JP2004247433A - Raw-material coal composition of carbon material for electrodes of electric double-layer capacitor - Google Patents
Raw-material coal composition of carbon material for electrodes of electric double-layer capacitor Download PDFInfo
- Publication number
- JP2004247433A JP2004247433A JP2003034267A JP2003034267A JP2004247433A JP 2004247433 A JP2004247433 A JP 2004247433A JP 2003034267 A JP2003034267 A JP 2003034267A JP 2003034267 A JP2003034267 A JP 2003034267A JP 2004247433 A JP2004247433 A JP 2004247433A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- carbon material
- layer capacitor
- electric double
- coal composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、電気二重層キャパシタの電極材料として好適な原料炭組成物、これを用いた電極用炭素材、並びにその電極用炭素材を含む電極を備えた電気二重層キャパシタに関する。
【0002】
【従来の技術】
従来から、電気二重層キャパシタの静電容量は、電気二重層キャパシタを構成するアノード及びカソードとして備えられている分極性電極(炭素電極等)の表面積にほぼ比例するとの考え方がある。そのため、分極性電極として炭素電極を使用する場合、炭素電極用の炭素材料の表面積を増大させて静電容量を大きくするための様々な検討がなされてきた。
【0003】
例えば、炭素電極用の炭素材料としては従来から主として活性炭が用いられており、このような活性炭は、ヤシ殻、木粉、石炭、フェノール樹脂を炭化して得たいわゆる難黒鉛化性炭素に対して水蒸気等を用いたガス賦活やアルカリ金属水酸化物等を用いた薬品賦活を行うことで一般に製造されている。しかしながら、このような難黒鉛化性炭素から製造した活性炭の場合、単位体積当たりの静電容量が比表面積の増加の割には上昇しないという問題があった。すなわち、難黒鉛化性炭素の賦活反応が、ガス賦活法、薬品賦活法とも粒子表面からの酸化反応による細孔の形成によるものであるため、賦活が進行するにつれて酸化によるロスが多くなり、嵩密度の低い活性炭となっていた。このような活性炭を電極材に用いた場合、電極の嵩密度も低くなるため、電極の単位質量当たりの静電容量が増加しても電極の単位体積当たりの静電容量密度の上昇には限界があった。さらに、このような活性炭は難黒鉛化性のために電気伝導性が劣っており、電極の内部抵抗を高くする原因にもなっていた。
【0004】
これに対して、メソフェーズピッチやそれを紡糸したメソフェーズピッチ系炭素繊維を不融化・炭素化して得られる、さらには石油コークスや石炭ピッチコークス等を炭素化して得られる易黒鉛化性原料を、アルカリ金属水酸化物で賦活した活性炭が提案されている。このような易黒鉛化性原料をアルカリ金属水酸化物で賦活した場合、活性炭の収率が高く嵩密度の高い活性炭が得られるため、嵩密度の高い電極を製造することが可能になり、単位容積当たりの静電容量密度を高めることができた。また、易黒鉛化性炭素から製造した活性炭は難黒鉛化性炭素から製造したものに比べて一般に電気伝導性が高いため、電極の内部抵抗の低減を図り易いという利点もあった。
【0005】
しかしながら、メソフェーズピッチやそれを紡糸したメソフェーズピッチ系炭素繊維はそれ自体が高価な原料であり、さらに賦活に先立って不融化・炭素化処理を施す必要があることから、工程が複雑となり、益々製造コストを押し上げてしまうという問題があった。さらに、不融化反応により酸素が導入されるため、黒鉛化性が低下し、結果的に電極の内部抵抗がそれ程低下しないという問題もあった。
【0006】
【発明が解決しようとする課題】
一方、特開平10−199767号公報には、石油コークスまたは石炭ピッチコークスを炭素化処理し、揮発分が1.0〜5.0質量%でかつH/C原子比が0.05〜0.30の条件を満足するようにした後、アルカリ金属水酸化物で賦活処理する方法が提案されている。
【0007】
しかしながら、このようにして得られた炭素材を用いた電極材の単位体積当たりの静電容量も未だ十分なものではなく、近年の静電容量が30F/ccを越えるような高性能化の要求に応えるためにはさらなる改良が必要であった。本発明者らはその原因等について鋭意検討した結果、上記公報に記載されているように石油コークスまたは石炭ピッチコークスの揮発分とH/C原子比を炭化処理したものは既に炭素化が進み過ぎているため、却って賦活処理による比表面積の発現が不十分であることを見出した。
【0008】
本発明は、上記従来技術の有する課題に鑑みてなされたものであり、賦活処理後の電極材の比表面積を十分に増加せしめ、高水準の静電容量と内部抵抗とが同時に達成された電気二重層キャパシタを製造することが可能な原料炭組成物を提供することを目的とするものである。
【0009】
【課題を解決するための手段】
本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、電気二重層キャパシタの炭素電極の構成材料となる炭素材の賦活処理前の状態の物質である原料炭組成物の揮発分と黒鉛結晶層間距離とを所定の条件を満たすように規定することにより、その原料炭組成物を賦活処理した炭素材の比表面積が十分に増加し、それを用いて製造される電極を備えた電気二重層キャパシタの静電容量が向上しかつ内部抵抗が低下することを見出し、本発明に到達した。
【0010】
すなわち、本発明は、揮発分が6.0〜15質量%であり、かつX線回折によって求められる黒鉛結晶の平均層間距離d002が0.3445nm以下であることを特徴とする、電気二重層キャパシタの電極用炭素材の原料炭組成物にある。
【0011】
また、本発明は、前記本発明の原料炭組成物を賦活処理することにより得られる比表面積が1800m2/g以上であることを特徴とする電気二重層キャパシタの電極用炭素材にあり、前記賦活処理としてはアルカリ金属化合物を用いた賦活処理が好ましい。
【0012】
さらに、本発明は、前記本発明の電極用炭素材を含む電極を備えることを特徴とする電気二重層キャパシタにある。
【0013】
なお、本発明に係る揮発分とは、JIS M8812「石炭類及びコークス類−工業分析法」に記載の方法に準拠して測定されたものである。
【0014】
また、本発明に係るX線回折によって求められる黒鉛結晶の平均層間距離d002とは、以下のようにしてX線回折法により測定した、微結晶炭素の格子面(002)に対応する層の平均層間距離(d002)である。すなわち、試料(原料炭組成物)に対して15%のシリコン粉末を混合して測定用セルに充填し、CuKα線を線源とし、反射式ディフラクトメーター法によって広角X線回折線を測定し、学振法に基づき(002)面の平均層間距離(d002)を求めたものである。
【0015】
【発明の実施の形態】
以下、本発明の好適な実施形態について詳細に説明する。
【0016】
本発明の原料炭組成物は、揮発分が6.0〜15質量%であり、かつX線回折によって求められる黒鉛結晶の平均層間距離d002が0.3445nm以下であることを特徴とするものである。
【0017】
本発明の原料炭組成物における揮発分の下限は6.0質量%であり、好ましくは6.5質量%、さらに好ましくは7.0質量%である。揮発分が6.0質量%未満の場合、原料炭組成物の炭素化が進み過ぎているため、賦活処理の反応性が低下し(例えば、アルカリ金属水酸化物等の賦活剤との反応性が低くなる)、大きな比表面積が得られず、これをキャパシタ用炭素材として用いたときの静電容量も小さくなる。一方、揮発分の上限は15質量%であり、好ましくは12質量%である。揮発分が15質量%を超える場合、黒鉛結晶の平均層間距離d002が前記特定範囲を満たすことができなくなる。
【0018】
また、本発明の原料炭組成物におけるX線回折によって求められる黒鉛結晶の平均層間距離d002の上限は0.3445nmであり、好ましくは0.3440nm、さらに好ましくは0.3435nmである。平均層間距離d002が0.3445nmを超える場合、黒鉛結晶が十分に発達していないため賦活処理において大きな比表面積を得ることができなくなる。特に、アルカリ金属化合物により賦活処理を施す場合、賦活過程で生成したアルカリ金属が黒鉛結晶の層間に侵入することが困難となるため、大きな比表面積が得られない。一方、より高い比表面積を得るという観点からは平均層間距離d002は低いほど好ましいが、一般的に平均層間距離d002が黒鉛結晶の理論値(0.3354nm)未満になることはない。
【0019】
本発明の原料炭組成物としては、前記特定性状を有するものであり、その素材としては特に限定されないが、石油系コークス系の材料が好ましく、通常易黒鉛化性炭素としての性質を示すものである。このような易黒鉛化性炭素から製造した炭素材は難黒鉛化性炭素から製造したものに比べて電気伝導性が高く、得られる電極の内部抵抗がより低下する傾向にある。
【0020】
次に、本発明の原料炭組成物を製造するための方法について説明する。一般に、炭素化温度が高くなると揮発分が減少し、それに伴って平均層間距離d002も減少する。一方、揮発分と平均層間距離d002の関係は原料油の特性及び炭素化条件によっても異なり、上記本発明の原料炭組成物は、揮発分の高い炭素化の初期段階において黒鉛結晶が生成するような特性の原料油及び炭素化条件を厳格に設定した以下の方法により始めて製造可能となったものである。
【0021】
すなわち、硫黄分が0.4質量%以下、好ましくは0.3質量%以下であり、かつアスファルテン量が2.0質量%以下、好ましくは1.7質量%以下である原料油(例えば、石油系重質油)を用い、この原料油を400〜500℃、好ましくは430〜480℃の温度で、通常3時間〜100時間程度、不活性雰囲気下で炭素化する方法により本発明の原料炭組成物が得られる。なお、上記の硫黄分が0.4質量%を超えるか、またはアスファルテン量が2.0質量%を超えた場合、炭素化の過程で架橋反応による三次元構造が発達し、本発明の原料炭組成物を得ることができない。また、500℃を超える温度で炭素化を行なった場合も、炭素化が急激に進行する結果、三次元的構造が発生して本発明の原料炭組成物を得ることができない。他方、400℃未満の温度で炭素化を行なった場合、炭素化が進行せず、揮発分を15質量%以下とすることが困難となり、本発明の原料炭組成物を得ることができない。また、炭素化処理の時間が3時間未満では、炭素化が進行せず、揮発分を15質量%以下とすることが困難となり、本発明の原料炭組成物を得ることができない。
【0022】
次に、本発明の電気二重層キャパシタの電極用炭素材について説明する。本発明の電極用炭素材は、前記本発明の原料炭組成物を賦活処理せしめることにより得られるものであり、比表面積が1800m2/g以上であることを特徴とするものである。
【0023】
このような賦活処理としては、例えば、薬剤による賦活反応、ガスによる賦活反応が挙げられ、薬剤による賦活反応がより好ましく、特にアルカリ金属化合物を用いた賦活反応が好ましい。このようなアルカリ金属化合物を用いた賦活処理によれば、アルカリ金属が黒鉛結晶の層間に侵入して反応することにより、得られる炭素材の比表面積がより向上する傾向にある。
【0024】
上記賦活処理において、アルカリ金属化合物としては各種炭酸塩や水酸化物を用いることができ、具体的には、炭酸ナトリウム、炭酸カリウム、水酸化カリウム、水酸化ナトリウム、水酸化リチウム、水酸化ルビジウム、水酸化セシウムが挙げられ、中でも水酸化カリウム、水酸化ナトリウム等のアルカリ金属水酸化物が特に好ましい。また、これらのアルカリ金属化合物を2種以上併用(例えば、水酸化カリウムと水酸化ナトリウムとの併用)してもよい。
【0025】
賦活方法は、通常、アルカリ金属化合物等の賦活剤と原料炭組成物を混合し、加熱することにより行なわれる。原料炭組成物とアルカリ金属水酸化物等の賦活剤との混合割合は、特に限定されないが、通常、両者の質量比(原料炭組成物:賦活剤)が1:0.5〜1:10の範囲が好ましく、1:1〜1:5の範囲がより好ましい。一般にアルカリ金属化合物等の賦活剤が少なすぎると賦活反応が十分に進行せず必要な比表面積を得ることができない傾向にあり、他方、アルカリ金属化合物等の賦活剤が多すぎると比表面積は増加するものの、賦活のコストが増大すると共に賦活収率が低下し、さらに得られる炭素材の嵩密度が低下して単位体積当たりの静電容量が低下する傾向にある。
【0026】
また、賦活処理の際の加熱温度は特に限定されないが、その下限は、通常500℃、好ましくは600℃であり、上限は、通常1000℃、好ましくは900℃、さらに好ましくは800℃である。一般に、賦活処理の際の温度が低い場合は賦活反応が進行せず、十分な比表面積が得られない傾向にある。他方、賦活処理の際の温度が高過ぎる場合も比表面積が低下し、単位体積当たりの静電容量の低下につながる傾向にある。賦活処理の際の加熱時間は特に限定されないが、通常10分から10時間、好ましくは30分から5時間程度である。なお、賦活処理の際は非酸化性雰囲気下で原料炭組成物を賦活剤と共に加熱することが望ましい。
【0027】
また、ガスにより賦活処理する場合としては、例えば、原料炭組成物を二酸化炭素(燃焼ガス)、酸素、塩化水素、塩素、水蒸気等に例示される弱酸化性の賦活ガスの雰囲気下で加熱処理する方法が挙げられる。この時の温度は、通常500〜1000℃程度が望ましい。なお、ガスによる賦活方法と薬剤による賦活方法とを組み合わせて行ってもよい。また、このような賦活反応は、電気炉、固定床、流動床、移動床、ロータリーキルン等の何れの形で行うことも可能である。
【0028】
このようにして前記本発明の原料炭組成物を賦活処理せしめることにより、BET法による比表面積が1800m2/g以上、好ましくは1900m2/g以上の電極用炭素材を得ることできる。本発明の電極用炭素材の比表面積が1800m2/g未満の場合、比表面積が小さいためにそれを用いて得られる電極材の静電容量が十分に向上しない。なお、比表面積の上限は特に限定されないが、通常2500m2/g程度が望ましい。
【0029】
なお、本発明の原料炭組成物として易黒鉛化性炭素を用い、それを例えばアルカリ金属水酸化物で賦活処理したときの比表面積発現のメカニズムは、ヤシ殻炭のような難黒鉛化性炭素をガス賦活した場合のような粒子表面からの酸化反応による細孔形成によるものだけではなく、分解したアルカリ金属が黒鉛結晶の層間に侵入し炭素と直接反応することで、内部からも細孔が形成され、比表面積を増大せしめるものである。そして、アルカリ金属が炭素の内部に侵入するには炭素の黒鉛結晶が充分に発達していることが重要である。従って、このようなアルカリ金属水酸化物による賦活処理で十分な比表面積を発現するためには、原料炭組成物の内部にアルカリ金属が侵入するのに充分な結晶性を有しており、かつアルカリ金属との間に充分な反応性を有していることが必要であり、本発明の原料炭組成物はこの条件を満たすものである。すなわち、本発明の原料炭組成物においては、アルカリ金属との反応性が良好な高い揮発分を所定量含有していると共に、アルカリ金属が容易に黒鉛結晶層間に侵入して粒子内部においてもアルカリ金属との反応が進みやすい結晶構造となっており、これらの作用が相まって非常に高水準の比表面積を有する炭素材が得られることになる。
【0030】
なお、このように得られた本発明の電極用炭素材については、以下の各種物性を有することが好ましい。すなわち、例えば、細孔容積については、好ましくは0.60〜1.30cm3/g、より好ましくは0.70〜1.20cm3/gであり、平均細孔径については、好ましくは1.5〜2.5nm、より好ましくは1.7〜2.3nmである。また、電極用炭素材としては硫黄分は少ないほど好ましく、係る硫黄分は500ppm以下であることが特に好ましい。
【0031】
本発明の原料炭組成物はこのように賦活処理された後に、通常、アルカリ洗浄、酸洗浄、水洗、乾燥、粉砕工程を経て電気二重層キャパシタ用の電極用炭素材となる。なお、アルカリ金属化合物による賦活反応の場合、炭素材中におけるアルカリ金属の量については電気二重層キャパシタとして悪影響を及ぼす可能性のある水準よりも低い量(好ましくは1000ppm以下)であれば特に限定されないが、通常、例えばpHが7〜8程度になるように洗浄するとともに、アルカリ金属分を出来るだけ除去するよう洗浄することが望ましい。また、粉砕工程は、公知の方法により行われ、通常、平均粒径0.5〜50μm、好ましくは1〜20μm程度の微粉体とされることが望ましい。
【0032】
次に、本発明の電気二重層キャパシタについて説明する。本発明の電気二重層キャパシタは、前記本発明の電極用炭素材を含む電極を備えることを特徴とするものである。
【0033】
このような電極としては、例えば、電極用炭素材と結着剤、さらに好ましくは導電材を加えて構成され、またさらに集電体と一体化した電極であってもよい。
【0034】
このような結着剤としては公知のものを用いることができ、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリエチレン、ポリプロピレン、フルオロオレフィン/ビニルエーテル共重合体架橋ポリマー、カルボキシメチルセルロース、ポリビニルピロリドン、ポリビニルアルコール、ポリアクリル酸等が挙げられる。電極中における結着剤の含有量は特に限定されないが、電極用炭素材と結着剤の合計量に対して、通常0.1〜30質量%程度の範囲内で適宜選択される。
【0035】
また、導電材としては、カーボンブラック、粉末グラファイト、酸化チタン、酸化ルテニウム等の粉末が用いられる。電極中における導電材の配合量は、配合目的に応じて適宜選択されるが、通常1〜50質量%、好ましくは2〜30質量%程度の範囲内で適宜選択される。
【0036】
なお、電極用炭素材、結着剤、導電材を混合する方法としては、公知の方法が適宜適用され、例えば、結着剤を溶解する性質を有する溶媒を上記成分に加えてスラリー状としたものを集電体上に均一に塗布する方法や、あるいは溶媒を加えないで上記成分を混練した後に常温または加熱下で加圧成形する方法が採用される。
【0037】
このような集電体としては、公知の材質および形状ものを使用することができ、例えばアルミニウム、チタン、タンタル、ニッケル、ステンレス等の合金を用いることができる。
【0038】
本発明の電気二重層キャパシタの単位セルは、一般に上記電極を一対用い、セパレーター(ポリプロピレン繊維不織布、ガラス繊維不織布、合成セルロース紙等)を介して対向させ、電解液中に浸漬することによって形成される。
【0039】
本発明の電気二重層キャパシタに用いる電解液としては、公知の水系電解液、有機系電解液を使用することができるが、有機系電解液を用いることがより好ましい。このような有機系電解液としては、電気化学の電解液の溶媒として使用されているものを用いることができ、例えば、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン、スルホラン、スルホラン誘導体、3−メチルスルホラン、1,2−ジメトキシエタン、アセトニトリル、グルタロニトリル、バレロニトリル、ジメチルホルムアミド、ジメチルスルホキシド、テトラヒドロフラン、ジメトキシエタン、メチルフォルメート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等を挙げることができる。なお、これらの電解液を混合して使用してもよい。
【0040】
また、有機電解液中の支持電解質としては、特に限定されないが、電気化学の分野又は電池の分野で通常使用される塩類、酸類、アルカリ類等の各種のものが使用でき、例えば、アルカリ金属塩、アルカリ土類金属塩等の無機イオン塩、4級アンモニウム塩、環状4級アンモニウム塩、4級ホスホニウム塩等が挙げられ、(C2 H5 )4 NBF4 、(C2 H5 )3 (CH3 )NBF4 、(C2 H5 )4 PBF4 、(C2 H5 )3 (CH3 )PBF4 等が好ましいものとして挙げられる。電解液中のこれらの塩の濃度は、通常0.1〜5mol/l、好ましくは0.5〜3mol/l程度の範囲内で適宜選択される。
【0041】
本発明の電気二重層キャパシタのより具体的な構成は特に限定されないが、例えば、厚さ10〜500μmの薄いシート状またはディスク状の一対の電極(正極と負極)の間にセパレータを介して金属ケースに収容したコイン型、一対の電極をセパレータを介して捲回してなる捲回型、セパレータを介して多数の電極群を積み重ねた積層型等が挙げられる。
【0042】
【実施例】
以下、実施例および比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。なお、実施例及び比較例で得られた原料油、原料炭組成物および炭素材の諸物性は以下のようにして測定した。
(1)硫黄分
JIS M8813「石炭類及びコークス類−元素分析方法」に記載の方法に準拠して測定した。
(2)アスファルテン分
IP 143/90「Determination of Asphaltenes ( Heptane Insolubles )」に記載の方法に準拠して測定した。
(3)揮発分
JIS M8812「石炭類及びコークス類−工業分析法」に記載の方法に準拠して測定した。
(4)黒鉛結晶の平均層間距離
試料(原料炭組成物)に対して15%のシリコン粉末を混合して測定用セルに充填し、CuKα線を線源とし、X線回折装置(理学電機株式会社製、商品名:RINT1400VX)を用いて反射式ディフラクトメーター法によって広角X線回折線を測定し、学振法に基づき(002)面の平均層間距離(d002)を求めた。
【0043】
(実施例1)
(i)原料炭組成物の製造
硫黄分0.25質量%、アスファルテン量1.5質量%の石油系重質油をバッチ処理により不活性ガス雰囲気中470℃で6時間炭素化せしめることにより、揮発分7.2質量%、黒鉛結晶の平均層間距離d002が0.3435nmの原料炭組成物を得た。なお、このようにして得られた原料炭組成物は、易黒鉛化性炭素としての性質を示すものであった。
(ii)炭素材の製造
上記の原料炭組成物100質量部に対して水酸化カリウムが200質量部となるように混合し、窒素ガス雰囲気中、750℃で1時間賦活反応を進行せしめ、反応後に水洗及び酸洗浄(HClを使用)して炭素材に残存ずる金属カリウムを除去し、乾燥して電気二重層キャパシタの電極用炭素材を得た。この炭素材の比表面積は1980m2/gであった。また、細孔容積は0.91cm3/g、細孔直径は0.18nmであった。(iii)電極の作製
平均粒径40μmに粉砕した上記炭素材80質量部にカーボンブラックを10質量部、ポリテトラフルオロエチレン粉末を10質量部加え、乳鉢でペースト状となるまで混錬した。次いで、得られたペーストを180kPaのローラープレスで圧延して、厚さ200μmの電極シートを作製した。
(iv)セルの組立て
上記電極シートから直径16mmの円盤状ディスクを2枚打ち抜き、120℃、0.1Torrで2時間真空乾燥した後、露点−85℃の窒素雰囲気下のグローブボックス中にて、有機電解液(トリエチルメチルアンモニウムテトラフルオロボレートのプロピレンカーボネート溶液、濃度:1モル/リットル)を真空含浸せしめた。次に、2枚の電極を各々正極、負極とし、両極間にガラス繊維セパレータ(ADVANTEC社製、商品名:GA−200、厚さ:200μm)、両端にはアルミ箔の集電体を取り付け、宝泉社製の2極式セルに組み込んで電気二重層キャパシタ(コイン型セル)を作製した。
(v)静電容量の測定
上記コイン型セルに1F当たり10mAの定電流で2.7Vまで充電した。充電終了後12時間2.7Vに保持した後、10mAの定電流放電を行なった。そして、放電時のエネルギー量から以下の式:
合計放電エネルギーW[W・s]={静電容量C[F]×(放電開始電圧V[V])2}/2
に従って静電容量を算出した。
【0044】
その結果、この静電容量を電極中の炭素材質量で除した単位質量あたりの静電容量(F/g)は44.3F/gであり、さらに単位質量あたりの静電容量に電極の充填密度を乗じた単位体積当たりの静電容量(F/cc)は32.1F/cc であった。また、内部抵抗は21Ωであった。以上の結果から、本発明の電気二重層キャパシタによれば30F/cc 以上という非常に高レベルの静電容量が達成されることが確認された。
【0045】
(比較例1)
硫黄分4.5質量%、アスファルテン量9.5質量%の石油系重質油を不活性ガス雰囲気中、480℃で4時間炭素化して得られた原料炭組成物は、揮発分が6.8質量%であったが、黒鉛結晶の平均層間距離d002は0.3450nmと本発明の範囲を超えていた。
【0046】
この原料炭組成物を用いた以外は実施例1と同じ条件下でアルカリ賦活処理を行なった結果、賦活処理後の炭素材の比表面積は1340m2/gに低下していた。また、この炭素材を用いた以外は実施例1と同様にして組立てた電気二重層キャパシタの単位質量あたりの静電容量(F/g)は30.9F/gに、単位体積当たりの静電容量も22.0F/ccに低下していた。さらに、内部抵抗は36Ωであった。
【0047】
(比較例2)
実施例1で用いた石油系重質油を窒素ガス雰囲気中、550℃で4時間炭素化せしめたところ、得られた原料炭組成物は黒鉛結晶の平均層間距離d002が0.3425nmであったが、揮発分が5.5質量%であった。
【0048】
この原料炭組成物を用いた以外は実施例1と同じ条件下でアルカリ賦活処理を行なった結果、賦活処理後の炭素材の比表面積は1590m2/gに低下していた。また、この炭素材を用いた以外は実施例1と同様にして組立てた電気二重層キャパシタの単位質量あたりの静電容量(F/g)は35.6F/gに、単位体積当たりの静電容量も25.5F/ccに低下していた。さらに、内部抵抗は31Ωであった。
【0049】
(比較例3)
実施例1で用いた石油系重質油を窒素ガス雰囲気中、750℃で4時間炭素化せしめたところ、得られた原料炭組成物は黒鉛結晶の平均層間距離d002が0.3415nmであったが、揮発分が2.2質量%であった。
【0050】
この原料炭組成物を用いた以外は実施例1と同じ条件下でアルカリ賦活処理を行なった結果、賦活処理後の炭素材の比表面積は350m2/gに低下していた。また、この炭素材を用いた以外は実施例1と同様にして組立てた電気二重層キャパシタの単位質量あたりの静電容量(F/g)は18.2F/gに、単位体積当たりの静電容量も13.4F/ccに低下していた。さらに、内部抵抗は40Ωであった。
【0051】
【発明の効果】
以上説明したように、本発明の原料炭組成物を用いることにより、賦活処理後の電極用電極材のかさ密度が向上して比表面積を十分に増加せしめることが可能となり、高水準の静電容量と内部抵抗とが同時に達成された電気二重層キャパシタを製造することができる。また、電極用炭素材を得るための賦活処理の温度を比較的低くすることができ、電極用炭素材の収率を改善することができる。
【0052】
このように、本発明の原料炭組成物から得た本発明の電極用炭素材を含む電極を用いれば、静電容量が大きくかつ内部抵抗が低い電気二重層キャパシタが得られることから、本発明は自動車用動力電源、各種家電製品用待機電源、各種携帯機器用電源等の各種用途に非常に有用なものである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a raw coal composition suitable as an electrode material of an electric double layer capacitor, a carbon material for an electrode using the same, and an electric double layer capacitor provided with an electrode containing the carbon material for an electrode.
[0002]
[Prior art]
Conventionally, it has been considered that the capacitance of an electric double layer capacitor is substantially proportional to the surface area of a polarizable electrode (such as a carbon electrode) provided as an anode and a cathode constituting the electric double layer capacitor. Therefore, when a carbon electrode is used as the polarizable electrode, various studies have been made to increase the surface area of the carbon material for the carbon electrode to increase the capacitance.
[0003]
For example, conventionally, activated carbon has been mainly used as a carbon material for a carbon electrode, and such activated carbon is used for so-called non-graphitizable carbon obtained by carbonizing coconut shell, wood flour, coal, and phenol resin. It is generally manufactured by performing gas activation using steam or the like or chemical activation using an alkali metal hydroxide or the like. However, in the case of activated carbon produced from such non-graphitizable carbon, there is a problem that the capacitance per unit volume does not increase for the increase in specific surface area. That is, since the activation reaction of non-graphitizable carbon is caused by the formation of pores by the oxidation reaction from the particle surface in both the gas activation method and the chemical activation method, the loss due to oxidation increases as the activation proceeds, and The activated carbon had a low density. When such activated carbon is used for the electrode material, the bulk density of the electrode also decreases, so even if the capacitance per unit mass of the electrode increases, the increase in the capacitance density per unit volume of the electrode is limited. was there. Furthermore, such activated carbon has poor electrical conductivity due to its non-graphitizing property, which has caused the internal resistance of the electrode to be high.
[0004]
In contrast, mesophase pitch and mesophase pitch-based carbon fiber obtained by spinning the same are obtained by infusibilizing and carbonizing, and further, the easily graphitizable raw material obtained by carbonizing petroleum coke, coal pitch coke, etc. Activated carbon activated with metal hydroxide has been proposed. When such an easily graphitizable material is activated with an alkali metal hydroxide, an activated carbon with a high bulk density can be obtained with a high yield of activated carbon. The capacitance density per volume could be increased. In addition, activated carbon produced from graphitizable carbon generally has higher electrical conductivity than that produced from non-graphitizable carbon, and thus has the advantage that the internal resistance of the electrode can be easily reduced.
[0005]
However, mesophase pitch and mesophase pitch-based carbon fiber obtained by spinning it are expensive raw materials themselves, and must be subjected to infusibilization and carbonization prior to activation. There was a problem of increasing costs. Furthermore, since oxygen is introduced by the infusibilization reaction, the graphitization property is reduced, and as a result, there is a problem that the internal resistance of the electrode is not so reduced.
[0006]
[Problems to be solved by the invention]
On the other hand, JP-A-10-199767 discloses that petroleum coke or coal pitch coke is carbonized to have a volatile content of 1.0 to 5.0% by mass and an H / C atomic ratio of 0.05 to 0. After satisfying the condition of No. 30, a method of activating with an alkali metal hydroxide has been proposed.
[0007]
However, the capacitance per unit volume of the electrode material using the carbon material obtained as described above is not yet sufficient, and there is a demand for a higher performance such that the capacitance in recent years exceeds 30 F / cc. Further improvements were needed to meet the requirements. The present inventors have conducted intensive studies on the cause and the like, and as a result, as described in the above-mentioned publication, carbonization of the volatile matter and the H / C atomic ratio of petroleum coke or coal pitch coke has already progressed too much. Therefore, it has been found that the expression of the specific surface area by the activation treatment is insufficient.
[0008]
The present invention has been made in view of the above-mentioned problems of the related art, and has been made to sufficiently increase the specific surface area of the electrode material after the activation treatment, and achieve a high level of capacitance and internal resistance at the same time. It is an object of the present invention to provide a raw coal composition capable of manufacturing a double-layer capacitor.
[0009]
[Means for Solving the Problems]
The inventors of the present invention have conducted intensive studies to achieve the above object, and as a result, have determined that the volatile matter of the raw coal composition which is a substance in a state before the activation treatment of the carbon material which is a constituent material of the carbon electrode of the electric double layer capacitor is obtained. And the graphite crystal interlayer distance are defined so as to satisfy a predetermined condition, whereby the specific surface area of the carbon material obtained by activating the raw carbon composition is sufficiently increased, and the electrode manufactured using the carbon material is provided. The present inventors have found that the capacitance of the electric double layer capacitor is improved and the internal resistance is reduced, and arrived at the present invention.
[0010]
That is, according to the present invention, the volatile content is 6.0 to 15% by mass, and the average interlayer distance d of graphite crystals determined by X-ray diffraction 002 Is not more than 0.3445 nm. The raw material carbon composition for a carbon material for an electrode of an electric double layer capacitor.
[0011]
Further, the present invention has a specific surface area of 1800 m obtained by activating the raw coal composition of the present invention. 2 / G or more in the carbon material for an electrode of an electric double layer capacitor, wherein the activation treatment is preferably an activation treatment using an alkali metal compound.
[0012]
Further, the present invention resides in an electric double layer capacitor comprising an electrode including the carbon material for an electrode of the present invention.
[0013]
The volatile matter according to the present invention is measured according to the method described in JIS M8812 “Coals and cokes—Industrial analysis method”.
[0014]
Further, the average interlayer distance d of graphite crystals determined by X-ray diffraction according to the present invention 002 Means the average interlayer distance (d) of the layer corresponding to the lattice plane (002) of microcrystalline carbon, measured by the X-ray diffraction method as described below. 002 ). That is, a sample (raw coal composition) was mixed with 15% silicon powder and filled in a measurement cell, and a wide angle X-ray diffraction line was measured by a reflection diffractometer method using CuKα radiation as a radiation source. The average interlayer distance (d) of the (002) plane based on the Gakushin method 002 ).
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail.
[0016]
The raw coal composition of the present invention has a volatile content of 6.0 to 15% by mass and an average interlayer distance d of graphite crystals determined by X-ray diffraction. 002 Is 0.3445 nm or less.
[0017]
The lower limit of the volatile content in the raw coal composition of the present invention is 6.0% by mass, preferably 6.5% by mass, and more preferably 7.0% by mass. When the volatile matter content is less than 6.0% by mass, the carbonization of the raw coal composition is excessively advanced, so that the reactivity of the activation treatment decreases (for example, the reactivity with an activator such as an alkali metal hydroxide). ), A large specific surface area cannot be obtained, and the capacitance when this is used as a carbon material for a capacitor also becomes small. On the other hand, the upper limit of the volatile content is 15% by mass, preferably 12% by mass. When the volatile content exceeds 15% by mass, the average interlayer distance d of graphite crystals 002 Cannot satisfy the specific range.
[0018]
Further, the average interlayer distance d of graphite crystals obtained by X-ray diffraction in the raw coal composition of the present invention. 002 Has an upper limit of 0.3445 nm, preferably 0.3440 nm, and more preferably 0.3435 nm. Average interlayer distance d 002 Exceeds 0.3445 nm, a large specific surface area cannot be obtained in the activation treatment because the graphite crystals are not sufficiently developed. In particular, when the activation treatment is performed using an alkali metal compound, it is difficult for the alkali metal generated in the activation process to enter between the layers of the graphite crystal, so that a large specific surface area cannot be obtained. On the other hand, from the viewpoint of obtaining a higher specific surface area, the average interlayer distance d 002 Is preferably as low as possible, but generally the average interlayer distance d 002 Does not fall below the theoretical value of graphite crystals (0.3354 nm).
[0019]
The raw coal composition of the present invention has the specific properties described above, and the raw material is not particularly limited, but is preferably a petroleum-based coke-based material, which usually exhibits properties as easily graphitizable carbon. is there. A carbon material produced from such graphitizable carbon has higher electric conductivity than that produced from non-graphitizable carbon, and the internal resistance of the obtained electrode tends to be lower.
[0020]
Next, a method for producing the raw coal composition of the present invention will be described. In general, as the carbonization temperature increases, the volatile content decreases, and accordingly, the average interlayer distance d 002 Also decreases. On the other hand, the volatile content and the average interlayer distance d 002 The relationship also depends on the characteristics of the raw material oil and the carbonization conditions. The raw coal composition of the present invention has a characteristic such that graphite crystals are formed in the initial stage of carbonization having a high volatile content and carbonization conditions. Can be manufactured for the first time by the following method with strictly set.
[0021]
That is, a feedstock (for example, petroleum oil) having a sulfur content of 0.4% by mass or less, preferably 0.3% by mass or less, and an asphaltene amount of 2.0% by mass or less, preferably 1.7% by mass or less. The raw material oil of the present invention is obtained by carbonizing the raw material oil at a temperature of 400 to 500 ° C., preferably 430 to 480 ° C., usually for about 3 to 100 hours under an inert atmosphere. A composition is obtained. If the sulfur content exceeds 0.4% by mass or the asphaltene amount exceeds 2.0% by mass, a three-dimensional structure develops due to a cross-linking reaction in the carbonization process, and No composition can be obtained. Also, when carbonization is performed at a temperature exceeding 500 ° C., the carbonization proceeds rapidly, so that a three-dimensional structure is generated and the raw coal composition of the present invention cannot be obtained. On the other hand, when carbonization is performed at a temperature lower than 400 ° C., carbonization does not proceed, and it is difficult to reduce the volatile matter content to 15% by mass or less, and the raw coal composition of the present invention cannot be obtained. If the carbonization time is less than 3 hours, carbonization does not proceed and it is difficult to reduce the volatile content to 15% by mass or less, and the raw coal composition of the present invention cannot be obtained.
[0022]
Next, the carbon material for an electrode of the electric double layer capacitor of the present invention will be described. The carbon material for an electrode of the present invention is obtained by activating the raw coal composition of the present invention, and has a specific surface area of 1800 m 2 / G or more.
[0023]
Examples of such an activation treatment include an activation reaction with a drug and an activation reaction with a gas. An activation reaction with a drug is more preferable, and an activation reaction using an alkali metal compound is particularly preferable. According to the activation treatment using such an alkali metal compound, the specific surface area of the obtained carbon material tends to be further improved by the alkali metal penetrating between the layers of the graphite crystal and reacting.
[0024]
In the activation treatment, various carbonates and hydroxides can be used as the alkali metal compound. Specifically, sodium carbonate, potassium carbonate, potassium hydroxide, sodium hydroxide, lithium hydroxide, rubidium hydroxide, Cesium hydroxide is exemplified, and among them, alkali metal hydroxides such as potassium hydroxide and sodium hydroxide are particularly preferred. Further, two or more of these alkali metal compounds may be used in combination (for example, a combination of potassium hydroxide and sodium hydroxide).
[0025]
The activation method is usually performed by mixing an activator such as an alkali metal compound and the raw carbon composition and heating the mixture. The mixing ratio between the raw coal composition and the activator such as an alkali metal hydroxide is not particularly limited, but usually the mass ratio of both (raw coal composition: activator) is 1: 0.5 to 1:10. Is preferable, and the range of 1: 1 to 1: 5 is more preferable. In general, if the activator such as an alkali metal compound is too small, the activation reaction does not proceed sufficiently and a required specific surface area tends to be unable to be obtained.On the other hand, if the activator such as an alkali metal compound is too large, the specific surface area increases. However, the activation cost increases, the activation yield decreases, the bulk density of the obtained carbon material tends to decrease, and the capacitance per unit volume tends to decrease.
[0026]
The heating temperature during the activation treatment is not particularly limited, but the lower limit is usually 500 ° C., preferably 600 ° C., and the upper limit is usually 1000 ° C., preferably 900 ° C., and more preferably 800 ° C. In general, when the temperature at the time of the activation treatment is low, the activation reaction does not proceed, and there is a tendency that a sufficient specific surface area cannot be obtained. On the other hand, when the temperature at the time of the activation treatment is too high, the specific surface area also tends to decrease, leading to a decrease in the capacitance per unit volume. The heating time in the activation treatment is not particularly limited, but is usually about 10 minutes to 10 hours, preferably about 30 minutes to 5 hours. In the activation treatment, it is desirable to heat the raw coal composition together with the activator under a non-oxidizing atmosphere.
[0027]
When the activation treatment is performed using a gas, for example, the raw coal composition is heated in an atmosphere of a weakly oxidizing activation gas such as carbon dioxide (combustion gas), oxygen, hydrogen chloride, chlorine, or steam. Method. The temperature at this time is usually desirably about 500 to 1000 ° C. The activation method using a gas and the activation method using a chemical may be combined. Further, such an activation reaction can be performed in any form such as an electric furnace, a fixed bed, a fluidized bed, a moving bed, and a rotary kiln.
[0028]
By activating the raw coal composition of the present invention in this way, the specific surface area by the BET method is 1800 m. 2 / G or more, preferably 1900 m 2 / G or more of electrode carbon material can be obtained. The specific surface area of the carbon material for an electrode of the present invention is 1800 m. 2 If it is less than / g, the specific surface area is small, so that the electrostatic capacity of the electrode material obtained by using it is not sufficiently improved. The upper limit of the specific surface area is not particularly limited, but is usually 2500 m 2 / G is desirable.
[0029]
The mechanism of the specific surface area when easily graphitizable carbon is used as the raw material carbon composition of the present invention and the activated carbon is activated with an alkali metal hydroxide, for example, is hardly graphitizable carbon such as coconut shell charcoal. Not only due to pore formation due to oxidation reaction from the particle surface as in the case of gas activation, but also because the decomposed alkali metal penetrates between graphite crystal layers and reacts directly with carbon, It is formed to increase the specific surface area. It is important that the carbon graphite crystal is sufficiently developed for the alkali metal to enter the inside of the carbon. Therefore, in order to express a sufficient specific surface area in such activation treatment with an alkali metal hydroxide, the raw coal composition has sufficient crystallinity to penetrate into the interior of the raw coal composition, and It is necessary to have sufficient reactivity with an alkali metal, and the raw coal composition of the present invention satisfies this condition. That is, the raw coal composition of the present invention contains a predetermined amount of a high volatile content having good reactivity with the alkali metal, and the alkali metal easily penetrates between the graphite crystal layers to form the alkali inside the particles. It has a crystal structure that facilitates the reaction with the metal, and together with these actions, a carbon material having a very high specific surface area can be obtained.
[0030]
The carbon material for an electrode of the present invention thus obtained preferably has the following various physical properties. That is, for example, the pore volume is preferably 0.60 to 1.30 cm. 3 / G, more preferably 0.70 to 1.20 cm 3 / G, and the average pore diameter is preferably 1.5 to 2.5 nm, more preferably 1.7 to 2.3 nm. Further, as the carbon material for an electrode, the lower the sulfur content, the better, and the sulfur content is particularly preferably 500 ppm or less.
[0031]
After being activated as described above, the raw coal composition of the present invention is usually subjected to an alkali washing, an acid washing, a water washing, a drying and a pulverizing process to become a carbon material for an electrode for an electric double layer capacitor. In the case of the activation reaction using an alkali metal compound, the amount of the alkali metal in the carbon material is not particularly limited as long as the amount is lower than a level that may adversely affect the electric double layer capacitor (preferably 1000 ppm or less). However, usually, it is desirable to wash so as to have a pH of about 7 to 8 and to wash out as much alkali metal as possible. In addition, the pulverization step is performed by a known method, and it is usually desirable to form fine powder having an average particle diameter of 0.5 to 50 μm, preferably about 1 to 20 μm.
[0032]
Next, the electric double layer capacitor of the present invention will be described. An electric double layer capacitor according to the present invention includes an electrode including the carbon material for an electrode according to the present invention.
[0033]
Such an electrode may be, for example, an electrode formed by adding a carbon material for an electrode and a binder, more preferably a conductive material, and further integrated with a current collector.
[0034]
Known binders can be used as such a binder, for example, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, a fluoroolefin / vinyl ether copolymer crosslinked polymer, carboxymethylcellulose, polyvinylpyrrolidone, and polyvinyl alcohol. And polyacrylic acid. The content of the binder in the electrode is not particularly limited, but is appropriately selected usually in the range of about 0.1 to 30% by mass based on the total amount of the carbon material for the electrode and the binder.
[0035]
Further, as the conductive material, powder such as carbon black, powdered graphite, titanium oxide, ruthenium oxide and the like are used. The compounding amount of the conductive material in the electrode is appropriately selected depending on the purpose of the compounding, but is usually appropriately selected within the range of about 1 to 50% by mass, preferably about 2 to 30% by mass.
[0036]
In addition, as a method of mixing the carbon material for the electrode, the binder, and the conductive material, a known method is appropriately applied. For example, a solvent having a property of dissolving the binder is added to the above components to form a slurry. A method of uniformly applying the composition on a current collector, or a method of kneading the above components without adding a solvent and then press-molding the mixture at room temperature or under heating is adopted.
[0037]
Known materials and shapes can be used as such a current collector, and for example, alloys such as aluminum, titanium, tantalum, nickel, and stainless steel can be used.
[0038]
The unit cell of the electric double layer capacitor of the present invention is generally formed by using a pair of the above electrodes, facing each other via a separator (a nonwoven fabric of polypropylene fiber, a nonwoven fabric of glass fiber, synthetic cellulose paper, etc.), and immersing in an electrolytic solution. You.
[0039]
As an electrolytic solution used for the electric double layer capacitor of the present invention, a known aqueous electrolytic solution and an organic electrolytic solution can be used, but an organic electrolytic solution is more preferably used. As such an organic electrolyte, those used as a solvent for an electrochemical electrolyte can be used. For example, propylene carbonate, ethylene carbonate, butylene carbonate, γ-butyrolactone, sulfolane, a sulfolane derivative, -Methylsulfolane, 1,2-dimethoxyethane, acetonitrile, glutaronitrile, valeronitrile, dimethylformamide, dimethylsulfoxide, tetrahydrofuran, dimethoxyethane, methyl formate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, etc. . In addition, these electrolytes may be mixed and used.
[0040]
Further, the supporting electrolyte in the organic electrolyte is not particularly limited, and various salts such as salts, acids, and alkalis commonly used in the field of electrochemistry or the field of batteries can be used. And inorganic ion salts such as alkaline earth metal salts, quaternary ammonium salts, cyclic quaternary ammonium salts, and quaternary phosphonium salts. 2 H 5 ) 4 NBF 4 , (C 2 H 5 ) 3 (CH 3 ) NBF 4 , (C 2 H 5 ) 4 PBF 4 , (C 2 H 5 ) 3 (CH 3 ) PBF 4 And the like are preferred. The concentration of these salts in the electrolytic solution is appropriately selected usually in the range of about 0.1 to 5 mol / l, preferably about 0.5 to 3 mol / l.
[0041]
Although a more specific configuration of the electric double layer capacitor of the present invention is not particularly limited, for example, a metal is disposed between a pair of thin sheet or disk-shaped electrodes (positive electrode and negative electrode) having a thickness of 10 to 500 μm via a separator. Examples include a coin type housed in a case, a wound type in which a pair of electrodes are wound via a separator, and a stacked type in which a large number of electrode groups are stacked via a separator.
[0042]
【Example】
Hereinafter, the present invention will be described more specifically based on Examples and Comparative Examples, but the present invention is not limited to the following Examples. The physical properties of the raw oil, raw coal composition and carbon material obtained in the examples and comparative examples were measured as follows.
(1) Sulfur content
It was measured according to the method described in JIS M8813 “Coals and cokes—elemental analysis method”.
(2) Asphaltene content
It measured based on the method of IP143 / 90 "Determination of Asphaltenes (HeptaneInsolubles)."
(3) volatile matter
It was measured according to the method described in JIS M8812 “Coals and cokes—Industrial analysis method”.
(4) Average interlayer distance of graphite crystal
A sample (a raw coal composition) was mixed with 15% silicon powder and filled in a measuring cell. Using a CuKα ray as a radiation source, an X-ray diffractometer (trade name: RINT1400VX, manufactured by Rigaku Corporation) was used. And a wide-angle X-ray diffraction line was measured by a reflection type diffractometer method. 002 ).
[0043]
(Example 1)
(I) Production of raw coal composition
A petroleum heavy oil having a sulfur content of 0.25% by mass and an asphaltene amount of 1.5% by mass is carbonized at 470 ° C. for 6 hours in an inert gas atmosphere by a batch process to obtain a volatile content of 7.2% by mass and graphite. Average interlayer distance d of crystal 002 Was 0.3435 nm. The raw coal composition thus obtained exhibited properties as easily graphitizable carbon.
(Ii) Production of carbon material
100 parts by mass of the above raw coal composition was mixed with 200 parts by mass of potassium hydroxide, the activation reaction was allowed to proceed at 750 ° C. for 1 hour in a nitrogen gas atmosphere, and after the reaction, washing with water and acid washing (HCl) Was used to remove metallic potassium remaining in the carbon material, followed by drying to obtain a carbon material for an electrode of an electric double layer capacitor. The specific surface area of this carbon material is 1980 m 2 / G. The pore volume is 0.91 cm 3 / G, pore diameter was 0.18 nm. (Iii) Preparation of electrode
10 parts by mass of carbon black and 10 parts by mass of polytetrafluoroethylene powder were added to 80 parts by mass of the carbon material pulverized to an average particle size of 40 μm, and kneaded in a mortar until it became a paste. Next, the obtained paste was rolled with a roller press of 180 kPa to produce an electrode sheet having a thickness of 200 μm.
(Iv) Cell assembly
After punching out two discs each having a diameter of 16 mm from the above-mentioned electrode sheet and vacuum drying them at 120 ° C. and 0.1 Torr for 2 hours, the organic electrolyte solution (triethylmethyl Ammonium tetrafluoroborate in propylene carbonate (concentration: 1 mol / l) was vacuum impregnated. Next, the two electrodes were used as a positive electrode and a negative electrode, respectively. A glass fiber separator (manufactured by ADVANTEC, trade name: GA-200, thickness: 200 μm) was attached between the two electrodes, and a collector of aluminum foil was attached to both ends. An electric double-layer capacitor (coin-type cell) was fabricated by incorporating the battery into a two-electrode cell manufactured by Hosen.
(V) Measurement of capacitance
The coin cell was charged to 2.7 V at a constant current of 10 mA per F. After maintaining the voltage at 2.7 V for 12 hours after the end of charging, a constant current discharge of 10 mA was performed. Then, from the energy amount at the time of discharge, the following equation:
Total discharge energy W [W · s] = {Capacitance C [F] × (discharge start voltage V [V]) 2 } / 2
Was calculated according to the following equation.
[0044]
As a result, the capacitance per unit mass (F / g) obtained by dividing this capacitance by the mass of the carbon material in the electrode was 44.3 F / g. The capacitance per unit volume (F / cc) multiplied by the density was 32.1 F / cc. The internal resistance was 21Ω. From the above results, it was confirmed that the electric double layer capacitor of the present invention can achieve a very high level of capacitance of 30 F / cc or more.
[0045]
(Comparative Example 1)
The raw coal composition obtained by carbonizing a petroleum heavy oil having a sulfur content of 4.5% by mass and an asphaltene amount of 9.5% by mass in an inert gas atmosphere at 480 ° C. for 4 hours has a volatile content of 6. 8% by mass, but the average interlayer distance d of graphite crystals 002 Was 0.3450 nm, which was beyond the range of the present invention.
[0046]
The alkali activation treatment was performed under the same conditions as in Example 1 except that this raw coal composition was used. As a result, the specific surface area of the carbon material after the activation treatment was 1340 m. 2 / G. The capacitance (F / g) per unit mass of the electric double layer capacitor assembled in the same manner as in Example 1 except that this carbon material was used was 30.9 F / g, and the capacitance per unit volume. The capacity was also reduced to 22.0 F / cc. Further, the internal resistance was 36Ω.
[0047]
(Comparative Example 2)
When the heavy petroleum oil used in Example 1 was carbonized at 550 ° C. for 4 hours in a nitrogen gas atmosphere, the obtained raw coal composition was found to have an average interlayer distance d of graphite crystals. 002 Was 0.3425 nm, and the volatile matter content was 5.5% by mass.
[0048]
As a result of performing the alkali activation treatment under the same conditions as in Example 1 except that this raw coal composition was used, the specific surface area of the carbon material after the activation treatment was 1590 m. 2 / G. Also, the capacitance per unit mass (F / g) of the electric double layer capacitor assembled in the same manner as in Example 1 except that this carbon material was used was 35.6 F / g, and the capacitance per unit volume. The capacity was also reduced to 25.5 F / cc. Further, the internal resistance was 31Ω.
[0049]
(Comparative Example 3)
When the petroleum heavy oil used in Example 1 was carbonized in a nitrogen gas atmosphere at 750 ° C. for 4 hours, the obtained raw coal composition showed an average interlayer distance d of graphite crystals. 002 Was 0.3415 nm, and the volatile matter was 2.2% by mass.
[0050]
The alkali activation treatment was performed under the same conditions as in Example 1 except that this raw coal composition was used. As a result, the specific surface area of the carbon material after the activation treatment was 350 m 2 / G. The capacitance per unit mass (F / g) of the electric double layer capacitor assembled in the same manner as in Example 1 except that this carbon material was used was 18.2 F / g, and the capacitance per unit volume. The capacity was also reduced to 13.4 F / cc. Further, the internal resistance was 40Ω.
[0051]
【The invention's effect】
As described above, by using the raw coal composition of the present invention, it is possible to improve the bulk density of the electrode material for the electrode after the activation treatment, to sufficiently increase the specific surface area, and to achieve a high level of static electricity. An electric double layer capacitor in which the capacitance and the internal resistance are simultaneously achieved can be manufactured. Further, the temperature of the activation treatment for obtaining the electrode carbon material can be made relatively low, and the yield of the electrode carbon material can be improved.
[0052]
As described above, by using an electrode containing the carbon material for an electrode of the present invention obtained from the raw coal composition of the present invention, an electric double layer capacitor having a large capacitance and a low internal resistance can be obtained. Are very useful for various applications such as power sources for automobiles, standby power sources for various home appliances, and power sources for various portable devices.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003034267A JP2004247433A (en) | 2003-02-12 | 2003-02-12 | Raw-material coal composition of carbon material for electrodes of electric double-layer capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003034267A JP2004247433A (en) | 2003-02-12 | 2003-02-12 | Raw-material coal composition of carbon material for electrodes of electric double-layer capacitor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004247433A true JP2004247433A (en) | 2004-09-02 |
Family
ID=33020010
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003034267A Pending JP2004247433A (en) | 2003-02-12 | 2003-02-12 | Raw-material coal composition of carbon material for electrodes of electric double-layer capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004247433A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006018871A1 (en) * | 2004-08-18 | 2006-02-23 | Nippon Oil Corporation | Material carbon composition for carbon material for electrode of electric double layer capacitor |
WO2006068173A1 (en) * | 2004-12-22 | 2006-06-29 | Nippon Oil Corporation | Raw material coal composition for carbon material for electrode in electric double layer capacitor |
WO2006137323A1 (en) * | 2005-06-21 | 2006-12-28 | Nippon Oil Corporation | Raw oil composition for carbon material for electric double layer capacitor electrode |
WO2007074938A1 (en) | 2005-12-27 | 2007-07-05 | Nippon Oil Corporation | Original coal and stock oil composition for needle coke and for electricity storing carbon material |
WO2007074939A1 (en) * | 2005-12-27 | 2007-07-05 | Nippon Oil Corporation | Raw coal for making carbonaceous material for electricity storage or needle coke |
JP2008150399A (en) * | 2005-12-27 | 2008-07-03 | Nippon Petroleum Refining Co Ltd | Petroleum coke and method for producing the same |
JP2008156376A (en) * | 2005-12-27 | 2008-07-10 | Nippon Petroleum Refining Co Ltd | Petroleum coke and method for producing the same |
JP2009013012A (en) * | 2007-07-04 | 2009-01-22 | Nippon Oil Corp | Method of producing active carbon for electric double-layer capacitor electrode |
US8137530B2 (en) | 2007-06-22 | 2012-03-20 | Nippon Petroleum Refining Co., Ltd. | Process for producing petroleum coke |
-
2003
- 2003-02-12 JP JP2003034267A patent/JP2004247433A/en active Pending
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006018871A1 (en) * | 2004-08-18 | 2006-02-23 | Nippon Oil Corporation | Material carbon composition for carbon material for electrode of electric double layer capacitor |
US7582902B2 (en) | 2004-12-22 | 2009-09-01 | Nippon Oil Corporation | Raw material carbon composition for carbon material for electrode in electric double layer capacitor |
WO2006068173A1 (en) * | 2004-12-22 | 2006-06-29 | Nippon Oil Corporation | Raw material coal composition for carbon material for electrode in electric double layer capacitor |
WO2006137323A1 (en) * | 2005-06-21 | 2006-12-28 | Nippon Oil Corporation | Raw oil composition for carbon material for electric double layer capacitor electrode |
US7993619B2 (en) | 2005-06-21 | 2011-08-09 | Nippon Oil Corporation | Raw oil composition for carbon material for electric double layer capacitor electrode |
CN101203457B (en) * | 2005-06-21 | 2010-12-15 | 新日本石油株式会社 | Raw oil composition for carbon material for electric double layer capacitor electrode |
US7959888B2 (en) | 2005-12-27 | 2011-06-14 | Nippon Oil Corporation | Raw coke for electricity storage carbon material and needle coke |
EP1977998A4 (en) * | 2005-12-27 | 2012-02-29 | Nippon Oil Corp | Original coal and stock oil composition for needle coke and for electricity storing carbon material |
JP2008156376A (en) * | 2005-12-27 | 2008-07-10 | Nippon Petroleum Refining Co Ltd | Petroleum coke and method for producing the same |
JP2008150399A (en) * | 2005-12-27 | 2008-07-03 | Nippon Petroleum Refining Co Ltd | Petroleum coke and method for producing the same |
WO2007074939A1 (en) * | 2005-12-27 | 2007-07-05 | Nippon Oil Corporation | Raw coal for making carbonaceous material for electricity storage or needle coke |
US7964173B2 (en) | 2005-12-27 | 2011-06-21 | Nippon Oil Corporation | Feedstock composition and raw coke for electricity storage carbon material and needle coke |
WO2007074938A1 (en) | 2005-12-27 | 2007-07-05 | Nippon Oil Corporation | Original coal and stock oil composition for needle coke and for electricity storing carbon material |
EP2722307A1 (en) * | 2005-12-27 | 2014-04-23 | Nippon Oil Corporation | Raw coke for electricity storage carbon material and needle coke |
EP1982956A4 (en) * | 2005-12-27 | 2012-02-29 | Nippon Oil Corp | Raw coal for making carbonaceous material for electricity storage or needle coke |
KR101340194B1 (en) * | 2005-12-27 | 2014-01-02 | 제이엑스 닛코닛세키에너지주식회사 | Original coal and stock oil composition for needle coke and for electricity storing carbon material |
US8197788B2 (en) | 2005-12-27 | 2012-06-12 | Nippon Oil Corporation | Raw coke for electricity storage carbon material and needle coke |
US8226921B2 (en) | 2005-12-27 | 2012-07-24 | Nippon Oil Corporation | Raw coke for electricity storage carbon material and needle coke |
US8137530B2 (en) | 2007-06-22 | 2012-03-20 | Nippon Petroleum Refining Co., Ltd. | Process for producing petroleum coke |
JP2009013012A (en) * | 2007-07-04 | 2009-01-22 | Nippon Oil Corp | Method of producing active carbon for electric double-layer capacitor electrode |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101135417B1 (en) | Raw material carbon composition for carbon material for electrode of electric double layer capacitor | |
JP5473282B2 (en) | Carbon material for electric double layer capacitor and manufacturing method thereof | |
KR101470050B1 (en) | Process for producing activated carbon for electric double layer capacitor electrode | |
US7582902B2 (en) | Raw material carbon composition for carbon material for electrode in electric double layer capacitor | |
JP5344972B2 (en) | Carbon material for electric double layer capacitor electrode and manufacturing method thereof | |
JP6380993B2 (en) | Activated carbon for electric double layer capacitor electrode and manufacturing method thereof | |
JP4092344B2 (en) | Raw material composition of carbon material for electric double layer capacitor electrode | |
JP2014530502A (en) | High voltage electrochemical double layer capacitor | |
JP5242090B2 (en) | Method for producing activated carbon for electric double layer capacitor electrode | |
JP2004247433A (en) | Raw-material coal composition of carbon material for electrodes of electric double-layer capacitor | |
JP2006059923A (en) | Original composition of carbon material for electrode of electric double-layer capacitor | |
JP4065011B1 (en) | Non-porous carbon and electric double layer capacitors made from raw materials containing subelements | |
JP4179581B2 (en) | Activated carbon, its production method and its use | |
JP4233508B2 (en) | Raw carbon composition of carbon material for electrode of electric double layer capacitor | |
JP5030611B2 (en) | Electrode material for electric double layer capacitor and electric double layer capacitor using the same | |
US20240294385A1 (en) | Method for producing activated carbon | |
WO2006018871A1 (en) | Material carbon composition for carbon material for electrode of electric double layer capacitor | |
JP2008182182A (en) | Non-porous carbon with charging curve indicative of sharp bend and electric double-layer capacitor | |
JP2008050258A (en) | Carbonaceous substance and electrical double layer capacitor using the same | |
JP2004311790A (en) | Activated carbon and its manufacturing method, and polarizable electrode and electric double layer capacitor | |
JP2008010559A (en) | Activated carbon for electric double-layer capacitor electrode | |
JP2007227797A (en) | Carbon material for electric double-layer capacitor electrode, and electric double-layer capacitor using same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060111 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080530 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080617 |
|
A521 | Written amendment |
Effective date: 20080815 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090217 |