JP5004501B2 - Activated carbon and electric double layer capacitor using the same - Google Patents

Activated carbon and electric double layer capacitor using the same Download PDF

Info

Publication number
JP5004501B2
JP5004501B2 JP2006132704A JP2006132704A JP5004501B2 JP 5004501 B2 JP5004501 B2 JP 5004501B2 JP 2006132704 A JP2006132704 A JP 2006132704A JP 2006132704 A JP2006132704 A JP 2006132704A JP 5004501 B2 JP5004501 B2 JP 5004501B2
Authority
JP
Japan
Prior art keywords
activated carbon
carbon
double layer
electric double
layer capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006132704A
Other languages
Japanese (ja)
Other versions
JP2007302512A (en
Inventor
慶三 猪飼
秀樹 尾野
政喜 藤井
究 竹下
保 田野
隆 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JXTG Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JXTG Nippon Oil and Energy Corp filed Critical JXTG Nippon Oil and Energy Corp
Priority to JP2006132704A priority Critical patent/JP5004501B2/en
Publication of JP2007302512A publication Critical patent/JP2007302512A/en
Application granted granted Critical
Publication of JP5004501B2 publication Critical patent/JP5004501B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

本発明は、活性炭に関し、より詳しくは、耐久性の良い電気二重層キャパシタを得るための活性炭、およびそれを用いた電気二重層キャパシタに関する。   The present invention relates to activated carbon, and more particularly to activated carbon for obtaining a durable electric double layer capacitor and an electric double layer capacitor using the activated carbon.

活性炭は炭化処理をしたヤシガラや、石油コークス、石炭コークスなどの炭素材料を賦活して多孔質構造としたものである。表面積の大きい多孔質の活性炭は、吸着剤や触媒担体、電気二重層キャパシタ、リチウム二次電池などの電極材料などに多用されている。特に、ハイブリッドカーなどに使用する電気二重層キャパシタにおいて、エネルギー密度、即ち、静電容量を増大するために、その電極材料として微細孔が効果的に形成された結晶化度の高い活性炭が求められている。
かかる電気二重層キャパシタの電極材料に使用可能な微細孔が効果的に形成された活性炭の工業生産には、石油コークスなどの炭素材料と水酸化カリウムなどのアルカリ金属化合物とを不活性ガス雰囲気中などで、例えば、600〜1200℃の範囲で加熱し、アルカリ金属を黒鉛結晶層間に侵入させて反応させる賦活方法が一般的に使用されている。このような賦活において、層状の縮合多環炭素化合物が積層された層状構造にアルカリ金属が侵入し、微細孔が形成される。アルカリ金属は、賦活工程において気体状態で作用し不活性ガスと共にその多くは活性炭から除去されるが、一部が活性炭内に残留し、これを除去する洗浄工程を経て活性炭が製造されている。
Activated carbon is a porous structure activated by carbon materials such as carbonized coconut palm, petroleum coke, and coal coke. Porous activated carbon having a large surface area is frequently used for electrode materials such as adsorbents, catalyst carriers, electric double layer capacitors, and lithium secondary batteries. In particular, in an electric double layer capacitor used in a hybrid car or the like, in order to increase energy density, that is, electrostatic capacity, activated carbon having a high degree of crystallinity in which micropores are effectively formed is required as the electrode material. ing.
In the industrial production of activated carbon in which fine pores that can be used for the electrode material of such an electric double layer capacitor are effectively formed, a carbon material such as petroleum coke and an alkali metal compound such as potassium hydroxide are contained in an inert gas atmosphere. For example, an activation method is generally used in which, for example, heating is performed in a range of 600 to 1200 ° C., and an alkali metal is allowed to enter between graphite crystal layers to cause a reaction. In such activation, an alkali metal penetrates into a layered structure in which layered condensed polycyclic carbon compounds are laminated, and micropores are formed. Alkali metal acts in a gaseous state in the activation process, and most of it is removed from the activated carbon together with the inert gas. However, a part of the alkali metal remains in the activated carbon, and activated carbon is manufactured through a cleaning process for removing the part.

また、賦活により発生した化学的に不安定なカルボキシル基(−COOH)や水酸基(−OH)等の官能基により電気化学的安定性が損なわれ、当該活性炭を電気二重層キャパシタの分極性電極に適用した場合に、化学反応による電解液の分解や分極性電極の帯電阻害を招き、静電容量を小さくさせたり、内部抵抗を増加させたりすることが考えられる。
したがって、活性炭中の官能基含量は制限する必要があり、特許文献1(特許第3012240号公報)では、カルボキシル基や水酸基に基づく全酸性基量が0.45μeq/m以上の炭素材料が、キャパシタ用、エレクトロクロミック素子用として適しているとしている。しかしながら、このような炭素材料を用いてキャパシタを作製した場合、静電容量の向上は認められるが、特許文献1では耐久性については言及していない。電気二重層キャパシタの電極材料に用いられる活性炭としては、静電容量が大きいということの他に、サイクル寿命、保存安定性等の耐久性が良いことも強く求められている。
特許第3012240号公報
In addition, the electrochemical stability is impaired by functional groups such as chemically unstable carboxyl groups (—COOH) and hydroxyl groups (—OH) generated by activation, and the activated carbon is used as a polarizable electrode of an electric double layer capacitor. When applied, it can be considered that the electrolytic solution is decomposed by a chemical reaction or charging of the polarizable electrode is inhibited, and the electrostatic capacity is reduced or the internal resistance is increased.
Therefore, it is necessary to limit the functional group content in the activated carbon. In Patent Document 1 (Patent No. 3012240), a carbon material having a total acidic group amount based on a carboxyl group or a hydroxyl group of 0.45 μeq / m 2 or more, It is suitable for capacitors and electrochromic devices. However, when a capacitor is manufactured using such a carbon material, an improvement in capacitance is recognized, but Patent Document 1 does not mention durability. The activated carbon used for the electrode material of the electric double layer capacitor is strongly required to have good durability such as cycle life and storage stability in addition to its large capacitance.
Japanese Patent No. 3012240

本発明はこのような実状に鑑みなされたものであり、耐久性に優れた活性炭および該活性炭を用いた耐久性に優れた電気二重層キャパシタを提供することを目的とするものである。   The present invention has been made in view of such a situation, and an object thereof is to provide an activated carbon excellent in durability and an electric double layer capacitor excellent in durability using the activated carbon.

本発明者らは前記課題について鋭意研究した結果、本発明を完成するに至った。
すなわち、本発明は、易黒鉛化性炭素をアルカリ金属水酸化物により賦活処理して得られる活性炭を、さらに酸素濃度2000容量ppm以下の不活性ガス雰囲気下で乾式処理して得られる単位重量あたりの全酸性基量が0.2〜1.2mmol/gである活性炭に関する。
As a result of intensive studies on the above problems, the present inventors have completed the present invention.
That is, the present invention per unit weight obtained by dry-treating activated carbon obtained by activation treatment of graphitizable carbon with an alkali metal hydroxide under an inert gas atmosphere having an oxygen concentration of 2000 ppm by volume or less. Relates to activated carbon having a total acid group content of 0.2 to 1.2 mmol / g.

また、本発明は、易黒鉛化性炭素が石油コークスであることを特徴とする前記記載の活性炭に関する。
また、本発明は、BET比表面積が500m/g以上であることを特徴とする前記記載の活性炭に関する。
The present invention also relates to the activated carbon described above, wherein the graphitizable carbon is petroleum coke.
The present invention also relates to the activated carbon described above, wherein the BET specific surface area is 500 m 2 / g or more.

また、本発明は、60℃の温度下で、2.7V、200時間印加した後の静電容量が、印加する前の静電容量に対して、90%以上の値を示すことを特徴とする前記記載の活性炭に関する。
また、本発明は、前記記載の活性炭を用いた電気二重層キャパシタに関する。
In addition, the present invention is characterized in that the electrostatic capacity after application of 2.7 V and 200 hours at a temperature of 60 ° C. exhibits a value of 90% or more with respect to the electrostatic capacity before application. The above-mentioned activated carbon.
The present invention also relates to an electric double layer capacitor using the activated carbon described above.

本発明の活性炭を電気二重層キャパシタに適用することにより、優れたサイクル特性と優れた耐久性を有し、かつ、静電容量が大きく、優れた耐電圧性を有する電気二重層キャパシタが得られる。   By applying the activated carbon of the present invention to an electric double layer capacitor, an electric double layer capacitor having excellent cycle characteristics and excellent durability, a large capacitance, and excellent voltage resistance can be obtained. .

以下、本発明について詳述する。
一般の活性炭は、フェノール樹脂などの合成高分子系炭素あるいは椰子殻などの植物由来の炭素を炭素源とし、難黒鉛化性炭素と呼ばれる結晶の発達していない炭素からなる。その結晶構造は、グラファイト層が乱れて配列した乱層構造からなっている。
これに対し、易黒鉛化性炭素を炭素源とする活性炭の結晶構造は、小さなグラファイト層が平行に積層した結晶子と呼ばれるものが、不規則な配列をなしており、結晶構造と未発達の結晶構造が混在しているのが特徴である。これは、原料の炭素材料中に既に結晶構造を示す部分と未発達の部分が混在していることに起因し、そのため、製造された活性炭中にも結晶構造と未発達の結晶構造が混在する。
Hereinafter, the present invention will be described in detail.
General activated carbon is made of synthetic polymer carbon such as phenol resin or plant-derived carbon such as coconut shell as a carbon source and is called non-graphitizable carbon called non-graphitizable carbon. The crystal structure is composed of a turbulent layer structure in which graphite layers are turbulently arranged.
On the other hand, the crystal structure of activated carbon using graphitizable carbon as a carbon source is called a crystallite in which small graphite layers are stacked in parallel. It is characterized by a mixture of crystal structures. This is due to the fact that the raw carbon material already contains a portion showing a crystal structure and an undeveloped portion. Therefore, the produced activated carbon also contains a crystal structure and an undeveloped crystal structure. .

このような易黒鉛化性炭素としては石油コークスや石炭ピッチコークス等を炭素化したものや、メソフェーズピッチやそれを紡糸したメソフェーズ系炭素繊維を不融化・炭素化したものなどが挙げられるが、本発明においては石油コークスを炭化したものが特に好ましく用いられる。
石油コークスを炭化処理する方法としては、特に限定されず、例えば、温度400〜600℃で数時間コーキングする方法などを挙げることができる。石油コークスはコーキング過程において、熱分解反応により生成した縮合多環芳香族が積層して黒鉛類似の微結晶炭素を含有する炭化物となる。
Examples of such graphitizable carbon include carbonized petroleum coke and coal pitch coke, and mesophase pitch and mesophase carbon fiber spun from it, which are infusible and carbonized. In the invention, carbonized petroleum coke is particularly preferably used.
The method for carbonizing petroleum coke is not particularly limited, and examples thereof include a method of coking at a temperature of 400 to 600 ° C. for several hours. Petroleum coke becomes a carbide containing microcrystalline carbon similar to graphite by laminating condensed polycyclic aromatics produced by a pyrolysis reaction in the coking process.

上記炭化物(炭素原料)は、次に金属水酸化物とともに窒素ガスや不活性ガス雰囲気中で加熱処理が行われ賦活される。
金属水酸化物としては、具体的には、水酸化カリウム、水酸化ナトリウム、水酸化リチウムなどのアルカリ金属水酸化物や、アルカリ土類金属水酸化物などを挙げることができ、これらを1種のみならず、2種以上を組み合わせて使用することができる。これらのうち、特に水酸化カリウムが微細孔を効率よく形成できる点で好ましい。
The carbide (carbon raw material) is then activated by heat treatment in a nitrogen gas or inert gas atmosphere together with the metal hydroxide.
Specific examples of the metal hydroxide include alkali metal hydroxides such as potassium hydroxide, sodium hydroxide and lithium hydroxide, and alkaline earth metal hydroxides. In addition, two or more kinds can be used in combination. Of these, potassium hydroxide is particularly preferable because it can form fine pores efficiently.

炭素原料と金属水酸化物の使用割合は、炭素原料/金属水酸化物(質量比)が0.1〜2とするのが好ましく、より好ましくは0.2〜1である。炭素原料/金属水酸化物(質量比)を2以下とすることにより、炭素原料に微孔を充分に形成することができ、充分な表面積を有する活性炭を得ることができる。また、炭素材料/金属水酸化物の質量比を0.1以上とすることにより、嵩密度が低下することなく、効率のよい賦活を行うことができる。   The carbon raw material / metal hydroxide is preferably used in a ratio of carbon raw material / metal hydroxide (mass ratio) of 0.1 to 2, more preferably 0.2 to 1. By setting the carbon raw material / metal hydroxide (mass ratio) to 2 or less, micropores can be sufficiently formed in the carbon raw material, and activated carbon having a sufficient surface area can be obtained. Further, by making the mass ratio of the carbon material / metal hydroxide 0.1 or more, efficient activation can be performed without lowering the bulk density.

上記炭素原料の賦活において、賦活の温度としては、例えば、500℃以上1200℃以下を挙げることができる。好ましくは600℃以上、1000℃以下、より好ましくは800℃以下である。賦活温度が上記範囲であれば、充分な微細孔を有する活性炭を効率よく得ることができる。賦活処理時間としては、温度などの条件との関連において適宜選択することができ、例えば、3〜6時間などとすることができる。
賦活を行う際の不活性ガスとしては、不活性ガスや窒素ガスを挙げることができ、例えば、賦活雰囲気の酸素濃度を100容量ppm以下に保持できるような供給量として導入することが好ましい。
In the activation of the carbon raw material, examples of the activation temperature include 500 ° C. or more and 1200 ° C. or less. Preferably it is 600 degreeC or more and 1000 degrees C or less, More preferably, it is 800 degrees C or less. When the activation temperature is in the above range, activated carbon having sufficient fine pores can be obtained efficiently. The activation treatment time can be appropriately selected in relation to conditions such as temperature, and can be, for example, 3 to 6 hours.
Examples of the inert gas at the time of activation include inert gas and nitrogen gas. For example, the inert gas is preferably introduced as a supply amount that can maintain the oxygen concentration of the activation atmosphere at 100 ppm by volume or less.

本発明においては、賦活処理により得られる活性炭をさらに乾式処理する。
乾式処理に先立ち、上記賦活物に対して、アルカリ洗浄、酸洗浄、水洗、乾燥、粉砕などの処理を適宜行って、金属水酸化物などを除去しておくのが好ましい。例えば、洗浄排水のpHが7〜8程度になるように洗浄すると共に、できるだけアルカリ金属分を除去するように洗浄することが望ましい。
In the present invention, the activated carbon obtained by the activation treatment is further subjected to a dry treatment.
Prior to the dry treatment, it is preferable to remove the metal hydroxide and the like by appropriately performing treatments such as alkali washing, acid washing, water washing, drying and pulverization on the activated product. For example, it is desirable to perform cleaning so that the pH of the cleaning wastewater is about 7 to 8 and to remove alkali metal as much as possible.

乾式処理は、酸素濃度が2000容量ppm以下、好ましくは1000容量ppm以下の不活性ガス雰囲気下で行うことが重要である。不活性ガス中の酸素濃度が2000容量ppmより多いと活性炭中の全酸性基量が十分に少なくならず、この活性炭を用いた電気二重層キャパシタの耐久性は不十分となる。一方、酸素濃度の下限については特に限定はないが、10容量ppm以上であることが好ましい。酸素濃度が10容量ppm未満の場合には、活性炭に含まれる全酸性基量が少なくなり、電気二重層キャパシタの電極に用いた場合、電解液との親和性が不足し、静電容量が不満足となる。   It is important that the dry treatment is performed in an inert gas atmosphere having an oxygen concentration of 2000 ppm by volume or less, preferably 1000 ppm by volume or less. If the oxygen concentration in the inert gas is more than 2000 ppm by volume, the total amount of acidic groups in the activated carbon is not sufficiently reduced, and the durability of the electric double layer capacitor using this activated carbon is insufficient. On the other hand, the lower limit of the oxygen concentration is not particularly limited, but is preferably 10 ppm by volume or more. When the oxygen concentration is less than 10 ppm by volume, the total amount of acidic groups contained in the activated carbon decreases, and when used as an electrode for an electric double layer capacitor, the affinity with the electrolyte is insufficient and the capacitance is unsatisfactory. It becomes.

なお、乾式処理温度は200〜800℃の範囲が好ましく、300〜700℃の範囲がより好ましい。乾式処理時間は特に限定されず、通常0.5〜2時間である。
このようにして得られる活性炭のBET比表面積は500m/g以上であることが好ましく、700m/g以上であることがより好ましい。
The dry processing temperature is preferably in the range of 200 to 800 ° C, more preferably in the range of 300 to 700 ° C. The dry processing time is not particularly limited, and is usually 0.5 to 2 hours.
The BET specific surface area of the activated carbon thus obtained is preferably 500 m 2 / g or more, and more preferably 700 m 2 / g or more.

かくして乾式処理された活性炭に含まれる全酸性基量、すなわち、水酸基およびカルボキシル基の合計量が、単位重量あたりの全酸性基量として、0.2〜1.2mmol/g、好ましくは0.3〜1.0mmol/gの範囲内である活性炭を得ることができる。活性炭に含まれる全酸性基量が1.2mmol/gより多くなると、キャパシタ作動時に電気化学反応によりガスが発生し、また、電解液との反応が起こり、耐久性に悪影響を及ぼす。一方、全酸性基量が0.2mmol/gより少ないと、電解液との親和性が減少し、静電容量が低下する。   The total amount of acidic groups contained in the activated carbon thus treated, that is, the total amount of hydroxyl groups and carboxyl groups is 0.2 to 1.2 mmol / g, preferably 0.3, as the total amount of acidic groups per unit weight. Activated carbon in the range of -1.0 mmol / g can be obtained. When the total amount of acidic groups contained in the activated carbon exceeds 1.2 mmol / g, gas is generated by an electrochemical reaction when the capacitor is operated, and a reaction with the electrolytic solution occurs, which adversely affects durability. On the other hand, when the total amount of acidic groups is less than 0.2 mmol / g, the affinity with the electrolytic solution is reduced and the capacitance is lowered.

本発明の活性炭は耐久性に優れ、60℃の温度下で、2.7V、200時間印加した後の静電容量が、印加する前の静電容量に対して、90%以上の値を示す。   The activated carbon of the present invention is excellent in durability, and the capacitance after application of 2.7 V and 200 hours at a temperature of 60 ° C. shows a value of 90% or more with respect to the capacitance before application. .

次に、本発明の電気二重層キャパシタについて説明する。
本発明の電気二重層キャパシタは、前記のように調製された活性炭(電極用炭素材)を含む電極を備えることを特徴とするものである。
該電極は、例えば、電極用炭素材と結着剤、さらに好ましくは導電剤を加えて構成され、またさらに集電体と一体化した電極であっても良い。
Next, the electric double layer capacitor of the present invention will be described.
The electric double layer capacitor of the present invention comprises an electrode containing activated carbon (carbon material for electrode) prepared as described above.
The electrode may be configured by adding, for example, an electrode carbon material and a binder, more preferably a conductive agent, and may be an electrode integrated with a current collector.

ここで使用する結着剤としては、公知のものを使用することができ、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、フルオロオレフィン/ビニルエーテル共重合体架橋ポリマー等のフッ素化ポリマー、カルボキシメチルセルロース等のセルロース類、ポリビニルピロリドン、ポリビニルアルコール等のビニル系ポリマー、ポリアクリル酸等が挙げられる。電極中における結着剤の含有量は特に限定されないが、電極用炭素材と結着剤の合計量に対して、通常0.1〜30質量%程度の範囲内で適宜選択される。   As the binder used here, known materials can be used, for example, polyolefins such as polyethylene and polypropylene, fluorine such as polytetrafluoroethylene, polyvinylidene fluoride, and a fluoroolefin / vinyl ether copolymer crosslinked polymer. And polymerized cellulose, celluloses such as carboxymethylcellulose, vinyl polymers such as polyvinylpyrrolidone and polyvinyl alcohol, and polyacrylic acid. Although content of the binder in an electrode is not specifically limited, Usually, it suitably selects in the range of about 0.1-30 mass% with respect to the total amount of the carbon material for electrodes, and a binder.

導電剤としては、カーボンブラック、粉末グラファイト、酸化チタン、酸化ルテニウム等の粉末が用いられる。電極中における導電剤の配合量は、配合目的に応じて適宜選択されるが、電極用炭素材、結着剤及び導電剤の合計量に対して、通常1〜50質量%、好ましくは2〜30質量%程度の範囲内で適宜選択される。   As the conductive agent, powders of carbon black, powdered graphite, titanium oxide, ruthenium oxide and the like are used. Although the compounding quantity of the electrically conductive agent in an electrode is suitably selected according to a compounding purpose, it is 1-50 mass% normally with respect to the total amount of the carbon material for electrodes, a binder, and a electrically conductive agent, Preferably it is 2 It is appropriately selected within a range of about 30% by mass.

なお、電極用炭素材、結着剤、導電剤を混合する方法としては、公知の方法が適宜適用され、例えば、結着剤を溶解する性質を有する溶媒を上記成分に加えてスラリー状としたものを集電体上に均一に塗布する方法や、あるいは溶媒を加えないで上記成分を混練した後に常温または加熱下で加圧成形する方法が採用される。   In addition, as a method for mixing the electrode carbon material, the binder, and the conductive agent, a known method is appropriately applied. For example, a solvent having a property of dissolving the binder is added to the above components to form a slurry. A method of uniformly coating the current collector on the current collector, or a method of kneading the above components without adding a solvent and then press molding at room temperature or under heating is employed.

また、集電体としては、公知の材質および形状のものを使用することができ、例えば、アルミニウム、チタン、タンタル、ニッケル等の金属、あるいはステンレス等の合金を用いることができる。   As the current collector, a known material and shape can be used. For example, a metal such as aluminum, titanium, tantalum, or nickel, or an alloy such as stainless steel can be used.

本発明の電気二重層キャパシタの単位セルは、一般に上記電極を正極及び負極として一対用い、セパレータ(ポリプロピレン繊維不織布、ガラス繊維不織布、合成セルロース紙等)を介して対向させ、電解液中に浸漬することによって形成される。   The unit cell of the electric double layer capacitor of the present invention generally uses a pair of the above electrodes as a positive electrode and a negative electrode, is opposed to each other through a separator (polypropylene fiber nonwoven fabric, glass fiber nonwoven fabric, synthetic cellulose paper, etc.), and is immersed in an electrolytic solution. Formed by.

電解液としては、公知の水系電解液、有機系電解液を使用することができるが、有機系電解液を用いることがより好ましい。このような有機系電解液としては、電気化学の電解液の溶媒として使用されているものを用いることができ、例えば、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン、スルホラン、スルホラン誘導体、3−メチルスルホラン、1,2−ジメトキシエタン、アセトニトリル、グルタロニトリル、バレロニトリル、ジメチルホルムアミド、ジメチルスルホキシド、テトラヒドロフラン、ジメトキシエタン、メチルフォルメート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等を挙げることができる。なお、これらの電解液を混合して使用してもよい。   As the electrolytic solution, a known aqueous electrolytic solution or organic electrolytic solution can be used, but it is more preferable to use an organic electrolytic solution. As such an organic electrolyte, those used as a solvent for an electrochemical electrolyte can be used. For example, propylene carbonate, ethylene carbonate, butylene carbonate, γ-butyrolactone, sulfolane, sulfolane derivatives, 3 -Methylsulfolane, 1,2-dimethoxyethane, acetonitrile, glutaronitrile, valeronitrile, dimethylformamide, dimethylsulfoxide, tetrahydrofuran, dimethoxyethane, methyl formate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, etc. . In addition, you may mix and use these electrolyte solutions.

また、有機電解液中の支持電解質としては、特に限定されないが、電気化学の分野又は電池の分野で通常使用される塩類、酸類、アルカリ類等の各種のものが使用でき、例えば、アルカリ金属塩、アルカリ土類金属塩等の無機イオン塩、4級アンモニウム塩、環状4級アンモニウム塩、4級ホスホニウム塩等が挙げられ、具体的には、(CNBF、(C(CH)NBF、(CPBF、(C(CH)PBF等が好ましいものとして挙げられる。電解液中のこれらの塩の濃度は、通常0.1〜5mol/l、好ましくは0.5〜3mol/l程度の範囲内で適宜選択される。 Further, the supporting electrolyte in the organic electrolytic solution is not particularly limited, but various salts such as salts, acids, alkalis and the like that are usually used in the field of electrochemistry or the field of batteries can be used. For example, alkali metal salts Inorganic ion salts such as alkaline earth metal salts, quaternary ammonium salts, cyclic quaternary ammonium salts, quaternary phosphonium salts, and the like. Specifically, (C 2 H 5 ) 4 NBF 4 , (C 2 H 5 ) 3 (CH 3 ) NBF 4 , (C 2 H 5 ) 4 PBF 4 , (C 2 H 5 ) 3 (CH 3 ) PBF 4 and the like are preferable. The concentration of these salts in the electrolytic solution is appropriately selected within the range of usually about 0.1 to 5 mol / l, preferably about 0.5 to 3 mol / l.

電気二重層キャパシタのより具体的な構成は特に限定されないが、例えば、厚さ10〜500μmの薄いシート状またはディスク状の一対の電極(正極と負極)の間にセパレータを介して金属ケースに収容したコイン型、一対の電極をセパレータを介して捲回してなる捲回型、セパレータを介して多数の電極群を積み重ねた積層型等が挙げられる。   The specific configuration of the electric double layer capacitor is not particularly limited. For example, the electric double layer capacitor is accommodated in a metal case through a separator between a pair of thin sheet-like or disk-like electrodes (positive electrode and negative electrode) having a thickness of 10 to 500 μm. A coin type, a wound type in which a pair of electrodes are wound through a separator, and a stacked type in which a large number of electrode groups are stacked through a separator.

以下に実施例を挙げ、本発明を具体的に説明するが、本発明はこれらになんら制限されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

[実施例1]
<活性炭の製造>
易黒鉛化炭素原料として石油生コークスを使用し、これを500℃で3時間炭化処理を行った。この炭化物粒子(粒径2mm以下)1質量部と、水酸化カリウム(KOH)2.5質量部とを混合し、ニッケル製反応容器に入れ、窒素気流下750℃で1時間加熱し、賦活処理を行った。
賦活処理後、反応容器内部の反応混合物を300℃まで冷却し、窒素に替わって二酸化炭素を流し、金属カリウムを失活させた。この後、反応混合物を塩酸で洗浄し、洗液が中性になるまで水洗を繰り返した。この反応混合物を150℃で加熱して乾燥させた。得られた活性炭(活性炭A)を、さらに100容量ppmの酸素を含む窒素気流下で700℃で1.5時間乾式加熱を行い、活性炭Bを得た。
[Example 1]
<Manufacture of activated carbon>
Petroleum raw coke was used as the graphitizable carbon raw material, and carbonized at 500 ° C. for 3 hours. 1 part by weight of the carbide particles (particle size 2 mm or less) and 2.5 parts by weight of potassium hydroxide (KOH) are mixed, put into a nickel reaction vessel, heated at 750 ° C. for 1 hour under a nitrogen stream, and activated. Went.
After the activation treatment, the reaction mixture inside the reaction vessel was cooled to 300 ° C., and carbon dioxide was passed instead of nitrogen to deactivate the metal potassium. Thereafter, the reaction mixture was washed with hydrochloric acid, and washing with water was repeated until the washing solution became neutral. The reaction mixture was dried by heating at 150 ° C. The obtained activated carbon (activated carbon A) was further subjected to dry heating at 700 ° C. for 1.5 hours under a nitrogen stream containing 100 ppm by volume of oxygen to obtain activated carbon B.

<全酸性基量の測定>
上記乾式処理後の活性炭B(1g)に、0.1規定NaOH(50ml)を加えて24時間振盪した。これを濾過し、濾液を10ml採取し、水50mlに入れ、0.1規定HClで滴定した。滴定量より、活性炭Bの全酸性基量を求めたところ、0.55mmol/gであった。
<Measurement of total acid group content>
0.1N NaOH (50 ml) was added to activated carbon B (1 g) after the dry treatment, and shaken for 24 hours. This was filtered, 10 ml of the filtrate was collected, placed in 50 ml of water, and titrated with 0.1N HCl. It was 0.55 mmol / g when the total amount of acidic groups of the activated carbon B was determined by titration.

<電気二重層キャパシタの作製と評価>
上記で得られた活性炭B(0.8g)、ケッチェンブラック(0.1g)、PTFE(0.1g)を乳鉢にて混合した。この混合物を0.1mm厚のトリアセテートフィルム2枚の間に挟み、幅160mm、上下ロール間隔0.7mm、加圧力23.0MPaとしたニップロールの間に20回通して圧延した。圧延したシートから直径16mmの円形を2枚打ち抜き、炭素電極とした。炭素電極は真空乾燥機にて、2時間乾燥した。
電解液(プロピレンカーボネート1リットル中に(C(CH)NBFを1モル溶解させたもの)を含浸させた2枚の電極間に厚さ50μmのセルロース製セパレータを挟み、直径20mmのSUS316製コインセルの中に封入した。この際、厚さ20μmアルミ箔表面に集電体用カーボン塗料を塗布したものを集電体として、炭素電極とセルとの間に、塗料側を炭素電極に面するように挟んだ。
このようにして作製した電気二重層キャパシタセルに、2.7Vの電圧を印加しながら60℃の高温槽にて200時間放置した。放置後のセルの静電容量は、放置前のセルの静電容量の93%であった。
<Production and evaluation of electric double layer capacitor>
Activated carbon B (0.8 g) obtained above, ketjen black (0.1 g), and PTFE (0.1 g) were mixed in a mortar. This mixture was sandwiched between two 0.1 mm thick triacetate films and rolled by passing 20 times between nip rolls having a width of 160 mm, an upper and lower roll interval of 0.7 mm, and a pressure of 23.0 MPa. Two circles having a diameter of 16 mm were punched out from the rolled sheet to obtain carbon electrodes. The carbon electrode was dried in a vacuum dryer for 2 hours.
A cellulose separator having a thickness of 50 μm is sandwiched between two electrodes impregnated with an electrolytic solution (one mol of (C 2 H 5 ) 3 (CH 3 ) NBF 4 dissolved in 1 liter of propylene carbonate) It enclosed in the coin cell made from SUS316 of diameter 20mm. In this case, a current collector carbon coating applied to the surface of a 20 μm thick aluminum foil was used as a current collector, and the paint side was sandwiched between the carbon electrode and the cell so as to face the carbon electrode.
The electric double layer capacitor cell thus produced was left in a high temperature bath at 60 ° C. for 200 hours while applying a voltage of 2.7V. The capacitance of the cell after being left was 93% of the capacitance of the cell before being left.

[比較例1]
前記実施例1において、活性炭Bの替わりに活性炭Aを使用した以外は、実施例1と同様の操作で電気二重層キャパシタを作製した。
このようにして作製した電気二重層キャパシタセルに、2.7Vの電圧を印加しながら60℃の高温槽にて200時間放置した。放置後のセルの静電容量は、放置前のセルの静電容量の75%であった。
[Comparative Example 1]
An electric double layer capacitor was produced in the same manner as in Example 1 except that activated carbon A was used instead of activated carbon B in Example 1.
The electric double layer capacitor cell thus produced was left in a high temperature bath at 60 ° C. for 200 hours while applying a voltage of 2.7V. The capacitance of the cell after being left was 75% of the capacitance of the cell before being left.

Claims (4)

易黒鉛化性炭素をアルカリ金属水酸化物により賦活処理して得られる活性炭を、さらに酸素濃度10容量ppm以上2000容量ppm以下の不活性ガス雰囲気下、200〜800℃で0.5〜2時間乾式処理して単位重量あたりの全酸性基量が0.3〜1.2mmol/gである活性炭を製造することを特徴とする活性炭の製造方法。   The activated carbon obtained by activating the graphitizable carbon with an alkali metal hydroxide is further heated at 200 to 800 ° C. for 0.5 to 2 hours in an inert gas atmosphere having an oxygen concentration of 10 to 2000 ppm by volume. A method for producing activated carbon, comprising dry-treating to produce activated carbon having a total amount of acidic groups per unit weight of 0.3 to 1.2 mmol / g. 易黒鉛化性炭素が石油コークスであることを特徴とする請求項1に記載の活性炭の製造方法。   The method for producing activated carbon according to claim 1, wherein the graphitizable carbon is petroleum coke. BET比表面積が500m/g以上であることを特徴とする請求項1に記載の活性炭の製造方法。 The method for producing activated carbon according to claim 1, wherein the BET specific surface area is 500 m 2 / g or more. 60℃の温度下で、2.7V、200時間印加した後の静電容量が、印加する前の静電容量に対して、90%以上の値を示すことを特徴とする請求項1に記載の活性炭の製造方法。
The capacitance after applying 2.7 V and 200 hours at a temperature of 60 ° C. shows a value of 90% or more with respect to the capacitance before application. Manufacturing method of activated carbon.
JP2006132704A 2006-05-11 2006-05-11 Activated carbon and electric double layer capacitor using the same Active JP5004501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006132704A JP5004501B2 (en) 2006-05-11 2006-05-11 Activated carbon and electric double layer capacitor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006132704A JP5004501B2 (en) 2006-05-11 2006-05-11 Activated carbon and electric double layer capacitor using the same

Publications (2)

Publication Number Publication Date
JP2007302512A JP2007302512A (en) 2007-11-22
JP5004501B2 true JP5004501B2 (en) 2012-08-22

Family

ID=38836777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006132704A Active JP5004501B2 (en) 2006-05-11 2006-05-11 Activated carbon and electric double layer capacitor using the same

Country Status (1)

Country Link
JP (1) JP5004501B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8524632B2 (en) 2010-01-22 2013-09-03 Corning Incorporated High-capacitance and low-oxygen porous carbon for EDLCs
US8482901B2 (en) 2010-01-22 2013-07-09 Corning Incorporated Microporous activated carbon for EDLCS
US8198210B2 (en) 2010-05-27 2012-06-12 Corning Incorporated Halogenated activated carbon materials for high energy density ultracapacitors
US8842417B2 (en) 2011-09-23 2014-09-23 Corning Incorporated High voltage electro-chemical double layer capacitor
US8809231B2 (en) 2011-09-28 2014-08-19 Corning Incorporated Method for making alkali activated carbon
JP2017154924A (en) * 2016-03-01 2017-09-07 三菱重工業株式会社 Activated carbon, method for treating activated carbon, ammonia synthesis catalyst and method for producing ammonia synthesis catalyst
CN110182806B (en) * 2019-06-17 2022-03-15 哈尔滨理工大学 Preparation of porous biomass charcoal electrode material derived from chicken twigs
JP2023044999A (en) * 2021-09-21 2023-04-03 株式会社デンソー Carbon dioxide recovery system
CN116168959B (en) * 2023-03-28 2023-09-12 天津普兰能源科技有限公司 Low-gas-yield dry electrode plate, super capacitor and preparation method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001284188A (en) * 2000-04-03 2001-10-12 Asahi Glass Co Ltd Manufacturing method of carbon material for electric double-layer capacitor electrode, and manufacturing method of electric double-layer capacitor using the carbon material
JP4054746B2 (en) * 2003-10-17 2008-03-05 新日本石油株式会社 Electric double layer capacitor, activated carbon for the electrode, and manufacturing method thereof

Also Published As

Publication number Publication date
JP2007302512A (en) 2007-11-22

Similar Documents

Publication Publication Date Title
JP5004501B2 (en) Activated carbon and electric double layer capacitor using the same
JP5473282B2 (en) Carbon material for electric double layer capacitor and manufacturing method thereof
JP5599186B2 (en) Activated carbon for electric double layer capacitor electrode and manufacturing method thereof
JP4708152B2 (en) Method for producing carbon material for electric double layer capacitor electrode
JP5344972B2 (en) Carbon material for electric double layer capacitor electrode and manufacturing method thereof
KR20140069223A (en) High voltage electro-chemical double layer capacitor
JP2006179697A (en) Coking coal composition of electrode carbon material of electric double-layer capacitor
WO2005038836A1 (en) Electric double layer capacitor, activated carbon for electrode thereof and method for producing same
JP2009260177A (en) Activated charcoal for electric double-layer capacitor electrode and manufacturing method thereof
JP5242090B2 (en) Method for producing activated carbon for electric double layer capacitor electrode
JP2016531068A (en) High voltage EDLC electrode containing CO2 activated coconut charcoal
JP4576374B2 (en) Activated carbon, its production method and its use
JP2005129924A (en) Metal collector for use in electric double layer capacitor, and polarizable electrode as well as electric double layer capacitor using it
JPH08107047A (en) Electric double-layer capacitor
JP2008147283A (en) Electric double-layer capacitor, active carbon for electrode of the capacitor, and manufacturing method for the active carbon
KR100911891B1 (en) Manufacturing method of activated carbon for electric double layer capacitor and the electric double layer capacitor electrode and the capacitor
JP4746501B2 (en) Carbon material for electric double layer capacitor electrode and electric double layer capacitor using the same
Shiraishi Development of Novel Carbon Electrode for Electrochemical Energy Storage. Nano-sized Carbon and Classic Carbon Electrodes for Capacitors
JP2007169117A (en) Activated carbon and electrical double layer capacitor using same
JP2005129707A (en) Electric double layer capacitor, activated carbon for its electrode, and method of producing the carbon
JP5242216B2 (en) Carbon material for electric double layer capacitor electrode and manufacturing method thereof
JP2005129722A (en) Electric double layer capacitor, activated carbon for its electrode, and method of producing the carbon
JP4809800B2 (en) Electric double layer capacitor electrode manufacturing method
JPWO2007132936A1 (en) Carbon material for electric double layer capacitor electrode and electric double layer capacitor using the same
SHIRAISHI The Electrochemical Society of Japan

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120522

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5004501

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250