JP2008150399A - Petroleum coke and method for producing the same - Google Patents

Petroleum coke and method for producing the same Download PDF

Info

Publication number
JP2008150399A
JP2008150399A JP2005375926A JP2005375926A JP2008150399A JP 2008150399 A JP2008150399 A JP 2008150399A JP 2005375926 A JP2005375926 A JP 2005375926A JP 2005375926 A JP2005375926 A JP 2005375926A JP 2008150399 A JP2008150399 A JP 2008150399A
Authority
JP
Japan
Prior art keywords
mass
oil
coke
less
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005375926A
Other languages
Japanese (ja)
Other versions
JP4809675B2 (en
Inventor
Takashi Oyama
隆 大山
Kazuhisa Nakanishi
和久 中西
Hiromitsu Hashisaka
博光 橋板
Tamotsu Tano
保 田野
Ippei Fujinaga
逸平 藤永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Petroleum Refining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2005375926A priority Critical patent/JP4809675B2/en
Application filed by Nippon Petroleum Refining Co Ltd filed Critical Nippon Petroleum Refining Co Ltd
Priority to KR1020087015793A priority patent/KR101340194B1/en
Priority to EP14151451.3A priority patent/EP2722308A1/en
Priority to EP14151447.1A priority patent/EP2722307B1/en
Priority to EP06843739.1A priority patent/EP1977998B1/en
Priority to PCT/JP2006/326368 priority patent/WO2007074938A1/en
Priority to US12/094,222 priority patent/US7964173B2/en
Priority to CN200680045040.1A priority patent/CN101331082B/en
Publication of JP2008150399A publication Critical patent/JP2008150399A/en
Application granted granted Critical
Publication of JP4809675B2 publication Critical patent/JP4809675B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To provide petroleum coke having sufficiently small thermal expansion coefficient and sufficiently suppressed puffing phenomenon and a method for producing the petroleum coke. <P>SOLUTION: The method for producing the petroleum coke comprises coking of a stock oil containing a first heavy oil obtained as a residual oil of a vacuum distillation of a prescribed stock oil and having an initial boiling point of ≥300°C, an asphalt content of ≤12 mass%, a saturated component content of ≥50 mass% and a sulfur content of ≤0.3 mass% and a second heavy oil obtained by the fluidized catalytic cracking of a prescribed stock oil and having an initial boiling point of ≥200°C, a sulfur content of ≤0.5 mass% and a nitrogen content of ≤0.2 mass%. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は石油コークス及びその製造方法に関する。   The present invention relates to petroleum coke and a method for producing the same.

電気製鋼用黒鉛電極の骨材に使用されるニードルコークスは、一般的には石油系重質油やコールタールを原料として製造される。黒鉛電極の製造工程においては、まず、コークス粒とバインダーピッチとを所定の割合で配合し、加熱捏合した後、押し出し成型して生電極を製造する。そして、この生電極を焼成し、黒鉛化した後、加工することにより黒鉛電極製品が得られる。   Needle coke used for the aggregate of graphite electrodes for electric steelmaking is generally manufactured using petroleum heavy oil or coal tar as a raw material. In the process of producing a graphite electrode, first, coke grains and a binder pitch are blended at a predetermined ratio, heat-combined, and then extruded to produce a raw electrode. The raw electrode is fired, graphitized, and then processed to obtain a graphite electrode product.

ここで、黒鉛電極は高温雰囲気などの過酷な条件で使用されるため、熱膨張係数(CTE)が低いことが望まれる。つまり、熱膨張係数が小さいものほど電気製鋼時の電極消耗は小さくなり、電気製鋼のコストを低減することができる。   Here, since the graphite electrode is used under severe conditions such as a high temperature atmosphere, it is desired that the coefficient of thermal expansion (CTE) is low. That is, the smaller the coefficient of thermal expansion, the smaller the electrode consumption during electric steelmaking, and the cost of electric steelmaking can be reduced.

また、上記の黒鉛化は、約3000℃で熱処理する工程であり、直接通電方式の炉(LWG炉)を用いる方法が一般的であるが、LWG炉を用いて黒鉛化を行うと、昇温速度が速いためにガスの発生速度が速くなり、パッフィング(puffing)と呼ばれる異常膨張現象が起こりやすくなる。パッフィングが起こると、電極が低密度化し、場合によっては電極が破損してしまう。   The graphitization is a process of heat treatment at about 3000 ° C., and a method using a direct current type furnace (LWG furnace) is common, but if graphitization is performed using an LWG furnace, the temperature rises. Since the speed is high, the gas generation speed increases, and an abnormal expansion phenomenon called puffing is likely to occur. When puffing occurs, the electrode is reduced in density, and in some cases, the electrode is damaged.

そこで、ニードルコークスの製造時に熱膨張係数及びパッフィングの品質を制御する方法が検討されており、様々な方法が提案されている。例えば、下記特許文献1には、コールタール系原料から、キノリン不溶分を実質的に除去した脱QIピッチに重合度を調整したオリゴマーを添加し、そのままディレードコーキング法によりコークス化する方法が開示されている。また、下記特許文献2には、コールタール系重質油と石油系重質油とを窒素分1.0重量%以下、硫黄分1.4重量%以下となる範囲の割合に混合して原料油を調整し、この原料油をディレードコーカーに装入して、生コークスを製造し、得られた生コークスを700〜900℃の温度範囲でか焼し、一旦冷却した後、再び1200〜1600℃の温度範囲でか焼する方法が開示されている。また、下記特許文献3には、石炭を急速熱分解して石炭タールを製造するに際し、反応炉内の熱分解温度を750℃以上に保ち、かつ熱分解生成物の反応炉内滞留時間を5秒以下とすることにより液状生成物を得て、この液状生成物またはこれに含まれるピッチを炭化する方法が開示されている。また、下記特許文献4には、石油系重質油単独又は該石油系重質油に予めキノリン不溶分を除去したコールタール系重質油を混合したものを原料油としてディレードコーキングし、ニードルコークスを製造するに際し、石油系重質油として灰分等のパーティクル含有量が0.05重量%乃至1重量%の範囲になるように予め調整したものを用いる方法が開示されている。
特開平5−105881号公報 特開平5−163491号公報 特開平5−202362号公報 特開平7−3267号公報
Therefore, methods for controlling the coefficient of thermal expansion and the quality of puffing during the manufacture of needle coke have been studied, and various methods have been proposed. For example, Patent Document 1 below discloses a method in which an oligomer whose polymerization degree is adjusted is added to a de-QI pitch from which a quinoline-insoluble component has been substantially removed from a coal tar-based raw material, and then coked by a delayed coking method. ing. In Patent Document 2 below, coal tar heavy oil and petroleum heavy oil are mixed at a ratio of a nitrogen content of 1.0 wt% or less and a sulfur content of 1.4 wt% or less. After adjusting the oil, this raw oil was charged into a delayed coker to produce raw coke, and the obtained raw coke was calcined in a temperature range of 700 to 900 ° C., once cooled, and then again 1200 to 1600. A method of calcination in the temperature range of ° C. is disclosed. Further, in Patent Document 3 below, when producing coal tar by rapid pyrolysis of coal, the thermal decomposition temperature in the reaction furnace is kept at 750 ° C. or higher, and the residence time of the thermal decomposition product in the reaction furnace is 5 A method is disclosed in which a liquid product is obtained by setting it to a second or less, and the liquid product or pitch contained therein is carbonized. Further, in Patent Document 4 listed below, oil-based heavy oil alone or a mixture of coal-based heavy oil from which quinoline insolubles have been removed in advance is subjected to delayed coking as a raw oil, and needle coke is used. A method of using a petroleum heavy oil that has been adjusted in advance so that the content of particles such as ash is in the range of 0.05% by weight to 1% by weight is disclosed.
JP-A-5-105881 JP-A-5-163491 JP-A-5-202362 Japanese Patent Laid-Open No. 7-3267

しかし、上記特許文献1〜4に記載の方法であっても、熱膨張係数の低下又はパッフィングの抑制の効果は必ずしも十分とはいえず、得られるコークスの品質は電気製鋼用黒鉛電極の骨材としての要求レベルに未だ到達していないのが実情である。   However, even with the methods described in Patent Documents 1 to 4, the effect of reducing the coefficient of thermal expansion or suppressing puffing is not necessarily sufficient, and the quality of the obtained coke is the aggregate of the graphite electrode for electric steelmaking. The actual situation is that the required level has not yet been reached.

本発明は、上記従来技術が有する課題に鑑みてなされたものであり、熱膨張係数が十分に小さく、且つパッフィングが十分に抑制された石油コークス及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and an object thereof is to provide a petroleum coke having a sufficiently low thermal expansion coefficient and sufficiently suppressed puffing and a method for producing the same.

そこで、上記課題を解決するために、本発明は、所定の原料油を減圧蒸留したときに残渣油として得られる初留点300℃以上、アスファルト分12質量%以下、飽和分50質量%以上且つ硫黄分0.3質量%以下の第1の重質油と、所定の原料油を流動接触分解して得られる初留点200℃以上、硫黄分0.5質量%以下、窒素分0.2質量%以下の第2の重質油と、を含有する原料油をコークス化することを特徴とする石油コークスの製造方法を提供する。   Therefore, in order to solve the above problems, the present invention provides an initial boiling point of 300 ° C. or higher obtained as a residual oil when a predetermined raw material oil is distilled under reduced pressure, an asphalt content of 12% by mass or less, a saturated content of 50% by mass or more and First boiling point 200 ° C. or higher obtained by fluid catalytic cracking of a first heavy oil having a sulfur content of 0.3% by mass or less and a predetermined raw material oil, sulfur content 0.5% by mass or less, nitrogen content 0.2 Provided is a method for producing petroleum coke, characterized by coking raw oil containing 2% by mass or less of a second heavy oil.

このように、第1の重質油と第2の重質油とを含有する原料油をコークス化することによって、熱膨張係数が十分に小さく、且つパッフィングが十分に抑制された石油コークスを安定的に得ることができるようになる。   In this way, by coking the feed oil containing the first heavy oil and the second heavy oil, it is possible to stabilize petroleum coke with a sufficiently low thermal expansion coefficient and sufficiently suppressed puffing. Can be obtained.

また、パッフィングを抑制する方法として、パッフィング防止剤(パッフィングインヒビター)の使用が従来知られているが、この方法ではパッフィング防止剤が不純物となって電極の品質(特に熱膨張係数、密度など)に悪影響を及ぼすことがある。これに対して上記本発明の石油コークスは、パッフィング防止剤を使用せずともパッフィングを十分に抑制でき、更に石油コークスの熱膨張係数を十分に小さくすることができる点で非常に有用である。   In addition, the use of an anti-puffing agent (puffing inhibitor) is conventionally known as a method for suppressing puffing. In this method, the anti-puffing agent becomes an impurity and the quality of the electrode (especially thermal expansion coefficient, density, etc.) May be adversely affected. On the other hand, the petroleum coke of the present invention is very useful in that puffing can be sufficiently suppressed without using an anti-puffing agent and the thermal expansion coefficient of the petroleum coke can be sufficiently reduced.

なお、本発明でいう「硫黄分」とは、油の場合はJIS K2541に従い測定される値を、コークスの場合はJIS M 8813に従い測定される値を、それぞれ意味する。また、本発明でいう「窒素分」とは、油の場合はJIS K 2609に従い測定される値を、コークスの場合はJIS M 8813に従い測定される値を、それぞれ意味する。また、「飽和分」及び「アスファルト分」は薄層クロマトグラフを用いて測定される値を意味する。   In the present invention, “sulfur content” means a value measured according to JIS K2541 in the case of oil, and a value measured according to JIS M 8813 in the case of coke. The “nitrogen content” in the present invention means a value measured according to JIS K 2609 in the case of oil, and a value measured according to JIS M 8813 in the case of coke. Further, “saturated content” and “asphalt content” mean values measured using a thin layer chromatograph.

本発明において、第1の重質油と第2の重質油とを含有する原料油は、500℃で熱処理したときに10μm以下のモザイク組織が5%以下のコークスを与えるものであることが好ましい。   In the present invention, the raw material oil containing the first heavy oil and the second heavy oil is such that a mosaic structure of 10 μm or less gives a coke of 5% or less when heat-treated at 500 ° C. preferable.

また、本発明は、上記本発明石油コークスの製造方法により得られることを特徴とする石油コークスを提供する。   Moreover, this invention provides the petroleum coke characterized by being obtained by the manufacturing method of the said petroleum coke of this invention.

本発明の石油コークスは、上記本発明の石油コークスの製造方法により得られるものであるため、熱膨張係数が十分に小さく、且つパッフィングが十分に抑制された石油コークスである。したがって、本発明の石油コークスは、電気製鋼用黒鉛電極の骨材などの用途に好適である。   Since the petroleum coke of the present invention is obtained by the above-described method for producing petroleum coke of the present invention, it is a petroleum coke having a sufficiently small thermal expansion coefficient and sufficiently suppressed puffing. Therefore, the petroleum coke of this invention is suitable for uses, such as an aggregate of the graphite electrode for electric steelmaking.

また、本発明の石油コークスにおいては、硫黄分が0.3質量%以下であり、窒素分が0.1質量%以下であることが好ましい。   Moreover, in the petroleum coke of this invention, it is preferable that a sulfur content is 0.3 mass% or less, and a nitrogen content is 0.1 mass% or less.

以上の通り、本発明によれば、熱膨張係数が十分に小さく、且つパッフィングが十分に抑制された石油コークス及びその製造方法が提供される。   As described above, according to the present invention, a petroleum coke having a sufficiently small thermal expansion coefficient and sufficiently suppressed puffing and a method for producing the same are provided.

以下、本発明の好適な実施形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail.

本発明に係る第1の重質油は、所定の原料油を減圧蒸留したときに残渣油として得られる初留点300℃以上、アスファルト分10質量%以下、飽和分50質量%以上且つ硫黄分0.3質量%以下の重質油である。   The first heavy oil according to the present invention has an initial boiling point of 300 ° C. or higher, an asphalt content of 10% by mass or less, a saturated content of 50% by mass or more, and a sulfur content obtained as a residual oil when a predetermined raw material oil is distilled under reduced pressure. It is a heavy oil of 0.3 mass% or less.

第1の重質油の原料油としては、例えば、原油、原油の蒸留により得られる常圧蒸留残油、並びにこれらの混合油等が挙げられる。   Examples of the first heavy oil feedstock include crude oil, atmospheric distillation residue obtained by distillation of crude oil, and mixed oils thereof.

上記原料油を減圧蒸留するときの処理条件は、得られる第1の重質油の沸点、アスファルト分、飽和分及び硫黄分がそれぞれ上記条件を満たす限りにおいて特に制限されないが、圧力は30kPa以下が好ましく、温度は400℃以上が好ましい。   The treatment conditions when the above raw oil is distilled under reduced pressure are not particularly limited as long as the boiling point, asphalt content, saturated content and sulfur content of the obtained first heavy oil satisfy the above conditions, but the pressure is 30 kPa or less. Preferably, the temperature is 400 ° C. or higher.

このようにして減圧蒸留したときに残渣油として得られる重質油のうち、沸点、アスファルト分、飽和分及び硫黄分がそれぞれ上記条件を満たす重質油が本発明に係る第1の重質油として用いられる。   Among the heavy oils obtained as residual oils when distilled under reduced pressure in this way, the heavy oil satisfying the above-mentioned conditions for the boiling point, asphalt content, saturated content and sulfur content is the first heavy oil according to the present invention. Used as

すなわち、第1の重質油の初留点は、前述の通り300℃以上であり、好ましくは350℃以上である。   That is, the initial boiling point of the first heavy oil is 300 ° C. or higher as described above, and preferably 350 ° C. or higher.

また、第1の重質油のアスファルト分は、前述の通り12質量%以下であり、好ましくは10質量%以下、より好ましくは9質量%以下である。アスファルト分が12質量%を超えると、得られるコークスの熱膨張係数が高くなる。   The asphalt content of the first heavy oil is 12% by mass or less as described above, preferably 10% by mass or less, and more preferably 9% by mass or less. When the asphalt content exceeds 12% by mass, the coefficient of thermal expansion of the obtained coke becomes high.

また、第1の重質油の飽和分は、前述の通り50質量%以上であり、好ましくは55質量%以上、より好ましくは60質量%以上である。飽和分が50質量%未満であると、得られるコークスの熱膨張係数が高くなる。   Further, as described above, the saturated content of the first heavy oil is 50% by mass or more, preferably 55% by mass or more, and more preferably 60% by mass or more. When the saturated content is less than 50% by mass, the coefficient of thermal expansion of the obtained coke is increased.

また、第1の重質油の硫黄分は、前述の通り0.3質量%以下であり、好ましくは0.2質量%以下、より好ましくは0.1質量%以下である。硫黄分が0.2質量%を超えると石油コークスのパッフィングを十分に抑制することができない。   Moreover, the sulfur content of the first heavy oil is 0.3% by mass or less as described above, preferably 0.2% by mass or less, and more preferably 0.1% by mass or less. If the sulfur content exceeds 0.2% by mass, puffing of petroleum coke cannot be sufficiently suppressed.

また、本発明に係る第2の重質油は、所定の原料油を流動接触分解して得られる初留点200℃以上、硫黄分0.5質量%以下、窒素分0.2質量%以下の重質油である。   In addition, the second heavy oil according to the present invention has an initial boiling point of 200 ° C. or higher, a sulfur content of 0.5% by mass or less, and a nitrogen content of 0.2% by mass or less obtained by fluid catalytic cracking of a predetermined raw material oil. Of heavy oil.

ここで、「流動接触分解」とは、固体酸触媒などを用いて高沸点留分を分解する処理を意味する。かかる処理に用いられる流動接触分解装置はFCC(Fluidized Catalytic Cracking)とも呼ばれる。   Here, “fluid catalytic cracking” means a process of cracking a high-boiling fraction using a solid acid catalyst or the like. A fluid catalytic cracking apparatus used for such treatment is also called FCC (Fluidized Catalytic Cracking).

第2の重質油の原料油としては、流動接触分解により沸点、硫黄分及び窒素分が上記条件を満たす重質油を得ることが可能なものであれば特に制限されないが、15℃における密度が0.8g/cm以上である炭化水素油が好ましい。このような原料油としては、常圧蒸留残油、減圧蒸留残油、シェールオイル、タールサンドビチューメン、オリノコタール、石炭液化油、及びこれらを水素化精製した重質油などが挙げられる。また、第2の重質油の原料油は、上記以外に、直留軽油、減圧軽油、脱硫軽油、脱硫減圧軽油等の比較的軽質な油を更に含有してもよい。本発明では、常圧蒸留残油、及び減圧蒸留残油が特に好ましく用いられる。 The second heavy oil feedstock is not particularly limited as long as it can obtain a heavy oil whose boiling point, sulfur content and nitrogen content satisfy the above conditions by fluid catalytic cracking, but the density at 15 ° C. Is preferably a hydrocarbon oil of 0.8 g / cm 3 or more. Examples of such raw material oil include atmospheric distillation residual oil, vacuum distillation residual oil, shale oil, tar sand bitumen, orinocotal, coal liquefied oil, and heavy oil obtained by hydrorefining these. In addition to the above, the raw material oil for the second heavy oil may further contain relatively light oils such as straight-run gas oil, vacuum gas oil, desulfurized gas oil, and desulfurized vacuum gas oil. In the present invention, atmospheric distillation residue and vacuum distillation residue are particularly preferably used.

また、流動接触分解の条件は、沸点、硫黄分及び窒素分が上記条件を満たす重質油を得ることが可能であれば特に制限されないが、例えば反応温度480〜550℃、全圧1〜3kg/cmG、触媒/油比1〜20、接触時間1〜10秒とすることが好ましい。 The conditions for fluid catalytic cracking are not particularly limited as long as it is possible to obtain a heavy oil whose boiling point, sulfur content and nitrogen content satisfy the above conditions. For example, the reaction temperature is 480 to 550 ° C., and the total pressure is 1 to 3 kg. / Cm 2 G, catalyst / oil ratio of 1 to 20, and contact time of 1 to 10 seconds are preferable.

また、流動接触分解に用いられる触媒としては、例えばシリカ・アルミナ触媒、ゼオライト触媒、あるいはこれらの触媒に白金(Pt)などの金属を担持したものなどが挙げられる。これらの触媒は市販品を用いてもよい。   Examples of the catalyst used for fluid catalytic cracking include a silica / alumina catalyst, a zeolite catalyst, or a catalyst in which a metal such as platinum (Pt) is supported on these catalysts. A commercial item may be used for these catalysts.

このようにして得られる第2の重質油の初留点は、前述の通り200℃以上であり、好ましくは220℃以上である。なお、初留点が200℃未満であると、コーキング時のコークス収率が低下し、また、熱膨張係数が高くなる。   The initial boiling point of the second heavy oil thus obtained is 200 ° C. or higher as described above, and preferably 220 ° C. or higher. When the initial boiling point is less than 200 ° C., the coke yield at the time of coking is lowered and the thermal expansion coefficient is increased.

また、第2の重質油の硫黄分は、前述の通り0.5質量%以下であり、好ましくは0.4質量%以下、より好ましくは0.3質量%以下である。硫黄分が上記上限値を超えると、石油コークスのパッフィングを十分に抑制することができない。   Moreover, the sulfur content of the second heavy oil is 0.5% by mass or less, preferably 0.4% by mass or less, more preferably 0.3% by mass or less as described above. When the sulfur content exceeds the above upper limit value, the petroleum coke puffing cannot be sufficiently suppressed.

また、第2の重質油の窒素分は、前述の通り0.2質量%以下であり、好ましくは0.15質量%以下、より好ましくは0.1質量%以下である。窒素分が上記上限値を超えると、石油コークスのパッフィングを十分に抑制することができない。   Further, as described above, the nitrogen content of the second heavy oil is 0.2% by mass or less, preferably 0.15% by mass or less, and more preferably 0.1% by mass or less. If the nitrogen content exceeds the above upper limit value, the petroleum coke puffing cannot be sufficiently suppressed.

本発明においては、上記の第1の重質油と第2の重質油とを含有する原料油をコークス化することによって、熱膨張係数が十分に小さく、且つパッフィングが十分に抑制された石油コークスを安定的に得ることができる。ここで、原料油における第1の重質油と第2の重質油との混合比は特に制限されないが、原料油全量を基準として、第1の重質油が1〜50質量%であることが好ましく、5〜50質量%であることがより好ましく、15〜50質量%であることが更に好ましい。   In the present invention, by coking the raw material oil containing the first heavy oil and the second heavy oil, petroleum whose coefficient of thermal expansion is sufficiently small and puffing is sufficiently suppressed Coke can be obtained stably. Here, the mixing ratio of the first heavy oil and the second heavy oil in the raw oil is not particularly limited, but the first heavy oil is 1 to 50% by mass based on the total amount of the raw oil. It is preferably 5 to 50% by mass, more preferably 15 to 50% by mass.

また、第1の重質油と第2の重質油とを含有する原料油は、500℃で熱処理したときに10μm以下のモザイク組織が5%以下の石油コークスを与えるものであることが好ましい。ここで、石油コークス中に10μm以下のモザイク組織の割合が小さいことは、メソフェースと呼ばれる液晶の成長状態が良好であることを意味する。メソフェースは、原料油の熱処理に伴い熱分解と重縮合が起こることによって生成する中間生成物であり、同一平面に沿って芳香族環の連なりが発達したものである。このメソフェースが大きく成長して一軸方向に配向すればニードルコークスの熱膨張係数を小さくできると考えられており、したがって高度結晶が発達したメソフェースをいかに生成させるかが重要となる。   Moreover, it is preferable that the raw material oil containing the first heavy oil and the second heavy oil is such that a mosaic structure of 10 μm or less gives a petroleum coke of 5% or less when heat-treated at 500 ° C. . Here, a small proportion of the mosaic structure of 10 μm or less in petroleum coke means that the growth state of liquid crystal called mesophase is good. Mesophase is an intermediate product produced by thermal decomposition and polycondensation accompanying heat treatment of raw material oil, and a series of aromatic rings developed along the same plane. It is considered that the thermal expansion coefficient of needle coke can be reduced if this mesoface grows large and is oriented in the uniaxial direction. Therefore, it is important how to produce a mesoface with advanced crystals.

なお、従来、原料油中に飽和分、特に脂肪族分が多く含まれると、芳香族成分の重合及び重縮合以外に架橋反応が起こるため、三次元構造の結晶が成長してメソフェースが十分に成長せず、その結果、熱膨張係数が大きくなると考えられている。この点を鑑みれば、上記第1の重質油の飽和分が60質量%以上であっても10μm以下のモザイク組織が5%以下の石油コークスが得られることは驚くべき結果である。   Conventionally, if a raw material oil contains a large amount of a saturated component, particularly an aliphatic component, a cross-linking reaction occurs in addition to the polymerization and polycondensation of aromatic components. It is believed that it does not grow and, as a result, the coefficient of thermal expansion increases. In view of this point, it is a surprising result that even if the saturated content of the first heavy oil is 60% by mass or more, a petroleum coke having a mosaic structure of 10 μm or less and 5% or less can be obtained.

また、上記原料油をコークス化する方法としては、ディレードコーキング法、ビスブレーキング法、フレキシコーキング法、ユリカプロセス、H−Oilなどが挙げられ、これらの中でもディレードコーキング法が好ましい。   Examples of the method for coking the above-mentioned feedstock oil include a delayed coking method, a visbreaking method, a flexi coking method, a yurika process, and H-Oil. Among these, the delayed coking method is preferable.

ディレードコーキング法においては、石油コークスの原料油が加熱管中を加熱されながら急速に通過し、コークドラムに導入されてコーキングが起こる。コーキング条件は特に制限されないが、温度は好ましくは400〜600℃、より好ましくは450〜550℃であり;時間は好ましくは24〜72時間、より好ましくは36〜60時間である。   In the delayed coking method, petroleum coke feedstock rapidly passes through a heating pipe while being heated, and is introduced into a coke drum to cause coking. The coking conditions are not particularly limited, but the temperature is preferably 400 to 600 ° C., more preferably 450 to 550 ° C .; the time is preferably 24 to 72 hours, more preferably 36 to 60 hours.

また、このようにして得られるコークスをロータリーキルン、シャフト炉等でか焼することが好ましい。か焼の際の温度は1000〜1500℃が好ましく、時間は2〜6時間が好ましい。   The coke thus obtained is preferably calcined in a rotary kiln, a shaft furnace or the like. The temperature during calcination is preferably 1000 to 1500 ° C., and the time is preferably 2 to 6 hours.

また、本発明の石油コークスを用いて黒鉛電極製品を製造する方法としては、本発明の石油コークスにバインダーピッチを適当量添加した原料を加熱捏合した後、押し出し成型して生電極を製造して生電極を得、この生電極を焼成し、黒鉛化した後、加工する方法が挙げられる。   Moreover, as a method for producing a graphite electrode product using the petroleum coke of the present invention, a raw electrode obtained by extruding and molding a raw material obtained by adding an appropriate amount of binder pitch to the petroleum coke of the present invention is manufactured. There is a method in which a raw electrode is obtained, the raw electrode is baked, graphitized, and then processed.

以下、実施例及び比較例に基づき本発明を更に具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example at all.

[実施例1]
先ず、常圧蒸留残油(密度0.92g/cm、硫黄分0.35質量%)を、加熱炉出口温度350℃、圧力−100kPaの条件下で減圧蒸留し、初留点410℃、アスファルト分9質量%、飽和分61質量%、硫黄分0.1質量%、窒素分0.3質量%の減圧蒸留残渣油(以下、「減圧蒸留残渣油A」という。)を得た。
[Example 1]
First, an atmospheric distillation residue (density 0.92 g / cm 3 , sulfur content 0.35 mass%) was distilled under reduced pressure under conditions of a heating furnace outlet temperature of 350 ° C. and a pressure of −100 kPa, an initial boiling point of 410 ° C., A vacuum distillation residue oil (hereinafter referred to as “vacuum distillation residue oil A”) having an asphalt content of 9% by mass, a saturation content of 61% by mass, a sulfur content of 0.1% by mass and a nitrogen content of 0.3% by mass was obtained.

次に、減圧蒸留残渣油Aを試験管に入れ、常圧、500℃で3時間熱処理を行いコークス化した。生成したコークスを市販の樹脂に埋め込み偏光顕微鏡で観察したところ、10μm以下のモザイク組織は15質量%であった。   Next, the vacuum distillation residue oil A was put in a test tube and heat treated at 500 ° C. for 3 hours at normal pressure to be coke. When the produced coke was embedded in a commercially available resin and observed with a polarizing microscope, the mosaic structure of 10 μm or less was 15% by mass.

また、脱硫減圧軽油油(硫黄分500質量ppm、15℃における密度0.88g/cm)を流動接触分解し、流動接触分解残油(以下、「流動接触分解残油A」という。)を得た。得られた流動接触分解残油Aの初留点は210℃であり、硫黄分は0.1質量%、窒素分は0.1質量%、アスファルト分は0質量%、飽和分は34質量%であった。 Further, desulfurized vacuum gas oil (sulfur content: 500 mass ppm, density: 0.88 g / cm 3 at 15 ° C.) is subjected to fluid catalytic cracking, and fluid catalytic cracking residual oil (hereinafter referred to as “fluid catalytic cracking residual oil A”). Obtained. The initial boiling point of the obtained fluid catalytic cracking residual oil A is 210 ° C., the sulfur content is 0.1 mass%, the nitrogen content is 0.1 mass%, the asphalt content is 0 mass%, and the saturation content is 34 mass%. Met.

次に、流動接触分解残油Aを試験管に入れ、常圧、500℃で3時間熱処理を行いコークス化した。生成したコークスを市販の樹脂に埋め込み偏光顕微鏡で観察したところ、10μm以下のモザイク組織の存在は認められなかった。   Next, the fluid catalytic cracking residual oil A was put in a test tube and heat treated at 500 ° C. under normal pressure for 3 hours to be coke. When the produced coke was embedded in a commercially available resin and observed with a polarizing microscope, the presence of a mosaic structure of 10 μm or less was not recognized.

次に、減圧蒸留残渣油Aと流動接触分解残油Aとを質量比1:1で混合し、コークスの原料油を得た。この原料油を試験管に入れ、常圧、500℃で3時間熱処理を行いコークス化した。生成したコークスを市販の樹脂に埋め込み偏光顕微鏡で観察したところ、10μm以下のモザイク組織は3.5質量%であった。   Next, the vacuum distillation residue oil A and the fluid catalytic cracking residue oil A were mixed at a mass ratio of 1: 1 to obtain a coke raw material oil. This raw material oil was put into a test tube and heat treated at 500 ° C. under normal pressure for 3 hours to be coke. When the produced coke was embedded in a commercially available resin and observed with a polarizing microscope, the mosaic structure of 10 μm or less was 3.5% by mass.

次に、生成したコークスを1000℃で5時間焼成してか焼コークスを得た。得られたか焼コークスの硫黄分、窒素分及び嵩比重を表1に示す。   Next, the produced coke was fired at 1000 ° C. for 5 hours to obtain calcined coke. Table 1 shows the sulfur content, nitrogen content and bulk specific gravity of the obtained calcined coke.

また、か焼コークスに石炭系のバインダーピッチを30質量%加え、押し出し成形器で円柱状のピースを作製した。このピースをマッフル加熱炉を用いて1000℃で1時間焼成し、焼成後の熱膨張係数を測定した。さらに、ピースを室温から2800℃まで熱処理し、この過程での膨張の度合いをパッフィングとして測定した。得られた結果を表1に示す。   Further, 30% by mass of a coal-based binder pitch was added to calcined coke, and a cylindrical piece was produced with an extruder. This piece was fired at 1000 ° C. for 1 hour using a muffle heating furnace, and the thermal expansion coefficient after firing was measured. Furthermore, the piece was heat-treated from room temperature to 2800 ° C., and the degree of expansion in this process was measured as puffing. The obtained results are shown in Table 1.

[実施例2]
減圧蒸留残渣油Aと流動接触分解残油Aとを質量比1:5で混合し、コークスの原料油を調製した。コークスの原料油を調製した。次に、得られた原料油を試験管に入れ、常圧、500℃で3時間熱処理を行いコークス化した。生成したコークスを市販の樹脂に埋め込み偏光顕微鏡で観察したところ、10μm以下のモザイク組織は2.5質量%であった。
[Example 2]
The reduced pressure distillation residue oil A and the fluid catalytic cracking residue oil A were mixed at a mass ratio of 1: 5 to prepare a coke raw material oil. A coke feedstock was prepared. Next, the obtained raw material oil was put in a test tube and heat-treated at normal pressure and 500 ° C. for 3 hours to be coke. When the produced coke was embedded in a commercially available resin and observed with a polarizing microscope, the mosaic structure of 10 μm or less was 2.5% by mass.

次に、生成したコークスを1000℃で5時間焼成してか焼コークスを得た。得られたか焼コークスの硫黄分、窒素分及び嵩比重を表1に示す。   Next, the produced coke was fired at 1000 ° C. for 5 hours to obtain calcined coke. Table 1 shows the sulfur content, nitrogen content and bulk specific gravity of the obtained calcined coke.

また、か焼コークスに石炭系のバインダーピッチを30質量%加え、押し出し成形器で円柱状のピースを作製した。このピースをマッフル加熱炉を用いて1000℃で1時間焼成し、焼成後の熱膨張係数を測定した。さらに、ピースを室温から2800℃まで熱処理し、この過程での膨張の度合いをパッフィングとして測定した。得られた結果を表1に示す。   Further, 30% by mass of a coal-based binder pitch was added to calcined coke, and a cylindrical piece was produced with an extruder. This piece was fired at 1000 ° C. for 1 hour using a muffle heating furnace, and the thermal expansion coefficient after firing was measured. Furthermore, the piece was heat-treated from room temperature to 2800 ° C., and the degree of expansion in this process was measured as puffing. The obtained results are shown in Table 1.

[実施例3]
減圧蒸留残渣油Aと流動接触分解残油Aとを質量比1:3で混合し、コークスの原料油を調製した。コークスの原料油を調製した。次に、得られた原料油を試験管に入れ、常圧、500℃で3時間熱処理を行いコークス化した。生成したコークスを市販の樹脂に埋め込み偏光顕微鏡で観察したところ、10μm以下のモザイク組織は3.0質量%であった。
[Example 3]
The vacuum distillation residue oil A and the fluid catalytic cracking residue oil A were mixed at a mass ratio of 1: 3 to prepare a coke raw material oil. A coke feedstock was prepared. Next, the obtained raw material oil was put in a test tube and heat-treated at normal pressure and 500 ° C. for 3 hours to be coke. When the produced coke was embedded in a commercially available resin and observed with a polarizing microscope, the mosaic structure of 10 μm or less was 3.0% by mass.

次に、生成したコークスを1000℃で5時間焼成してか焼コークスを得た。得られたか焼コークスの硫黄分、窒素分及び嵩比重を表1に示す。   Next, the produced coke was fired at 1000 ° C. for 5 hours to obtain calcined coke. Table 1 shows the sulfur content, nitrogen content and bulk specific gravity of the obtained calcined coke.

また、か焼コークスに石炭系のバインダーピッチを30質量%加え、押し出し成形器で円柱状のピースを作製した。このピースをマッフル加熱炉を用いて1000℃で1時間焼成し、焼成後の熱膨張係数を測定した。さらに、ピースを室温から2800℃まで熱処理し、この過程での膨張の度合いをパッフィングとして測定した。得られた結果を表1に示す。   Further, 30% by mass of a coal-based binder pitch was added to calcined coke, and a cylindrical piece was produced with an extruder. This piece was fired at 1000 ° C. for 1 hour using a muffle heating furnace, and the thermal expansion coefficient after firing was measured. Furthermore, the piece was heat-treated from room temperature to 2800 ° C., and the degree of expansion in this process was measured as puffing. The obtained results are shown in Table 1.

[比較例1]
減圧蒸留残渣油Aを試験管に入れ、常圧、500℃で3時間熱処理を行いコークス化した。次に、生成したコークスを1000℃で5時間焼成してか焼コークスを得た。得られたか焼コークスの硫黄分、窒素分及び嵩比重を表1に示す。
[Comparative Example 1]
The vacuum distillation residue oil A was put into a test tube and heat-treated at normal pressure and 500 ° C. for 3 hours to be coke. Next, the produced coke was fired at 1000 ° C. for 5 hours to obtain calcined coke. Table 1 shows the sulfur content, nitrogen content and bulk specific gravity of the obtained calcined coke.

また、か焼コークスに石炭系のバインダーピッチを30質量%加え、押し出し成形器で円柱状のピースを作製した。このピースをマッフル加熱炉を用いて1000℃で1時間焼成し、焼成後の熱膨張係数を測定した。さらに、ピースを室温から2800℃まで熱処理し、この過程での膨張の度合いをパッフィングとして測定した。得られた結果を表1に示す。   Further, 30% by mass of a coal-based binder pitch was added to calcined coke, and a cylindrical piece was produced with an extruder. This piece was fired at 1000 ° C. for 1 hour using a muffle heating furnace, and the thermal expansion coefficient after firing was measured. Furthermore, the piece was heat-treated from room temperature to 2800 ° C., and the degree of expansion in this process was measured as puffing. The obtained results are shown in Table 1.

[比較例2]
流動接触分解残油Aを試験管に入れ、常圧、500℃で3時間熱処理を行いコークス化した。次に、生成したコークスを1000℃で5時間焼成してか焼コークスを得た。得られたか焼コークスの硫黄分、窒素分及び嵩比重を表1に示す。
[Comparative Example 2]
Fluid catalytic cracking residual oil A was put in a test tube and heat-treated at normal pressure and 500 ° C. for 3 hours to be coke. Next, the produced coke was fired at 1000 ° C. for 5 hours to obtain calcined coke. Table 1 shows the sulfur content, nitrogen content and bulk specific gravity of the obtained calcined coke.

また、か焼コークスに石炭系のバインダーピッチを30質量%加え、押し出し成形器で円柱状のピースを作製した。このピースをマッフル加熱炉を用いて1000℃で1時間焼成し、焼成後の熱膨張係数を測定した。さらに、ピースを室温から2800℃まで熱処理し、この過程での膨張の度合いをパッフィングとして測定した。得られた結果を表1に示す。   Further, 30% by mass of a coal-based binder pitch was added to calcined coke, and a cylindrical piece was produced with an extruder. This piece was fired at 1000 ° C. for 1 hour using a muffle heating furnace, and the thermal expansion coefficient after firing was measured. Furthermore, the piece was heat-treated from room temperature to 2800 ° C., and the degree of expansion in this process was measured as puffing. The obtained results are shown in Table 1.

[比較例3]
硫黄分0.2質量%、窒素分0.3質量%、飽和分40質量%の低硫黄原油を減圧蒸留し、初留点410℃、アスファルト分12質量%、飽和分40質量%、硫黄分0.2質量%、窒素分0.3質量%の減圧蒸留残渣油(以下、「減圧残渣油B」という。)を得た。この減圧残渣油を試験管に入れ、常圧、500℃で3時間熱処理を行いコークス化した。生成したコークスを市販の樹脂に埋め込み偏光顕微鏡で観察したところ、10μm以下のモザイク組織は18%であった。
[Comparative Example 3]
Low-sulfur crude oil with a sulfur content of 0.2% by mass, nitrogen content of 0.3% by mass and saturation content of 40% by mass is distilled under reduced pressure, initial boiling point 410 ° C., asphalt content 12% by mass, saturation content 40% by mass, sulfur content A vacuum distillation residue oil (hereinafter referred to as “vacuum residue oil B”) having 0.2 mass% and nitrogen content of 0.3 mass% was obtained. This vacuum residue oil was put in a test tube and heat-treated at normal pressure and 500 ° C. for 3 hours to be coke. When the produced coke was embedded in a commercially available resin and observed with a polarizing microscope, the mosaic structure of 10 μm or less was 18%.

次に、生成したコークスを1000℃で5時間焼成してか焼コークスを得た。得られたか焼コークスの硫黄分、窒素分及び嵩比重を表1に示す。   Next, the produced coke was fired at 1000 ° C. for 5 hours to obtain calcined coke. Table 1 shows the sulfur content, nitrogen content and bulk specific gravity of the obtained calcined coke.

また、か焼コークスに石炭系のバインダーピッチを30質量%加え、押し出し成形器で円柱状のピースを作製した。このピースをマッフル加熱炉を用いて1000℃で1時間焼成し、焼成後の熱膨張係数を測定した。さらに、ピースを室温から2800℃まで熱処理し、この過程での膨張の度合いをパッフィングとして測定した。得られた結果を表1に示す。   Further, 30% by mass of a coal-based binder pitch was added to calcined coke, and a cylindrical piece was produced with an extruder. This piece was fired at 1000 ° C. for 1 hour using a muffle heating furnace, and the thermal expansion coefficient after firing was measured. Furthermore, the piece was heat-treated from room temperature to 2800 ° C., and the degree of expansion in this process was measured as puffing. The obtained results are shown in Table 1.

[比較例4]
減圧蒸留残渣油Bと流動接触分解残油Aとを質量比1:1で混合し、コークスの原料油を調製した。この原料油を試験管に入れ、常圧、500℃で3時間熱処理を行いコークス化した。生成したコークスを市販の樹脂に埋め込み偏光顕微鏡で観察したところ、10μm以下のモザイク組織は5%であった。
[Comparative Example 4]
The vacuum distillation residue oil B and the fluid catalytic cracking residue oil A were mixed at a mass ratio of 1: 1 to prepare a coke raw material oil. This raw material oil was put into a test tube and heat-treated at normal pressure and 500 ° C. for 3 hours to be coke. When the produced coke was embedded in a commercially available resin and observed with a polarizing microscope, the mosaic structure of 10 μm or less was 5%.

次に、生成したコークスを1000℃で5時間焼成してか焼コークスを得た。得られたか焼コークスの硫黄分、窒素分及び嵩比重を表1に示す。   Next, the produced coke was fired at 1000 ° C. for 5 hours to obtain calcined coke. Table 1 shows the sulfur content, nitrogen content and bulk specific gravity of the obtained calcined coke.

また、か焼コークスに石炭系のバインダーピッチを30質量%加え、押し出し成形器で円柱状のピースを作製した。このピースをマッフル加熱炉を用いて1000℃で1時間焼成し、焼成後の熱膨張係数を測定した。さらに、ピースを室温から2800℃まで熱処理し、この過程での膨張の度合いをパッフィングとして測定した。得られた結果を表1に示す。   Further, 30% by mass of a coal-based binder pitch was added to calcined coke, and a cylindrical piece was produced with an extruder. This piece was fired at 1000 ° C. for 1 hour using a muffle heating furnace, and the thermal expansion coefficient after firing was measured. Furthermore, the piece was heat-treated from room temperature to 2800 ° C., and the degree of expansion in this process was measured as puffing. The obtained results are shown in Table 1.

[比較例5]
減圧残渣油Aと流動接触分解残油Aとを質量比1:5で混合し、コークスの原料油を調製した。この原料油を試験管に入れ、常圧、500℃で3時間熱処理を行いコークス化した。次に、生成したコークスを1000℃で5時間焼成してか焼コークスを得た。得られたか焼コークスの硫黄分、窒素分及び嵩比重を表1に示す。
[Comparative Example 5]
The reduced pressure residual oil A and fluid catalytic cracking residual oil A were mixed at a mass ratio of 1: 5 to prepare a coke raw material oil. This raw material oil was put into a test tube and heat-treated at normal pressure and 500 ° C. for 3 hours to be coke. Next, the produced coke was fired at 1000 ° C. for 5 hours to obtain calcined coke. Table 1 shows the sulfur content, nitrogen content and bulk specific gravity of the obtained calcined coke.

また、か焼コークスに石炭系のバインダーピッチを30質量%加え、押し出し成形器で円柱状のピースを作製した。このピースをマッフル加熱炉を用いて1000℃で1時間焼成し、焼成後の熱膨張係数を測定した。さらに、ピースを室温から2800℃まで熱処理し、この過程での膨張の度合いをパッフィングとして測定した。得られた結果を表1に示す。   Further, 30% by mass of a coal-based binder pitch was added to calcined coke, and a cylindrical piece was produced with an extruder. This piece was fired at 1000 ° C. for 1 hour using a muffle heating furnace, and the thermal expansion coefficient after firing was measured. Furthermore, the piece was heat-treated from room temperature to 2800 ° C., and the degree of expansion in this process was measured as puffing. The obtained results are shown in Table 1.

Figure 2008150399
Figure 2008150399



Claims (4)

所定の原料油を減圧蒸留したときに残渣油として得られる初留点300℃以上、アスファルト分12質量%以下、飽和分50質量%以上且つ硫黄分0.3質量%以下の第1の重質油と、所定の原料油を流動接触分解して得られる初留点200℃以上、硫黄分0.5質量%以下、窒素分0.2質量%以下の第2の重質油と、を含有する原料油をコークス化することを特徴とする石油コークスの製造方法。   A first heavy oil having an initial boiling point of 300 ° C. or higher, an asphalt content of 12% by mass or less, a saturated content of 50% by mass or more, and a sulfur content of 0.3% by mass or less obtained as a residual oil when a predetermined raw material oil is distilled under reduced pressure. Oil and a second heavy oil having an initial boiling point of 200 ° C. or higher obtained by fluid catalytic cracking of a predetermined raw material oil, a sulfur content of 0.5% by mass or less, and a nitrogen content of 0.2% by mass or less. A method for producing petroleum coke, characterized by coking raw material oil to be coke. 前記第1の重質油と前記第2の重質油とを含有する原料油は、500℃で熱処理したときに10μm以下のモザイク組織が5%以下のコークスを与えるものであることを特徴とする、請求項1に記載の石油コークスの製造方法。   The raw material oil containing the first heavy oil and the second heavy oil is characterized in that a mosaic structure of 10 μm or less gives a coke of 5% or less when heat-treated at 500 ° C. The method for producing petroleum coke according to claim 1. 請求項1又は2に記載の石油コークスの製造方法により得られることを特徴とする石油コークス。   A petroleum coke obtained by the method for producing petroleum coke according to claim 1. 硫黄分が0.3質量%以下であり、窒素分が0.1質量%以下であることを特徴とする、請求項3に記載の石油コークス。
The petroleum coke according to claim 3, wherein the sulfur content is 0.3 mass% or less and the nitrogen content is 0.1 mass% or less.
JP2005375926A 2005-12-27 2005-12-27 Petroleum coke and method for producing the same Active JP4809675B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2005375926A JP4809675B2 (en) 2005-12-27 2005-12-27 Petroleum coke and method for producing the same
EP14151451.3A EP2722308A1 (en) 2005-12-27 2006-12-27 Activated carbon for electricity storage carbon material
EP14151447.1A EP2722307B1 (en) 2005-12-27 2006-12-27 Method for producing a raw coke
EP06843739.1A EP1977998B1 (en) 2005-12-27 2006-12-27 Original coal and stock oil composition for needle coke and for electricity storing carbon material
KR1020087015793A KR101340194B1 (en) 2005-12-27 2006-12-27 Original coal and stock oil composition for needle coke and for electricity storing carbon material
PCT/JP2006/326368 WO2007074938A1 (en) 2005-12-27 2006-12-27 Original coal and stock oil composition for needle coke and for electricity storing carbon material
US12/094,222 US7964173B2 (en) 2005-12-27 2006-12-27 Feedstock composition and raw coke for electricity storage carbon material and needle coke
CN200680045040.1A CN101331082B (en) 2005-12-27 2006-12-27 Original coal and stock oil composition for needle coke and for electricity storing carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005375926A JP4809675B2 (en) 2005-12-27 2005-12-27 Petroleum coke and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008150399A true JP2008150399A (en) 2008-07-03
JP4809675B2 JP4809675B2 (en) 2011-11-09

Family

ID=39652935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005375926A Active JP4809675B2 (en) 2005-12-27 2005-12-27 Petroleum coke and method for producing the same

Country Status (2)

Country Link
JP (1) JP4809675B2 (en)
CN (1) CN101331082B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010029895A1 (en) * 2008-09-09 2010-03-18 新日本石油株式会社 Process for producing needle coke for graphite electrode and stock oil composition for use in the process
WO2015098754A1 (en) 2013-12-24 2015-07-02 Jx日鉱日石エネルギー株式会社 Petroleum coke and production method for same
JP2017019915A (en) * 2015-07-09 2017-01-26 Jxエネルギー株式会社 Petroleum needle coke for graphite electrode and method for producing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6242716B2 (en) * 2014-03-04 2017-12-06 Jxtgエネルギー株式会社 Artificial graphite material for negative electrode of lithium ion secondary battery and method for producing the same
CN105883750A (en) * 2016-04-14 2016-08-24 神华集团有限责任公司 Mesoporous carbon and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05105881A (en) * 1991-10-16 1993-04-27 Nippon Steel Chem Co Ltd Manufacture of needle coke
JPH05163491A (en) * 1991-12-12 1993-06-29 Nippon Steel Chem Co Ltd Production of needle coke
JPH05202362A (en) * 1992-01-24 1993-08-10 Nippon Steel Chem Co Ltd Production of acicular coke
JPH073267A (en) * 1993-06-14 1995-01-06 Nippon Steel Chem Co Ltd Production of needle coke
WO2004011371A1 (en) * 2002-07-30 2004-02-05 Kuraray Chemical Co.,Ltd. Activated carbon, method for production thereof, polarized electrode and electrical double layer capacitor
JP2004247433A (en) * 2003-02-12 2004-09-02 Nippon Oil Corp Raw-material coal composition of carbon material for electrodes of electric double-layer capacitor
JP2005123462A (en) * 2003-10-17 2005-05-12 Nippon Oil Corp Electric double layer capacitor, activated carbon for its electrode, and its manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1169911C (en) * 2001-11-14 2004-10-06 中国科学院山西煤炭化学研究所 Method for preparing needle coke

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05105881A (en) * 1991-10-16 1993-04-27 Nippon Steel Chem Co Ltd Manufacture of needle coke
JPH05163491A (en) * 1991-12-12 1993-06-29 Nippon Steel Chem Co Ltd Production of needle coke
JPH05202362A (en) * 1992-01-24 1993-08-10 Nippon Steel Chem Co Ltd Production of acicular coke
JPH073267A (en) * 1993-06-14 1995-01-06 Nippon Steel Chem Co Ltd Production of needle coke
WO2004011371A1 (en) * 2002-07-30 2004-02-05 Kuraray Chemical Co.,Ltd. Activated carbon, method for production thereof, polarized electrode and electrical double layer capacitor
JP2004247433A (en) * 2003-02-12 2004-09-02 Nippon Oil Corp Raw-material coal composition of carbon material for electrodes of electric double-layer capacitor
JP2005123462A (en) * 2003-10-17 2005-05-12 Nippon Oil Corp Electric double layer capacitor, activated carbon for its electrode, and its manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010029895A1 (en) * 2008-09-09 2010-03-18 新日本石油株式会社 Process for producing needle coke for graphite electrode and stock oil composition for use in the process
JP5298131B2 (en) * 2008-09-09 2013-09-25 Jx日鉱日石エネルギー株式会社 Method for producing needle coke for graphite electrode and raw material oil composition used therefor
US8715484B2 (en) 2008-09-09 2014-05-06 Jx Nippon Oil & Energy Corporation Process for producing needle coke for graphite electrode and stock oil composition for use in the process
KR101433694B1 (en) 2008-09-09 2014-08-25 제이엑스 닛코 닛세키 에네루기 가부시키가이샤 Process for producing needle coke for graphite electrode and stock oil composition for use in the process
WO2015098754A1 (en) 2013-12-24 2015-07-02 Jx日鉱日石エネルギー株式会社 Petroleum coke and production method for same
US9732278B2 (en) 2013-12-24 2017-08-15 Jx Nippon Oil & Energy Corporation Petroleum coke and production method for same
JP2017019915A (en) * 2015-07-09 2017-01-26 Jxエネルギー株式会社 Petroleum needle coke for graphite electrode and method for producing the same

Also Published As

Publication number Publication date
JP4809675B2 (en) 2011-11-09
CN101331082B (en) 2013-07-17
CN101331082A (en) 2008-12-24

Similar Documents

Publication Publication Date Title
JP5483334B2 (en) Method for producing petroleum coke
US10253264B2 (en) Method of producing needle coke for low CTE graphite electrodes
JP4809676B2 (en) Petroleum coke and method for producing the same
JP6339105B2 (en) Petroleum needle coke and method for producing the same
JP4809675B2 (en) Petroleum coke and method for producing the same
JPS59122585A (en) Production of needle coke
JP5298131B2 (en) Method for producing needle coke for graphite electrode and raw material oil composition used therefor
JP4220777B2 (en) Amorphous coke for special carbon material and its manufacturing method
JP2923028B2 (en) Needle coke manufacturing method
JP2920974B2 (en) Needle coke manufacturing method
JP2008179829A (en) Method for manufacturing petroleum-derived heavy-duty oil for use in manufacturing needle coke
JP2008069026A (en) Method for producing activated carbon and activated carbon
JPH10316972A (en) Production of needle coke
JP2003183669A (en) Method for producing needle coke
JP2015166444A (en) Hydrogenated coal tar pitch and production method thereof
JP2015166443A (en) Hydrogenated coal tar pitch and production method thereof
JP2002241763A (en) Method for producing aggregate coke for artificial graphite
JPH02145689A (en) Production of high-quality coke
JPH04253791A (en) Production of needle coke

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080605

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20101119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110816

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110819

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4809675

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250