられる
様になったり、大電流を供給出来る様になった背景に
は、電極材料として活性炭を採用したことによる所が大
きい。EDLCの静電容量は、その電極材料である活性
炭の構造及び物性に大きく左右され、活性炭への要求特
性として、大きな比表面積を持つこと、導電性があ
り、内部抵抗が低いこと、かさ密度が大きいこと、が
挙げられる。これらの要求特性には、特に活性炭の細孔
容積及び細孔径分布等の細孔構造が大きな影響を与える
ものと考えられている。
In recent years, EDLC has been able to store a large capacitance or supply a large current, largely due to the use of activated carbon as an electrode material. The capacitance of EDLC greatly depends on the structure and physical properties of the activated carbon, which is the electrode material, and the required properties for the activated carbon include a large specific surface area, conductivity, low internal resistance, and low bulk density. It is big. It is considered that the pore structure such as the pore volume and pore diameter distribution of activated carbon has a great influence on these required characteristics.

【0006】実際に、EDLCの静電容量の改良を目的
とした、活性炭の細孔構造を制御する従来技術の例とし
ては、細孔形状及び細孔径に着目した特開平7−220
985号公報の技術、活性炭原料に着目した特開平7−
249551号公報の技術、特開平9−213589号
公報の技術が既に報告されている。特開平7−2209
85号公報の技術によれば、活性炭の細孔はスリット状
か楕円状であり、水溶液電解液では水分子径の1.5〜
3倍の範囲のスリット幅、スリット長の細孔の電極材が
有効であり、有機系電解液では電解液の溶媒和したイオ
ンのイオン径+0.2nm以上の細孔の電極材が大静電
容量のEDLCに最適であることが示されている。
As an example of the prior art for controlling the pore structure of activated carbon for the purpose of improving the capacitance of EDLC, Japanese Patent Application Laid-Open No. 7-220 is focused on the pore shape and pore diameter.
Japanese Patent Application Laid-Open No. 7-8598 focusing on activated carbon raw material
The technology of Japanese Patent Application Laid-Open No. 249551 and the technology of Japanese Patent Application Laid-Open No. 9-21589 have already been reported. JP-A-7-2209
According to the technique disclosed in Japanese Patent No. 85, the pores of activated carbon are slit-shaped or elliptical, and the aqueous electrolyte has a water molecule diameter of 1.5 to
An electrode material having pores with a slit width and a slit length that are three times as large is effective. In an organic electrolytic solution, an electrode material having pores having an ion diameter of a solvated ion of the electrolyte solution plus 0.2 nm or more is highly electrostatic. It has been shown to be optimal for high capacity EDLCs.

【0007】そして、この様な活性炭を製造する方法と
して、特開平3−78221号公報で示されたパルス衝
撃電流により活性炭微粒子の相互間を焼結させる多孔質
体の製造法が示されているが、特殊な焼結方法であり、
製造コスト及び汎用性の点で好ましくない。また、特開
平7−249551号公報の技術によれば、活性炭原料
としてポリ塩化ビニリデン樹脂を用い、非酸化雰囲気下
(窒素ガスN↓2下)、800〜1000℃で加熱する
ことで多数の細孔を有するEDLC電極用活性炭が得ら
れることが示されている。活性炭原料として、加熱処理
による側鎖からの塩酸脱離反応によって容易に多数の電
解液イオンの吸着に好適な場を与えるポリ塩化ビニリデ
ン樹脂を用いたことは、極めて優れた知見ではある。し
かし、前記特開平7−249551号公報には、ポリ塩
化ビニリデン樹脂としてどの様なものを用いた技術なの
か何ら記載されていない。
As a method for producing such activated carbon, there is disclosed a method for producing a porous body in which activated carbon fine particles are sintered with each other by a pulse impact current disclosed in Japanese Patent Application Laid-Open No. 3-78221. Is a special sintering method,
It is not preferable in terms of manufacturing cost and versatility. According to the technique disclosed in Japanese Patent Application Laid-Open No. 7-249551, polyvinylidene chloride resin is used as a raw material for activated carbon and heated at 800 to 1000 ° C. in a non-oxidizing atmosphere (under nitrogen gas N ↓ 2) to produce a large number of fine particles. It is shown that an activated carbon for an EDLC electrode having pores can be obtained. It is an excellent finding that a polyvinylidene chloride resin which easily provides a suitable field for the adsorption of a large number of electrolyte ions by an elimination reaction of hydrochloric acid from a side chain by heat treatment is used as an activated carbon raw material. However, JP-A-7-249551 does not disclose what kind of technique is used as the polyvinylidene chloride resin.

【0008】一方、特開平9−213589号公報の技
術には、ポリ塩化ビニリデン樹脂として、具体的に塩化
ビニリデン単独重合体(ポリ塩化ビニリデンまたはホモ
PVDCと記す)や、塩化ビニリデン(VDC)と各種
コモノマーとの共重合体(PVDC共重合体またはVD
C/(コモノマー名)共重合体と記す)を用いることが
示されており、更に活性炭原料全体に対するVDCの含
有率を10〜100重量%、特に80〜97重量%含む
ことが重要であることが示されている(以下、ホモPV
DC及びPVDC共重合体を総称してPVDC樹脂と呼
ぶ)。しかし、そこでも、単に活性炭原料に対するVD
Cの含有率だけが規定されているだけで、EDLC用電
極の活性炭原料として用いるPVDC樹脂の微結晶サイ
ズに関する規定に関しても何ら記述はしていない。
On the other hand, the technology disclosed in Japanese Patent Application Laid-Open No. Hei 9-21589 discloses various types of polyvinylidene chloride resins, specifically, vinylidene chloride homopolymer (described as polyvinylidene chloride or homo-PVDC), vinylidene chloride (VDC), and the like. Copolymer with comonomer (PVDC copolymer or VD
C / (comonomer name) copolymer), and it is important that the content of VDC with respect to the whole activated carbon raw material is 10 to 100% by weight, particularly 80 to 97% by weight. (Hereinafter referred to as Homo PV
DC and PVDC copolymers are collectively referred to as PVDC resins). However, even there, the VD
Only the content of C is specified, and nothing is specified about the definition of the crystallite size of the PVDC resin used as the activated carbon raw material for the electrode for EDLC.

【0009】PVDC樹脂の微結晶サイズは、本発明に
よれば、VDC含有率と共にEDLC用活性炭原料とし
て、EDLCの静電容量に大きな影響を与えるものであ
ることが見出され、その微結晶サイズは重合方法、重合
条件(開始剤や添加剤の種類及びその濃度、攪拌条件、
重合温度、重合時間等)、後加工条件(粉末化条件、熱
処理等)によって大きく影響される。以上述べた通り、
マイコンやICメモリの小型バックアップ電源をはじ
め、電気自動車用の補助電源として用途を拡大して行く
為に、更なる単位重量あたり、あるいはまた単位体積あ
たりの静電容量が高いEDLC(高静電容量のEDL
C)が求められているにも拘わらず、その要求を満足す
るEDLCを提供する技術は開発されていなかった。
According to the present invention, the crystallite size of the PVDC resin is found to have a great effect on the capacitance of the EDLC as a raw material of activated carbon for the EDLC together with the VDC content. Are polymerization methods, polymerization conditions (types and concentrations of initiators and additives, stirring conditions,
Polymerization temperature, polymerization time, etc.) and post-processing conditions (pulverization conditions, heat treatment, etc.) are greatly affected. As mentioned above,
In order to expand its applications as an auxiliary power supply for electric vehicles, including small backup power supplies for microcomputers and IC memories, EDLC (high capacitance) has a higher capacitance per unit weight or per unit volume. EDL
Despite the demand for (C), no technique has been developed to provide EDLC that satisfies the demand.

【0010】[0010]

【発明が解決しようとする課題】本発明は、高静電容量
を与えるEDLC電極用活性炭原料及びEDLC電極用
活性炭を提供するものである。EDLCの静電容量を上
げるには、電解液イオン径に対し好適な細孔径を出来る
だけ多く有する活性炭を得ることが重要である。PVD
C樹脂を活性炭原料として用いる場合、PVDC樹脂中
のVDC含有率を高くすれば、加熱炭化時に生じる細孔
の数も多くなると考えられ、その意味では、ホモPVD
Cが最も良いと考えられる。しかし、電解液イオン径に
好適な細孔径を有する活性炭を得るには、PVDC樹脂
中のVDC含有率だけでなく、PVDC樹脂の微結晶サ
イズに関するノウハウが必要となる。
SUMMARY OF THE INVENTION The present invention provides an activated carbon raw material for EDLC electrodes and an activated carbon for EDLC electrodes, which provide a high capacitance. In order to increase the capacitance of EDLC, it is important to obtain activated carbon having as many pore diameters as possible suitable for the electrolyte ion diameter. PVD
When C resin is used as a raw material for activated carbon, it is considered that if the VDC content in the PVDC resin is increased, the number of pores generated at the time of heating and carbonizing is also increased.
C is considered the best. However, in order to obtain activated carbon having a pore diameter suitable for the electrolyte ion diameter, know-how regarding not only the VDC content in the PVDC resin but also the crystallite size of the PVDC resin is required.

【0011】即ち、R.A.Wessling著、「P
oly Vinyliden Chloride」、G
orden and Breach Science
Publishers発行、158〜172頁(197
7)によれば、PVDC樹脂の熱分解過程は次の4つの
過程からなる。 脱塩酸を伴ったポリ塩化アセチレン化反応過程、共
役分子シーケンス間のDiels−Adler反応によ
る環化反応過程、脱塩酸を伴った環化反応過程、脱
塩酸を伴った黒鉛化反応過程である。加熱温度が高くな
るに連れて、の過程から順にの過程、の過程と進
み、最終的にの過程を経て炭化する。
That is, R. A. Wessling, "P
oly Vinylidene Chloride ", G
orden and Break Science
Published by Publishers, pp. 158-172 (197
According to 7), the thermal decomposition process of the PVDC resin consists of the following four processes. These are a polychlorinated acetylene reaction process with dehydrochlorination, a cyclization reaction process by the Diels-Adler reaction between conjugated molecule sequences, a cyclization reaction process with dehydrochlorination, and a graphitization reaction process with dehydrochlorination. As the heating temperature increases, the process proceeds from the process to the process in the order, and carbonizes through the final process.

【0012】の過程に従って、PVDC樹脂を130
〜190℃の融点以下の固体状態で脱塩酸すれば、不溶
性のチャー(char)が得られ、その後の600℃〜
900℃の加熱炭化処理しても細孔径が大きく変化しな
いことが示されている。従って、脱塩酸で生成した微細
な細孔を出来るだけ多く残すには、PVDC樹脂をこの
温度領域で出来るだけ多く熱分解すれば良いと考えられ
る。しかし、融点以下の固体状態で不溶性のcharが
得られるまでPVDC樹脂を加熱によって脱塩酸するに
は、長大な時間がかかり、工業的ではない。一方、融点
以上で且つ脱塩酸が効率的に進む200〜300℃の温
度領域で行ったのでは、の過程で生成する細孔径を全
く固定出来ないことになり、電解液のイオン径に対し、
好適な細孔径を有する活性炭を得ることは到底困難であ
る。
According to the process described above, the PVDC resin is
Dehydrochlorination in the solid state below the melting point of 190190 ° C. gives an insoluble char,
It is shown that the pore diameter does not change significantly even when carbonized by heating at 900 ° C. Therefore, it is considered that the PVDC resin should be thermally decomposed as much as possible in this temperature range in order to leave as many fine pores formed by dehydrochlorination as possible. However, it takes a long time to dehydrochlorinate the PVDC resin by heating until an insoluble char is obtained in a solid state below the melting point, which is not industrial. On the other hand, if performed in a temperature range of 200 to 300 ° C. which is higher than the melting point and dehydrochlorination proceeds efficiently, the pore diameter generated in the process cannot be fixed at all, and the ionic diameter of the electrolytic solution,
It is very difficult to obtain activated carbon having a suitable pore size.

【0013】[0013]

【課題を解決するための手段】本発明者は鋭意研究を重
ねた結果、上記のPVDC樹脂のポリ塩化アセチレン
化反応過程、の環化反応過程及びの黒鉛化過程にお
ける脱塩酸で生じた細孔の細孔径、細孔形状を出来るだ
け多く残すためには、(a)PVDC樹脂中のVDC含
有率を高め、且つ(b)PVDC樹脂分子の運動性を抑
制すれば良いことを見出した。具体的には、(a)とし
て、VDCモル含有率が85モル%以上のPVDC樹脂
を活性炭原料として用いること、好ましくはホモPVD
Cを用いること、更に(b)として、微結晶サイズSが
150Å以上の結晶性PVDC樹脂を用いること、の両
条件を満足するPVDC樹脂をEDLC電極用の活性炭
原料として用いれば良いことを見出し、本発明を完成す
るに至った。
Means for Solving the Problems As a result of intensive studies, the present inventors have found that the pores formed by dehydrochlorination in the above-mentioned polyacetylene conversion reaction, cyclization reaction and graphitization process of PVDC resin. In order to leave as many pore diameters and pore shapes as possible, it was found that (a) the VDC content in the PVDC resin should be increased and (b) the mobility of the PVDC resin molecules should be suppressed. Specifically, as (a), a PVDC resin having a VDC molar content of 85 mol% or more is used as a raw material for activated carbon, and preferably, homo-PVD is used.
C, and (b) using a crystalline PVDC resin having a crystallite size S of 150 ° or more, and finding that a PVDC resin that satisfies both conditions can be used as an activated carbon raw material for an EDLC electrode. The present invention has been completed.

【0014】即ち、本発明は:高静電容量を与えるED
LC電極用活性炭原料とそれを主たる原料として用いた
EDLC電極用活性炭を提供するものである。 微結晶性サイズSが150Å以上であり、且つポリ
塩化ビニリデン若しくは塩化ビニリデンのモル含有率が
85モル%以上の塩化ビニリデン共重合体を含有するこ
とを特徴とする、電気二重層キャパシタ電極用の活性炭
原料を提供する。また、 記載の活性炭原料を炭化および/または賦活処理
して得られることを特徴とする電気二重層キャパシタ電
極用の活性炭を提供する。また、 記載の活性炭原料を一部または全部を膨潤若しく
は溶解する有機溶媒と、アルカリ金属水酸化物またはア
ルカリ土類水酸化物の水溶液とアルコール及び/または
エーテルとの混合溶液を用いて、100℃以下で脱塩酸
処理する工程を含む炭化処理および/または賦活をして
得られることを特徴とする記載の電気二重層キャパシ
タ電極用活性炭を提供する。
That is, the present invention provides an ED that provides a high capacitance.
An object of the present invention is to provide an activated carbon material for an LC electrode and an activated carbon for an EDLC electrode using the same as a main material. Activated carbon for an electric double layer capacitor electrode, characterized in that it has a microcrystalline size S of 150 ° or more and contains polyvinylidene chloride or a vinylidene chloride copolymer having a molar content of vinylidene chloride of 85 mol% or more. Provide raw materials. Further, the present invention provides an activated carbon for an electrode of an electric double layer capacitor, which is obtained by carbonizing and / or activating the activated carbon material described above. Further, using a mixed solution of an organic solvent which swells or dissolves part or all of the activated carbon raw material described above, an aqueous solution of an alkali metal hydroxide or an alkaline earth hydroxide, and an alcohol and / or an ether at 100 ° C. The present invention provides an activated carbon for an electrode of an electric double layer capacitor, which is obtained by performing carbonization treatment and / or activation including a step of dehydrochlorination treatment below.

【0015】以下、詳細にその内容を述べる。 (I) EDLC電極用活性炭原料 本発明で最も重要なことは、活性炭原料として、下記の
2つの原料条件を共に満足するPVDC樹脂を一部、好
ましくは全部用いることである。即ち、本発明のPVD
C樹脂と混ぜる活性炭原料としては、通常活性炭原料と
して用いられる炭素源であれば特に限定はない。例え
ば、講談社発行、「新版活性炭−基礎と応用」、真田雄
三・鈴木基之・藤元薫著、55頁(1998)に示され
ている様な植物系原料(木材、果実殻等)、鉱物系原料
(泥炭、コールタール、コークス等)、その他原料(ポ
リハロゲン化ビニル、ポリハロゲン化ビニリデン、レー
ヨン、フェノール樹脂、アクリル樹脂等)やそれらの炭
化物、あるいは特開平9−213589号公報に示され
ている木材、木粉、おがくず、おがくず乾留物、木炭、
ココナッツヤシ殻、パームヤシ殻、クルミ殻、果実種
子、パルプ製造時の副産物、バカス、廃糖蜜、泥炭、草
炭、亜炭、褐炭、瀝青炭、無煙炭、ピート炭、石油蒸留
残渣成分、石油ピッチ、石炭ピッチ、コークス、コール
タール等の木質系原料、化石系原料、鉱物系原料及びそ
の炭化品や賦活品;
The details will be described below. (I) Activated carbon raw material for EDLC electrode The most important thing in the present invention is to use a PVDC resin satisfying both of the following two raw material conditions as a part, preferably all, as an activated carbon raw material. That is, the PVD of the present invention
The activated carbon raw material mixed with the C resin is not particularly limited as long as it is a carbon source usually used as an activated carbon raw material. For example, Kodansha, “New Activated Carbon-Basics and Applications”, by Yuzo Sanada, Motoyuki Suzuki, Kaoru Fujimoto, page 55 (1998), plant-based raw materials (wood, fruit shells, etc.), mineral-based Raw materials (peat, coal tar, coke, etc.), other raw materials (polyvinyl halide, polyvinylidene halide, rayon, phenol resin, acrylic resin, etc.) and their carbides, or those disclosed in JP-A-9-21589. Wood, wood flour, sawdust, sawdust dry distillate, charcoal,
Coconut coconut shell, palm coconut shell, walnut shell, fruit seed, by-products during pulp production, bacas, molasses, peat, peat coal, lignite, lignite, bituminous coal, anthracite, peat coal, petroleum distillate residue, petroleum pitch, coal pitch, Wood-based raw materials such as coke and coal tar, fossil-based raw materials, mineral-based raw materials and their carbonized and activated products;

【0016】フェノール樹脂、ポリ塩化ビニル、メラミ
ン樹脂、尿素樹脂、レゾルシノール樹脂、セルロイド、
エポキシ樹脂、キシレン樹脂、ポリサルホン、アリル樹
脂、アルキド樹脂、フッ素樹脂、珪素樹脂、ポリスチレ
ン、ポリアミド、ポリイミド、ポリアミドイミド、ポリ
アリレート、酢酸ビニル樹脂、クマロン樹脂、ケトン樹
脂、フェノキシ樹脂、ブタジエン樹脂、ポリカーボネー
ト、ポリビニルアルコールおよびそれらの誘導体、ポリ
フェニレンオキサイド、ポリフェニレンサルファイド、
ポリメチルペンテン、ポリサルホン、各種イオン交換樹
脂、各種セルロース誘導体、ポリグルタミン酸、ポリテ
ルペン、セロハン、ポリ−α−メチルスチレン、シクロ
ペンタジエン系樹脂、ポリブチレン、ポリブタジエン、
ポリクロロプレン、マレイン酸樹脂、フタル酸樹脂、フ
マル酸樹脂、ポリp−ヒドロキシ安息香酸、合成木材、
合成パルプ、カルボキシビニルポリマー、ポリアセチレ
ン、ポリビニルブチラール、ポリビニルホルマール、メ
タクリル樹脂、アクリル樹脂、ポリウレタン、ポリエス
テル、ポリエチレン、ポリプロピレン、ポリエチレング
リコール、ポリプロピレングリコール、ポリテトラエチ
レングリコール、ポリヘキサエチレングリコールなどの
合成樹脂及びそれらの炭化物等が挙げられる。
Phenolic resin, polyvinyl chloride, melamine resin, urea resin, resorcinol resin, celluloid,
Epoxy resin, xylene resin, polysulfone, allyl resin, alkyd resin, fluororesin, silicon resin, polystyrene, polyamide, polyimide, polyamideimide, polyarylate, vinyl acetate resin, coumarone resin, ketone resin, phenoxy resin, butadiene resin, polycarbonate, Polyvinyl alcohol and their derivatives, polyphenylene oxide, polyphenylene sulfide,
Polymethylpentene, polysulfone, various ion exchange resins, various cellulose derivatives, polyglutamic acid, polyterpene, cellophane, poly-α-methylstyrene, cyclopentadiene-based resin, polybutylene, polybutadiene,
Polychloroprene, maleic acid resin, phthalic acid resin, fumaric acid resin, poly p-hydroxybenzoic acid, synthetic wood,
Synthetic resins such as synthetic pulp, carboxyvinyl polymer, polyacetylene, polyvinyl butyral, polyvinyl formal, methacrylic resin, acrylic resin, polyurethane, polyester, polyethylene, polypropylene, polyethylene glycol, polypropylene glycol, polytetraethylene glycol and polyhexaethylene glycol And the like.

【0017】(原料条件1)PVDC樹脂として、ホモ
PVDCまたはVDCモル含有率が85モル%以上のP
VDC共重合体であることである。VDCモル含有率が
90モル%以上のPVDC共重合体であること。特に好
ましくはホモPVDCを用いることである。この原料条
件1は、PVDC樹脂中のVDCモル含有率が高い程、
脱塩酸反応によって生じる細孔が多くなるため、最終的
に得られるEDLCの静電容量が高くなる可能性が高い
ことに関する条件である。
(Raw material condition 1) As a PVDC resin, a homo PVDC or a PVDC having a VDC molar content of 85 mol% or more is used.
That is, it is a VDC copolymer. A PVDC copolymer having a VDC molar content of 90 mol% or more. It is particularly preferable to use homo-PVDC. In the raw material condition 1, the higher the VDC molar content in the PVDC resin,
This is a condition relating to a high possibility that the capacitance of the finally obtained EDLC is high because the number of pores generated by the dehydrochlorination reaction increases.

【0018】なお、PVDC共重合体のVDC成分と共
重合するコモノマー(VDC/(コモノマー名)共重合
体と記す)としては、VDCと共重合するコモノマーを
用いることが出来る。例えば、エチレン、アセチレン、
プロピレン、ブチレン、ブチン、ブタジエン、イソプレ
ン、イソブチレン、塩化ビニル(VC)、臭化ビニル、
ヨウ化ビニル、酢酸ビニル、ビニルメチルエーテル、ビ
ニルエチルエーテル、ビニルイソプロピルエーテル、ビ
ニルプロピルエーテル、ビニルイソブチルエーテル、ビ
ニルノルマルアミルエーテル、ビニルイソアミルエーテ
ル、ビニル−2−エチルヘキシルエーテル、ビニル−n
−オクタデシルエーテル、
As a comonomer copolymerized with the VDC component of the PVDC copolymer (referred to as VDC / (comonomer name) copolymer), a comonomer copolymerized with VDC can be used. For example, ethylene, acetylene,
Propylene, butylene, butyne, butadiene, isoprene, isobutylene, vinyl chloride (VC), vinyl bromide,
Vinyl iodide, vinyl acetate, vinyl methyl ether, vinyl ethyl ether, vinyl isopropyl ether, vinyl propyl ether, vinyl isobutyl ether, vinyl normal amyl ether, vinyl isoamyl ether, vinyl-2-ethylhexyl ether, vinyl-n
Octadecyl ether,

【0019】ビニルスルホン酸ナトリウム、ジビニルベ
ンゼン、ビニルトルエン、アクリロニトリル(AN)、
アクリル酸、アクリル酸クロライド、アクリル酸ブロマ
イド、アクリログアナミン、アクリロイルモルホリン、
アクリル酸メチル(MA)、アクリル酸エチル、アクリ
ル酸プロピル、アクリル酸イソプロピル、アクリル酸ブ
チル(BA)、アクリル酸イソブチル、アクリル酸te
rt−ブチル、アクリル酸ヘキシル、アクリル酸シクロ
ヘキシル、アクリル酸メチルプロピル、アクリル酸ラウ
リル、アクリル酸トリデシル、アクリル酸ベンジル、ア
クリル酸n−アミル、アクリル酸イソアミル、アクリル
酸テトラヒドロフルフリル、アクリル酸ジメチルアミノ
エチル、アクリル酸エチレングリコールエトキシレー
ト、アクリル酸エチレングリコールメトキシレート、ア
クリル酸ジエチレングリコールエトキシレート、アクリ
ル酸ジエチレングリコールメトキシレート、アクリル酸
エチルヘキシル、エポキシアクリレート、ペンタエリス
リトールのアクリル酸エステル類、n−ステアリルアク
リレート、ジペンタエリスリトールのアクリル酸エステ
ル類、トリメチロールプロパンのアクリル酸エステル
類、カプロラクトン変性アクリル酸エステル類、ネオペ
ンチルグリコールのアクリル酸エステル類、2−ヒドロ
キシエチルアクリレート、2−ヒドロキシプロピルアク
リレート、2−ヒドロキシブチルアクリレート、1,4
−ブタンジオールジアクリレート、1,6−ヘキサンジ
オールジアクリレート、アクリル酸グリシジル、ジアク
リル酸エチレングリコール、ジアクリル酸ジエチレング
リコール、ジアクリル酸トリエチレングリコール、ジア
クリル酸テトラエチレングリコール、ジアクリル酸−
1,3−ブチレングリコール、
Sodium vinyl sulfonate, divinylbenzene, vinyltoluene, acrylonitrile (AN),
Acrylic acid, acrylic acid chloride, acrylic acid bromide, acryloganamin, acryloylmorpholine,
Methyl acrylate (MA), ethyl acrylate, propyl acrylate, isopropyl acrylate, butyl acrylate (BA), isobutyl acrylate, te acrylate
rt-butyl, hexyl acrylate, cyclohexyl acrylate, methylpropyl acrylate, lauryl acrylate, tridecyl acrylate, benzyl acrylate, n-amyl acrylate, isoamyl acrylate, tetrahydrofurfuryl acrylate, dimethylaminoethyl acrylate , Ethylene glycol ethoxylate acrylate, ethylene glycol methacrylate acrylate, diethylene glycol ethoxylate acrylate, diethylene glycol methoxy acrylate, ethylhexyl acrylate, epoxy acrylate, acrylates of pentaerythritol, n-stearyl acrylate, dipentaerythritol Acrylates of trimethylolpropane, caprolactone Acrylic acid esters, acrylic acid esters of neopentyl glycol, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxybutyl acrylate, 1,4
-Butanediol diacrylate, 1,6-hexanediol diacrylate, glycidyl acrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate, diacrylic acid
1,3-butylene glycol,

【0020】アクリル酸ナトリウム、アクリル酸カリウ
ム、アクリル酸アルミニウム、アクリル酸亜鉛、アクリ
ル酸カルシウム、アクリル酸マグネシウム、アクリルア
ミド、N,N−ジメチルアクリルアミド、N,N−ジメ
チルプロピルアクリルアミド、アクロレイン、メタクリ
ル酸、メタクリル酸クロライド、メタクリル酸ブロマイ
ド、メタクリル酸メチル(MMA)、メタクリル酸エチ
ル、メタクリル酸プロピル、メタクリル酸イソプロピ
ル、メタクリル酸ブチル、メタクリル酸イソブチル、メ
タクリル酸tert−ブチル、メタクリル酸ヘキシル、
メタクリル酸シクロヘキシル、メタクリル酸メチルプロ
ピル、メタクリル酸ラウリル、メタクリル酸トリデシ
ル、メタクリル酸ベンジル、メタクリル酸n−アミル、
メタクリル酸イソアミル、メタクリル酸テトラヒドロフ
ルフリル、メタクリル酸ジメチルアミノエチル、
Sodium acrylate, potassium acrylate, aluminum acrylate, zinc acrylate, calcium acrylate, magnesium acrylate, acrylamide, N, N-dimethylacrylamide, N, N-dimethylpropylacrylamide, acrolein, methacrylic acid, methacrylic Acid chloride, methacrylic bromide, methyl methacrylate (MMA), ethyl methacrylate, propyl methacrylate, isopropyl methacrylate, butyl methacrylate, isobutyl methacrylate, tert-butyl methacrylate, hexyl methacrylate,
Cyclohexyl methacrylate, methylpropyl methacrylate, lauryl methacrylate, tridecyl methacrylate, benzyl methacrylate, n-amyl methacrylate,
Isoamyl methacrylate, tetrahydrofurfuryl methacrylate, dimethylaminoethyl methacrylate,

【0021】メタクリル酸エチレングリコールエトキシ
レート、メタクリル酸エチレングリコールメトキシレー
ト、メタクリル酸ジエチレングリコールエトキシレー
ト、メタクリル酸ジエチレングリコールメトキシレー
ト、メタクリル酸エチルヘキシル、エポキシメタクリレ
ート、ペンタエリスリトールのメタクリル酸エステル
類、n−ステアリルメタクリレート、ジペンタエリスリ
トールのメタクリル酸エステル類、トリメチロールプロ
パンのメタクリル酸エステル類、カプロラクトン変性メ
タクリル酸エステル類、ネオペンチルグリコールのメタ
クリル酸エステル類、2−ヒドロキシエチルメタクリレ
ート、2−ヒドロキシプロピルメタクリレート、2−ヒ
ドロキシブチルメタクリレート、1,4−ブタンジオー
ルジメタクリレート、1,6−ヘキサンジオールジメタ
クリレート、メタクリル酸グリシジル、ジメタクリル酸
エチレングリコール、ジメタクリル酸ジエチレングリコ
ール、ジメタクリル酸トリエチレングリコール、ジメタ
クリル酸テトラエチレングリコール、ジメタクリル酸−
1,3−ブチレングリコール、
Ethylene glycol methacrylate ethoxylate, ethylene glycol methacrylate methacrylate, diethylene glycol methacrylate methacrylate, diethylene glycol methacrylate methacrylate, ethylhexyl methacrylate, epoxy methacrylate, methacrylates of pentaerythritol, n-stearyl methacrylate, Pentaerythritol methacrylates, trimethylolpropane methacrylates, caprolactone-modified methacrylates, neopentyl glycol methacrylates, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 2-hydroxybutyl methacrylate 1,4-butanediol dimethacrylate, 1 6- hexanediol dimethacrylate, glycidyl methacrylate, ethylene glycol dimethacrylate, dimethacrylate diethylene glycol, triethylene glycol dimethacrylate, dimethacrylate tetraethylene glycol dimethacrylate, -
1,3-butylene glycol,

【0022】メタクリル酸ナトリウム、メタクリル酸カ
リウム、メタクリル酸アルミニウム、メタクリル酸亜
鉛、メタクリル酸カルシウム、メタクリル酸マグネシウ
ム、メタクリルアミド、N,N−ジメチルメタクリルア
ミド、N,N−ジメチルアミノプロピルメタクリルアミ
ド、メタクロレイン、メタリルスルホン酸ナトリウム、
メタリルスルホン酸カリウム、スチレン、メチルスチレ
ン、ビニルピリジン、ヒドロキシエチルビニルアセテー
ト、ヒドロキシエチルビニルアセテートのエステルやエ
ーテルやウレタン等の誘導体、アリルアルコール、アリ
ルクロライド、アリルスルホン酸ナトリウム、アリルア
ミン、アリルアルデヒド、アリルブロマイド、アリルグ
リシジルエーテル、アリルカプロエート、アリル芥子
油、アリルジグリコールカーボネート、アリルメタクリ
レート、アリルアデニン、アリルアデノシン、アリルア
ミノプリン、アリルアミノリボフラノシルプリン、グリ
セロールジアリールエーテル、ジシクロペンタジエン、
クロロプレン、シクロヘキセン、α−メチルスチレン、
Sodium methacrylate, potassium methacrylate, aluminum methacrylate, zinc methacrylate, calcium methacrylate, magnesium methacrylate, methacrylamide, N, N-dimethyl methacrylamide, N, N-dimethylaminopropyl methacrylamide, methacrolein , Sodium methallylsulfonate,
Potassium methallyl sulfonate, styrene, methyl styrene, vinyl pyridine, hydroxyethyl vinyl acetate, hydroxyethyl vinyl acetate ester, derivatives such as ether and urethane, allyl alcohol, allyl chloride, sodium allyl sulfonate, allylamine, allylaldehyde, allyl Bromide, allyl glycidyl ether, allyl caproate, allyl popper oil, allyl diglycol carbonate, allyl methacrylate, allyl adenine, allyl adenosine, allyl amino purine, allyl amino ribofuranosyl purine, glycerol diaryl ether, dicyclopentadiene,
Chloroprene, cyclohexene, α-methylstyrene,

【0023】重合性シリコン化合物、重合性フッ素化合
物、マレイン酸、マレイン酸誘導体、フマル酸、フマル
酸誘導体、クロトン酸、クロトン酸誘導体、オレイン
酸、オレイン酸誘導体、イタコン酸、イタコン酸誘導
体、クロトンアルデヒド、クロロエチルビニルエーテ
ル、ジアリルジメチルアンモニウムクロライド、ジアリ
ルジメチルアンモニウムブロマイド、ジアリルジメチル
アンモニウムヨーダイド、アリルピリジニウムクロライ
ド、アリルピリジニウムブロマイド、アリルピリジニウ
ムヨーダイド、ジイソブチレン、ジエチレングリコール
ビスアリルカーボネート、不飽和カルボン酸及びその誘
導体、不飽和アルデヒド、不飽和アルキル類、N−フェ
ニルマレイミド、N−メチルフェニルマレイミド、N−
シクロヘキシルマレイミド、その他のN−置換マレイミ
ド類等がその代表例として挙げられる。
Polymerizable silicon compounds, polymerizable fluorine compounds, maleic acid, maleic acid derivatives, fumaric acid, fumaric acid derivatives, crotonic acid, crotonic acid derivatives, oleic acid, oleic acid derivatives, itaconic acid, itaconic acid derivatives, crotonaldehyde , Chloroethyl vinyl ether, diallyldimethylammonium chloride, diallyldimethylammonium bromide, diallyldimethylammonium iodide, allylpyridinium chloride, allylpyridinium bromide, allylpyridinium iodide, diisobutylene, diethyleneglycolbisallylcarbonate, unsaturated carboxylic acids and derivatives thereof, Unsaturated aldehyde, unsaturated alkyls, N-phenylmaleimide, N-methylphenylmaleimide, N-
Cyclohexylmaleimide, other N-substituted maleimides and the like are mentioned as typical examples.

【0024】なお、PVDC樹脂の形態としては、粉末
状態、PVDC樹脂の水分散体(ラテックス状態)、有
機溶媒に溶かしたPVDC樹脂の溶液状態、あるいはそ
れらラテックスや溶液を含浸したセルロースやPAN等
の繊維・不織布を乾燥したもので良い。好ましくは、7
5μ以下の微粉末状態(特に、好ましくは25μ以
下)、またはPVDC樹脂を含浸乾燥した繊維・不織布
状態が、加熱炭化時の発泡抑制、炭化処理の効率等の観
点から適している。また、PVDC樹脂の分子量に特に
制約はないが、通常のPVDC樹脂の重合(乳化重合、
懸濁重合、溶液重合等)で得られる数平均分子量5〜1
0万程度のものを用いれば良い。
The PVDC resin may be in the form of a powder, an aqueous dispersion of the PVDC resin (latex), a solution of the PVDC resin dissolved in an organic solvent, or a cellulose or PAN impregnated with the latex or solution. Fiber or non-woven fabric may be dried. Preferably, 7
A fine powder state of 5 μm or less (particularly preferably 25 μm or less) or a fiber or nonwoven fabric state impregnated and dried with a PVDC resin is suitable from the viewpoint of suppression of foaming during heating carbonization, efficiency of carbonization treatment and the like. In addition, although there is no particular limitation on the molecular weight of the PVDC resin, polymerization of ordinary PVDC resin (emulsion polymerization,
Suspension polymerization, solution polymerization, etc.)
What is necessary is to use the thing of about 100,000.

【0025】(原料条件2)PVDC樹脂の微結晶サイ
ズSが150Å以上、好ましくは200Å以上、更に好
ましくは300Å以上である。この原料条件2は、PV
DC樹脂の脱塩酸反応過程で生じる細孔の細孔径、細孔
形状を、加熱炭化・黒鉛化の際に出来るだけ数多く残す
ために、PVDC樹脂分子の運動性を抑制する為の条件
である。
(Raw material condition 2) The crystallite size S of the PVDC resin is 150 ° or more, preferably 200 ° or more, more preferably 300 ° or more. This raw material condition 2 is based on PV
This is a condition for suppressing the mobility of PVDC resin molecules in order to leave as many pore diameters and pore shapes as possible during heating carbonization and graphitization of pores generated in the process of dehydrochlorination of the DC resin.

【0026】(2) PVDC樹脂のVDCモル含有率の求
め方 本発明の原料条件1に記載されたPVDC樹脂中のVD
Cモル含有率の求め方は、紀伊国屋書店発行、「新版高
分子分析ハンドブック」、日本分析化学学会・高分子分
析研究懇談会編集、660〜665頁(1995)に示
された方法(酸素フラスコ燃焼法)である。即ち、PV
DC樹脂約8〜35mgを定量用濾紙で包み、白金ホル
ダーに取り付けた後、吸収液を入れたフラスコ内で酸素
雰囲気下で約950℃で瞬時に完全に燃焼させ、生成し
た塩化水素を吸収させた後、それに硝酸と硝酸ナトリウ
ムを加えて煮沸し、放冷後、硝酸銀溶液で電位差滴定を
行い求める。但し、PVDC樹脂を重合する場合、重合
収率が99%以上ならば、仕込みモノマー組成比と上記
求め方によって得られる結果は一致するとして良い。
(2) How to determine VDC molar content of PVDC resin VD in PVDC resin described in raw material condition 1 of the present invention
The method for determining the C mole content is described in the method described in “New Edition Polymer Analysis Handbook”, published by Kinokuniya Shoten, edited by the Japan Society for Analytical Chemistry and Polymer Analysis Research Council, pages 660-665 (1995) (oxygen flasks). Combustion method). That is, PV
After wrapping about 8 to 35 mg of the DC resin in a filter paper for quantitative measurement and attaching it to a platinum holder, the mixture is instantaneously and completely burned at about 950 ° C. under an oxygen atmosphere in a flask containing an absorbing solution to absorb generated hydrogen chloride. After that, nitric acid and sodium nitrate are added thereto, and the mixture is boiled. After allowing to cool, potentiometric titration is performed using a silver nitrate solution. However, when the PVDC resin is polymerized, if the polymerization yield is 99% or more, the composition ratio of the charged monomer may be the same as the result obtained by the above method.

【0027】(3) PVDC樹脂の微結晶サイズSの求め
方 次に、本発明の原料条件2に記載されたPVDC樹脂の
微結晶サイズSの求め方を図1を参考にして以下に示
す。本発明で指すPVDC樹脂の微結晶サイズSは、結
晶性高分子の結晶構造解析で常用される微結晶サイズの
算出方法に基づいて求める。即ち、PVDC樹脂が結晶
性であれば、下記のX線回折測定条件では、「Poly
mer Jounal」、20巻、10号、883〜8
93頁(1988)に示されたホモPVDCの結晶構造
の格子定数a=6.71Å、b=4.68Å、c=1
2.51Å、β=123度の単斜晶系のもとで、散乱角
2θ=15〜17度にPVDC樹脂の(100)面及び
(−1 0 2)面[(100)面と以下略記する]に
由来する散乱ピ−ク1を持つ。散乱ピーク1の2θ=9
〜15度に現れる低角度側の谷Aと2θ=17〜21度
に現れる高角度側の谷Bを結ぶ直線をベースラインAB
として、ベースラインABから測った散乱ピーク1の散
乱強度(カウント)の高さの1/2に相当する散乱ピー
ク1の散乱角度2θの広がりを散乱ピーク1の半価幅W
(計算時はラジアン単位で行う)として、下記式(1)に
よって算出する。 S=[0.9×λ×(W2−w20.5]/cosθ・・(1) 〔ここで、λは測定に用いた特性X線CuKα線の波長
1.54Åであり、Wは散乱ピーク1の半価幅(ラジア
ン単位)であり、wは光学系の広がりとして代用する標
準単結晶シリコン粉末Siの2θ=28.4度に現れ
る、(111)面の散乱ピークの半価幅(ラジアン単
位)であり、θは散乱ピーク1のブラック角度であ
る。〕
(3) Method for Obtaining Fine Crystal Size S of PVDC Resin Next, a method for obtaining the fine crystal size S of the PVDC resin described in the raw material condition 2 of the present invention will be described below with reference to FIG. The crystallite size S of the PVDC resin referred to in the present invention is determined based on a crystallite size calculation method commonly used in crystal structure analysis of a crystalline polymer. That is, if the PVDC resin is crystalline, under the following X-ray diffraction measurement conditions, “Poly
mer Journal ", Volume 20, Issue 10, 883-8
Lattice constants a = 6.71 °, b = 4.68 °, c = 1 in the crystal structure of homo PVDC shown on page 93 (1988).
Under a monoclinic system of 2.51 ° and β = 123 degrees, the scattering angle 2θ = 15 to 17 degrees and the (100) plane and (−102) plane of the PVDC resin [(100) plane, hereinafter abbreviated. ). 2θ of scattering peak 1 = 9
A straight line connecting the low-angle valley A appearing at ~ 15 degrees and the high-angle valley B appearing at 2θ = 17-21 degrees is the baseline AB.
The spread of the scattering angle 2θ of the scattering peak 1 corresponding to の of the height of the scattering intensity (count) of the scattering peak 1 measured from the baseline AB is calculated as the half width W of the scattering peak 1.
(Calculation is performed in radians) and is calculated by the following equation (1). S = [0.9 × λ × (W 2 −w 2 ) 0.5 ] / cos θ (1) [where λ is the wavelength of the characteristic X-ray CuKα ray used for measurement is 1.54 °, and W is W is the half width of the scattering peak 1 (in radians), w is the half width of the scattering peak of the (111) plane, which appears at 2θ = 28.4 degrees of the standard single crystal silicon powder Si used as the spread of the optical system. (Radian units), and θ is the black angle of scattering peak 1. ]

【0028】[X線回折測定条件]X線回折装置とし
て、(株)リガク製ロータフレックスRU−200の湾
曲型モノクロメータを装着したディフラクトメータシス
テム(多重ピーク分離ソフト付き)を用いた。測定条件
は、Cu−Kα線を用いて、X線発生装置出力、40K
V、120mA、発散スリット1度、ソーラースリット
1/度、受光スリット0.3度、測定範囲2θ=5〜3
0度の条件(非晶性PVDC樹脂や炭化物等の多成分が
混在する場合は2θ=5〜60度の測定範囲)で、粉末
化したPVDC樹脂を用いて測定を行う。なお、PVD
C樹脂の測定範囲2θ=5〜30度の範囲にPVDC樹
脂の(100)面以外からの散乱が現れる場合(例え
ば、他の物質が混在する場合やPVDC樹脂の(10
0)面以外の散乱ピークやPVDC樹脂の非晶による散
乱ピークが現れる場合)は、微結晶サイズの測定で通常
行われる解析手法に従って、(100)面の散乱ピーク
1と他の散乱ピークとのピーク分離を行った後、PVD
C樹脂の(100)面の散乱ピーク1に基づく微結晶サ
イズSを算出すれば良い。
[X-ray Diffraction Measurement Conditions] As an X-ray diffractometer, a diffractometer system (with multiple peak separation software) equipped with a curved type monochromator of Rotaflex RU-200 manufactured by Rigaku Corporation was used. The measurement conditions were as follows: X-ray generator output, 40K using Cu-Kα ray.
V, 120 mA, divergence slit 1 degree, solar slit 1 / degree, light receiving slit 0.3 degree, measurement range 2θ = 5-3
The measurement is performed using the powdered PVDC resin under the condition of 0 degree (in the case where multiple components such as an amorphous PVDC resin and a carbide are mixed, the measurement range is 2θ = 5 to 60 degrees). In addition, PVD
In the case where scattering from other than the (100) plane of the PVDC resin appears in the measurement range 2θ = 5 to 30 degrees of the C resin (for example, when other substances are mixed or (10
(0) A scattering peak other than the plane or a scattering peak due to the amorphous phase of the PVDC resin appears), according to an analysis method usually performed in the measurement of the crystallite size, between the scattering peak 1 of the (100) plane and the other scattering peaks. After peak separation, PVD
What is necessary is just to calculate the crystallite size S based on the scattering peak 1 of the (100) plane of the C resin.

【0029】(4) EDLC電極用活性炭原料の製造方法
の例 EDLC電極用活性炭原料としてのPVDC樹脂の製造
方法は、例えば、下記の様な条件で懸濁重合法や乳化重
合法を行えば良い。なお、微結晶サイズSの大きいPV
DC樹脂粉末を製造する観点からは懸濁重合法が適して
おり、炭化効率の高い微粉末状のPVDC樹脂粉末を製
造する観点からは、乳化重合法が適している傾向があ
る。以下に、粉末状のPVDC樹脂を得るための重合方
法の例を示すが、 PVDC樹脂の水分散状態を利用する場合は、各重
合法の乾燥前に得られるスラリーまたは水分散体を用い
れば良い。 また、溶液状態や繊維・不織布に含浸した状態を利
用する場合は、テトラヒドロフラン(THF)、1,4
−ジオキサン、シクロヘキサン、シクロペンタノン、ク
ロロベンゼン、ジクロロベンゼン、ジメチルホルムアミ
ド(DMF)、メチルエーテルケトン(MEK)、エチ
ルアセテート等のPVDC共重合体の溶媒(ホモPVD
Cの膨潤試薬)やヘキサメチルホスホルアミド、テトラ
メチレンスルホキサイド、N−アセチルピペリデン、N
−メチルピロリドン、N−フォルミルヘキサメチレンイ
ミン、トリメチレンサルファイド、N−n−ブチルピロ
リドン、イソプロピルスルホキサイド、N−フォルミル
ピペリヂィン、N−アセチルピロリヂィン、N,N−ジ
メチルアセトアミド、シクロオクタノン、シクロヘプタ
ノン、n−ブチルスルホキサイド等のホモPVDCの溶
媒に下記重合法で得られた粉末状PVDC原料を一部あ
るいは全部を溶解して用いれば良い。
(4) Example of Method for Producing Activated Carbon Raw Material for EDLC Electrode A method for producing a PVDC resin as an activated carbon raw material for an EDLC electrode may be, for example, a suspension polymerization method or an emulsion polymerization method under the following conditions. . In addition, PV having a large crystallite size S
The suspension polymerization method is suitable from the viewpoint of producing DC resin powder, and the emulsion polymerization method tends to be suitable from the viewpoint of producing fine powdered PVDC resin powder having high carbonization efficiency. Hereinafter, an example of a polymerization method for obtaining a powdered PVDC resin will be described. When an aqueous dispersion state of the PVDC resin is used, a slurry or an aqueous dispersion obtained before drying in each polymerization method may be used. . When using a solution state or a state impregnated in a fiber or nonwoven fabric, tetrahydrofuran (THF), 1,4
Solvents for PVDC copolymers such as dioxane, cyclohexane, cyclopentanone, chlorobenzene, dichlorobenzene, dimethylformamide (DMF), methyl ether ketone (MEK), and ethyl acetate (homo-PVD
C swelling reagent), hexamethylphosphoramide, tetramethylene sulfoxide, N-acetylpiperidene, N
-Methylpyrrolidone, N-formylhexamethyleneimine, trimethylene sulfide, Nn-butylpyrrolidone, isopropylsulfoxide, N-formylpiperidin, N-acetylpyrrolidin, N, N-dimethylacetamide A powdered PVDC raw material obtained by the following polymerization method may be partially or entirely dissolved in a homo PVDC solvent such as cyclooctanone, cycloheptanone, n-butylsulfoxide and the like, and used.

【0030】 懸濁重合法の例 懸濁重合法の例としては、撹拌機付きのガラスライニン
グした反応器に、懸濁剤[例えば、ヒドロキシプロピル
メチルセルロース(HPMC)]0.01〜0.1部
(下記記載の中で用いた部とは、全重合モノマーを10
0部とした時の各成分の重量部数のことである)を溶解
した脱イオン水100部を投入し、撹拌開始後系内30
℃にて窒素置換する。その後、重合開始剤[例えば、ジ
イソプロピルパーオキシジカーボネート(IPP)]
0.01〜0.9部を溶解した、ホモPVDCの場合は
VDC単独を、PVDC共重合体の場合はVDCとVD
Cと共重合するコモノマーの混合液を(最終的に得られ
るPVDC共重合体中のVDCモル含有率を85モル%
以上になる様に各モノマー成分量を調整する)100部
とを投入し、反応機内を重合開始剤が反応する温度(例
えば、30〜80℃)に昇温して重合反応を開始する。
攪拌下で十分に重合反応を行った後(数段階の温度で重
合反応を行うことも出来る)、未反応モノマーを回収、
降温後PVDC樹脂のスラリーを取り出す。得られたス
ラリーを遠心式の脱水機にかけ、水を脱水した後、熱風
式乾燥機を用い40〜80℃で乾燥することで、粉末状
のPVDC樹脂を得ることが出来る。
Examples of Suspension Polymerization Method Examples of the suspension polymerization method include adding a suspending agent [eg, hydroxypropylmethylcellulose (HPMC)] to a glass-lined reactor equipped with a stirrer in an amount of 0.01 to 0.1 part. (A part used in the following description is a total polymerized monomer of 10 parts.
100 parts of deionized water in which each component is dissolved) is added.
Replace with nitrogen at ° C. Then, a polymerization initiator [for example, diisopropyl peroxydicarbonate (IPP)]
In the case of homo-PVDC, VDC alone was dissolved in 0.01 to 0.9 parts, and VDC and VDC were used in the case of PVDC copolymer.
A mixture of a comonomer copolymerized with C (the VDC molar content in the finally obtained PVDC copolymer is 85 mol%
100 parts of each monomer component is adjusted as described above), and the inside of the reactor is heated to a temperature at which the polymerization initiator reacts (for example, 30 to 80 ° C.) to start the polymerization reaction.
After the polymerization reaction is sufficiently performed under stirring (the polymerization reaction can be performed at several stages of temperature), the unreacted monomer is recovered,
After cooling, the slurry of the PVDC resin is taken out. The obtained slurry is subjected to a centrifugal dehydrator to dehydrate water, and then dried at 40 to 80 ° C. using a hot air drier to obtain a powdery PVDC resin.

【0031】 乳化重合法の例 一方、乳化重合法の例としては、撹拌機付きのガラスラ
イニングした耐圧反応器中に水100〜600部、重合
開始剤[例えば、過硫酸ナトリウム]0.01〜10
部、乳化剤[例えば、アルキルスルホン酸ナトリウム]
0.1〜1.0部を仕込み、脱気した後、内容物の温度
を重合開始剤が反応する温度(例えば30〜80℃)に
昇温して温度を保つ。これとは別の容器に重合モノマー
を計量混合してモノマー混合物を作成する。前記の耐圧
反応器中にモノマー混合物1〜20部を一括添加し、撹
拌下反応器の内圧が降下するまで重合する。続いて、モ
ノマー混合物の残り全量を所定時間(例えば、1〜40
時間)にわたって連続的に定量添加しながら重合反応
(シード連添重合と呼ぶ)を行う。なお、はじめからモ
ノマー混合物全量を一括添加しても良い(バッチ重合と
呼ぶ。PVDC共重合体の場合、使用するモノマー種の
組み合わせによっては、組成が均一になりにくい)。重
合中は内容物を攪拌下、反応温度を保ち、内圧が十分に
降下するまで反応を進行させ、PVDC樹脂の水分散体
(PVDC樹脂ラテックス)を得る。得られたPVDC
樹脂ラテックスを塩析剤(例えば、塩化カルシウム)を
用いて塩析し、PVDC樹脂を沈殿させ、水洗、乾燥す
ることで、粉末状のPVDC樹脂を得ることが出来る。
しかし、重合条件として何の制限もなく、上記の様に重
合しただけでは、原料条件1且つ原料条件2を共に満足
するPVDC樹脂を得ることは出来ない。
Examples of Emulsion Polymerization On the other hand, examples of emulsion polymerization include, in a glass-lined pressure-resistant reactor equipped with a stirrer, 100 to 600 parts of water, a polymerization initiator [eg, sodium persulfate] 0.01 to 10
Parts, emulsifier [eg, sodium alkyl sulfonate]
After charging 0.1 to 1.0 part and degassing, the temperature of the content is raised to a temperature at which the polymerization initiator reacts (for example, 30 to 80 ° C.), and the temperature is maintained. The polymerized monomer is metered and mixed in a separate container to form a monomer mixture. 1 to 20 parts of the monomer mixture are added all at once into the pressure-resistant reactor, and the mixture is polymerized with stirring until the internal pressure of the reactor drops. Subsequently, the remaining amount of the monomer mixture is removed for a predetermined time (for example, 1 to 40).
A polymerization reaction (referred to as a seed addition polymerization) is performed while continuously adding a fixed amount over a period of time. Note that the entire amount of the monomer mixture may be added at once (called batch polymerization. In the case of a PVDC copolymer, the composition is difficult to be uniform depending on the combination of monomer types used). During the polymerization, the reaction temperature is maintained while stirring the contents, and the reaction is allowed to proceed until the internal pressure is sufficiently reduced, thereby obtaining an aqueous dispersion of a PVDC resin (PVDC resin latex). PVDC obtained
A powdery PVDC resin can be obtained by salting out the resin latex using a salting-out agent (for example, calcium chloride) to precipitate the PVDC resin, washing with water and drying.
However, there are no restrictions on the polymerization conditions, and a PVDC resin that satisfies both the raw material conditions 1 and 2 cannot be obtained only by performing polymerization as described above.

【0032】〔PVDC共重合体の場合の共重合組成〕
例えば、PVDC共重合体の重合組成に関して、VDC
と共重合するコポリマーとして架橋性のコポリマー(例
えば、ジビニルベンゼン、アクリルアミド、グリシジル
メタクリレート等の2個以上の不飽和結合を持つコモノ
マー)を例えば、1〜10モル%を反応させた場合、結
晶性のPVDC樹脂を得ることは出来ないことがある。
また、VDCと共重合するコポリマーとして、1個の不
飽和結合を持つコモノマー、例えばVC、AN、MM
A、MA、MAN等を1〜10モル%を反応させた場合
でも、結晶性のPVDC樹脂は得られるものの、原料条
件2を満足しないこともある。具体的な重合条件の例
は、実施例にて示すが、本発明は原料条件1及び原料条
件2を共に満足するPVDC樹脂を主たる活性炭原料と
して用いることを最大の特徴とするものである。
[Copolymer composition in case of PVDC copolymer]
For example, regarding the polymerization composition of the PVDC copolymer,
When a copolymer having a crosslinkability (for example, a comonomer having two or more unsaturated bonds such as divinylbenzene, acrylamide and glycidyl methacrylate) is reacted with 1 to 10 mol% as a copolymer to be copolymerized with In some cases, PVDC resin cannot be obtained.
Further, as a copolymer copolymerized with VDC, a comonomer having one unsaturated bond, for example, VC, AN, MM
Even when 1 to 10 mol% of A, MA, MAN or the like is reacted, a crystalline PVDC resin is obtained, but the raw material condition 2 may not be satisfied. Specific examples of polymerization conditions are shown in Examples, but the present invention is most characterized by using a PVDC resin that satisfies both raw material conditions 1 and 2 as a main activated carbon raw material.

【0033】(5) EDLC電極用活性炭及びその製造方
法 [EDLC電極用活性炭](I)で述べた原料条件を共に
満足するPVDC樹脂を一部、好ましくは全部を用いた
活性炭原料を、下記の[活性炭の製造工程]に従って炭
化処理(脱塩酸炭化処理または加熱炭化処理及び/また
は賦活処理)して得られる電気二重層キャパシタ電極用
活性炭である。特に、好ましくは、(a) 水系EDLC用
の活性炭としては、原料条件を満足するホモPVDCを
下記[活性炭の製造工程のaまたはb]に従って炭化処
理した活性炭である。 (b)また、有機系EDLC用の活性炭としては、原料条
件を満足するホモPVDCを下記[活性炭の製造工程の
c]に従って脱塩酸炭化処理及び加熱炭化処理した活性
炭である。
(5) Activated carbon for EDLC electrode and method for producing the same [Activated carbon for EDLC electrode] An activated carbon raw material using a part, preferably all of a PVDC resin satisfying both of the raw material conditions described in (I) is as follows. Activated carbon for an electric double layer capacitor electrode obtained by carbonization (dehydrochlorination carbonization or heat carbonization and / or activation) according to [Activated carbon production process]. Particularly preferably, (a) the activated carbon for water-based EDLC is activated carbon obtained by subjecting homo PVDC satisfying the raw material conditions to carbonization according to the following [a or b in the activated carbon production process]. (b) The activated carbon for the organic EDLC is an activated carbon obtained by subjecting homo PVDC satisfying the raw material conditions to dehydrochlorination carbonization and heating carbonization according to the following [c of the activated carbon production process].

【0034】なお、この様にして得られる活性炭に、内
部抵抗を抑えたり、静電容量を更に高めるために、必要
に応じてカーボンブラックや気相成長炭素繊維(VGC
F)等の導電性フィラーや遷移金属イオンを含む添加
物、酸化ルテニウム(RuO2)等の貴金属酸化物を混
ぜることが出来る。この様な活性炭も本発明に含まれ
る。
The activated carbon obtained as described above may be optionally coated with carbon black or vapor grown carbon fiber (VGC) in order to suppress the internal resistance and further increase the capacitance.
F) or other conductive fillers, additives containing transition metal ions, and noble metal oxides such as ruthenium oxide (RuO 2 ) can be mixed. Such activated carbon is also included in the present invention.

【0035】[活性炭の製造方法の例]本発明の活性炭
の製造方法は、本発明の2つの原料条件を共に満足する
PVDC樹脂を、講談社発行、「新版活性炭−基礎と応
用」、真田雄三・鈴木基之・藤元薫著、44〜77頁
(1998)に示されている様な従来の活性炭の製造方
法に従って、炭化処理及び/または賦活処理を行うこと
によって得られる。 (i) 炭化処理 例えば、炭化処理として、(a)非酸化雰囲気(N2
アルゴン等の不活性ガス等)や酸性雰囲気下(水蒸気H
2 O、炭酸ガスCO2 等)で、昇温速度1〜100℃/
分、500〜1000℃(好ましくは600〜900
℃)、1分〜120分間(好ましくは、30分〜120
分間)の条件で加熱炭化処理を行ったり、あるいは
(b)特開平9−74053号公報に示されている様に
非酸化雰囲気下、200〜500℃でPVDC樹脂を仮
焼処理、粉末化、加圧成形した後、更に500〜900
℃で加熱炭化処理を行うことで得られる。
[Example of Method for Producing Activated Carbon] In the method for producing activated carbon of the present invention, a PVDC resin satisfying both of the two raw material conditions of the present invention was obtained from Kodansha Publishing, "New Activated Carbon-Basic and Application", Yuzo Sanada. It is obtained by performing a carbonization treatment and / or an activation treatment according to a conventional activated carbon production method as shown in Motoyuki Suzuki and Kaoru Fujimoto, pp. 44-77 (1998). (i) Carbonization treatment For example, as the carbonization treatment, (a) a non-oxidizing atmosphere (N 2 ,
Inert gas such as argon) or in an acidic atmosphere (water vapor H
2 O, carbon dioxide gas CO 2 etc.)
Min, 500-1000 ° C (preferably 600-900 ° C)
° C) for 1 minute to 120 minutes (preferably 30 minutes to 120 minutes)
Minutes), or (b) calcining and pulverizing the PVDC resin at 200 to 500 ° C. in a non-oxidizing atmosphere as described in JP-A-9-74053. After pressure molding, 500-900
It is obtained by performing a heating carbonization treatment at ℃.

【0036】また、それ以外の方法として、(c)PV
DC共重合体の溶媒(ホモPVDCの膨潤試薬)やホモ
PVDCの溶媒と、アルカリ金属水酸化物またはアルカ
リ土類水酸化物の水溶液とアルコール類(例えばメタノ
ール)及び/またはエーテル類との混合溶液を用いて、
100℃以下で、1分〜2週間一度脱塩酸処理(以下簡
単にアルカリ溶液処理と呼ぶ。)を行った後(この時、
脱塩酸反応によって生成したアルカリ塩化物、アルカリ
土類塩化物が、脱塩酸処理したものの細孔表面や内部に
生成する。必要に応じて、これらの塩を残存させれば、
加熱炭化処理時に賦活剤として働くために有機系EDL
C電極用の活性炭として高静電容量のものが得られ
る)、その後更に上記(a)の条件等で加熱炭化処理を
行って活性炭を得れば良い。特に、(c)のPVDC樹
脂の活性炭の製造方法に従えば、有機系EDLCに最適
な細孔径及び細孔分布を持つEDLC用活性炭を100
℃以下の低温で容易に得ることが出来る。なお、必要に
応じて、EDLCに用いる電解液のイオン径と最適化す
るために、(a)〜(c)の様にして得られた活性炭を
更に通常の賦活処理しても良い。
As another method, (c) PV
A mixed solution of a DC copolymer solvent (homo-PVDC swelling reagent) or a homo-PVDC solvent, an aqueous solution of an alkali metal hydroxide or an alkaline earth hydroxide, and an alcohol (eg, methanol) and / or an ether. Using,
After performing a dehydrochlorination treatment (hereinafter simply referred to as an alkali solution treatment) once at 100 ° C. or lower for 1 minute to 2 weeks (at this time,
Alkali chloride and alkaline earth chloride generated by the dehydrochlorination reaction are formed on the surface and inside of the pores of the dehydrochlorinated product. If necessary, if these salts are left,
Organic EDL to act as activator during heat carbonization
An activated carbon having a high capacitance can be obtained as the activated carbon for the C electrode.) Then, the activated carbon may be obtained by further performing a heating carbonization treatment under the conditions (a) described above. In particular, according to the method for producing an activated carbon of a PVDC resin of (c), activated carbon for EDLC having an optimum pore diameter and pore distribution for an organic EDLC is 100%.
It can be easily obtained at a low temperature of not more than ℃. If necessary, the activated carbon obtained as in (a) to (c) may be further subjected to a normal activation treatment in order to optimize the ion diameter of the electrolytic solution used for EDLC.

【0037】(ii)賦活処理 賦活処理としては、(a) H2O、CO2、塩化水素、一酸
化炭素、O2等の賦活ガス及びこれらの賦活ガスを主成
分とする混合ガスを用いて焼成するガス賦活法や、 (b)
アルカリ水酸化物、アルカリ土類水酸化物、アルカリ炭
酸化物、アルカリ土類炭酸化物、アルカリ塩、アルカリ
土類塩、ホウ酸、リン酸、硫酸、塩酸、塩化亜鉛等を用
いた賦活処理が挙げられる。
(Ii) Activation Treatment As the activation treatment, (a) an activation gas such as H 2 O, CO 2 , hydrogen chloride, carbon monoxide, and O 2 and a mixed gas containing these activation gases as main components are used. (B)
Activation treatment using alkali hydroxide, alkaline earth hydroxide, alkaline carbonate, alkaline earth carbonate, alkali salt, alkaline earth salt, boric acid, phosphoric acid, sulfuric acid, hydrochloric acid, zinc chloride, etc. Can be

【0038】(6) 活性炭の同定方法 上記の[活性炭の製造方法]に従って得られた本発明の
活性炭の同定方法は、活性炭の同定法として広くに用い
られているガス吸着法による細孔分布測定法を用いる。
細孔分布測定は、COULTER社製、定容量式ガス吸
着法測定装置OMNISORP−100cx(検出ガス
はCO2、また、前処理として250 ℃、3 時間脱ガス
処理を行った後、測定を実施した)を用いて行った。図
2に、本発明の実施例1及び実施例4の活性炭の細孔分
布測定例を示す。なお、細孔分布の計算法はHorva
th−Kawazoe法(HK法)を用いて算出した。
但し、活性炭の厳密な意味での同定法はないため、必要
に応じてX線回折法、透過型電子顕微鏡(TEM)法等
の他の同定方法を用いることも出来るものとする。
(6) Method for Identifying Activated Carbon The method for identifying activated carbon of the present invention obtained according to the above-mentioned [Method for producing activated carbon] is a method for measuring pore distribution by a gas adsorption method which is widely used as an identification method for activated carbon. Method.
The pore distribution was measured by a constant volume gas adsorption method OMNISORP-100cx manufactured by COULTER (detection gas was CO 2 , and degassing was performed at 250 ° C. for 3 hours as a pretreatment, and then measurement was performed. ). FIG. 2 shows a measurement example of the pore distribution of the activated carbon of Examples 1 and 4 of the present invention. The method of calculating the pore distribution is Horva.
Calculated using the th-Kawazoe method (HK method).
However, since there is no strict identification method for activated carbon, other identification methods such as an X-ray diffraction method and a transmission electron microscope (TEM) method can be used as necessary.

【0039】(7) EDLCの作製方法及び静電容量の測
定方法 (i) [EDLCの作製方法] 本発明の活性炭を用いた評価用のEDLCは、次の方法
にて作製した。先ず、本発明で示したPVDC樹脂を管
状炉を用いて、N2雰囲気下、700℃で1時間焼成し
(昇温速度10℃/分、降温は自然冷却)、その後、粉
砕ミルを用いて75μm以下に粉砕した。次に、この焼
成した微粉末約40mgにバインダーとしてポリテトラ
フルオロエチレン(PTFE)ラテックスを2重量%添
加し、メノウ乳鉢で混錬した後、水分を除去(熱風乾燥
機で120℃、2時間乾燥)した後、40〜50mg
(単極当たり)の混錬物を錠剤成形器を用いて約2t/
cm2(電極片面あたり)の圧力で加圧成形(電極の比
重が0.9〜0.6、特に好ましくは0.8〜0.7に
なる様に成形圧を調整する)して、直径10mm、厚み
約1mmの錠剤状のEDLC用電極を得た。続いて、水
系EDLCの場合は、上記のEDLC用電極を電解液と
同濃度の30%硫酸水溶液に入れ、煮沸含浸を1時間行
った後、アスピレータを用いて更に24時間真空含浸し
た。煮沸及び真空含浸は最終的に活性炭の電解液含浸後
の重量が、含浸前重量の約1.6倍以上になるまで続け
た。真空含浸後、余分な電解液をろ過して除き、電解液
を含浸した電極を得た。
(7) Method for producing EDLC and method for measuring capacitance (i) [Method for producing EDLC] An EDLC for evaluation using the activated carbon of the present invention was produced by the following method. First, the PVDC resin shown in the present invention is calcined in a tubular furnace at 700 ° C. for 1 hour in a N 2 atmosphere (heating rate: 10 ° C./min, cooling is natural cooling), and then using a pulverizing mill. It was pulverized to 75 μm or less. Next, 2% by weight of polytetrafluoroethylene (PTFE) latex was added as a binder to about 40 mg of the calcined fine powder, and the mixture was kneaded in an agate mortar, and then water was removed (dried at 120 ° C. for 2 hours with a hot air dryer). ), Then 40-50mg
(Per single pole) kneaded material using a tableting machine to about 2t /
Pressure molding (adjusting the molding pressure so that the specific gravity of the electrode is 0.9 to 0.6, particularly preferably 0.8 to 0.7) with a pressure of cm 2 (per one side of the electrode) A tablet-like electrode for EDLC having a thickness of 10 mm and a thickness of about 1 mm was obtained. Subsequently, in the case of a water-based EDLC, the above-mentioned electrode for EDLC was placed in a 30% sulfuric acid aqueous solution having the same concentration as the electrolytic solution, subjected to boiling impregnation for 1 hour, and further vacuum impregnated using an aspirator for 24 hours. The boiling and vacuum impregnation were continued until the weight of the activated carbon after the electrolyte impregnation became about 1.6 times or more the weight before the impregnation. After vacuum impregnation, excess electrolyte was removed by filtration to obtain an electrode impregnated with the electrolyte.

【0040】更に、電解液を含浸した電極2枚を厚さ1
00μmのポリエチレン製微多孔膜のセパレータ(旭化
成製H−1100A)を介して対面させ、0.1kgf
/cm2の圧力で両極の絶縁を施した白金板(集電板)
で挟んで、水系EDLCを組み立てた。一方、有機系の
場合も、水分の吸着を防ぐ為にArボックス内で作業を
行ったことと、電解液として、1Mの(C254NB
4を溶質としたPC溶液を使うことを除けば、水系と
同様にして有機系EDLCを組み立てた。
Further, two electrodes impregnated with the electrolytic solution were
The separator was faced via a microporous polyethylene separator (H-1100A manufactured by Asahi Kasei Corporation) having a thickness of 0.1 μm.
Platinum plate (collector plate) with bipolar insulation at a pressure of / cm 2
The water-based EDLC was assembled. On the other hand, also in the case of an organic type, work was performed in an Ar box to prevent the adsorption of moisture, and 1M (C 2 H 5 ) 4 NB was used as an electrolytic solution.
An organic EDLC was assembled in the same manner as the aqueous system except that a PC solution containing F 4 as a solute was used.

【0041】(ii)[静電容量の測定方法] 静電容量の測定は、定電流で放電し電荷量に対する電圧
の変化から求める定電流放電法にて測定した。即ち、
水系EDLCは0.8Vで20mAの定電流充電(約5
時間充電、1時間電圧保持)を行った後、20mAにて
の定電流放電を実施し、放電時の端子電圧が0.25V
に至るまでの時間を計測して静電容量を算出した。一
方、有機系EDLCの場合は、2.5Vにて15分間の
定電圧充電を行った後、3mAにての定電流放電を実施
し、放電時のEDLC電極端子電圧が0.575Vに至
るまでの時間を計測して静電容量を算出した。
(Ii) [Measurement Method of Capacitance] The capacitance was measured by a constant current discharging method in which the battery was discharged at a constant current and was determined from a change in voltage with respect to the charge amount. That is,
Water-based EDLC is a constant current charge of 20 mA at 0.8 V (about 5
After charging for 1 hour and holding the voltage for 1 hour, a constant current discharge at 20 mA was performed, and the terminal voltage at the time of discharging was 0.25 V
The capacitance was calculated by measuring the time required to reach. On the other hand, in the case of an organic EDLC, after performing a constant voltage charge at 2.5 V for 15 minutes, a constant current discharge at 3 mA is performed until the EDLC electrode terminal voltage at the time of discharge reaches 0.575 V. Was measured and the capacitance was calculated.

【0042】[0042]

【発明の実施の形態】以下に実施例により本発明を更に
具体的に説明するが、本発明は以下の実施例に限定され
るものではない。 [PVDC樹脂の重合]本実施例及び比較例で用いた活
性炭原料としてのPVDC樹脂は、次の様にして重合し
た。 懸濁重合法による例 懸濁重合法を用いて実施例1、実施例2のPVDC樹脂
を作製した。即ち、撹拌機付きのガラスライニングした
反応機に、懸濁剤HPMC0.03部を溶解した脱イオ
ン水100部を投入し、60rpmの回転速度で撹拌開
始後系内30℃にて窒素置換した。その後、重合開始剤
IPP0.16部を溶解した、ホモPVDC−aの場合
はVDC単独を(実施例1)、PVDC/VC共重合体
の場合はVDCとVCの混合液を(実施例2)、最終的
に得られるPVDC樹脂中のVDCモル含有率が85モ
ル%以上になる様に各モノマー成分量を調整した後、全
モノマー100部を投入した。30℃で30分間攪拌し
た後、反応機内を重合開始剤が反応する温度45℃に昇
温して重合反応を開始する。攪拌下で15時間に重合反
応を行った後、更に反応機内を55℃に昇温し(昇温速
度10℃/時間)、11時間重合反応を行った(重合収
率99%以上であるため、出来たPVDC樹脂組成は、
仕込みモノマー組成と同じものとして良い)。重合反応
終了後、降温し、スラリーを取出した。得られたスラリ
ーを遠心式の脱水機にかけ、水を脱水した後、熱風式乾
燥機を用い60℃で乾燥し、粉末状のPVDC樹脂を得
た(実施例1及び実施例2のPVDC樹脂)。続いて、
実施例2のPVDC樹脂粉末をN2雰囲気下、170℃
で一旦加熱溶融した後、同雰囲気下、降温し、再結晶化
させたものを凍結粉砕し、実施例2と同じ組成及び分子
量を持ち、微結晶サイズSのみ異なる比較例2のPVD
C樹脂粉末を得た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described more specifically with reference to the following examples, but the present invention is not limited to the following examples. [Polymerization of PVDC Resin] The PVDC resin as the activated carbon raw material used in the present Examples and Comparative Examples was polymerized as follows. Example by suspension polymerization method The PVDC resins of Examples 1 and 2 were produced by using the suspension polymerization method. That is, 100 parts of deionized water in which 0.03 part of a suspending agent HPMC was dissolved was charged into a glass-lined reactor equipped with a stirrer, and after stirring was started at a rotation speed of 60 rpm, the system was purged with nitrogen at 30 ° C in the system. Thereafter, 0.16 parts of a polymerization initiator IPP was dissolved. In the case of homo PVDC-a, VDC alone was used (Example 1), and in the case of a PVDC / VC copolymer, a mixed solution of VDC and VC was used (Example 2). After adjusting the amount of each monomer component so that the VDC molar content in the finally obtained PVDC resin was 85 mol% or more, 100 parts of all monomers were added. After stirring at 30 ° C. for 30 minutes, the temperature inside the reactor is raised to 45 ° C. at which the polymerization initiator reacts to start the polymerization reaction. After the polymerization reaction was carried out for 15 hours under stirring, the temperature inside the reactor was further raised to 55 ° C. (heating rate: 10 ° C./hour), and the polymerization reaction was carried out for 11 hours (since the polymerization yield was at least 99%). The resulting PVDC resin composition is
It may be the same as the charged monomer composition). After the completion of the polymerization reaction, the temperature was lowered and the slurry was taken out. The obtained slurry was subjected to a centrifugal dehydrator to dehydrate water, and then dried at 60 ° C. using a hot-air dryer to obtain a powdery PVDC resin (PVDC resins of Examples 1 and 2). . continue,
170 ° C. of the PVDC resin powder of Example 2 under N 2 atmosphere
After heating and melting once in the same manner, the temperature was lowered under the same atmosphere, and the recrystallized product was freeze-pulverized, and had the same composition and molecular weight as those of Example 2, and differed only in the crystallite size S.
C resin powder was obtained.

【0043】 乳化重合法による例 一方、乳化重合法を用いた例(実施例1のホモPVDC
−b、比較例1のホモPVDC−c、実施例3、比較例
3、比較例4の場合)としては、撹拌機付きのガラスラ
イニングした耐圧反応器中に水100部(実施例3、比
較例3、比較例4の場合)、550部(実施例1のホモ
PVDC−b、比較例1のホモPVDC−cの場合)、
重合開始剤過硫酸ナトリウム0.15部(実施例1のホ
モPVDC−b、実施例3、比較例3、比較例4の場
合)、0.87部(比較例1のホモPVDC−cの場
合)、乳化剤アルキルスルホン酸ナトリウム0.3部を
仕込み、脱気した後、内容物の温度を重合開始剤が反応
する温度50℃に昇温して温度を保つ。これとは別の容
器に重合モノマーを計量混合してモノマー混合物100
部を用意する。即ち、ホモPVDC−bの場合はVDC
単独を(実施例1)、実施例3のPVDC/AN共重合
体、VDC/MA共重合体、VDC/MAA共重合体の
場合は夫々VDCとAN、VDCとMA、VDCとMM
Aのモノマーをモル含有比率90モル%と10モル%の
割合で、比較例3のPVDC/AN共重合体の場合はV
DCとANモノマーをモル含有比率87モル%と13モ
ル%の割合で、比較例4のVDC/MA/BA/MMA
共重合体の場合はVDC、MA、ブチルアクリレート
(BA)、MMAのモノマーをモル含有比率を夫々45
モル%、34モル%、10モル%、11モル%の割合で
モノマー成分量を調整し、全モノマー100部を用意す
る。
Example Using Emulsion Polymerization On the other hand, an example using emulsion polymerization (homo-PVDC of Example 1)
-B, homo-PVDC-c of Comparative Example 1, Examples 3, 3, and 4) were 100 parts of water in a glass-lined pressure-resistant reactor with a stirrer (Example 3, Comparative Example 1). Example 3, Comparative Example 4) 550 parts (Homo PVDC-b of Example 1, homo PVDC-c of Comparative Example 1),
0.15 parts of polymerization initiator sodium persulfate (in the case of homo-PVDC-b of Example 1, Example 3, Comparative Example 3, Comparative Example 4), 0.87 parts (in the case of homo-PVDC-c of Comparative Example 1) ), 0.3 part of an emulsifier sodium alkyl sulfonate was charged, and after degassing, the temperature of the content was raised to 50 ° C. at which the polymerization initiator reacts, and the temperature was maintained. In a separate container, the polymerization monomer is weighed and mixed, and the monomer mixture 100
Prepare a copy. That is, in the case of homo PVDC-b, VDC
Alone (Example 1), PVDC / AN copolymer, VDC / MA copolymer and VDC / MAA copolymer in Example 3 for VDC and AN, VDC and MA, VDC and MM, respectively.
In the case of the PVDC / AN copolymer of Comparative Example 3, the monomer A is in a molar content ratio of 90 mol% and 10 mol%.
VDC / MA / BA / MMA of Comparative Example 4 at a molar content ratio of DC and AN monomer of 87 mol% and 13 mol%
In the case of a copolymer, the molar content ratio of monomers of VDC, MA, butyl acrylate (BA) and MMA is 45, respectively.
The amounts of the monomer components are adjusted in the proportions of mol%, 34 mol%, 10 mol%, and 11 mol%, and 100 parts of all monomers are prepared.

【0044】重合反応は、前記耐圧反応器中にモノマー
混合物7部を一括添加し、撹拌下反応器の内圧が降下す
るまで重合した(核形成)。続いて、モノマー混合物の
残り全量93部を所定時間10時間にわたって連続的に
定量添加しながら重合反応を行った。この間内容物を攪
拌下、反応温度を保ち、内圧が十分に降下するまで反応
を進行させて、PVDC樹脂の水分散体(PVDC樹脂
ラテックス)を得た。得られたPVDC樹脂ラテックス
を塩析剤、塩化カルシウムを用いて塩析し、PVDC樹
脂を沈殿させ、水洗、60℃で乾燥することで、実施例
1のホモPVDC−b、実施例3、比較例3、比較例4
の粉末状の各PVDC樹脂を得た(各PVDC樹脂の重
合収率は99%であり、出来たPVDC樹脂組成は、仕
込みモノマー組成と同じものとして良い)。得られた、
全ての試料の微結晶サイズは表1に示した。なお、比較
例4の試料は、非晶性であり、PVDC樹脂の(10
0)面に由来するピークはないが、2θ=5〜60度の
領域を測定し、形式的に5〜30度(ピーク15.9
度)、10〜40度(ピーク22.8度)、15〜55
度(ピーク35.5度)の3つのピーク分離したものの
5〜30度(ピーク15.9度)のピークの半価幅を参
考値として記した。
In the polymerization reaction, 7 parts of the monomer mixture were added all at once to the pressure-resistant reactor, and the mixture was polymerized under stirring until the internal pressure of the reactor dropped (nucleation). Subsequently, the polymerization reaction was carried out while continuously adding a fixed amount of 93 parts of the remaining amount of the monomer mixture over a predetermined period of 10 hours. During the reaction, the reaction temperature was maintained while stirring the contents, and the reaction was allowed to proceed until the internal pressure was sufficiently reduced, whereby an aqueous dispersion of a PVDC resin (PVDC resin latex) was obtained. The obtained PVDC resin latex was salted out using a salting-out agent and calcium chloride, and the PVDC resin was precipitated, washed with water, and dried at 60 ° C., whereby the homo-PVDC-b of Example 1, Comparative Example 3, Example 3, Comparative Example 4
(Polymerization yield of each PVDC resin is 99%, and the composition of the resulting PVDC resin may be the same as the charged monomer composition). Obtained
The crystallite sizes for all samples are shown in Table 1. In addition, the sample of Comparative Example 4 was amorphous and (10%) of PVDC resin.
Although there is no peak derived from the 0) plane, an area where 2θ is 5 to 60 degrees is measured and formally 5 to 30 degrees (peak 15.9).
Degrees), 10 to 40 degrees (peak 22.8 degrees), 15 to 55
The half value width of the peak at 5 to 30 degrees (peak 15.9 degrees) of the three peaks separated at 35.5 degrees (peak 35.5 degrees) is shown as a reference value.

【0045】[アルカリ溶液処理]実施例1のホモPV
DC−a及び比較例1のPVDC樹脂を夫々アルカリ溶
液処理して、実施例4の脱塩酸処理物及び比較例4の脱
塩酸処理物を得た。即ち、[活性炭の製造工程のc]に
従った脱塩酸炭化処理として、KOH、THF(ホモP
VDCの膨潤試薬)、水、メタノールの各重量組成比が
夫々20重量%、20重量%、20重量%、40重量%
のアルカリ金属水酸化物の均一混合溶液を用いて約20
℃(室温)、約24時間で一度脱塩酸炭化処理を行った
(この時、電子線マイクロアナライザー解析によれば、
塩化カリウム(KCl)が、脱塩酸処理して得られたも
のの細孔表面や内部に生成していた)。
[Alkaline solution treatment] Homo-PV of Example 1
DC-a and the PVDC resin of Comparative Example 1 were each treated with an alkaline solution to obtain a dehydrochlorination product of Example 4 and a dehydrochlorination product of Comparative Example 4. That is, as a dehydrochlorination carbonization treatment according to [c of the activated carbon production process], KOH, THF (Homo P
VDC swelling reagent), water, and methanol are 20% by weight, 20% by weight, 20% by weight, and 40% by weight, respectively.
About 20 using a homogeneous mixed solution of alkali metal hydroxides
C. (room temperature), dehydrochlorination carbonization was performed once in about 24 hours (at this time, according to electron beam microanalyzer analysis,
Potassium chloride (KCl) was formed on the pore surface and inside of the product obtained by the dehydrochlorination treatment).

【0046】[炭化処理][Carburizing treatment]

【発明の実施の形態】の[PVDC樹脂の重合]で得ら
れた実施例1、実施例2、実施例3、比較例1、比較例
2、比較例3、比較例4のPVDC樹脂、それを[アル
カリ溶液処理]して得られた実施例4の脱塩酸処理物及
び比較例4の脱塩酸処理物を、管状電気炉を用いて、N
2 雰囲気下、昇温速度10℃/分で700℃まで昇温
し、700℃で30分間保温し炭化し、その後自然放冷
して目的の活性炭を得た。
BEST MODE FOR CARRYING OUT THE INVENTION The PVDC resins obtained in Example 1, Example 2, Example 3, Comparative Example 1, Comparative Example 2, Comparative Example 3 and Comparative Example 4 obtained by [Polymerization of PVDC resin] Was treated with an alkaline solution, and the dehydrochlorinated product of Example 4 and the dehydrochlorinated product of Comparative Example 4 were subjected to N2 treatment using a tubular electric furnace.
In two atmospheres, the temperature was raised to 700 ° C. at a rate of 10 ° C./min, kept at 700 ° C. for 30 minutes, carbonized, and then allowed to cool naturally to obtain the desired activated carbon.

【0047】[0047]

【実施例1及び比較例1】活性炭原料のPVDC樹脂と
して、微結晶サイズS=271ÅのホモPVDC−a、
S=152ÅのホモPVDC−bを炭化して得た活性炭
を用いて作製した水系EDLCの静電容量は夫々120
F/g、105F/gであった(実施例1)。しかし、
S=21ÅのホモPVDC−cを用いて同様に製作した
水系EDLCの静電容量は43F/gであった(比較例
1)。この様に、同じホモPVDCを用いたEDLCで
あっても、微結晶サイズSの違いによって得られる静電
容量に大きな差が生じることが分る。
Example 1 and Comparative Example 1 As a PVDC resin used as a raw material for activated carbon, homo-PVDC-a having a crystallite size S = 271 ° was used.
The capacitance of the aqueous EDLCs produced using activated carbon obtained by carbonizing homo PVDC-b with S = 152 ° is 120
F / g and 105 F / g (Example 1). But,
The electrostatic capacity of the aqueous EDLC similarly manufactured using homo PVDC-c with S = 21 ° was 43 F / g (Comparative Example 1). Thus, it can be seen that even with EDLCs using the same homo PVDC, a large difference occurs in the capacitance obtained due to the difference in the crystallite size S.

【0048】[0048]

【実施例2及び比較例2】PVDC樹脂として、微結晶
サイズS=244ÅのVDCモル含有率が85モル%の
VDC/VC共重合体を用いて、実施例1と同様に炭化
して得た活性炭を用いて製作した水系EDLCの静電容
量は86F/gであった(実施例2)。しかし、S=9
2ÅのVDCモル含有率が85モル%のVDC/VC共
重合体を用いて同様に製作した水系EDLCの静電容量
は57F/gであった(比較例2)。この様に、PVD
C共重合体であっても、実施例1と比較例1の関係と同
様に微結晶サイズSの違いによって得られる静電容量に
大きな差があること、更にVDCモル含有率が高い程、
静電容量が大きくなる傾向があることも分る。
Example 2 and Comparative Example 2 A VDC / VC copolymer having a crystallite size S = 244 ° and a VDC molar content of 85 mol% was obtained by carbonization in the same manner as in Example 1 as a PVDC resin. The capacitance of the aqueous EDLC produced using activated carbon was 86 F / g (Example 2). However, S = 9
A water-based EDLC similarly prepared using a VDC / VC copolymer having a 2% VDC molar content of 85 mol% had a capacitance of 57 F / g (Comparative Example 2). Thus, PVD
Even in the case of the C copolymer, there is a large difference in the capacitance obtained due to the difference in the crystallite size S as in the relationship between Example 1 and Comparative Example 1, and the higher the VDC molar content is,
It can also be seen that the capacitance tends to increase.

【0049】[0049]

【実施例3及び比較例3】PVDC樹脂として、微結晶
サイズSが夫々155Å、159Å、152Åの、VD
Cモル含有率が90モル%でVDCとコモノマー成分が
夫々AN、MA、MMAの共重合体(夫々VDC/An
共重合体、VDC/MA共重合体、VDC/MMA共重
合体)を用いて、実施例1と同様に炭化した活性炭を用
いて製作した水系EDLCの静電容量は夫々82F/
g、85F/g、81F/gであった(実施例3)。こ
の様に、VDCモル含有率と微結晶サイズSがほぼ同じ
値である場合、静電容量はコモノマー種に殆ど依存しな
いことが分る。また、PVDC樹脂として、非晶性の、
VDCモル含有率が45モル%のVDCとMA、BA、
MMAの共重合体(VDC/MA/BA/MMA共重合
体)を用いて、実施例1と同様に炭化した活性炭を用い
て製作した水系EDLCの静電容量は40F/gであっ
た(比較例3)。この様に、VDCモル含有率も微結晶
サイズSも本発明の原料条件満たさないPVDC樹脂を
炭化して得られる活性炭では、静電容量が出ない。
Example 3 and Comparative Example 3 As PVDC resin, VD having microcrystal size S of 155, 159, and 152, respectively.
A copolymer of VDC and a comonomer component of AN, MA, and MMA each having a C mole content of 90 mole% (VDC / An
And VDC / MA copolymer, VDC / MMA copolymer), and the water-based EDLC produced using activated carbon carbonized in the same manner as in Example 1 has a capacitance of 82 F /
g, 85 F / g and 81 F / g (Example 3). As described above, when the VDC molar content and the crystallite size S have substantially the same value, it is found that the capacitance hardly depends on the type of comonomer. Also, as PVDC resin, amorphous,
VDC having a VDC molar content of 45 mol% and MA, BA,
A water-based EDLC produced using an activated carbon carbonized in the same manner as in Example 1 using a copolymer of MMA (VDC / MA / BA / MMA copolymer) had a capacitance of 40 F / g (comparative). Example 3). As described above, the activated carbon obtained by carbonizing the PVDC resin having neither the VDC molar content nor the crystallite size S satisfy the raw material conditions of the present invention has no capacitance.

【0050】[0050]

【実施例4及び比較例4】実施例1のホモPVDC−a
及び比較例1のPVDC樹脂を夫々アルカリ溶液処理し
て得た、実施例4の脱塩酸処理物及び比較例4の脱塩酸
処理物を実施例1と同様にN2雰囲気下で700℃で加
熱炭化処理を行って活性炭を得た。この活性炭を用いて
作製した有機系EDLCの静電容量は夫々24F/g
(実施例4)、13F/gであった(比較例4)。この
様に、有機系EDLCにおいても、同じホモPVDCを
用いたEDLCであっても、微結晶サイズSの違いによ
って、得られる静電容量に大きな差が生じることが分
る。全ての実施例及び比較例の結果を下記表1にまとめ
て示す。
Example 4 and Comparative Example 4 Homo PVDC-a of Example 1
And the dehydrochlorinated product of Example 4 and the dehydrochlorinated product of Comparative Example 4 obtained by treating the PVDC resin of Comparative Example 1 with an alkaline solution, respectively, and heated at 700 ° C. in an N 2 atmosphere in the same manner as in Example 1. Activated carbon was obtained by carbonization. The capacitance of the organic EDLC produced using this activated carbon was 24 F / g.
(Example 4) and 13 F / g (Comparative Example 4). As described above, it can be seen that there is a large difference in the obtained capacitance due to the difference in the crystallite size S even in the organic EDLC and the EDLC using the same homo PVDC. The results of all Examples and Comparative Examples are shown in Table 1 below.

【0051】[0051]

【表1】 [Table 1]

【0052】[0052]

【発明の効果】本発明によれば、高静電容量を得るのに
適した電気二重層キャパシタ電極用の活性炭原料及びそ
れを用いた活性炭を提供することが出来る。
According to the present invention, it is possible to provide an activated carbon raw material for an electric double layer capacitor electrode suitable for obtaining a high capacitance, and an activated carbon using the same.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のPVDC樹脂の微結晶サイズSの求め
方を説明するグラフである。但し、散乱ピーク1はPV
DC樹脂の(100)面反射に由来する散乱ピークであ
り、A及びBは夫々散乱ピーク1の低角度側の谷と高角
度側の谷であり、C及びDはベースライン(直線AB)
から測った散乱ピーク1の散乱強度の高さの1/2に相
当する低角度側の散乱プロファイル上の点と高角度側の
散乱プロファイル上の点であり、Wはその散乱ピーク1
の半価幅である。
FIG. 1 is a graph illustrating a method for obtaining a crystallite size S of a PVDC resin of the present invention. However, the scattering peak 1 is PV
Scattering peaks derived from the (100) plane reflection of the DC resin, A and B are valleys on the low angle side and valley on the high angle side of scattering peak 1, respectively, and C and D are baselines (straight line AB).
Are the point on the scattering profile on the low angle side and the point on the scattering profile on the high angle side corresponding to 1/2 of the height of the scattering intensity of the scattering peak 1 measured from, and W is the scattering peak 1
Is the half width.

【図2】本発明の実施例1(図中の1)及び実施例4
(図中の4)の活性炭の細孔分布曲線を示す。但し、横
軸は細孔直径[単位nm]であり、縦軸は微分細孔容積
[単位ml/(g・nm)]である。
FIG. 2 shows Embodiment 1 (1 in the drawing) and Embodiment 4 of the present invention.
The pore distribution curve of activated carbon (4 in the figure) is shown. Here, the horizontal axis is the pore diameter [unit nm], and the vertical axis is the differential pore volume [unit ml / (g · nm)].

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年10月6日(1999.10.
6)
[Submission Date] October 6, 1999 (1999.10.
6)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0007】そして、この様な活性炭を製造する方法と
して、特開平3−78221号公報で示されたパルス衝
撃電流により活性炭微粒子の相互間を焼結させる多孔質
体の製造法が示されているが、特殊な焼結方法であり、
製造コスト及び汎用性の点で好ましくない。また、特開
平7−249551号公報の技術によれば、活性炭原料
としてポリ塩化ビニリデン樹脂を用い、非酸化雰囲気下
(窒素ガス 2 )、800〜1000℃で加熱することで
多数の細孔を有するEDLC電極用活性炭が得られるこ
とが示されている。活性炭原料として、加熱処理による
側鎖からの塩酸脱離反応によって容易に多数の電解液イ
オンの吸着に好適な場を与えるポリ塩化ビニリデン樹脂
を用いたことは、極めて優れた知見ではある。しかし、
前記特開平7−249551号公報には、ポリ塩化ビニ
リデン樹脂としてどの様なものを用いた技術なのか何ら
記載されていない。
As a method for producing such activated carbon, there is disclosed a method for producing a porous body in which activated carbon fine particles are sintered with each other by a pulse impact current disclosed in Japanese Patent Application Laid-Open No. 3-78221. Is a special sintering method,
It is not preferable in terms of manufacturing cost and versatility. According to the technique disclosed in Japanese Patent Application Laid-Open No. 7-249551, a polyvinylidene chloride resin is used as a raw material for activated carbon, and heated at 800 to 1000 ° C. in a non-oxidizing atmosphere (nitrogen gas 2 ) to have many pores. It is shown that activated carbon for EDLC electrodes can be obtained. It is an excellent finding that a polyvinylidene chloride resin which easily provides a suitable field for the adsorption of a large number of electrolyte ions by an elimination reaction of hydrochloric acid from a side chain by heat treatment is used as an activated carbon raw material. But,
JP-A-7-249551 does not disclose what kind of technique is used as polyvinylidene chloride resin.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G046 CA04 CB02 CB09 CC03 HA03 HC02 HC03 HC05 HC06 HC07 HC08 HC10 HC11 4J002 BD101 DA036 GQ00  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G046 CA04 CB02 CB09 CC03 HA03 HC02 HC03 HC05 HC06 HC07 HC08 HC10 HC11 4J002 BD101 DA036 GQ00

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 微結晶性サイズSが150Å以上であ
り、且つポリ塩化ビニリデン若しくは塩化ビニリデンの
モル含有率が85モル%以上の塩化ビニリデン共重合体
を含有することを特徴とする、電気二重層キャパシタ電
極用の活性炭原料。
1. An electric double layer comprising microcrystalline size S of 150 ° or more and containing polyvinylidene chloride or a vinylidene chloride copolymer having a molar content of vinylidene chloride of 85 mol% or more. Activated carbon raw material for capacitor electrodes.
【請求項2】 請求項1記載の活性炭原料を炭化および
/または賦活処理して得られることを特徴とする電気二
重層キャパシタ電極用活性炭。
2. Activated carbon for an electrode of an electric double layer capacitor, obtained by carbonizing and / or activating the activated carbon raw material according to claim 1.
【請求項3】 請求項1記載の活性炭原料を一部または
全部を膨潤若しくは溶解する有機溶媒と、アルカリ金属
水酸化物またはアルカリ土類水酸化物の水溶液とアルコ
ール及び/またはエーテルとの混合溶液を用いて、10
0℃以下で脱塩酸処理する工程を含む炭化処理および/
または賦活をして得られることを特徴とする請求項2記
載の電気二重層キャパシタ電極用活性炭。
3. A mixed solution of an organic solvent for partially or entirely swelling or dissolving the activated carbon raw material according to claim 1, an aqueous solution of an alkali metal hydroxide or an alkaline earth hydroxide, and alcohol and / or ether. Using 10
Carbonization treatment including a step of dehydrochlorination treatment at 0 ° C. or lower and / or
The activated carbon for an electric double layer capacitor electrode according to claim 2, wherein the activated carbon is obtained by activation.
JP28296499A 1999-10-04 1999-10-04 Active carbon raw material for electric double-layer capacitor electrode, and activated carbon Withdrawn JP2001110689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28296499A JP2001110689A (en) 1999-10-04 1999-10-04 Active carbon raw material for electric double-layer capacitor electrode, and activated carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28296499A JP2001110689A (en) 1999-10-04 1999-10-04 Active carbon raw material for electric double-layer capacitor electrode, and activated carbon

Publications (1)

Publication Number Publication Date
JP2001110689A true JP2001110689A (en) 2001-04-20

Family

ID=17659423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28296499A Withdrawn JP2001110689A (en) 1999-10-04 1999-10-04 Active carbon raw material for electric double-layer capacitor electrode, and activated carbon

Country Status (1)

Country Link
JP (1) JP2001110689A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001135554A (en) * 1999-11-05 2001-05-18 Ccr:Kk Electric double layer capacitor, electrode and manufacturing method thereof
US6709560B2 (en) 2001-04-18 2004-03-23 Biosource, Inc. Charge barrier flow-through capacitor
JP2007035811A (en) * 2005-07-26 2007-02-08 Hitachi Zosen Corp Electrode using carbon nanotube and its manufacturing method
US7368191B2 (en) 2001-07-25 2008-05-06 Biosource, Inc. Electrode array for use in electrochemical cells
WO2009031639A1 (en) * 2007-09-06 2009-03-12 Showa Denko K.K. Non-contact charge type accumulator
EP2054900A2 (en) * 2006-07-27 2009-05-06 Corning Incorporated Electric double layer capacitors, capacitor materials and methods of making the same
US7691782B2 (en) 2002-11-13 2010-04-06 Showa Denko K.K. Active carbon, production method thereof and polarizable electrode
JP4548592B2 (en) * 2002-08-23 2010-09-22 日清紡ホールディングス株式会社 Electric double layer capacitor
US7887772B2 (en) 2005-12-14 2011-02-15 Korea Institute Of Science And Technology Ultrafine porous graphitic carbon fiber and preparation method thereof
JP2020500813A (en) * 2016-11-30 2020-01-16 ソルヴェイ(ソシエテ アノニム) Advanced porous carbonaceous materials and methods for their preparation

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4617525B2 (en) * 1999-11-05 2011-01-26 日本ケミコン株式会社 ELECTRIC DOUBLE LAYER CAPACITOR, ELECTRODE AND ITS MANUFACTURING METHOD
JP2001135554A (en) * 1999-11-05 2001-05-18 Ccr:Kk Electric double layer capacitor, electrode and manufacturing method thereof
US6709560B2 (en) 2001-04-18 2004-03-23 Biosource, Inc. Charge barrier flow-through capacitor
US8002963B2 (en) 2001-04-18 2011-08-23 Biosource, Incorporated Charge barrier flow-through capacitor-based method of deionizing a fluid
US7833400B2 (en) 2001-04-18 2010-11-16 Biosource, Inc. Method of making a flow through capacitor
US7368191B2 (en) 2001-07-25 2008-05-06 Biosource, Inc. Electrode array for use in electrochemical cells
JP4548592B2 (en) * 2002-08-23 2010-09-22 日清紡ホールディングス株式会社 Electric double layer capacitor
US8273683B2 (en) 2002-11-13 2012-09-25 Showa Denko K.K. Active carbon, production method thereof and polarizable electrode
US7691782B2 (en) 2002-11-13 2010-04-06 Showa Denko K.K. Active carbon, production method thereof and polarizable electrode
JP4696751B2 (en) * 2005-07-26 2011-06-08 日立造船株式会社 Method for producing electrode using carbon nanotube
JP2007035811A (en) * 2005-07-26 2007-02-08 Hitachi Zosen Corp Electrode using carbon nanotube and its manufacturing method
US7887772B2 (en) 2005-12-14 2011-02-15 Korea Institute Of Science And Technology Ultrafine porous graphitic carbon fiber and preparation method thereof
EP2054900A2 (en) * 2006-07-27 2009-05-06 Corning Incorporated Electric double layer capacitors, capacitor materials and methods of making the same
EP2054900A4 (en) * 2006-07-27 2012-06-27 Corning Inc Electric double layer capacitors, capacitor materials and methods of making the same
US8437116B2 (en) 2006-07-27 2013-05-07 Corning Incorporated Electric double layer capacitors, capacitor materials and methods of making the same
JPWO2009031639A1 (en) * 2007-09-06 2010-12-16 昭和電工株式会社 Non-contact rechargeable power storage device
WO2009031639A1 (en) * 2007-09-06 2009-03-12 Showa Denko K.K. Non-contact charge type accumulator
JP2020500813A (en) * 2016-11-30 2020-01-16 ソルヴェイ(ソシエテ アノニム) Advanced porous carbonaceous materials and methods for their preparation
JP7175889B2 (en) 2016-11-30 2022-11-21 ソルヴェイ(ソシエテ アノニム) Advanced porous carbonaceous materials and methods for their preparation

Similar Documents

Publication Publication Date Title
CN102460620B (en) Carbon material for electric double layer capacitor electrode and method for producing same
JP5599186B2 (en) Activated carbon for electric double layer capacitor electrode and manufacturing method thereof
KR102159201B1 (en) Activated carbon for electric double layer capacitor electrode and production method for same
JP5018213B2 (en) Phosphorus compound composite activated carbon for electric double layer capacitor and method for producing the same
JP2010070393A (en) Carbon material for electric double layer capacitor and method for producing the same
JPH08119614A (en) Activated carbon, its production and electrode for electric-double-layer capacitor
Cheng et al. Preparation of high performance supercapacitor materials by fast pyrolysis of corn gluten meal waste
JP2001110689A (en) Active carbon raw material for electric double-layer capacitor electrode, and activated carbon
WO2011122309A1 (en) Activated charcoal for electric double-layer capacitor electrode and method for producing the same
CN109233124B (en) Polystyrene-graphene oxide composite block material, graphene-based porous block material and preparation method thereof
JP2009013012A (en) Method of producing active carbon for electric double-layer capacitor electrode
Chen et al. A Low‐Temperature Dehydration Carbon‐Fixation Strategy for Lignocellulose‐Based Hierarchical Porous Carbon for Supercapacitors
Dhapola et al. Synthesis of porous carbon from a PVC polymer and its application in supercapacitors
JP4313547B2 (en) Method for producing carbon material for electric double layer capacitor
JPH09213589A (en) Activated carbon for electric double-layer capacitor and manufacture thereof
JP4615868B2 (en) Method for producing porous carbon for electric double layer capacitor, porous carbon for electric double layer capacitor obtained by the production method, and electric double layer capacitor using porous carbon for electric double layer capacitor
JP2001122607A (en) Activated carbon powder and method of menufacturing the same
JP2003137517A (en) Poly(vinylidene halide)-based carbon
JP5242216B2 (en) Carbon material for electric double layer capacitor electrode and manufacturing method thereof
JP2008021833A (en) Porous carbon material for electric double layer capacitor, manufacturing method thereof, and non-aqueous electric double layer capacitor
JP3440515B2 (en) Electrode for electric double layer capacitor
JP2003183014A (en) Porous carbon material, its producing method and electric double layer capacitor
JP4439175B2 (en) Carbon composite and production method thereof
JP2004031889A (en) Porous carbon for electric double layer capacitor electrode, and its manufacturing method
JP2003173941A (en) Carbon material for electrode of electric double-layer capacitor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060606

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061205