JPH05163491A - Production of needle coke - Google Patents

Production of needle coke

Info

Publication number
JPH05163491A
JPH05163491A JP3350685A JP35068591A JPH05163491A JP H05163491 A JPH05163491 A JP H05163491A JP 3350685 A JP3350685 A JP 3350685A JP 35068591 A JP35068591 A JP 35068591A JP H05163491 A JPH05163491 A JP H05163491A
Authority
JP
Japan
Prior art keywords
coke
heavy oil
oil
puffing
petroleum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3350685A
Other languages
Japanese (ja)
Other versions
JP3093015B2 (en
Inventor
Tetsuo Fukuda
哲生 福田
Shigeru Miwa
成 三輪
Kazuya Shibata
和哉 柴田
Kiichiro Miyata
喜一郎 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP03350685A priority Critical patent/JP3093015B2/en
Publication of JPH05163491A publication Critical patent/JPH05163491A/en
Application granted granted Critical
Publication of JP3093015B2 publication Critical patent/JP3093015B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Coke Industry (AREA)

Abstract

PURPOSE:To obtain the subject coke having excellent coefficient of thermal expansion and puffing by blending a coal tar-based heavy oil with a petroleum- based heavy oil in a specific ratio, making the blend into raw coke by a delayed coker, calcining, cooling and calcining again at a higher temperature. CONSTITUTION:A coal tar-based heavy oil and a petroleum-based heavy oil from which a quinoline-insoluble component is preremoved are blended in a range of <=1.0wt.% nitrogen content and <=1.4wt.% sulfur content to give a raw material oil. The raw material oil is fed to a delayed coker to produce raw coke, which is firstly calcined in a temperature range of 700-900 deg.C, cooled <=100 deg.C once to adsorb oxygen in air on the raw coke and calcined again in a temperature range of 1,200-1,600 deg.C to give the objective excellent needle coke having extremely low coefficient of thermal expansion and extremely low puffing by co-carbonizing effects of the coal tar-based heavy oil and the petroleum- based heavy oil and the calcining at two stages.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は熱膨張係数(CTE)が
低く、且つ非可逆膨脹(パッフィング)の低いニードル
コークスの製造方法に関する。更に詳しくは、石炭系重
質油に石油系重質油を特定量組合わせ混合し、これより
製造した生コークスに2段か焼を組合わせることによ
り、従来CTEは低いが、黒鉛化時のパフィングが高か
った石炭系原料から、低パフィングのニードルコークス
を製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing needle coke having a low coefficient of thermal expansion (CTE) and a low irreversible expansion (puffing). More specifically, a specific amount of petroleum heavy oil is combined and mixed with a coal heavy oil, and a raw coke produced from this is combined with two-stage calcination, so that the conventional CTE is low, but the conventional CTE is low. The present invention relates to a method for producing low-puffing needle coke from a coal-based raw material having a high puffing.

【0002】[0002]

【従来の技術】従来、ニードルコークスはコールタール
もしくはコールタールピッチ又は石油系重質油を原料と
して製造され、黒鉛電極の骨材として使用される。一般
に黒鉛電極は所定の割合に粒度配合したコークス粒と粉
を加熱混合しながら、バインダーピッチを適当量添加ね
つ合後、押出成形して製造される。この生電極を焼成、
黒鉛化後、加工して黒鉛電極製品を製造している。
2. Description of the Related Art Conventionally, needle coke is produced from coal tar, coal tar pitch or heavy petroleum oil as a raw material and used as an aggregate for graphite electrodes. Generally, a graphite electrode is manufactured by extrusion-molding after adding coke particles and powder in a predetermined ratio and adding a suitable amount of binder pitch while mixing. Firing this raw electrode,
After graphitization, it is processed to produce graphite electrode products.

【0003】近年、電力費の高騰のために、原単位の低
い電極が望まれ、電力使用量の多い黒鉛化時の電力費を
低減する努力がなされている。その方法として、ウルト
ラハイパワー(UHP)法と称し、黒鉛化時に大電流を
流し、昇温速度を早くして、黒鉛化時間を短くする方法
がとられている。ニードルコークスは、黒鉛化時、特に
省エネルギーの急速黒鉛化時に非可逆膨脹(パッフィン
グと称する)をおこし、製品が割れる、嵩密度が低くな
る等の問題があり、昇温速度を早くできないのが現状で
あり、パッフィングの低いニードルコークスの出現が望
まれている。
In recent years, due to the soaring power cost, an electrode with a low unit consumption is desired, and efforts are being made to reduce the power cost during graphitization, which consumes a large amount of power. As a method for this, a method called an ultra high power (UHP) method is used, in which a large current is passed during graphitization to increase the temperature rising rate and shorten the graphitization time. Needle coke causes irreversible expansion (referred to as puffing) during graphitization, especially during energy-saving rapid graphitization, which causes problems such as product cracking and low bulk density. Currently, the rate of temperature rise cannot be increased. Therefore, the appearance of needle coke with low puffing is desired.

【0004】又黒鉛電極は苛酷な条件(高温雰囲気)で
使用されるために、耐熱衝撃性のよいものすなわち低C
TEのものが望まれている。石油系ニードルコークス
は、硫黄分が比較的高く、窒素分は低い。一方石炭系ニ
ードルコークスは、硫黄分は低いが、窒素分が高い。こ
の両者を含む化合物の熱分解がパフィングの原因である
ことが分かっている。しかし放出された硫黄分は、酸化
鉄等のパッフィング防止剤が効果的であるため、石油系
ニードルコークスでは、パフィングよりも熱膨脹係数
(CTE)の低減に注力されている。
Since the graphite electrode is used under severe conditions (high temperature atmosphere), it has a good thermal shock resistance, that is, a low C content.
TE's are desired. Petroleum needle coke has a relatively high sulfur content and a low nitrogen content. On the other hand, coal-based needle coke has a low sulfur content but a high nitrogen content. It is known that the thermal decomposition of the compound containing both of them causes puffing. However, with respect to the released sulfur content, since an anti-puffing agent such as iron oxide is effective, petroleum-based needle coke is focused on reducing the coefficient of thermal expansion (CTE) rather than puffing.

【0005】一方、石炭系ニードルコークスのパフィン
グの原因は、硫黄分は本来低いため、窒素化合物の熱分
解がパフィングの原因であり、これには酸化鉄等は効果
がないため又石炭系ニードルコークスは本来CTEは低
いので、専らパフィングの低減に注力されている。
On the other hand, the cause of the puffing of the coal-based needle coke is that the sulfur content is originally low, so that the thermal decomposition of nitrogen compounds is the cause of the puffing. Originally, CTE is low, so we are focusing on reducing puffing.

【0006】特公昭63−28477号公報には、水素
化したコールタール系原料を使用すると、パッフィング
が減少したニードルコークスが得られることが記載され
ている。しかし、コールタール系原料を水素化するに
は、大きな設備と、コストを必要とするばかりでなく、
コークス歩留が低下するという問題があり、水素化した
ものを熱処理することにより、コークス歩留を向上する
努力がなされている(特開昭63−156885号公
報)。
Japanese Patent Publication No. 63-28477 discloses that needle coke with reduced puffing can be obtained by using a hydrogenated coal tar raw material. However, in order to hydrogenate coal tar-based raw materials, not only large equipment and cost are required, but also
There is a problem that the coke yield decreases, and efforts have been made to improve the coke yield by heat-treating a hydrogenated product (Japanese Patent Laid-Open No. 63-156885).

【0007】又特開昭60−33208号公報、特開昭
60−208392号公報では、1,500℃以上の高
温で石炭系生コークスを加熱処理して、脱窒素すること
で、パッフィングを低減する方法が提案されている。こ
の方法は高温加熱に伴うエネルギー原単位が大きくなる
と共に、加熱炉の耐火物の損耗も大きいという難点があ
り、生コークスを予め酸化処理等の前処理をした後に、
通常のか焼温度でか焼する等の努力がなされている。
(特開平1−1134895号公報、特公昭63−13
5486号公報)。
Further, in JP-A-60-33208 and JP-A-60-208392, puffing is reduced by heat-treating coal-based raw coke at a high temperature of 1,500 ° C. or higher to denitrify it. The method to do is proposed. This method has the drawback that the energy consumption per unit of heating at high temperature becomes large, and the wear of the refractory of the heating furnace is also large, and after pretreatment such as oxidation treatment of the raw coke in advance,
Efforts such as calcination at normal calcination temperature are being made.
(Japanese Patent Laid-Open No. 1-134895, Japanese Patent Publication No. 63-13
5486 publication).

【0008】しかし上記方法はいずれも、従来方法に比
べ、工程が複雑であり、コストも高く、もっと安価にパ
ッフィングを低減することが求められている。
However, in any of the above methods, the process is more complicated, the cost is higher, and the puffing is required to be reduced at a lower cost than the conventional methods.

【0009】一方、石油系重質油を原料としたものは、
コークス歩留りが低く、前記の事情から、低CTEのコ
ークスを収率よく安価に製造することに重点がおかれて
いる。しかし酸化鉄等のパフィング防止剤も不純物とな
るため、これらを使用しないで低パフィングのコークス
を収率よく安価に製造することも求められている。
On the other hand, the raw material made from heavy petroleum oil is
Due to the low coke yield and the above-mentioned circumstances, the emphasis is placed on the production of low CTE coke in good yield and at low cost. However, since anti-puffing agents such as iron oxide also become impurities, it is also required to produce low-puffing coke in good yield at low cost without using them.

【0010】特公昭53−35801号公報では、ディ
レードコークス法により得た生コークスを、先ず通常の
か焼温度より低い温度範囲でか焼し、一旦冷却した後、
再び通常のか焼温度範囲でか焼を行う高品位コークスの
製造方法が開示されている。この明細書では、実施例も
比較例も石油系原料油を使用した石油系ニードルコーク
スの熱膨脹係数の低減に重点がおかれており、文言上は
石炭系原料油を用いて得た生コークスにも適用できると
は記載されているが、パフィングの発生機構の異なる石
炭系ニードルコークスにそのまま適用できる筈がなく、
事実本願の比較例4、6に記載のように石炭系ニードル
コークスそのものに前記2段か焼を行っても、パフィン
グの低減は僅かである。
In Japanese Examined Patent Publication No. Sho 53-35801, raw coke obtained by the delayed coke method is first calcined in a temperature range lower than a normal calcination temperature, and once cooled,
Again, a method for producing high-quality coke is disclosed in which calcination is performed within the normal calcination temperature range. In this specification, both Examples and Comparative Examples focus on reducing the coefficient of thermal expansion of petroleum-based needle coke using petroleum-based feedstock, and literally, the raw coke obtained using a coal-based feedstock is used. Although it is described that it can also be applied, there is no possibility that it can be applied as it is to coal-based needle coke with a different puffing generation mechanism,
In fact, even if the two-stage calcination is performed on the coal-based needle coke itself as described in Comparative Examples 4 and 6 of the present application, the reduction of puffing is slight.

【0011】一方、特開平2−145689号公報に
は、石炭系原料油10〜90重量%に、エチレンヘビー
エンド油の減圧蒸留残油を90〜10重量%混合した混
合液を熱処理後、発生するコークス結晶成長阻害性物質
を除去し、ついでディレードコーキングを行なってコー
クス化する、コークス結晶構造上、互いに逆相関にある
熱膨脹係数とパフィングを共に低減した高品位コークス
の製造方法が提案されている。しかし、エチレンヘビー
エンド油蒸留残油を50〜30重量%配合した実施例で
は、パッフィングは1.1〜1.5%で余り低くない。
石炭系単味の場合より低い程度である。
On the other hand, in Japanese Patent Laid-Open No. 2-145689, a mixture of 10 to 90% by weight of a coal-based feedstock and 90 to 10% by weight of a vacuum distillation residual oil of ethylene heavy end oil is produced after heat treatment. A coke crystal growth inhibiting substance is removed, and then delayed coking is performed to form coke. A method for producing high-quality coke in which both the thermal expansion coefficient and the puffing, which are inversely related to each other due to the coke crystal structure, are reduced, has been proposed. .. However, in the example in which 50 to 30% by weight of ethylene heavy end oil distillation residual oil was blended, the puffing was 1.1 to 1.5%, which was not so low.
It is lower than that of the plain coal type.

【0012】特開平3−250090号公報には、実質
的にキノリン不溶分を除去したコールタールピッチと石
油系重質油を混合し、この混合物を炭化する、低CTE
で、かつパッフィングが低いニードルコークスの製造方
法が開示されている。この実施例を見ると、コールター
ルピッチに石油系重質油(接触分解油)を50:50添
加した場合についてみるとCTE、パッフィングとも、
比較的良好な結果を得ている。
JP-A-3-250090 discloses a low CTE in which coal tar pitch from which quinoline insoluble matter is substantially removed and petroleum heavy oil are mixed and the mixture is carbonized.
And a method of manufacturing a needle coke with low puffing is disclosed. Looking at this example, looking at the case where 50:50 petroleum heavy oil (catalytic cracking oil) was added to coal tar pitch, both CTE and puffing showed that
The results are relatively good.

【0013】しかし、本発明者らが、これをくり返し追
試した結果では、石油系重質油として接触分解油を使用
した場合でも、このような石炭系重質油と石油系重質油
とを配合しただけ(以下共炭化と称する)では、本願比
較例に示すようにCTE、パッフィングの改善には限度
があることが判明した。これは夫々の重質油中の窒素
分、硫黄分の含量など重質油の質の差異によるものと考
えられる。石炭系重質油からの脱窒素及び石油系重質油
からの脱硫は共に、大きな装置とコストを必要とする難
点がある。
However, as a result of repeated trials by the present inventors, even when a catalytically cracked oil is used as the petroleum heavy oil, such coal heavy oil and petroleum heavy oil are It has been found that the CTE and puffing can be improved only by adding them (hereinafter referred to as co-carbonization) as shown in Comparative Example of the present application. It is considered that this is due to the difference in the quality of the heavy oil such as the content of nitrogen and sulfur in the heavy oil. Both denitrification from coal-based heavy oil and desulfurization from petroleum-based heavy oil have drawbacks that require large equipment and cost.

【0014】[0014]

【発明が解決しようとする課題】本発明の目的は、石炭
系重質油の脱窒、石油系重質油の脱硫などコストのかか
る工程を経ることなく、低CTEで、且つパッフィング
の著しく低いニードルコークスを収率よく製造する方法
を提供することである。
The object of the present invention is to achieve a low CTE and a significantly low puffing without going through costly steps such as denitrification of coal-based heavy oil and desulfurization of petroleum-based heavy oil. It is intended to provide a method for producing needle coke with high yield.

【0015】[0015]

【課題を解決するための手段】本発明者らは、石炭系重
質油と石油系重質油とを混合して窒素分、硫黄分を共に
特定値以下となるように調整配合した原料より生コーク
スを製造し、この生コークスに中間冷却を含んだ2段か
焼を行うことによって、石炭系重質油単味だけに対して
は効果が僅少であった2段階か焼が、共炭化生コークス
と極めて大きい相乗効果があること、このようにして製
造したコークスは黒鉛化速度の影響を受けず、パッフィ
ングが上昇しないという驚くべき効果を見い出して、本
発明を完成した。
[Means for Solving the Problems] The inventors of the present invention selected a raw material prepared by mixing a coal-based heavy oil and a petroleum-based heavy oil and adjusting and blending them so that the nitrogen content and the sulfur content are both below specific values. By producing raw coke and carrying out two-stage calcination including intermediate cooling on this raw coke, the two-stage calcination, which had little effect on the coal-based heavy oil alone, is a co-carbonized product. The present invention has been completed by discovering that the coke produced in this manner has an extremely large synergistic effect, that the coke produced in this way is not affected by the graphitization rate, and the puffing does not increase.

【0016】すなわち本発明は (1) コールタール系重質油と石油系重質油とを窒素分
1.0重量%以下、硫黄分1.4重量%以下となる範囲
の割合に混合して原料油を調整し、 この原料油をディレードコーカーに装入して、生コー
クスを製造し、 得られた生コークスを先づ700〜900℃の温度範
囲でか焼し、 一旦冷却した後、 再び1200〜1600℃の温度範囲でか焼すること
を特徴とするニードルコークスの製造方法であり、
That is, according to the present invention, (1) a coal tar-based heavy oil and a petroleum-based heavy oil are mixed in a ratio within a range of a nitrogen content of 1.0% by weight or less and a sulfur content of 1.4% by weight or less. A raw oil was prepared, and this raw oil was charged into a delayed coker to produce raw coke. The raw coke obtained was calcined in the temperature range of 700 to 900 ° C, cooled once, and then cooled again. A method for producing needle coke, which comprises calcination in a temperature range of 1200 to 1600 ° C.

【0017】(2) コールタール系重質油から予めキノリ
ン不溶分(QI)を実質的に除くか、石油系重質油と混
合後に実質的に除去する前項(1) 記載のニードルコーク
スの製造方法であり、
(2) Production of needle coke according to item (1), wherein the quinoline insoluble matter (QI) is substantially removed from the coal tar heavy oil in advance, or is substantially removed after mixing with the petroleum heavy oil. Is the way

【0018】(3) 一旦冷却が、100℃以下に冷却して
空気中の酸素を吸着させるものである前記(1) 記載のニ
ードルコークスの製造方法である。
(3) The method for producing needle coke according to the above (1), wherein the once cooling is performed by cooling to 100 ° C. or lower to adsorb oxygen in the air.

【0019】以下、本発明を詳細に説明する。本発明に
おいて出発原料として用いられるコールタールとして
は、コークス製造時に副生する通常のコールタールが挙
げられ、一方コールタールピッチとしては、キノリン不
溶分(以下QIという)を含有し、軟化点が100℃以
下、好ましくは20〜100℃の軟ピッチ又は中ピッチ
が挙げられる。軟化点が100℃を超える場合には、ア
ントラセン油等の芳香族系油を添加すること等により、
軟化点を100℃以下にして作業性をよくすることがで
きる。
The present invention will be described in detail below. Examples of the coal tar used as a starting material in the present invention include ordinary coal tar produced as a by-product during coke production, while coal tar pitch contains a quinoline insoluble component (hereinafter referred to as QI) and has a softening point of 100. A soft pitch or a medium pitch of not higher than 0 ° C, preferably 20 to 100 ° C is used. When the softening point exceeds 100 ° C, by adding an aromatic oil such as anthracene oil,
Workability can be improved by setting the softening point to 100 ° C. or lower.

【0020】本発明方法では、このようなコールタール
又はコールタールピッチよりQI成分を実質的に除去す
るか、あるいは石油系重質油と混合後に実質的に除去す
る。即ちQI含有量を通常0.5重量%以下、好ましく
は0.3重量%以下、最適には0.1重量%以下にまで
除去する。その手段としては、既に種々の文献に記載さ
れているそれ自体は公知の方法が適用できる。例えばこ
のタール系重質油を芳香族系油と脂肪族系油の混合溶剤
で処理する。
In the method of the present invention, the QI component is substantially removed from such coal tar or coal tar pitch, or is substantially removed after mixing with the petroleum heavy oil. That is, the QI content is usually removed to 0.5% by weight or less, preferably 0.3% by weight or less, and optimally 0.1% by weight or less. As a means therefor, a method known per se which has already been described in various documents can be applied. For example, the heavy tar oil is treated with a mixed solvent of an aromatic oil and an aliphatic oil.

【0021】脂肪族系油としては、シクロヘキサン、シ
クロペンタン等の環状化合物、アセトン、エーテル等の
カルボニル基をもつ化合物、灯油、軽油等が利用でき
る。特に、この脂肪族系化合物と、タール系洗浄油、ア
ントラセン油等の芳香族系油を適当な割合に混合して用
いると、混合割合により溶解度を適度に調節することが
できるので好ましい。
As the aliphatic oil, cyclic compounds such as cyclohexane and cyclopentane, compounds having a carbonyl group such as acetone and ether, kerosene and light oil can be used. In particular, it is preferable to use this aliphatic compound and an aromatic oil such as tar-based cleaning oil or anthracene oil in an appropriate ratio, since the solubility can be appropriately adjusted depending on the mixing ratio.

【0022】ピッチ:溶剤の重量比としては1:2〜
1:0.3、好適には1:1〜1:0.4になるように
加え混合する。混合温度は、室温から350℃程度まで
可能であるが、混合効率から100〜300℃が望まし
い。静置分離は室温から350℃までの温度が可能であ
るが、分離効率の点から100〜300℃の範囲が好ま
しく、静置時間は溶媒の種類と溶媒量、温度等によって
異ってくるが、通常数10分から10時間程度であり、
好ましくは30分〜5時間である。
The weight ratio of pitch: solvent is 1: 2
1: 0.3, preferably 1: 1 to 1: 0.4 and mixed. The mixing temperature can be from room temperature to about 350 ° C, but is preferably 100 to 300 ° C from the viewpoint of mixing efficiency. The stationary separation can be performed at a temperature from room temperature to 350 ° C., but the range of 100 to 300 ° C. is preferable from the viewpoint of separation efficiency, and the stationary time varies depending on the type of solvent, the amount of solvent, the temperature, etc. , Usually about 10 minutes to 10 hours,
It is preferably 30 minutes to 5 hours.

【0023】本発明方法においては、QIが実質的に除
去された上記の上澄液(改質コールタールもしくはコー
ルタールピッチと溶剤よりなる)を得、これを石油系重
質油と混合して、ニードルコークス製造の原料として用
いることができるが、通常上記上澄液を蒸留して、溶剤
を除去した後に、石油系重質油と混合して用いる。蒸留
は、溶剤の沸点、95容量%の留出温度等で行なわれ、
留出分は回収し、必要に応じ溶剤として再使用する。
In the method of the present invention, the above-mentioned supernatant liquid (comprising reformed coal tar or coal tar pitch and a solvent) from which QI is substantially removed is obtained, and this is mixed with heavy petroleum oil. Although it can be used as a raw material for needle coke production, it is usually used by mixing the above supernatant with a petroleum heavy oil after removing the solvent by distillation. Distillation is carried out at the boiling point of the solvent, the distillation temperature of 95% by volume, etc.,
The distillate is collected and reused as a solvent if necessary.

【0024】コールタールもしくはコールタールピッチ
と混合する石油系重質油としては、接触分解油、常圧残
油、減圧残油等が挙げられるが、少しでも脱硫され、芳
香族性が高められている接触分解油が好ましい。エチレ
ンボトム油等も好ましい。
Examples of the petroleum heavy oil to be mixed with coal tar or coal tar pitch include catalytic cracking oil, atmospheric residual oil, vacuum residual oil and the like, but they are desulfurized even a little and their aromaticity is enhanced. Contact cracked oil is preferred. Ethylene bottom oil and the like are also preferable.

【0025】混合割合は、コールタール又はコールター
ルピッチ中の窒素分、硫黄分、石油系重質油中の窒素
分、硫黄分より計算して、混合油中の窒素分が1.0重
量%以下、硫黄分が1.4重量%以下となる範囲の割合
に混合する。主としてタールピッチ等中の窒素分、石油
系重質油中の硫黄分によって決まることは云うまでもな
い。実際には、窒素分、硫黄分の通常の含有量から実施
例に示すようにコールタール又はコールタールピッチ4
0〜90重量%、石油系重質油60〜10重量%程度と
なる。好ましくはコールタール又はコールタールピッチ
50〜80重量%、石油系重質油50〜20重量%であ
る。
The mixing ratio is calculated from the nitrogen content in the coal tar or coal tar pitch, the sulfur content, the nitrogen content in the petroleum heavy oil and the sulfur content, and the nitrogen content in the mixed oil is 1.0% by weight. Hereinafter, the sulfur content is mixed in a ratio of 1.4% by weight or less. It goes without saying that it is mainly determined by the nitrogen content in tar pitch and the like and the sulfur content in heavy petroleum oil. Actually, from the usual contents of nitrogen and sulfur, coal tar or coal tar pitch 4 was used as shown in the examples.
It is 0 to 90% by weight, and the heavy petroleum oil is about 60 to 10% by weight. Coal tar or coal tar pitch is preferably 50 to 80% by weight, and petroleum heavy oil is 50 to 20% by weight.

【0026】得られた混合原料油は、コークス化装入原
料として、通常のニードルコークスの製造法によりコー
クス化する。即ちディレードコーカーにより450〜4
90℃程度の温度で生コークスとする。
The obtained mixed raw material oil is coked as a coking charging raw material by a conventional needle coke production method. That is, 450 to 4 depending on the delayed coker
Raw coke is prepared at a temperature of about 90 ° C.

【0027】通常は、この生コークスはロータリーキル
ン等で1段階で1300〜1500℃にか焼されてニー
ドルコークスとするが、本発明においては、これを1段
階で行わず、2段階でか焼するのが特徴である。すなわ
ち、先づ生コークスを700〜900℃の温度範囲でか
焼し、一旦300℃以下に冷却した後、再び1200〜
1600℃の温度範囲で、か焼する。1段目のか焼は非
酸化性雰囲気中で、毎時200℃程度の昇温時間で70
0〜900℃まで加熱した後冷却する。冷却は100℃
以下、好ましくは室温程度まで冷却する。なお、700
〜900℃の温度は生コークスが揮発分を急激に発生す
る温度であるが、この温度で一旦か焼を中止し、大気開
放下で冷却することでコークス表面に生じたクラックに
空気中の酸素を吸着し、その酸素が2段目のか焼時に、
コークスを酸化させることにより、ポアーを増加させ、
CTE、パッフィングを低下させるものと考えられる。
従って1段目か焼後の冷却は、できるだけ室温まで下げ
て可能な限り、空気中の酸素を吸着させることが好まし
い。冷却後、再び通常のか焼温度或いは若干高温度であ
る1300〜1600℃迄、毎時200℃の割合で昇温
して、ニードルコークスを得る。
Usually, this raw coke is calcined in a rotary kiln or the like in one step to 1300 to 1500 ° C. to obtain needle coke, but in the present invention, this is not carried out in one step but is calcined in two steps. Is characteristic. That is, the raw coke is first calcined in the temperature range of 700 to 900 ° C., once cooled to 300 ° C. or lower, and then again 1200 to
Calcination in the temperature range of 1600 ° C. The first stage calcination is performed in a non-oxidizing atmosphere at a temperature rise time of about 200 ° C./hr for 70
Heat to 0-900 ° C and then cool. Cooling at 100 ℃
Hereinafter, it is preferably cooled to about room temperature. 700
The temperature of ~ 900 ° C is the temperature at which the raw coke rapidly generates volatile matter, but once the calcination is stopped at this temperature, the cracks generated on the surface of the coke by cooling under the atmosphere open the oxygen in the air. Is adsorbed, and the oxygen during the second calcination,
By increasing the pores by oxidizing the coke,
It is considered to reduce CTE and puffing.
Therefore, for cooling after the first-stage calcination, it is preferable to lower the temperature to room temperature as much as possible and adsorb oxygen in the air as much as possible. After cooling, the temperature is again raised to a normal calcination temperature or slightly higher temperature of 1300 to 1600 ° C. at a rate of 200 ° C./hour to obtain needle coke.

【0028】得られたニードルコークスは所定の割合に
粒度配合され、加熱混合しながらバインダーピッチを適
当量添加ねつ合後、押出成形して生電極が製造される。
必要に応じて、ねつ合時にパッフィングインヒビターと
して酸化鉄を添加してもよいことは勿論である。この生
電極を焼成黒鉛化した後、加工して製品である黒鉛電極
を製造することができる。
The obtained needle coke is blended in a predetermined proportion of particle size, and while being heated and mixed, an appropriate amount of binder pitch is added, and the mixture is extrusion-molded to produce a raw electrode.
It goes without saying that iron oxide may be added as a puffing inhibitor at the time of mating, if necessary. The raw electrode can be graphitized by firing and then processed to produce a product graphite electrode.

【0029】[0029]

【実施例】以下に、実施例により、本発明を更に具体的
に説明するが、本発明はこの実施例によって何等限定さ
れるものではない。 (実施例1,2、比較例1,2,3)コールタールピッ
チとしては、比重1.173(100℃)、H/C
0.72、窒素分1.10重量%、硫黄分0.37重量
%、コンラドソン残留炭素(CCR)30.0重量%、
軟化点37℃のコールタール軟ピッチを使用した。これ
を170℃に加熱し、灯油、タール洗浄油の混合溶剤を
添加して、重質ピッチ状沈澱物を析出させ、これを静置
分離して、QI分を分離し、蒸留して溶剤を分離して、
脱QIコールタールピッチ(CTP)を得た。QI分は
0.01重量%以下であった。石油系重質油としては、
流動接触分解残油(FCC−DO)を使用した。H/C
0.94、コンラドソン残留炭素(CCR)11.3
重量%、窒素0.14重量%、硫黄分0.96重量%、
QI分は0.01重量%であった。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. (Examples 1, 2 and Comparative Examples 1, 2, 3) As coal tar pitch, specific gravity 1.173 (100 ° C.), H / C
0.72, nitrogen content 1.10% by weight, sulfur content 0.37% by weight, Conradson residual carbon (CCR) 30.0% by weight,
Coal tar soft pitch having a softening point of 37 ° C. was used. This is heated to 170 ° C., a mixed solvent of kerosene and tar cleaning oil is added to deposit a heavy pitch-like precipitate, which is allowed to stand and separate, a QI component is separated and distilled to remove the solvent. Separate
De-QI coal tar pitch (CTP) was obtained. The QI content was 0.01% by weight or less. As heavy petroleum oil,
Fluid catalytic cracking residual oil (FCC-DO) was used. H / C
0.94, Conradson carbon residue (CCR) 11.3
% By weight, nitrogen 0.14% by weight, sulfur content 0.96% by weight,
The QI content was 0.01% by weight.

【0030】これらを表1の配合比で混合し、1バッチ
5kgの小型反応器を用いて、480〜490℃のコーキ
ング温度で、8時間加熱して生コークスを得た。この生
コークスを研究室か焼炉(シリコニット炉、4kg/バッ
チ)を用い、1段階か焼温度800℃、2段階か焼温度
1300〜1400℃、中間冷却温度、室温の大気開
放、炉内雰囲気はアルゴンガス気流中で、表1のように
2段階か焼を行った。コークス収率及びコークス中の窒
素分は表1の通りである。
These were mixed at the compounding ratio shown in Table 1 and heated at a coking temperature of 480 to 490 ° C. for 8 hours using a small reactor of 5 kg per batch to obtain raw coke. Using this laboratory coke in a laboratory calcination furnace (Siliconit furnace, 4 kg / batch), one-stage calcination temperature 800 ° C, two-stage calcination temperature 1300 to 1400 ° C, intermediate cooling temperature, room temperature open to the atmosphere, furnace atmosphere Was subjected to two-step calcination as shown in Table 1 in an argon gas stream. Table 1 shows the coke yield and the nitrogen content in the coke.

【0031】CTEの測定は、か焼コークスを粉砕し、
一定の粒度配合とし、この100部に対して、コールタ
ールバインダーピッチを25部配合し、加熱ねつ合した
のち、モールド成形し、1000℃で焼成したものおよ
び2500℃で黒鉛化したテストピースについて測定し
た。パッフィングは、同様に成形焼成したテストピース
について、タンマン炉を用い、10℃/min (標準)の
昇温速度で、室温〜2500℃の測定温度間の押出方向
に垂直方向の焼成体の寸法の伸びをパッフィングとして
示した。それらの結果を表1に示す。
CTE is measured by crushing calcined coke,
About 100 parts of this, with 100 parts of this mixture, 25 parts of coal tar binder pitch was mixed, heated and bonded, then molded, fired at 1000 ° C. and test pieces graphitized at 2500 ° C. It was measured. Puffing was carried out on a test piece similarly molded and fired using a Tammann furnace at a temperature rising rate of 10 ° C./min (standard) at a temperature of room temperature to 2500 ° C. between the measured temperature and the dimension of the fired body perpendicular to the extrusion direction. The elongation is shown as puffing. The results are shown in Table 1.

【0032】表1において、実施例1、比較例1はCT
PとFCC−DOを50重量%づつ配合した共炭化品に
ついて、2段階か焼を行った実施例1と、1段階か焼し
た比較例1の物性を比較したものである。実施例2と比
較例2は、CTPとFCC−DOを70/30重量%づ
つ配合した共炭化品について、2段階か焼を行った実施
例2と、1段階か焼を行った比較例2の物性比較をした
ものである。比較例3はCTP単品を1段か焼した従来
のコールタール系コークスの物性である。
In Table 1, Example 1 and Comparative Example 1 are CT
2 is a comparison of the physical properties of Example 1 in which two-step calcination was performed and Comparative Example 1 in which one-step calcination was performed on a co-carbonized product in which P and FCC-DO were mixed in 50% by weight. Example 2 and Comparative Example 2 are Example 2 in which two-step calcination was performed and Comparative Example 2 in which one-step calcination was performed on the co-carbonized product in which CTP and FCC-DO were mixed at 70/30 wt% each. It is a physical property comparison. Comparative Example 3 shows the physical properties of a conventional coal tar-based coke obtained by calcining a single CTP in one stage.

【0033】[0033]

【表1】 [Table 1]

【0034】(実施例3、比較例4,5,6)本発明に
おける共炭化‐2段か焼効果を見るために黒鉛化速度を
2倍にした時の、本発明のCTP/FCC−DO(50
/50)の共炭化品を前記の2段階か焼をした実施例3
と、同じ共炭化品を1段階か焼した比較例4、CTEは
高いが、パッフィングの低いタール系単味生コークスを
2段階か焼した比較例5、同じタール系単味生コークス
を1段階か焼した比較例6について、黒鉛化速度を10
℃/min と、20℃/min の場合についてのパッフィン
グの測定結果を表2に示す。
(Example 3, Comparative Examples 4, 5 and 6) CTP / FCC-DO of the present invention when the graphitization rate was doubled in order to see the effect of co-carbonization-2 step calcination in the present invention. (50
Example 3 in which the co-carbonized product of 50/50) was calcined in the two steps described above.
And Comparative Example 4 in which the same co-carbonized product was calcined in one step, Comparative Example 5 in which tar-based plain fresh coke having a high CTE but low puffing was calcined in two steps, and the same tar-based plain raw coke in one step For the calcined Comparative Example 6, the graphitization rate was 10
Table 2 shows the puffing measurement results for the cases of ℃ / min and 20 ℃ / min.

【0035】[0035]

【表2】 [Table 2]

【0036】[0036]

【発明の効果】本発明の方法によれば、石炭系重質油と
石油系重質油との通常の1段か焼による共炭化だけで
は、CTE、パッフィング共に十分に低下しなかった共
炭化品を2段階か焼することにより、CTE、パッフィ
ング共に十分に低いニードルコークスを得、又2段階か
焼だけでは、十分に低下しなかったCTE、パッフィン
グが共炭化を組み合わせることにより著しく改善され
た。即ち共炭化と2段階か焼に著しい相乗効果が認めら
れて、CTE、パッフィング共に低いニードルコークス
が得られた。又このニードルコークスは急速黒鉛化に必
要な、黒鉛化速度を早くした場合にも、影響を受けず、
パッフィングは上昇しないという驚くべき優れた性状を
有する。
EFFECTS OF THE INVENTION According to the method of the present invention, co-carbonization in which both CTE and puffing are not sufficiently reduced only by ordinary one-step calcination of coal-based heavy oil and petroleum-based heavy oil. By calcination of the product in two steps, a sufficiently low CTE and puffing coke was obtained, and in the case of calcination only by two steps, CTE and puffing were remarkably improved by combining co-carbonization. .. That is, a significant synergistic effect was observed between co-carbonization and two-step calcination, and needle coke with low CTE and puffing was obtained. In addition, this needle coke is not affected even when the graphitization rate required for rapid graphitization is increased,
The puffing has the surprisingly excellent property of not rising.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 コールタール系重質油と石油系重質油
とを窒素分1.0重量%以下、硫黄分1.4重量%以下
となる範囲の割合に混合して原料油を調整し、 この原料油をディレードコーカーに装入して、生コー
クスを製造し、 得られた生コークスを先づ700〜900℃の温度範
囲でか焼し、 一旦冷却した後、 再び1200〜1600℃の温度範囲でか焼すること
を特徴とするニードルコークスの製造方法。
1. A feedstock oil is prepared by mixing coal tar heavy oil and petroleum heavy oil in a ratio such that the nitrogen content is 1.0 wt% or less and the sulfur content is 1.4 wt% or less. This raw material oil is charged into a delayed coker to produce raw coke, and the obtained raw coke is first calcined in a temperature range of 700 to 900 ° C., cooled once, and then cooled again to 1200 to 1600 ° C. A method for producing needle coke, which comprises calcination within a temperature range.
【請求項2】 コールタール系重質油から予めキノリン
不溶分(QI)を実質的に除くか、石油系重質油と混合
後に実質的に除去する請求項1記載のニードルコークス
の製造方法。
2. The method for producing needle coke according to claim 1, wherein the quinoline insoluble matter (QI) is substantially removed from the coal tar heavy oil in advance, or the quinoline insoluble matter (QI) is substantially removed after mixing with the petroleum heavy oil.
【請求項3】一旦冷却が、100℃以下に冷却して空気
中の酸素を吸着させるものである請求項1記載のニード
ルコークスの製造方法。
3. The method for producing needle coke according to claim 1, wherein the once cooling is performed by cooling to 100 ° C. or lower to adsorb oxygen in the air.
JP03350685A 1991-12-12 1991-12-12 Needle coke manufacturing method Expired - Fee Related JP3093015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03350685A JP3093015B2 (en) 1991-12-12 1991-12-12 Needle coke manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03350685A JP3093015B2 (en) 1991-12-12 1991-12-12 Needle coke manufacturing method

Publications (2)

Publication Number Publication Date
JPH05163491A true JPH05163491A (en) 1993-06-29
JP3093015B2 JP3093015B2 (en) 2000-10-03

Family

ID=18412152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03350685A Expired - Fee Related JP3093015B2 (en) 1991-12-12 1991-12-12 Needle coke manufacturing method

Country Status (1)

Country Link
JP (1) JP3093015B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006030668A1 (en) * 2004-09-17 2006-03-23 Nippon Petroleum Refining Company, Limited Adsorbent, method for producing same, and method for processing oil-containing wastewater
JP2006269494A (en) * 2005-03-22 2006-10-05 Nippon Steel Chem Co Ltd Carbonaceous material for polarized electrode for electric double-layer capacitor, and manufacturing method of polarized electrode
JP2007019257A (en) * 2005-07-07 2007-01-25 Japan Energy Corp Low-temperature burned carbon for material of electrode
JP2007115749A (en) * 2005-10-18 2007-05-10 Nippon Oil Corp Method of manufacturing carbon material for electric double layer capacitor electrode
WO2007074938A1 (en) 2005-12-27 2007-07-05 Nippon Oil Corporation Original coal and stock oil composition for needle coke and for electricity storing carbon material
WO2007074939A1 (en) * 2005-12-27 2007-07-05 Nippon Oil Corporation Raw coal for making carbonaceous material for electricity storage or needle coke
EP1830373A1 (en) * 2004-12-22 2007-09-05 Nippon Oil Corporation Raw material coal composition for carbon material for electrode in electric double layer capacitor
JP2008150399A (en) * 2005-12-27 2008-07-03 Nippon Petroleum Refining Co Ltd Petroleum coke and method for producing the same
JP2008156376A (en) * 2005-12-27 2008-07-10 Nippon Petroleum Refining Co Ltd Petroleum coke and method for producing the same
JP2009542842A (en) * 2006-06-29 2009-12-03 グラフテック、インターナショナル、ホールディングス、インコーポレーテッド Method for producing acicular coke used as raw material for low CTE graphite electrode
WO2010029895A1 (en) 2008-09-09 2010-03-18 新日本石油株式会社 Process for producing needle coke for graphite electrode and stock oil composition for use in the process
US8137530B2 (en) 2007-06-22 2012-03-20 Nippon Petroleum Refining Co., Ltd. Process for producing petroleum coke
CN107083251A (en) * 2008-06-03 2017-08-22 格拉弗技术国际控股有限公司 Expanded needle coke is reduced by what coal tar distillate was made
CN111486702A (en) * 2020-04-16 2020-08-04 山西中科化美科技有限责任公司 Needle coke two-stage calcination coupling flue gas internal circulation method and device
WO2021054122A1 (en) 2019-09-17 2021-03-25 日鉄ケミカル&マテリアル株式会社 Low-cte, low-puffing needle coke
WO2022060104A1 (en) * 2020-09-18 2022-03-24 주식회사 엘지에너지솔루션 Negative electrode active material, and negative electrode and secondary battery comprising same

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7666306B2 (en) 2004-09-17 2010-02-23 Nippon Petroleum Refining Co., Ltd. Adsorbent, method for producing same, and method for processing oil-containing waste water
WO2006030668A1 (en) * 2004-09-17 2006-03-23 Nippon Petroleum Refining Company, Limited Adsorbent, method for producing same, and method for processing oil-containing wastewater
EP1830373A1 (en) * 2004-12-22 2007-09-05 Nippon Oil Corporation Raw material coal composition for carbon material for electrode in electric double layer capacitor
EP1830373A4 (en) * 2004-12-22 2011-01-26 Nippon Oil Corp Raw material coal composition for carbon material for electrode in electric double layer capacitor
JP2006269494A (en) * 2005-03-22 2006-10-05 Nippon Steel Chem Co Ltd Carbonaceous material for polarized electrode for electric double-layer capacitor, and manufacturing method of polarized electrode
JP2007019257A (en) * 2005-07-07 2007-01-25 Japan Energy Corp Low-temperature burned carbon for material of electrode
JP4694288B2 (en) * 2005-07-07 2011-06-08 Jx日鉱日石エネルギー株式会社 Low temperature calcined carbon for electrode materials
JP2007115749A (en) * 2005-10-18 2007-05-10 Nippon Oil Corp Method of manufacturing carbon material for electric double layer capacitor electrode
JP4708152B2 (en) * 2005-10-18 2011-06-22 Jx日鉱日石エネルギー株式会社 Method for producing carbon material for electric double layer capacitor electrode
US7964173B2 (en) 2005-12-27 2011-06-21 Nippon Oil Corporation Feedstock composition and raw coke for electricity storage carbon material and needle coke
US8197788B2 (en) 2005-12-27 2012-06-12 Nippon Oil Corporation Raw coke for electricity storage carbon material and needle coke
EP2722307A1 (en) 2005-12-27 2014-04-23 Nippon Oil Corporation Raw coke for electricity storage carbon material and needle coke
JP2008156376A (en) * 2005-12-27 2008-07-10 Nippon Petroleum Refining Co Ltd Petroleum coke and method for producing the same
EP2722308A1 (en) 2005-12-27 2014-04-23 Nippon Oil Corporation Activated carbon for electricity storage carbon material
JP2008150399A (en) * 2005-12-27 2008-07-03 Nippon Petroleum Refining Co Ltd Petroleum coke and method for producing the same
US7959888B2 (en) 2005-12-27 2011-06-14 Nippon Oil Corporation Raw coke for electricity storage carbon material and needle coke
WO2007074939A1 (en) * 2005-12-27 2007-07-05 Nippon Oil Corporation Raw coal for making carbonaceous material for electricity storage or needle coke
WO2007074938A1 (en) 2005-12-27 2007-07-05 Nippon Oil Corporation Original coal and stock oil composition for needle coke and for electricity storing carbon material
EP1977998A4 (en) * 2005-12-27 2012-02-29 Nippon Oil Corp Original coal and stock oil composition for needle coke and for electricity storing carbon material
KR101340194B1 (en) * 2005-12-27 2014-01-02 제이엑스 닛코닛세키에너지주식회사 Original coal and stock oil composition for needle coke and for electricity storing carbon material
US8226921B2 (en) 2005-12-27 2012-07-24 Nippon Oil Corporation Raw coke for electricity storage carbon material and needle coke
JP2009542842A (en) * 2006-06-29 2009-12-03 グラフテック、インターナショナル、ホールディングス、インコーポレーテッド Method for producing acicular coke used as raw material for low CTE graphite electrode
GB2451387B (en) * 2006-06-29 2011-04-27 Graftech Int Holdings Inc Method of producing needle coke for low CTE graphite electrodes
US9777221B2 (en) 2006-06-29 2017-10-03 Graftech International Holdings Inc. Method of producing needle coke for low CTE graphite electrodes
US8137530B2 (en) 2007-06-22 2012-03-20 Nippon Petroleum Refining Co., Ltd. Process for producing petroleum coke
CN107083251A (en) * 2008-06-03 2017-08-22 格拉弗技术国际控股有限公司 Expanded needle coke is reduced by what coal tar distillate was made
CN107083251B (en) * 2008-06-03 2023-04-18 格拉弗技术国际控股有限公司 Reduced puffing needle coke from coal tar distillate
WO2010029895A1 (en) 2008-09-09 2010-03-18 新日本石油株式会社 Process for producing needle coke for graphite electrode and stock oil composition for use in the process
US8715484B2 (en) 2008-09-09 2014-05-06 Jx Nippon Oil & Energy Corporation Process for producing needle coke for graphite electrode and stock oil composition for use in the process
WO2021054122A1 (en) 2019-09-17 2021-03-25 日鉄ケミカル&マテリアル株式会社 Low-cte, low-puffing needle coke
CN111486702A (en) * 2020-04-16 2020-08-04 山西中科化美科技有限责任公司 Needle coke two-stage calcination coupling flue gas internal circulation method and device
WO2022060104A1 (en) * 2020-09-18 2022-03-24 주식회사 엘지에너지솔루션 Negative electrode active material, and negative electrode and secondary battery comprising same

Also Published As

Publication number Publication date
JP3093015B2 (en) 2000-10-03

Similar Documents

Publication Publication Date Title
JPH05163491A (en) Production of needle coke
JP4809676B2 (en) Petroleum coke and method for producing the same
JPS59122585A (en) Production of needle coke
JP2008150399A (en) Petroleum coke and method for producing the same
JPS60149690A (en) Preparation of needle coke
JPH073267A (en) Production of needle coke
JP2920974B2 (en) Needle coke manufacturing method
JPH0288414A (en) Production of elastic graphite body
JPH04145193A (en) Production of needle coke
JP2775785B2 (en) Needle coke manufacturing method
JP4107038B2 (en) Process for producing calcined coke
WO2024080302A1 (en) Binder composition for graphite electrode production use, method for producing green electrode for graphite electrode, method for producing baked electrode for graphite electrode, and method for producing graphite electrode
JPS6127433B2 (en)
JP3025540B2 (en) Needle coke manufacturing method
JPH02296894A (en) Production of needle coke
JPH04285189A (en) Production of artificial graphite electrode
JPH05229810A (en) Production of isotropic high density graphite material
JPH10316972A (en) Production of needle coke
JPS6114112A (en) Manufacture of coke for graphite molding
JPH066510B2 (en) Manufacturing method of artificial graphite electrode
JPH03250090A (en) Manufacture of needle coke
CA2920605C (en) Carbon material production method and carbon material
JP2024056498A (en) Raw coke for graphite electrodes and its manufacturing method, needle coke for graphite electrodes and its manufacturing method, and manufacturing method of graphite electrodes
JP2024056497A (en) Raw material composition for needle coke, raw coke and its manufacturing method, needle coke for graphite electrodes and its manufacturing method, and manufacturing method of graphite electrodes
JPH05848A (en) Production of high strength isotropic graphite material

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000711

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080728

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees