JP3440515B2 - Electrode for electric double layer capacitor - Google Patents

Electrode for electric double layer capacitor

Info

Publication number
JP3440515B2
JP3440515B2 JP30649593A JP30649593A JP3440515B2 JP 3440515 B2 JP3440515 B2 JP 3440515B2 JP 30649593 A JP30649593 A JP 30649593A JP 30649593 A JP30649593 A JP 30649593A JP 3440515 B2 JP3440515 B2 JP 3440515B2
Authority
JP
Japan
Prior art keywords
electrode
double layer
electric double
layer capacitor
activated carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30649593A
Other languages
Japanese (ja)
Other versions
JPH07161587A (en
Inventor
公平 奥山
由孝 竹田
友子 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP30649593A priority Critical patent/JP3440515B2/en
Publication of JPH07161587A publication Critical patent/JPH07161587A/en
Application granted granted Critical
Publication of JP3440515B2 publication Critical patent/JP3440515B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、電気二重層コンデンサ
ー用電極に関する。電気二重層コンデンサーは、電気二
重層キャパシターとも呼ばれ、近年、バックアップ電
源、補助電源等として注目を浴びている。特に活性炭を
分極性電極とした電気二重層キャパシターは、性能が優
れているため、エレクトロニクス分野の発展と共に、需
要も急成長している。また、最近では、従来のメモリー
バックアップ電源等の小型品に加え、モーター等の補助
電源に使われる様な大容量の製品の開発も行われてい
る。 【0002】 【従来の技術】電気二重層キャパシターの原理は古くか
ら知られているが、実用的に使われ始めたのは比較的最
近である。これは、分極性電極に高比表面積を持つ活性
炭を使用し始めたことと関係すると考えられる。電気二
重層キャパシターの電気量は、主に電気二重層が形成さ
れる分極性電極の表面積、単位面積当たりの電気二重層
容量や電極の抵抗等に配される。また実用面では、単位
体積当たりの電気量を高くしてキャパシター体積を小さ
くするために、電極自体の密度を大きくすることも重要
である。 【0003】すなわち、電気二重層キャパシターの主な
ポイントは、電極に使う活性炭の性能と電極の製造方法
にある。しかしながら、一般には、活性炭の性能向上を
目的に高表面積化のための賦活を進めると、細孔の増加
で活性炭の密度が小さくなり、単位体積当たりの電気量
が逆に小さくなる。また、電気量を支配する活性炭性能
も十分には解明されていないため、特に、大容量キャパ
シターに実用的に用い得る活性炭はまだ無いと言っても
過言ではない。 【0004】 【発明が解決しようとする課題】大容量キャパシターに
使用する活性炭を作るには、既存の方法で、賦活を過度
に進めて高比表面積にしても、密度が低下するため、単
位体積当たりの電気量が低下して難しい。そこで、本発
明の目的は、賦活度を変える以外の方法で活性炭の高比
表面積化を図り、体積当たりのキャパシター電気量が大
きい電極を得るところにある。 【0005】 【課題を解決するための手段】本発明者らは、大容量電
気二重層キャパシターの電気量と分極性電極に使う活性
炭性能の関係を調べた結果、特定の物質を賦活して高比
表面積の活性炭で電極を作ると、電気量を大幅に向上さ
せることができることを見い出し、本発明を完成するに
至った。 【0006】すなわち、本発明の要旨は、炭素質原料を
水蒸気賦活して得た炭素質物質をアルカリ金属水酸化物
により賦活し、粉砕して得られる粉粒体を成形してなる
ことを特徴とする電気二重層コンデンサー用電極に存す
る。本発明において水蒸気賦活される炭素質原料は、具
体的には、水蒸気賦活処理により細孔が形成するもので
あれば特に限定されるものではない。例えば、石炭、や
しがら、おがくず、樹脂、石炭コークス、石炭タール、
石油ピッチ、カーボンファイバー、カーボンブラック等
の炭素質のいずれのものを用いてもよく、これらの少な
くとも1種を使用することができる。好ましくは、石
炭、やしがら、おが屑、樹脂を300℃以上で炭化した
ものが望ましい。これらの炭素材料を前記水蒸気賦活し
た後、そのまま、あるいはさらに後熱処理をしてよい。 【0007】さらに、KOH,NaOH等のアルカリ金
属水酸化物で賦活する時の条件は、用いる水蒸気賦活物
により異なるため一概には言えないが、例えばKOHを
用いた場合には温度400〜1000℃、好ましくは5
50℃〜800℃である。賦活剤の使用量はKOHとし
て水蒸気賦活物の重量の1〜25倍量、好ましくは2〜
6倍量が望ましい。 【0008】これらのアルカリ金属水酸化物が実質的に
均一に炭素質を賦活し得る状態であればその形態は特に
問わないが、例えば水溶液として用いれば、比較的低温
で均一な賦活を行うことができる。比表面積は、窒素の
液体窒素温度における吸着量から算出されるが、電極密
度が小さくならない限り、大きい方が好ましい。即ち、
水蒸気賦活物の比表面積は300〜2500m2 /gが
好ましく、これをアルカリ金属水酸化物で賦活して得た
炭素質は500m2 /g以上の比表面積があることが望
ましい。アルカリ賦活後、必要あれば水または酸溶液と
接触させて脱灰する。 【0009】賦活したものを脱灰するのは、アルカリ金
属水酸化物の反応後の生成物が活性炭中にあると、異物
になり好ましくないことも有り得るからである。さら
に、賦活物を脱灰後、粉砕して用いるのは、電極成形の
際に粒子径が大きいと高密度化しにくいためか、成形体
の密度が大きくならず、体積当たりのキャパシタ電気量
が大きくならないためである。実質的に0.2mm以下
に粉砕した粉末用いるのが好ましい。 【0010】炭素質物質を成形する方法は、通常知られ
ている方法を適用することが、可能である。すなわち、
ポリ四フッ化エチレン樹脂、フェノール樹脂、ポリビニ
ルアルコール、セルロースなどのバインダーとして知ら
れている物質を1〜数%加えて良く混合した後、金型に
入れ、加圧成形したり、必要に応じては加圧成形時に熱
を加えることも可能である。 【0011】また、電極成形時に、導電性カーボンブラ
ックその他の導電性物質を添加し、電極の抵抗を低下さ
せても良い。これは、分極性電極の内部抵抗を低減させ
て電極の体積を有効に使用するためである。 【0012】 【実施例】以下に実施例を示し、更に本発明を詳細に説
明するが、本発明はその要旨を越えない限り、下記実施
例より限定されるものではない。 実施例1 れき青炭炭化物を1000℃で水蒸気賦活して得られた
比表面積1255m2/gを有する活性炭粉末10g
を、55gの水酸化カリウムが溶けた水溶液に浸漬し
た。その後、この粉末をラボスケールのロータリーキル
ンに入れて窒素雰囲気下、650℃に昇温した後、室温
に冷却した。水洗を5回実施した後、乾燥機に入れて1
15℃で乾燥した。得られた炭素質物質を200μm以
下に粉砕し、窒素吸着量から求めた粉体の比表面積は、
1584m2 /gであった。得られたサンプル1gに四
フッ化エチレン粉末0.02gを加え、良く混合した
後、日本分光製油圧プレスで直径20mm、厚さ1.5
mmになるように加圧成形して円盤状の電極を得た。こ
の方法で作成した2枚の電極の間に三菱化成(株)製の
ポリエチレン製セパレータを入れた後、集電体に使う白
金板2枚で全体を挟み込み、さらに、集電体、ペレッ
ト、セパレータが良く接触するように一番外側から2枚
の厚さ5mmで4個のボルト孔を持つテフロン板で挟み
込んだ。こうして得たキャパシタ電極部を、ビーカー内
にある30重量%の硫酸中につけ、電極に付着している
空気泡を除いて、電気二重層キャパシタを作った。北斗
電工製充放電装置と千野製作所製X−Tレコーダーを使
用して、−20℃下において、約860mAの定電流充
放電サイクルテストを10回繰り返し、静電気容量を測
定した。放電カーブから常法にて求めた電気量の平均値
を作成したキャパシタの電気量とした。上記測定条件に
おける電気量を表1に示した。 【0013】実施例2 実施例1において、れき青炭炭化物を水蒸気賦活して得
られた炭素質物質の比表面積を970m2 /gであると
した以外は、実施例1と同様にして実験を行った。得た
活性炭の比表面積及び電気量を表1に示した。 比較例1 実施例1において、れき青炭炭化物粉末10gを水蒸気
賦活することなく30gの水酸化カリウムが溶けた水溶
液に浸漬したこと及びアルカリ水酸化物での賦活処理に
より得た活性炭を実施例1で示したロータリーキルンに
再び入れて、窒素雰囲気下、900℃で焼成したものの
各測定条件における電気量を測定したこと以外は、実施
例1と同様にして実験を行った。得た活性炭の比表面積
及び電気量を表1に示した。 【0014】比較例2 れき青炭炭化物を水蒸気賦活して得られた比表面積16
80m2 /gを有する活性炭粉末の粉砕物の各測定条件
における電気量の測定を実施例1と同様にして行った。
得た活性炭の電気量を表1に示した。 比較例3 実施例1において、れき青炭炭化物粉末10gを55g
の水酸化カリウムが溶けた水溶液に浸漬したこと及びア
ルカリ水酸化物での賦活処理により得た活性炭を実施例
1で示したロータリーキルンに再び入れて、窒素雰囲気
下、900℃で水蒸気賦活したものの電気量を測定した
こと以外は、実施例1と同様にして実験を行った。得た
活性炭の比表面積及び電気量を表1に示した。 【0015】 【表1】 【0016】 【発明の効果】以上のように、本発明によれば、従来よ
り大きい電気量をもつ電気二重層キャパシターを提供す
ることができる。その結果、用途を、モーターの補助電
源等の大きい放電電流が求められる分野にまで拡大する
ことができ、工業的利用上の価値は極めて大きい。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode for an electric double layer capacitor. The electric double layer capacitor is also called an electric double layer capacitor, and has recently been receiving attention as a backup power supply, an auxiliary power supply, and the like. In particular, an electric double layer capacitor using activated carbon as a polarizable electrode has excellent performance, and the demand is growing rapidly along with the development of the electronics field. Recently, in addition to conventional small-sized products such as memory backup power supplies, large-capacity products used for auxiliary power supplies such as motors have been developed. [0002] The principle of an electric double layer capacitor has been known for a long time, but it has been relatively recently that practical use has begun. This is considered to be related to the start of using activated carbon having a high specific surface area for the polarizable electrode. The amount of electricity of the electric double layer capacitor is mainly determined by the surface area of the polarizable electrode on which the electric double layer is formed, the electric double layer capacitance per unit area, the resistance of the electrode, and the like. In practical terms, it is also important to increase the density of the electrodes themselves in order to increase the amount of electricity per unit volume and reduce the capacitor volume. In other words, the main points of the electric double layer capacitor are the performance of the activated carbon used for the electrode and the method of manufacturing the electrode. However, in general, when activation for increasing the surface area is promoted for the purpose of improving the performance of activated carbon, the density of activated carbon decreases due to the increase in pores, and the amount of electricity per unit volume decreases. In addition, since the activated carbon performance that controls the amount of electricity has not been sufficiently elucidated, it is not an exaggeration to say that there is no activated carbon that can be practically used particularly for large-capacity capacitors. [0004] In order to produce activated carbon for use in a large-capacity capacitor, the density decreases even if the activation is excessively promoted and the specific surface area is increased by an existing method. It is difficult because the amount of electricity per unit decreases. Therefore, an object of the present invention is to increase the specific surface area of activated carbon by a method other than changing the activation degree, and to obtain an electrode having a large amount of capacitor electricity per volume. The present inventors have investigated the relationship between the amount of electricity of a large-capacity electric double layer capacitor and the performance of activated carbon used for a polarizable electrode. It has been found that when an electrode is made of activated carbon having a specific surface area, the quantity of electricity can be greatly improved, and the present invention has been completed. [0006] That is, the gist of the present invention is characterized in that a carbonaceous material obtained by steam activation of a carbonaceous raw material is activated by an alkali metal hydroxide, and the obtained granules are formed by pulverization. The electrode for an electric double layer capacitor. The carbonaceous raw material to be steam-activated in the present invention is not particularly limited as long as pores are formed by the steam activation treatment. For example, coal, palm, sawdust, resin, coal coke, coal tar,
Any of carbonaceous materials such as petroleum pitch, carbon fiber and carbon black may be used, and at least one of them can be used. Preferably, coal, coconut, sawdust, or resin carbonized at 300 ° C. or more is desirable. After these carbon materials have been activated by the steam, they may be subjected to post-heat treatment as they are or further. Further, the conditions for activating with an alkali metal hydroxide such as KOH, NaOH or the like cannot be unequivocally determined because they differ depending on the water vapor activating substance to be used. , Preferably 5
50 ° C to 800 ° C. The amount of the activator used is 1 to 25 times the weight of the steam activator as KOH, preferably 2 to 25 times.
Six times the amount is desirable. The form of the alkali metal hydroxide is not particularly limited as long as it can activate carbonaceous substance substantially uniformly. For example, when the alkali metal hydroxide is used as an aqueous solution, uniform activation can be performed at a relatively low temperature. Can be. The specific surface area is calculated from the amount of nitrogen adsorbed at the temperature of liquid nitrogen. The larger the specific surface area, the better, unless the electrode density is reduced. That is,
The specific surface area of steam activation was preferably 300~2500m 2 / g, which carbonaceous obtained by activating with the alkali metal hydroxide is preferably has a specific surface area of more than 500m 2 / g. After alkali activation, if necessary, contact with water or an acid solution to demineralize. The activated matter is demineralized because if the product after the reaction of the alkali metal hydroxide is in activated carbon, it becomes foreign matter and may be undesirable. In addition, the reason why the activator is deashed and then pulverized is used because it is difficult to increase the density when the particle diameter is large during electrode molding, or the density of the compact does not increase, and the amount of capacitor electricity per volume is large. It is because it does not become. It is preferable to use a powder that is substantially ground to 0.2 mm or less. [0010] As a method of forming the carbonaceous material, a generally known method can be applied. That is,
Add a substance known as a binder such as polytetrafluoroethylene resin, phenolic resin, polyvinyl alcohol, cellulose, etc. in an amount of 1% to several%, mix well, put it in a mold, press-mold, or if necessary It is also possible to apply heat during pressure molding. Further, at the time of forming the electrode, conductive carbon black or another conductive substance may be added to lower the resistance of the electrode. This is because the internal resistance of the polarizable electrode is reduced and the volume of the electrode is used effectively. The present invention will be described in more detail with reference to the following Examples, which, however, are not intended to limit the scope of the present invention. Example 1 10 g of activated carbon powder having a specific surface area of 1255 m 2 / g obtained by steam activation of a bituminous carbon carbide at 1000 ° C.
Was immersed in an aqueous solution in which 55 g of potassium hydroxide was dissolved. Thereafter, the powder was placed in a laboratory-scale rotary kiln, heated to 650 ° C. in a nitrogen atmosphere, and then cooled to room temperature. After washing with water 5 times, put in a dryer for 1
Dried at 15 ° C. The obtained carbonaceous material was pulverized to 200 μm or less, and the specific surface area of the powder determined from the nitrogen adsorption amount was:
It was 1584 m 2 / g. 0.02 g of ethylene tetrafluoride powder was added to 1 g of the obtained sample, mixed well, and then, using a hydraulic press manufactured by JASCO, diameter 20 mm, thickness 1.5
mm to obtain a disk-shaped electrode. A polyethylene separator made by Mitsubishi Kasei Co., Ltd. is inserted between the two electrodes created by this method, and the whole is sandwiched between two platinum plates used for the current collector. Was sandwiched between two Teflon plates having a thickness of 5 mm and four bolt holes from the outermost side so as to make good contact. The capacitor electrode part thus obtained was immersed in 30% by weight sulfuric acid in a beaker to remove air bubbles adhering to the electrode, thereby producing an electric double layer capacitor. Using a charge / discharge device manufactured by Hokuto Denko and an X-T recorder manufactured by Senno Seisakusho, a constant current charge / discharge cycle test of about 860 mA was repeated 10 times at −20 ° C. to measure the electrostatic capacity. The average value of the quantity of electricity obtained from the discharge curve by a conventional method was used as the quantity of electricity of the prepared capacitor. Table 1 shows the quantity of electricity under the above measurement conditions. Example 2 An experiment was performed in the same manner as in Example 1 except that the specific surface area of the carbonaceous material obtained by steam activation of the bituminous carbon was 970 m 2 / g. went. Table 1 shows the specific surface area and the amount of electricity of the obtained activated carbon. Comparative Example 1 In Example 1, activated carbon obtained by immersing 10 g of the bituminous carbon powder in an aqueous solution in which 30 g of potassium hydroxide was dissolved without activating steam and activating with an alkali hydroxide was used. An experiment was carried out in the same manner as in Example 1 except that the sample was put again in the rotary kiln shown in (1) and fired at 900 ° C. in a nitrogen atmosphere, but the amount of electricity was measured under each measurement condition. Table 1 shows the specific surface area and the amount of electricity of the obtained activated carbon. Comparative Example 2 Specific surface area of 16 obtained by steam activation of bituminous carbon carbide
The quantity of electricity of the pulverized activated carbon powder having 80 m 2 / g under each measurement condition was measured in the same manner as in Example 1.
Table 1 shows the amount of electricity of the obtained activated carbon. Comparative Example 3 In Example 1, 55 g of 10 g of bituminous carbon powder was used.
Activated carbon obtained by immersion in an aqueous solution in which potassium hydroxide was dissolved and activation treatment with an alkali hydroxide were put again in the rotary kiln shown in Example 1, and steam activated at 900 ° C. under a nitrogen atmosphere. The experiment was performed in the same manner as in Example 1 except that the amount was measured. Table 1 shows the specific surface area and the amount of electricity of the obtained activated carbon. [Table 1] As described above, according to the present invention, it is possible to provide an electric double layer capacitor having a larger amount of electricity than conventional ones. As a result, applications can be expanded to fields requiring a large discharge current, such as an auxiliary power supply for a motor, and the value in industrial use is extremely large.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−217804(JP,A) 特開 平5−258996(JP,A) 特開 平5−139712(JP,A) 特開 昭60−255608(JP,A) 特開 昭59−172230(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01G 9/058 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-5-217804 (JP, A) JP-A-5-258996 (JP, A) JP-A-5-139712 (JP, A) JP-A-60-1985 255608 (JP, A) JP-A-59-172230 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01G 9/058

Claims (1)

(57)【特許請求の範囲】 【請求項1】 炭素質原料を水蒸気で賦活し、さらにア
ルカリ金属水酸化物により賦活した後、粉砕して得られ
る粉粒体を成形して成る電気二重層コンデンサー用電
極。
(57) [Claims 1] An electric double layer formed by activating a carbonaceous raw material with steam, further activating it with an alkali metal hydroxide, and then pulverizing the obtained granular material. Electrode for condenser.
JP30649593A 1993-12-07 1993-12-07 Electrode for electric double layer capacitor Expired - Lifetime JP3440515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30649593A JP3440515B2 (en) 1993-12-07 1993-12-07 Electrode for electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30649593A JP3440515B2 (en) 1993-12-07 1993-12-07 Electrode for electric double layer capacitor

Publications (2)

Publication Number Publication Date
JPH07161587A JPH07161587A (en) 1995-06-23
JP3440515B2 true JP3440515B2 (en) 2003-08-25

Family

ID=17957714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30649593A Expired - Lifetime JP3440515B2 (en) 1993-12-07 1993-12-07 Electrode for electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP3440515B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3960397B2 (en) * 1997-06-05 2007-08-15 古河機械金属株式会社 Electric double layer capacitor
JP3885905B2 (en) * 1997-06-05 2007-02-28 古河機械金属株式会社 Electric double layer capacitor
KR100744984B1 (en) 1999-11-16 2007-08-02 혼다 기켄 고교 가부시키가이샤 Electrode for electric double-layer capacitor and method for producing it
JP4503134B2 (en) * 2000-05-09 2010-07-14 三菱化学株式会社 Activated carbon for electric double layer capacitors
KR100731338B1 (en) * 2005-09-12 2007-06-25 새한에너테크 주식회사 Koh treatment of activated carbon for supercapacitor active material
CN108101056B (en) * 2018-01-17 2020-04-28 内蒙古浦瑞芬环保科技有限公司 A rinsing equipment for active carbon production

Also Published As

Publication number Publication date
JPH07161587A (en) 1995-06-23

Similar Documents

Publication Publication Date Title
JP3446339B2 (en) Activated carbon production method
US7091156B2 (en) Activated carbon for use in electric double layer capacitors
JP4618929B2 (en) Activated carbon for electric double layer capacitors
JP5018213B2 (en) Phosphorus compound composite activated carbon for electric double layer capacitor and method for producing the same
WO2000011688A1 (en) Electrode material and method for producing the same
KR20100040906A (en) Process for producing activated carbon for electric double layer capacitor electrode
JP2001143973A (en) High density electrode made mainly of spherical activated carbon and electric double layer capacitor
JPH10199767A (en) Manufacture of carbon material for electric double layer capacitor
JP2004175660A (en) Activated carbon, method of manufacturing the same and polarizable electrode
JP2004047613A (en) Activated carbon and electrode for electric double-layer capacitor employing active carbon
JP3440515B2 (en) Electrode for electric double layer capacitor
JP2007221108A (en) Active carbon and method for fabrication thereof
JP2017204628A (en) Method for manufacturing active carbon for electric double layer capacitor electrode, and active carbon for electric double layer capacitor electrode manufactured thereby
JPH111316A (en) Active carbon molded form and its production
JP5619367B2 (en) Method for producing activated carbon and electric double layer capacitor using activated carbon obtained by the method
JP2001506059A (en) Active carbon electrode for electric double layer capacitor
JPH05258996A (en) Electrode of electrical double-layer capacitor
JP4503134B2 (en) Activated carbon for electric double layer capacitors
JP3854333B2 (en) Activated carbon for electrode of electric double layer capacitor and its manufacturing method
KR100647010B1 (en) Preparation method of short response time carbon electrode of supercapacitor
JP2001122607A (en) Activated carbon powder and method of menufacturing the same
JP2005093778A (en) Electric double layer capacitor
JP2005243933A (en) Electric double-layer capacitor
JP4096653B2 (en) Method for producing activated carbon, polarizable electrode and electric double layer capacitor
KR101903157B1 (en) Manufacturing method of activated carbon and activated carbon for electric double-layer capacitor electrode manufactured thereby

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080620

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100620

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100620

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 10

EXPY Cancellation because of completion of term