JP2004047613A - Activated carbon and electrode for electric double-layer capacitor employing active carbon - Google Patents

Activated carbon and electrode for electric double-layer capacitor employing active carbon Download PDF

Info

Publication number
JP2004047613A
JP2004047613A JP2002201214A JP2002201214A JP2004047613A JP 2004047613 A JP2004047613 A JP 2004047613A JP 2002201214 A JP2002201214 A JP 2002201214A JP 2002201214 A JP2002201214 A JP 2002201214A JP 2004047613 A JP2004047613 A JP 2004047613A
Authority
JP
Japan
Prior art keywords
activated carbon
electrode
layer capacitor
electric double
capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002201214A
Other languages
Japanese (ja)
Other versions
JP3969223B2 (en
Inventor
Satoru Kita
喜多 哲
Nozomi Sugo
須郷 望
Hideji Iwasaki
岩崎 秀治
Takeshi Fujino
藤野 健
Yuji Kawabuchi
河淵 祐二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Kuraray Chemical Co Ltd
Kashima Oil Co Ltd
Original Assignee
Honda Motor Co Ltd
Kuraray Chemical Co Ltd
Kashima Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Kuraray Chemical Co Ltd, Kashima Oil Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2002201214A priority Critical patent/JP3969223B2/en
Publication of JP2004047613A publication Critical patent/JP2004047613A/en
Application granted granted Critical
Publication of JP3969223B2 publication Critical patent/JP3969223B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide activated carbon which shows a big electrostatic capacity and a low internal resistance per volume, in an electrode material for an electric double-layer capacitor. <P>SOLUTION: The activated carbon, obtained by activating a pitch series carbonaceous material employing an alkaline metal hydroxide, is specified so as to have the total amount of surface functional group of 0.80-1.50meq per gram of activated carbon and a specific surface area of 300-1,500m<SP>2</SP>/g. The alkaline metal hydroxide is preferable to be sodium hydroxide or potassium hydroxide. The active carbon is suitable for the material of an electrode for electric double-layer capacitor. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ピッチ系炭素質材料をアルカリ賦活して得られた活性炭、及びそれを用いた電気二重層キャパシタ用電極に関する。
【0002】
【従来の技術】
近年、活性炭を分極性電極として使用した電気二重層キャパシタが、その優れた静電容量のために、比較的小型のメモリーバックアップ電源、補助電源等として使用されるようになっている。また、最近では、従来のメモリーバックアップ電源等の比較的小型の小容量製品に加え、モーター等の補助電源等の大容量製品の開発も行われている。
【0003】
ところで、電気二重層キャパシタの静電容量は、電気二重層が形成される分極性電極の表面積、単位面積当たりの電気二重層容量や電極の抵抗等に主として依存している。実用面では、単位体積当たりの静電容量を増大させ且つ電気二重層キャパシタの体積を減少させるために、電極自体の密度を高めることも重要な課題となっている。
【0004】
このような電気二重層キャパシタの分極性電極用の活性炭としては、以下の(1)〜(4)の活性炭が知られている。
(1) 樹脂材料、椰子殻、ピッチおよび石炭等の炭素質材料を、水蒸気、ガスなどの酸性条件下で賦活することにより得られた活性炭(大容量キャパシタ技術と材料、シーエムシー社刊行(1998)参照);
(2) 樹脂材料、椰子殻、ピッチおよび石炭などの炭素質材料を、強酸化力を有する薬品(例えばKOH等)で賦活することにより得られた活性炭(WO91/12203号公報、特開平10−199767号公報);
(3) 樹脂材料、椰子殻、ピッチおよび石炭などの炭素質材料を、強酸化力を有する薬品(例えばKOH等)で長時間賦活することにより得られた、表面官能基の総量が0.20〜1.00meq/gの活性炭(特開2000−168129号公報); 及び
(4) 表面酸性官能基量が1.5meq/g程度の活性炭(表面Vol.34、No2(1996))。
【0005】
【発明が解決しようとする課題】
しかしながら、前述したように、電気二重層キャパシタ用の電極に対しては高静電容量で低抵抗であることが要望されているにもかかわらず、上述の(1)の活性炭を電気二重層キャパシタ用電極材料として利用した場合には、十分な静電容量を得ることが出来ず、必要な静電容量を得るためには、電気二重層キャパシタが大型のデバイスになってしまうという問題があった。また、(2)の活性炭の場合、水酸化カリウムなどの強酸化力を有する賦活剤を用いて高温で賦活したものであれば、ある程度の高容量が期待できるが、現在の要求特性を満たすには至らないのが現状である。
【0006】
また、(3)の活性炭の場合、静電容量の点で改善されてはいるが、製造時の賦活時間が長すぎるため、工業的に有利に製造できるものとは言い難い。(4)の活性炭の場合には、表面に多くの官能基が導入されたものであるが、その比表面積が大きく比重が小さいため、電極密度を上げることが困難であり、必然的に容積当たりの静電容量が小さくなるという欠点を有している。
【0007】
本発明の目的は、電気二重層キャパシタの電極材において、容積当たり大きな静電容量及び低い内部抵抗を示し、工業的に有利に製造できる活性炭を提供することである。
【0008】
【課題を解決するための手段】
本発明者らは、上記目的を達成するため、高い炭素含有率を有することが知られているピッチ系炭素質材料をアルカリ賦活して得た活性炭の表面官能基の総量と、比表面積とが、容積あたりの静電容量に密接に関係していることを見出し、本発明を完成させた。
【0009】
即ち、本発明は、ピッチ系炭素質材料をアルカリ金属水酸化物を用いて賦活して得られた活性炭であって、表面官能基の総量が活性炭1g当り0.80〜1.50meqであり、且つ比表面積が300m/g〜1500m/gであることを特徴とする活性炭を提供する。
【0010】
また、本発明は、上述の活性炭を成形した電気二重層キャパシタ用電極材を提供する。
【0011】
【発明の実施の形態】
以下、本発明を詳細に説明する。
【0012】
本発明の活性炭は、石油又は石炭より得られる公知の光学的異方性ピッチ等から常法により得られるピッチ系炭素質材料を、アルカリ金属水酸化物を用いて賦活して得られたものであり、その表面官能基の総量と比表面積とがそれぞれ特定の範囲に制限されているものである。
【0013】
まず、活性炭の表面官能基(例えば、カルボキシル基、ラクトン基、水酸基、キノン基の少なくとも一種以上)の総量が、少なすぎる場合には静電誘引不足となり静電容量が低下し、多すぎる場合には官能基分解によるガス発生が起き、内部抵抗が増加する。従って、本発明の活性炭の表面官能基(例えば、カルボキシル基、ラクトン基、水酸基、キノン基の少なくとも一種以上)の総量は、活性炭1g当り0.80〜1.50meq、好ましくは0.90〜1.30meqである。
【0014】
なお、活性炭の表面官能基量の定量は、一般的に知られている方法により行うことができる(例えば、表面 Vol.34,No2(1996);Catal.16,179(1966)参照)。具体的には、活性炭試料各2gを100mlエルレンマイヤーフラスコに取り、N/10のアルカリ試薬((a)炭酸水素ナトリウム、(b)炭酸ナトリウム、(c)苛性ソーダ、(d)ナトリウムエトキシド)を各々50ml加え、24時間振とうした後濾別し、未反応のアルカリ試薬をN/10塩酸で滴定し、カルボキシル基はアルカリ試薬(a)〜(d)の全てと、ラクトン基はアルカリ試薬(b)〜(d)と、水酸基はアルカリ試薬(c)〜(d)と、そしてキノン基はアルカリ試薬(d)と反応するので、各々の滴定量を差し引きすることによって、官能基量を定量することができる。
【0015】
また、活性炭の比表面積が、小さすぎる場合には電解質の吸着サイト数が十分でないため静電容量が小さくなり、逆に大きすぎる場合には重量当たりの静電容量が増加傾向にあるものの、容積当たりの静電容量が減少する。従って、本発明の活性炭の比表面積は、300m/g〜1500m/g、好ましくは400m/g〜1100m/gである。
【0016】
活性炭の比表面積は、BET吸着法(新版「活性炭−基礎と応用−1997 」23−40頁参照)により測定できる。
【0017】
本発明の活性炭の製造原料であるピッチ系炭素質材料としては、ピッチ系易黒鉛系炭素質材料が好ましく挙げられ、中でもメソフェーズピッチ系炭素繊維が好ましく挙げられる。特に、メソフェーズピッチ系炭素繊維としては、導電性に優れる点から光学的異方性相を50体積%以上、好ましくは80体積%以上含有するピッチ系炭素繊維が好ましい。
【0018】
ピッチ系炭素質材料の形状は限定されるものではなく、粒状、微粉状、繊維状、シート状など種々の形状のものを使用することができる。
【0019】
本発明の活性炭の他の製造原料であるアルカリ金属水酸化物としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化セシウムなどが挙げられるが、大きな静電容量を示す活性炭を得るには、水酸化ナトリウム又は水酸化カリウムを使用するのが好ましい。これらは、通常単独で使用されるが、二種以上を混合して使用してもよい。
【0020】
本発明のピッチ系炭素質材料に対するアルカリ金属水酸化物の使用量は、後者が少なすぎると賦活操作が均一かつ十分に行われ難くなり、目的とする活性炭の性質にばらつきが生じることがあり、逆に多すぎると、経済的でないだけではなく、賦活が進行しすぎる恐れがあり、重量当たりの静電容量が増加する傾向にはあるものの、体積当たりの静電容量が低下するだけでなく、酸性官能基の導入量が多くなりすぎ、電気二重層キャパシタ用電極とした場合に、寿命と安定性とを大きく損なうおそれがある。従って、アルカリ金属水酸化物の使用量は、ピッチ系炭素質材料1重量部に対して1重量部以上、賦活の安定性を考慮すると1.2〜4重量部が好ましく、更に、酸性官能基導入量を考慮すると1.3〜2.5重量部である。
【0021】
本発明の活性炭は、ピッチ系炭素質材料をアルカリ金属水酸化物を用いて賦活して得られたものであるが、具体的には、ピッチ系炭素質材料とアルカリ金属水酸化物とを混合し、不活性気体中で500℃以上に加熱することにより賦活した後、温水で洗浄し、酸洗浄し、乾燥することにより得られる。
【0022】
ここで、賦活温度は活性炭の表面官能基の総量を制御し得るファクターであり、賦活温度があまり高すぎると活性炭に導入される官能基が少なくなり、電気二重層キャパシタ電極として使用した場合に、静電容量が小さくなる傾向があり、更に、活性炭の表面積は増大するが、賦活操作で生成する金属カリウムが蒸発するため、危険性が高くなる。また、賦活温度をあまり低くすると、賦活作用によってガス化され系外に除去されるべき微細な構造が除去されないため、比較的高い電気抵抗を示す場合があり、電極材料としての使用が困難になることがある。従って、賦活温度を500℃〜780℃に設定することが好ましく、官能基の量を考慮すると600℃〜750℃に設定することがより好ましく、650℃〜750℃に設定することが特に好ましい。
【0023】
また、本発明の活性炭を製造する際に、賦活温度が意図した最高温度に到達した後、速やかに冷却することも、その最高温度を保持することも可能であるが、保持時間があまり短すぎると、導入された官能基量が多くなりすぎる場合があり、一方、保持時間があまり長すぎると、官能基量が少なすぎて静電容量が小さくなることがあり、また、グラファイト構造の発達を促し、静電容量が低下する傾向が生ずる。そこで、最高賦活温度保持時間は、0.5〜5時間、好ましくは0.5〜3時間である。
【0024】
賦活における昇温や賦活終了後における冷却は、活性炭原料の燃焼を抑制するために、例えば、窒素、アルゴンなどの不活性ガス気流下で行う必要がある。不活性気体を流通させる場合には、反応の方式によっても異なるが、通常不活性ガス気体の炉体中での移動速度が、0.1cm/分以上であれば良く、1cm/分以上がより好ましい。賦活を行なう実施形態としては、混合物を定置化した固定床でも、回転、攪拌などの移動を伴う移動床でもよく、さらにバッチ式でも、連続式でも良い。
【0025】
賦活の終了後、温水洗浄により賦活材であるアルカリ金属水酸化物を除去するが、この温水洗浄も活性炭の表面官能基の総量を制御し得る重要なファクターであり、この操作により、不安定な部位に導入された官能基を分解除去することができる。即ち、アルカリ加水分解によって、水溶性が増した部分をこの操作によって除去することができる。
【0026】
この温水洗浄に使用する温水の温度が高すぎる場合には、特別な装置が必要となるだけでなく、賦活によって生成した構造が破壊されることがあり、また、温水の温度が低すぎる場合には加水分解が進行し難く、水溶性が高くならないので、官能基の除去効率が低下することがある。したがって、温水の温度としては、50℃〜120℃が好ましく、特別な装置を必要としないという経済性の観点からは60℃〜100℃がより好ましく、65℃〜90℃が特に好ましい。
【0027】
また、温水洗浄に要する時間は、加水分解の効率の観点から、通常30分以上6時間以内の範囲で実施される。
【0028】
以上の温水洗浄の後、常法により、塩酸洗浄、乾燥を実施して本発明の活性炭を得ることができる。
【0029】
本発明の活性炭の表面官能基の総量を制御する具体的手法としては、賦活温度や温水洗浄の温度など表面官能基の総量を制御し得るファクターを適宜組み合わせた条件を採用することが挙げられる。例えば、賦活を700〜750℃で実施し、温水洗浄を80〜90℃で実施することにより、表面官能基の総量を活性炭1g当たり0.90〜1.50meqとすることができる。
【0030】
また、本発明の活性炭の比表面積を制御する具体的手法としては、アルカリ金属水酸化物の使用量と賦活温度を組み合わせた条件を採用することが挙げられる。例えば、アルカリ金属水酸化物の使用量を、ピッチ系炭素質材料1重量部に対して1.7〜2.3重量部とし、賦活温度を700〜750℃に設定することにより、活性炭の比表面積を300m/g〜1500m/gの範囲とすることができる。
【0031】
以上説明した本発明の活性炭は、電気二重層キャパシタ用の分極性電極の原料として有用であり、そのような分極性電極を製造するには、通常知られた方法を適用することが可能である。例えば、市販されている、ポリビニリデンフロライド、ポリテトラフロロエチレンなどバインダーとして知られた物質やカーボンブラックなどの導電性材料を必要に応じて、数%程度まで加えてよく混練した後、金型に入れて加圧成形したり、圧延してシート化し、必要な形状に打ちぬくことで電極に成形することが出来る。その際、必要に応じて、アルコールやN−メチルピロリドンなどの有機化合物や水などの溶剤、分散剤、各種添加物を使用してもよい。また、熱を加えることも可能である。必要以上に高い温度は、使用したバインダー成分の劣化だけでなく、活性炭成分の表面構造による物性、例えば比表面積などに影響を与えるため、その温度条件を考慮しなければならないことは言うまでもない。
【0032】
なお、成形時に、導電性カーボンなどの導電性物質を添加し、電極の抵抗を低下させてもよい。これは、分極性電極の内部抵抗を下げ、電極体積を小さくするのに有効である。また、前述したようなシート電極の他、混練物を集電体に塗布して塗布電極としてもよい。
【0033】
以上説明した分極性電極は、図1(概略断面図)に示すような電気二重層キャパシタの電極として有用である。図1のキャパシタを構成する各構成要素は、本発明による分極性電極を使用する以外は、公知の電気二重層キャパシタと同様の構成とすることができ、例えば、図中、1及び2はアルミニウムなどからなる集電部材、3及び4は本発明の活性炭からなる分極性電極、5はポリプロピレン不織布などから構成されるセパレータ、6はポリプロピレン、ポリエチレン、ポリアミド、ポリアミドイミド、ポリブチレンなどから構成されるガスケット、7はステンレスなどの素材で構成されるケースを示す。
【0034】
なお、電気二重層キャパシタとして機能させるためには、ケース7内に、テトラエチルアンモニウムテトラフロロボレート、テトラメチルアンモニウムテトラフロロボレートなど公知の電解質を、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、プロピレンカーボネートなどのカーボネート類、アセトニトリルなどのニトリル類、α−メチル−γ−ブチロラクトンなどのラクトン類、ジメチルスルホキシドなどのスルホキシド類、ジメチルフォルムアミドなどのアミド類などの溶媒に溶解した電解液を封入する必要がある。
【0035】
【実施例】
以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、電気二重層キャパシタにおける静電容量及び内部抵抗は次の方法により測定した。
【0036】
静電容量
到達電圧2.5Vまで、電極の単位表面積あたり3mA/cmで低電流充電し、2.5Vで30分、低電圧下で補充電し、補充電完了後、3mA/cmで放電する。その際の1.2Vから1.0Vまでの放電傾きから静電容量を求める。
内部抵抗
充電終了後、回路を1秒間開放し、低下した電圧(ΔE)を測定し、それを回路開放直前の電流値で除し、内部抵抗を求める。
【0037】
実施例1
温度計及び攪拌機を装着した2インチのニッケル製反応器に、メソフェーズカーボンファイバー(MCF、ペトカ製)10g及び85%の水酸化カリウム20gを入れ、反応系中を窒素で置換した後、窒素気流下(流速 毎分1cm)700℃まで、200℃/時間で昇温した。700℃に達した後、1時間攪拌を続け、その後室温まで2時間かけて冷却した。蒸留水バブラーを通した窒素を1時間通流し、90℃のイオン交換水で水酸化カリウムを除去し、さらに10%塩酸水で中和洗浄後、蒸留水で洗浄して塩類を除去し、乾燥して活性炭6.8gを得た。
【0038】
得られた活性炭を平均粒径5〜20μmに粉砕して粉末活性炭とし、該粉末活性炭80重量%、導電性カーボン10重量%、ポリテトラフルオロエチレン10重量%からなる混合物を調製し、混練した。次いで、該混合物をロール圧延によって厚さ300μmのシートに成形し、打ち抜き器を用いて直径2cmの円形に打ち抜いた。さらに、26.7Paの減圧下、150℃で4時間乾燥してシート状の電極を作製した。
【0039】
作製した電極を、露点−80℃以下のグローボックス中で、図1に示すように、ステンレス製ケースに、集電部材、シート状分極性電極、ポリプロピレン不織布製セパレータ、シート状分極性電極、及び集電部材を積層した後、1モルのテトラエチルアンモニウムテトラフルオロボレートを含有するプロピレンカーボネート溶液を分極性電極に含浸せしめ、ポリプロピレン製の絶縁ガスケットを用いて、ステンレス上蓋にかしめ封印し、二重電気層キャパシタを作製した。
【0040】
得られた二重電気層キャパシタについて、日置電機製電気二重層キャパシタ評価装置を使用して、室温下、2.5Vまでの定電流、充放電サイクルテスト10回を行い、静電容量(F/g)及び内部抵抗(Ω)を測定した。なお、放電カーブより常法にて求めた静電容量の平均値は、22F/ccであった。
【0041】
また、各実施例、各比較例で作製した活性炭について、官能基量(meq/g)、比表面積(m/g)(測定装置:日本ベル株式会社製BELSORP18)、静電容量(F/cc)を測定した。得られた結果を表1に示す。
【0042】
実施例2
実施例1において、賦活温度を650℃とした以外は、実施例1と同様の操作を繰り返すことにより、電極、更に二重電気層キャパシタを作製し、それを実施例1と同様に評価した。得られた結果を表1に示す。
【0043】
実施例3
実施例1において、賦活温度を750℃とした以外は、実施例1と同様の操作を繰り返すことにより、電極、更に二重電気層キャパシタを作製し、それを実施例1と同様に評価した。得られた結果を表1に示す。
【0044】
比較例1
実施例1において、賦活温度を800℃とした以外は、実施例1と同様の操作を繰り返すことにより、電極、更に二重電気層キャパシタを作製し、それを実施例1と同様に評価した。得られた結果を表1に示す。
【0045】
比較例2
実施例1において、洗浄温度を40℃とした以外は、実施例1と同様の操作を繰り返すことにより、電極、更に二重電気層キャパシタを作製し、それを実施例1と同様に評価した。得られた結果を表1に示す。
【0046】
【表1】

Figure 2004047613
* 圧力上昇
【0047】
表1から、実施例1〜3で作製した活性炭は容積当たりの静電容量が比較例1及び2のものに比べて高いことがわかる。また、実施例1〜3で作製した電気二重層キャパシタは、比較例1及び2のものに比べて内部抵抗が小さいことがわかる。
【0048】
【発明の効果】
本発明により、容積当たりの静電容量が大きく、内部抵抗が小さい活性炭を得ることができる。かかる活性炭は、成形して電気二重層キャパシタ用の電極として好適に使用される。
【図面の簡単な説明】
【図1】電気二重層キャパシタの一例を示す概略断面図である。
【符号の説明】
1,2 集電部材、3,4 分極性電極、5 セパレータ、6 ガスケット、7 ケース[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to activated carbon obtained by alkaline activation of a pitch-based carbonaceous material, and an electrode for an electric double layer capacitor using the same.
[0002]
[Prior art]
In recent years, electric double layer capacitors using activated carbon as polarizable electrodes have been used as relatively small memory backup power supplies, auxiliary power supplies, and the like due to their excellent capacitance. Recently, in addition to a relatively small and small-capacity product such as a conventional memory backup power supply, a large-capacity product such as an auxiliary power supply such as a motor has been developed.
[0003]
The capacitance of the electric double layer capacitor mainly depends on the surface area of the polarizable electrode on which the electric double layer is formed, the electric double layer capacitance per unit area, the resistance of the electrode, and the like. In practical terms, increasing the density of the electrodes themselves is also an important issue in order to increase the capacitance per unit volume and reduce the volume of the electric double layer capacitor.
[0004]
The following activated carbons (1) to (4) are known as activated carbon for a polarizable electrode of such an electric double layer capacitor.
(1) Activated carbon obtained by activating a carbonaceous material such as resin material, coconut shell, pitch, and coal under acidic conditions such as steam and gas (Large-capacity capacitor technology and materials, published by CMC Corporation (1998) )reference);
(2) Activated carbon obtained by activating a carbonaceous material such as a resin material, coconut shell, pitch and coal with a chemical having a strong oxidizing power (for example, KOH or the like) (WO91 / 12203, JP-A-10-203) 1997767);
(3) The total amount of surface functional groups obtained by activating a carbonaceous material such as resin material, coconut shell, pitch and coal with a chemical having strong oxidizing power (for example, KOH) for a long time is 0.20. And (4) activated carbon having a surface acidic functional group content of about 1.5 meq / g (surface Vol. 34, No. 2 (1996)).
[0005]
[Problems to be solved by the invention]
However, as described above, despite the demand for high capacitance and low resistance for the electrode for the electric double layer capacitor, the above-mentioned activated carbon (1) is used for the electric double layer capacitor. When it is used as an electrode material for a battery, a sufficient capacitance cannot be obtained, and in order to obtain a required capacitance, there is a problem that an electric double layer capacitor becomes a large device. . In the case of the activated carbon of (2), if the activated carbon is activated at a high temperature by using an activator having a strong oxidizing power such as potassium hydroxide, a certain high capacity can be expected. At present is not reached.
[0006]
In the case of the activated carbon (3), although the capacitance is improved, the activation time during the production is too long, and it cannot be said that the activated carbon can be produced industrially advantageously. In the case of activated carbon (4), many functional groups are introduced on the surface. However, since the specific surface area is large and the specific gravity is small, it is difficult to increase the electrode density. Has the drawback that the capacitance of the device becomes small.
[0007]
An object of the present invention is to provide an activated carbon which exhibits a large capacitance per volume and a low internal resistance in an electrode material of an electric double layer capacitor and can be industrially advantageously produced.
[0008]
[Means for Solving the Problems]
The present inventors have achieved, in order to achieve the above object, the total amount of surface functional groups of activated carbon obtained by alkali-activating a pitch-based carbonaceous material known to have a high carbon content, and the specific surface area is Have been found to be closely related to the capacitance per volume, and have completed the present invention.
[0009]
That is, the present invention is an activated carbon obtained by activating a pitch-based carbonaceous material using an alkali metal hydroxide, wherein the total amount of surface functional groups is 0.80 to 1.50 meq per 1 g of activated carbon, and a specific surface area provide the activated carbon, which is a 300m 2 / g~1500m 2 / g.
[0010]
Further, the present invention provides an electrode material for an electric double layer capacitor obtained by molding the above-mentioned activated carbon.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
[0012]
The activated carbon of the present invention is obtained by activating a pitch-based carbonaceous material obtained by a conventional method from a known optically anisotropic pitch obtained from petroleum or coal using an alkali metal hydroxide. In this case, the total amount of the surface functional groups and the specific surface area are each limited to a specific range.
[0013]
First, when the total amount of the surface functional groups of the activated carbon (for example, at least one of a carboxyl group, a lactone group, a hydroxyl group, and a quinone group) is too small, the electrostatic attraction is insufficient and the capacitance is reduced. In this case, gas is generated due to decomposition of the functional group, and the internal resistance increases. Therefore, the total amount of the surface functional groups (for example, at least one of carboxyl group, lactone group, hydroxyl group, and quinone group) of the activated carbon of the present invention is 0.80 to 1.50 meq, preferably 0.90 to 1 per gram of activated carbon. .30 meq.
[0014]
The amount of the surface functional groups of the activated carbon can be determined by a generally known method (for example, see Surface Vol. 34, No. 2 (1996); Catal. 16, 179 (1966)). Specifically, 2 g of each activated carbon sample was placed in a 100 ml Erlenmeyer flask, and an N / 10 alkaline reagent ((a) sodium hydrogen carbonate, (b) sodium carbonate, (c) caustic soda, (d) sodium ethoxide) Was added, and the mixture was shaken for 24 hours, filtered off, and the unreacted alkaline reagent was titrated with N / 10 hydrochloric acid. The carboxyl groups were all alkaline reagents (a) to (d), and the lactone groups were alkaline reagents. (B) to (d), the hydroxyl group reacts with the alkali reagents (c) to (d), and the quinone group reacts with the alkali reagent (d). It can be quantified.
[0015]
Also, when the specific surface area of the activated carbon is too small, the number of adsorption sites of the electrolyte is not sufficient, so that the capacitance is small. Conversely, when the specific surface area is too large, the capacitance per weight tends to increase. Per unit capacitance is reduced. Therefore, the specific surface area of the activated carbon of the present invention, 300m 2 / g~1500m 2 / g , preferably from 400m 2 / g~1100m 2 / g.
[0016]
The specific surface area of the activated carbon can be measured by the BET adsorption method (see the new edition "Activated Carbon-Fundamentals and Applications-1997", pp. 23-40).
[0017]
As the pitch-based carbonaceous material which is a raw material for producing the activated carbon of the present invention, a pitch-based graphite-based carbonaceous material is preferably exemplified, and among them, a mesophase pitch-based carbon fiber is preferably exemplified. In particular, as the mesophase pitch-based carbon fiber, a pitch-based carbon fiber containing 50% by volume or more, preferably 80% by volume or more of an optically anisotropic phase is preferable from the viewpoint of excellent conductivity.
[0018]
The shape of the pitch-based carbonaceous material is not limited, and various shapes such as granules, fine powders, fibers, and sheets can be used.
[0019]
Examples of the alkali metal hydroxide which is another production raw material of the activated carbon of the present invention include, for example, sodium hydroxide, potassium hydroxide, lithium hydroxide, and cesium hydroxide. To obtain it, it is preferable to use sodium hydroxide or potassium hydroxide. These are usually used alone, but may be used in combination of two or more.
[0020]
The amount of the alkali metal hydroxide to be used for the pitch-based carbonaceous material of the present invention, if the latter is too small, the activation operation becomes difficult to be performed uniformly and sufficiently, and the properties of the desired activated carbon may vary, Conversely, if too large, not only is not economical, there is a risk that activation may proceed too much, the capacitance per weight tends to increase, but not only the capacitance per volume decreases, The introduction amount of the acidic functional group becomes too large, and when it is used as an electrode for an electric double layer capacitor, the life and stability may be significantly impaired. Therefore, the amount of the alkali metal hydroxide used is preferably at least 1 part by weight based on 1 part by weight of the pitch-based carbonaceous material, and 1.2 to 4 parts by weight in consideration of the stability of activation. Considering the amount to be introduced, it is 1.3 to 2.5 parts by weight.
[0021]
The activated carbon of the present invention is obtained by activating a pitch-based carbonaceous material using an alkali metal hydroxide. Specifically, the activated carbon is obtained by mixing a pitch-based carbonaceous material with an alkali metal hydroxide. Then, after activation by heating to 500 ° C. or more in an inert gas, it is obtained by washing with warm water, acid washing, and drying.
[0022]
Here, the activation temperature is a factor that can control the total amount of the surface functional groups of the activated carbon.If the activation temperature is too high, the number of functional groups introduced into the activated carbon is reduced, and when used as an electric double layer capacitor electrode, The capacitance tends to decrease, and the surface area of the activated carbon increases, but the danger increases because the metal potassium generated in the activation operation evaporates. Also, if the activation temperature is too low, a fine structure that is gasified by the activation action and should be removed outside the system is not removed, and may exhibit relatively high electric resistance, making it difficult to use as an electrode material. Sometimes. Therefore, the activation temperature is preferably set to 500 ° C. to 780 ° C., more preferably set to 600 ° C. to 750 ° C., and particularly preferably set to 650 ° C. to 750 ° C. in consideration of the amount of the functional groups.
[0023]
Further, when producing the activated carbon of the present invention, after the activation temperature reaches the intended maximum temperature, it is possible to quickly cool or maintain the maximum temperature, but the holding time is too short. When the retention time is too long, the amount of the functional group may be too small, the capacitance may be reduced, and the development of the graphite structure may be reduced. And the capacitance tends to decrease. Therefore, the maximum activation temperature holding time is 0.5 to 5 hours, preferably 0.5 to 3 hours.
[0024]
In the activation, the temperature rise and the cooling after completion of the activation need to be performed, for example, in a stream of an inert gas such as nitrogen or argon in order to suppress the combustion of the activated carbon raw material. When flowing an inert gas, the moving speed of the inert gas gas in the furnace is usually 0.1 cm / min or more, although it depends on the reaction method. preferable. The embodiment for performing the activation may be a fixed bed in which the mixture is fixed, a moving bed accompanied by movement such as rotation and stirring, or a batch type or a continuous type.
[0025]
After the activation is completed, the alkali metal hydroxide as an activator is removed by washing with hot water.Washing with hot water is also an important factor that can control the total amount of surface functional groups of the activated carbon. The functional group introduced into the site can be decomposed and removed. That is, the portion having increased water solubility by alkali hydrolysis can be removed by this operation.
[0026]
If the temperature of the hot water used for this hot water cleaning is too high, not only special equipment is required, but also the structure generated by activation may be destroyed, and if the temperature of the hot water is too low, Since hydrolysis hardly proceeds and the water solubility does not increase, the efficiency of removing the functional group may decrease. Therefore, the temperature of the hot water is preferably from 50 ° C to 120 ° C, more preferably from 60 ° C to 100 ° C, and particularly preferably from 65 ° C to 90 ° C, from the viewpoint of economy that no special device is required.
[0027]
The time required for washing with hot water is usually in the range of 30 minutes to 6 hours from the viewpoint of the efficiency of hydrolysis.
[0028]
After the above washing with warm water, washing with hydrochloric acid and drying are carried out in a conventional manner to obtain the activated carbon of the present invention.
[0029]
As a specific method for controlling the total amount of surface functional groups of the activated carbon of the present invention, it is possible to employ conditions that appropriately combine factors that can control the total amount of surface functional groups, such as an activation temperature and a temperature of hot water washing. For example, by performing activation at 700 to 750 ° C and performing hot water washing at 80 to 90 ° C, the total amount of surface functional groups can be 0.90 to 1.50 meq per gram of activated carbon.
[0030]
Further, as a specific method of controlling the specific surface area of the activated carbon of the present invention, it is possible to employ a condition in which the amount of the alkali metal hydroxide used and the activation temperature are combined. For example, by setting the amount of the alkali metal hydroxide used to 1.7 to 2.3 parts by weight with respect to 1 part by weight of the pitch-based carbonaceous material and setting the activation temperature to 700 to 750 ° C., the ratio of the activated carbon is reduced. the surface area can be in the range of 300m 2 / g~1500m 2 / g.
[0031]
The activated carbon of the present invention described above is useful as a raw material of a polarizable electrode for an electric double layer capacitor, and a method generally known to manufacture such a polarizable electrode can be applied. . For example, a commercially available material known as a binder such as polyvinylidene fluoride or polytetrafluoroethylene or a conductive material such as carbon black may be added to a few percent if necessary, and the mixture may be kneaded. Then, it is formed into a sheet by pressure forming or rolling into a sheet and punched into a required shape to form an electrode. At that time, if necessary, an organic compound such as alcohol or N-methylpyrrolidone, a solvent such as water, a dispersant, or various additives may be used. It is also possible to apply heat. An unnecessarily high temperature affects not only the deterioration of the binder component used but also the physical properties, for example, the specific surface area, of the activated carbon component, so that it is needless to say that the temperature condition must be considered.
[0032]
At the time of molding, a conductive substance such as conductive carbon may be added to reduce the resistance of the electrode. This is effective in lowering the internal resistance of the polarizable electrode and reducing the electrode volume. In addition to the sheet electrodes as described above, a kneaded material may be applied to a current collector to form an applied electrode.
[0033]
The polarizable electrode described above is useful as an electrode of an electric double layer capacitor as shown in FIG. 1 (schematic sectional view). Each component constituting the capacitor of FIG. 1 can have the same configuration as a known electric double layer capacitor except that the polarizable electrode according to the present invention is used. , 3 and 4 are polarizable electrodes made of the activated carbon of the present invention, 5 is a separator made of polypropylene non-woven fabric and the like, 6 is a gasket made of polypropylene, polyethylene, polyamide, polyamide imide, polybutylene, etc. And 7 indicate a case made of a material such as stainless steel.
[0034]
In order to function as an electric double layer capacitor, a known electrolyte such as tetraethylammonium tetrafluoroborate or tetramethylammonium tetrafluoroborate is placed in the case 7 with a carbonate such as ethylene carbonate, dimethyl carbonate, diethyl carbonate or propylene carbonate. , Acetonitrile and other nitriles, α-methyl-γ-butyrolactone and other lactones, dimethylsulfoxide and other sulphoxides, and dimethylformamide and other amides and the like must be filled with an electrolytic solution.
[0035]
【Example】
Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto. The capacitance and the internal resistance of the electric double layer capacitor were measured by the following methods.
[0036]
Capacitance A low current charge is performed at 3 mA / cm 2 per unit surface area of the electrode until the ultimate voltage reaches 2.5 V, and a supplementary charge is performed at 2.5 V for 30 minutes under a low voltage. / Cm 2 . The capacitance is determined from the discharge gradient from 1.2 V to 1.0 V at that time.
Internal resistance After charging is completed, the circuit is opened for one second, the reduced voltage ([Delta] E) is measured, and the divided voltage is divided by the current value immediately before the circuit is opened to obtain the internal resistance.
[0037]
Example 1
A 2-inch nickel reactor equipped with a thermometer and a stirrer was charged with 10 g of mesophase carbon fiber (MCF, manufactured by Petka) and 20 g of 85% potassium hydroxide, and the reaction system was replaced with nitrogen. (Flow rate: 1 cm per minute) The temperature was raised to 700 ° C at a rate of 200 ° C / hour. After reaching 700 ° C., stirring was continued for 1 hour, and then cooled to room temperature over 2 hours. Nitrogen was passed through a distilled water bubbler for 1 hour, potassium hydroxide was removed with 90 ° C. ion-exchanged water, neutralized with 10% hydrochloric acid, washed with distilled water to remove salts, and dried. Thus, 6.8 g of activated carbon was obtained.
[0038]
The obtained activated carbon was pulverized to an average particle size of 5 to 20 μm to obtain powdered activated carbon, and a mixture comprising 80% by weight of the powdered activated carbon, 10% by weight of conductive carbon, and 10% by weight of polytetrafluoroethylene was prepared and kneaded. Next, the mixture was formed into a sheet having a thickness of 300 μm by roll rolling, and punched into a circular shape having a diameter of 2 cm using a punch. Further, the electrode was dried at 150 ° C. for 4 hours under a reduced pressure of 26.7 Pa to produce a sheet-like electrode.
[0039]
As shown in FIG. 1, the prepared electrode was placed in a stainless steel case in a glow box having a dew point of −80 ° C. or less, a current collector, a sheet-shaped polarizable electrode, a polypropylene nonwoven fabric separator, a sheet-shaped polarizable electrode, and After laminating the current collecting member, the polarizable electrode was impregnated with a propylene carbonate solution containing 1 mol of tetraethylammonium tetrafluoroborate, and was caulked and sealed on the stainless steel upper lid using a polypropylene insulating gasket. A capacitor was manufactured.
[0040]
The obtained double electric layer capacitor was subjected to a constant current up to 2.5 V and 10 charge / discharge cycle tests at room temperature using an electric double layer capacitor evaluation device manufactured by Hioki Electric Co., Ltd. g) and internal resistance (Ω) were measured. The average value of the capacitance obtained from the discharge curve by a conventional method was 22 F / cc.
[0041]
Further, regarding the activated carbon produced in each of the examples and comparative examples, the functional group amount (meq / g), the specific surface area (m 2 / g) (measurement apparatus: BELSORP18 manufactured by Nippon Bell Co., Ltd.), and the capacitance (F / cc) was measured. Table 1 shows the obtained results.
[0042]
Example 2
In Example 1, an electrode and a double electric layer capacitor were produced by repeating the same operation as in Example 1 except that the activation temperature was changed to 650 ° C., and evaluated in the same manner as in Example 1. Table 1 shows the obtained results.
[0043]
Example 3
In Example 1, an electrode and a double electric layer capacitor were produced by repeating the same operation as in Example 1 except that the activation temperature was changed to 750 ° C., and it was evaluated in the same manner as in Example 1. Table 1 shows the obtained results.
[0044]
Comparative Example 1
In Example 1, an electrode and a double electric layer capacitor were produced by repeating the same operation as in Example 1 except that the activation temperature was changed to 800 ° C., and evaluated in the same manner as in Example 1. Table 1 shows the obtained results.
[0045]
Comparative Example 2
In Example 1, an electrode and a double electric layer capacitor were produced by repeating the same operation as in Example 1 except that the cleaning temperature was set to 40 ° C., and the same as in Example 1 was evaluated. Table 1 shows the obtained results.
[0046]
[Table 1]
Figure 2004047613
* Pressure rise [0047]
Table 1 shows that the activated carbon produced in Examples 1 to 3 has a higher capacitance per volume than those of Comparative Examples 1 and 2. Further, it can be seen that the electric double layer capacitors manufactured in Examples 1 to 3 have lower internal resistance than those of Comparative Examples 1 and 2.
[0048]
【The invention's effect】
According to the present invention, activated carbon having a large capacitance per volume and a small internal resistance can be obtained. Such activated carbon is suitably molded and used as an electrode for an electric double layer capacitor.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view showing an example of an electric double layer capacitor.
[Explanation of symbols]
1,2 current collecting member, 3,4 polarity electrode, 5 separator, 6 gasket, 7 case

Claims (3)

ピッチ系炭素質材料をアルカリ金属水酸化物を用いて賦活して得られた活性炭であって、表面官能基の総量が活性炭1g当り0.80〜1.50meqであり、且つ比表面積が300m/g〜1500m/gであることを特徴とする活性炭。An activated carbon obtained by activating a pitch-based carbonaceous material using an alkali metal hydroxide, wherein the total amount of surface functional groups is 0.80 to 1.50 meq / g of activated carbon, and the specific surface area is 300 m 2. / G to 1500 m 2 / g. 該アルカリ金属水酸化物が水酸化ナトリウム又は水酸化カリウムである請求項1記載の活性炭。The activated carbon according to claim 1, wherein the alkali metal hydroxide is sodium hydroxide or potassium hydroxide. 請求項1又は2記載の活性炭を成形した電気二重層キャパシタ用電極。An electrode for an electric double layer capacitor obtained by molding the activated carbon according to claim 1.
JP2002201214A 2002-07-10 2002-07-10 Activated carbon and electrode for electric double layer capacitor using activated carbon Expired - Fee Related JP3969223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002201214A JP3969223B2 (en) 2002-07-10 2002-07-10 Activated carbon and electrode for electric double layer capacitor using activated carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002201214A JP3969223B2 (en) 2002-07-10 2002-07-10 Activated carbon and electrode for electric double layer capacitor using activated carbon

Publications (2)

Publication Number Publication Date
JP2004047613A true JP2004047613A (en) 2004-02-12
JP3969223B2 JP3969223B2 (en) 2007-09-05

Family

ID=31707817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002201214A Expired - Fee Related JP3969223B2 (en) 2002-07-10 2002-07-10 Activated carbon and electrode for electric double layer capacitor using activated carbon

Country Status (1)

Country Link
JP (1) JP3969223B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005276604A (en) * 2004-03-24 2005-10-06 Denso Corp Electrode for lithium secondary battery and lithium secondary battery
JP2006085925A (en) * 2004-09-14 2006-03-30 Denso Corp Electrode for lithium secondary battery and lithium secondary battery using this electrode
US7068494B2 (en) 2004-06-15 2006-06-27 Honda Motor Co., Ltd. Electric double layer capacitor
WO2011025057A1 (en) 2009-08-27 2011-03-03 古河電池株式会社 Composite capacitor negative electrode plate for lead acid storage battery, and lead acid storage battery
US8194394B2 (en) 2005-09-22 2012-06-05 Honda Motor Co., Ltd. Polarized electrode and electric double-layer capacitor
US8198210B2 (en) 2010-05-27 2012-06-12 Corning Incorporated Halogenated activated carbon materials for high energy density ultracapacitors
US8482901B2 (en) 2010-01-22 2013-07-09 Corning Incorporated Microporous activated carbon for EDLCS
US8524632B2 (en) 2010-01-22 2013-09-03 Corning Incorporated High-capacitance and low-oxygen porous carbon for EDLCs
CN103887505A (en) * 2014-04-14 2014-06-25 中南大学 Application of functional carbon material and high-hydrogen-evolution substance doped functional carbon material
US8842417B2 (en) 2011-09-23 2014-09-23 Corning Incorporated High voltage electro-chemical double layer capacitor
US9203116B2 (en) 2006-12-12 2015-12-01 Commonwealth Scientific And Industrial Research Organisation Energy storage device
US9401508B2 (en) 2009-08-27 2016-07-26 Commonwealth Scientific And Industrial Research Organisation Electrical storage device and electrode thereof
US9450232B2 (en) 2009-04-23 2016-09-20 Commonwealth Scientific And Industrial Research Organisation Process for producing negative plate for lead storage battery, and lead storage battery
US9524831B2 (en) 2009-08-27 2016-12-20 The Furukawa Battery Co., Ltd. Method for producing hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9666860B2 (en) 2007-03-20 2017-05-30 Commonwealth Scientific And Industrial Research Organisation Optimised energy storage device having capacitor material on lead based negative electrode
US9812703B2 (en) 2010-12-21 2017-11-07 Commonwealth Scientific And Industrial Research Organisation Electrode and electrical storage device for lead-acid system
WO2018012504A1 (en) * 2016-07-15 2018-01-18 株式会社キャタラー Electricity storage device and carbon material used for same
JP2018532261A (en) * 2015-08-26 2018-11-01 ナノテク インスツルメンツ インク Porous particles and manufacturing process of interconnected 3D graphene as supercapacitor electrode active material
CN111799100A (en) * 2020-06-11 2020-10-20 大连理工大学 Manufacturing method for optimized Water-in-salt type super capacitor
JP2021507537A (en) * 2017-12-19 2021-02-22 トカイ カーボン コリア カンパニー,リミティド Manufacturing method of activated carbon for electrode material
CN112863800A (en) * 2019-11-27 2021-05-28 王静然 Soft magnetic material and preparation method thereof

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005276604A (en) * 2004-03-24 2005-10-06 Denso Corp Electrode for lithium secondary battery and lithium secondary battery
US7068494B2 (en) 2004-06-15 2006-06-27 Honda Motor Co., Ltd. Electric double layer capacitor
JP2006085925A (en) * 2004-09-14 2006-03-30 Denso Corp Electrode for lithium secondary battery and lithium secondary battery using this electrode
US8194394B2 (en) 2005-09-22 2012-06-05 Honda Motor Co., Ltd. Polarized electrode and electric double-layer capacitor
US9203116B2 (en) 2006-12-12 2015-12-01 Commonwealth Scientific And Industrial Research Organisation Energy storage device
US9666860B2 (en) 2007-03-20 2017-05-30 Commonwealth Scientific And Industrial Research Organisation Optimised energy storage device having capacitor material on lead based negative electrode
US9450232B2 (en) 2009-04-23 2016-09-20 Commonwealth Scientific And Industrial Research Organisation Process for producing negative plate for lead storage battery, and lead storage battery
US9524831B2 (en) 2009-08-27 2016-12-20 The Furukawa Battery Co., Ltd. Method for producing hybrid negative plate for lead-acid storage battery and lead-acid storage battery
RU2576670C2 (en) * 2009-08-27 2016-03-10 Дзе Фурукава Бэттери Ко., Лтд. Hybrid negative plate for lead-acid accumulator battery and lead-acid accumulator battery
US9508493B2 (en) 2009-08-27 2016-11-29 The Furukawa Battery Co., Ltd. Hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9401508B2 (en) 2009-08-27 2016-07-26 Commonwealth Scientific And Industrial Research Organisation Electrical storage device and electrode thereof
JP2011071112A (en) * 2009-08-27 2011-04-07 Furukawa Battery Co Ltd:The Compound capacitor negative electrode plate for lead-acid battery, and the lead-acid battery
AU2010287341B2 (en) * 2009-08-27 2014-05-22 Commonwealth Scientific And Industrial Research Organisation Hybrid negative plate for lead-acid storage battery and lead-acid storage battery
CN102714303A (en) * 2009-08-27 2012-10-03 古河电池株式会社 Composite capacitor negative electrode plate for lead acid storage battery, and lead acid storage battery
WO2011025057A1 (en) 2009-08-27 2011-03-03 古河電池株式会社 Composite capacitor negative electrode plate for lead acid storage battery, and lead acid storage battery
EP2472650A4 (en) * 2009-08-27 2014-11-19 Furukawa Battery Co Ltd Composite capacitor negative electrode plate for lead acid storage battery, and lead acid storage battery
EP2472650A1 (en) * 2009-08-27 2012-07-04 The Furukawa Battery Co., Ltd. Composite capacitor negative electrode plate for lead acid storage battery, and lead acid storage battery
US8524632B2 (en) 2010-01-22 2013-09-03 Corning Incorporated High-capacitance and low-oxygen porous carbon for EDLCs
US8482901B2 (en) 2010-01-22 2013-07-09 Corning Incorporated Microporous activated carbon for EDLCS
US8198210B2 (en) 2010-05-27 2012-06-12 Corning Incorporated Halogenated activated carbon materials for high energy density ultracapacitors
US8329341B2 (en) 2010-05-27 2012-12-11 Corning Incorporated Halogenated activated carbon materials for high energy density ultracapacitors
US9812703B2 (en) 2010-12-21 2017-11-07 Commonwealth Scientific And Industrial Research Organisation Electrode and electrical storage device for lead-acid system
US8842417B2 (en) 2011-09-23 2014-09-23 Corning Incorporated High voltage electro-chemical double layer capacitor
CN103887505A (en) * 2014-04-14 2014-06-25 中南大学 Application of functional carbon material and high-hydrogen-evolution substance doped functional carbon material
JP2018532261A (en) * 2015-08-26 2018-11-01 ナノテク インスツルメンツ インク Porous particles and manufacturing process of interconnected 3D graphene as supercapacitor electrode active material
WO2018012504A1 (en) * 2016-07-15 2018-01-18 株式会社キャタラー Electricity storage device and carbon material used for same
JP2018011015A (en) * 2016-07-15 2018-01-18 株式会社キャタラー Power storage device and carbon material used therefor
JP2021507537A (en) * 2017-12-19 2021-02-22 トカイ カーボン コリア カンパニー,リミティド Manufacturing method of activated carbon for electrode material
JP7130750B2 (en) 2017-12-19 2022-09-05 トカイ カーボン コリア カンパニー,リミティド Manufacturing method of activated carbon for electrode material
CN112863800A (en) * 2019-11-27 2021-05-28 王静然 Soft magnetic material and preparation method thereof
CN111799100A (en) * 2020-06-11 2020-10-20 大连理工大学 Manufacturing method for optimized Water-in-salt type super capacitor

Also Published As

Publication number Publication date
JP3969223B2 (en) 2007-09-05

Similar Documents

Publication Publication Date Title
JP2004047613A (en) Activated carbon and electrode for electric double-layer capacitor employing active carbon
JP5344972B2 (en) Carbon material for electric double layer capacitor electrode and manufacturing method thereof
KR101470050B1 (en) Process for producing activated carbon for electric double layer capacitor electrode
JP4054746B2 (en) Electric double layer capacitor, activated carbon for the electrode, and manufacturing method thereof
JP5271851B2 (en) Method for producing activated carbon and electric double layer capacitor using activated carbon obtained by the method
JPWO2009075264A1 (en) Metal-encapsulated dendritic carbon nanostructure, carbon nanostructure, method for producing metal-encapsulated dendritic carbon nanostructure, method for producing carbon nanostructure, and capacitor
JP2001284188A (en) Manufacturing method of carbon material for electric double-layer capacitor electrode, and manufacturing method of electric double-layer capacitor using the carbon material
JP2002083748A (en) Activated carbon, manufacturing method therefor and electric double-layer capacitor
JP5004501B2 (en) Activated carbon and electric double layer capacitor using the same
WO2005038836A1 (en) Electric double layer capacitor, activated carbon for electrode thereof and method for producing same
JP2016531068A (en) High voltage EDLC electrode containing CO2 activated coconut charcoal
JP4842068B2 (en) Activated carbon and method for producing the same, polarizable electrode and electric double layer capacitor using the activated carbon
JP2007186411A (en) Activated carbon, process of making the same and use of the same
CN105016337A (en) Active carbon material used for supercapacitor electrodes and preparation method thereof
CN104098098A (en) Activated carbon microsphere with high specific surface area and preparation method thereof
JP2008147283A (en) Electric double-layer capacitor, active carbon for electrode of the capacitor, and manufacturing method for the active carbon
JP2007269518A (en) Porous carbon material, method for producing the same, polarizable electrode for electrical double layer capacitor, and electrical double layer capacitor
JP2004247433A (en) Raw-material coal composition of carbon material for electrodes of electric double-layer capacitor
JP4179581B2 (en) Activated carbon, its production method and its use
JP2006059923A (en) Original composition of carbon material for electrode of electric double-layer capacitor
JP2005129707A (en) Electric double layer capacitor, activated carbon for its electrode, and method of producing the carbon
JP5030611B2 (en) Electrode material for electric double layer capacitor and electric double layer capacitor using the same
JP2003082533A (en) Carbon fiber of vapor phase and use thereof
JP2006278364A (en) Polarizable electrode for electric double layer capacitor and electric double layer capacitor
JP2007153639A (en) Activated carbon precursor, activated carbon and method for manufacturing the same, and polarizable electrode and electric double-layer capacitor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040407

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040407

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070528

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3969223

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140615

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees